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1. Introduction

Let (X,w) be a compact Kéhler manifold. It is in general quite difficult to develop a
calculus on cycles of codimension >2. An important approach has been introduced by
Gillet—Soulé [35] who constructed appropriate potentials with tame singularities for cycles
of arbitrary codimension. See also Bost—Gillet—Soulé [9], Berndtsson [7] and Polyakov—
Henkin [42] for the resolution of 99- and 0-equations in the projective space.

On the other hand, the calculus on positive closed currents of bidegree (1,1) using
potentials is very useful and quite well developed. Demailly’s papers [11], [12] and book
[13] contain a clear exposition of this subject. It has many applications in complex
geometry and to holomorphic dynamics, see the surveys [29] and [44] for background.
The recent papers [20], [18] and [14] by the authors give other applications.

Our main goal in this article is to develop a calculus on positive closed currents of
bidegree (p, p). For simplicity, we restrict here to the case of the projective space P*. We
first explain the familiar situation of currents of bidegree (1,1). The reader will find in
§2 some basic notions and properties of positive closed currents and of plurisubharmonic
functions.

Denote by w the standard Fubini-Study form on P* normalized by fpk whF=1. Let
S be a positive closed (1,1)-current on P¥. We assume that the mass ||S||:=(S,w*™1) is
1, that is, S is cohomologous to w. A quasi-potential of S is a quasi-plurisubharmonic
function u such that

S—w=ddu.

Recall that d:=(i/27)(0—0). Such a u is unique when we normalize it by [5, uw®=0.
The correspondence S<>u is very useful. Indeed, u has a value at every point if we
allow the value —oco. This makes it possible to consider the pull-back of S by dominant

meromorphic maps [40] or to consider the wedge-product (intersection)
SAS" :=wAS" +dd®(uS")

when u is integrable with respect to the trace measure of a positive closed current S’.

From our point of view, the formalism in this case is as follows. Let d, denote the
Dirac mass at . We consider a (k—1,k—1)-current v, non-uniquely determined, such
that (v,w)=0 and dd°v=4, —w". We then have, formally,

w(z) = (u, 0,) = (u, 0 —w") = (u, ddv) = (dd°u,v) = (S —w,v) = (S, v).

So, (S,v) is in particular independent of the choice of v. Moreover, we can extend the
action of u to the convex set of probability measures %. If dd°U,=v—w* with v€%
and (U,,w)=0, we get

(u,v) = (5, Uy),
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where the value —oo is allowed. We prefer to consider that the quasi-potential is acting
on %}.. Define
Us(v) = (u,v)=(S,Uy,).

This is somehow irrelevant in this case, since Dirac masses are the extremal points of %%
and s is simply the affine extension of u to %}.
Let ¢, denote the convex compact set of positive closed currents .S of bidegree (p, p)

on P*¥ and of mass 1, i.e. ||S||:=(S,wk P)=1. Let Us denote a solution to the equations
ddUs=S—wP and (Ug,w" PF1)=0.

We introduce %s as a function on 6j_p1 that we will call the super-potential of S of
mean 0. Suppose that R is in €;_,.1 and let dd°Ugr=R—wk P+l with (Ug,w?)=0.
Then, formally,

Us(R) := (Us, R) = (Ug, R—w" Pt = (Usg, dd°Ug)
= <dch5, UR> = <S—wp, UR> = <S, UR>

The function %s determines S. We will show that it is defined everywhere if the value
—o0 is allowed.

To develop the calculus, we have to consider ¢}, and €;—p+1 as infinite-dimensional
spaces with special families of currents that we parametrize by the unit disc A in C. We
call these families special structural discs of currents. When g is restricted to such discs
we get quasi-subharmonic functions. More precisely, if z+— R, is a special structural disc

of currents parametrized by x€A, then
dd;%s(R,) = —«,

where « is a smooth (1, 1)-form independent of S. The above definition of Zg(R) is valid
for S or R smooth. In general, we have

Us(R) = lim %s(R.)

x—0

for some special discs with Rg=R.

In §2, we introduce a geometry on the space %), in particular the structural varieties
and their curvature forms a. In §3, we establish the basic properties of super-potentials,
in particular convergence theorems which make the theory useful. The main point is to
extend the definition of the super-potential %g from smooth forms in €%_,41 to arbitrary
currents in 6;_p4+1. We introduce (Definition 3.2.3) the notion of Hartogs convergence
(or H-convergence for short) for currents, which is technically useful. In §4 we deal with a



4 T.-C. DINH AND N. SIBONY

theory of intersection of currents. We give good conditions for the intersection of currents
of arbitrary bidegrees. Two currents R; €%, and R2€%,, are wedgeable if and only if
a super-potential of Ry is finite at Ry Aw*~P17P2+1 The calculus on differential forms
can be extended to wedgeable currents: commutativity, associativity, convergence and
continuity of wedge-product for the H-convergence. If Ry is of bidegree (1,1), then the
condition means that the quasi-potentials of Ry are integrable with respect to the trace
measure of R;. As a special case, we obtain the usual intersection of algebraic cycles.
The question of developing such a theory was raised by Demailly in [11]. We give, in
the last section, a satisfactory approach to the problem of pulling back a current in %,
by meromorphic maps. Also, in that section, we apply the theory of super-potentials to
complex dynamics in higher dimension. The main applications are the following results.

As a first application, we construct Green currents of bidegree (p, p) for a large class
of meromorphic maps on P¥. This requires a good calculus using the pull-back operation.
The following result holds for holomorphic maps and for Zariski generic meromorphic

maps which are not holomorphic.

THEOREM 1.0.1. Let f be an algebraically p-stable meromorphic map on PF with
dynamical degrees ds, 1<s<k. Assume that dp—1<d, and that the union of the infinite
fibers is of dimension <k—p. Then, d;"(f")*(wP) converge to an f*-invariant current

T which is extremal among f*-invariant currents in €.

Note that the convergence result also holds for regular polynomial automorphisms.
The current 7 is called the Green current of f of bidegree (p,p). The convergence is still
valid if we replace w? by a current with bounded super-potentials. The case p=1 was
considered by the second author in [44].

Let .#4(P*) denote the space of dominant meromorphic self-maps of algebraic degree
d>2 on P*. Such a map can be lifted to a homogeneous polynomial self-map of CF*+1 of
degree d. The lift is unique up to a multiplicative constant. The space .#y(P*) has the
structure of a Zariski dense open set in PV with N:=(k+1)(d+k)!/d'k!—1. The space
#(PF) of holomorphic self-maps of algebraic degree d>2 on P is a Zariski open subset
of My(P*) and #;(P*)\ s (PF) is an irreducible hypersurface of .#;(P*), see [5] and
[34, p. 427].

THEOREM 1.0.2. There is a Zariski dense open set H; (P¥) in 75(P*) such that, if
fis in H;(PF) and if S is a current in €, then d=P"(f™)*(S) converges to the Green
current of f of bidegree (p,p) uniformly with respect to S.

A more precise description is known for p=1 and k=2 in [31] and [27], for p=1 and
k>2 in [24] and for p=Fk in [17] and [24] (see also [30] and [10]). Applying the previous

theorem to the currents of integration on subvarieties H gives the equidistribution of
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f~™(H) in P*. Another application is a rigidity theorem for polynomial automorphisms

of C* that we consider as birational maps on P*.

THEOREM 1.0.3. Let f be a polynomial automorphism of CF which is reqular in the
sense of [44]. Let I, denote the indeterminacy set of f at infinity and p be the integer
such that dim I, =k—p—1. Let K, be the set of points z€CF with bounded orbits. Then,
the Green (p,p)-current associated with f is the unique positive closed (p,p)-current of

mass 1 with support in K, .

This result was proved by Forneess and the second author in dimension k=2 [30].
Note that when k=2 and p=1, regular automorphisms are the Hénon-type automor-
phisms of C2. It is known that dynamically interesting polynomial automorphisms in C2
are conjugated to the regular ones [33]. Let H be an analytic subset of pure dimension
k—p which does not intersect the indeterminacy set I_ of f~'. As a consequence of
Theorem 1.0.3, we obtain that the currents of integration on f~"(H), properly normal-
ized, converge to the Green (p, p)-current of f. The case k=2 and p=1 of this result was
proved by Bedford and Smillie in [6].

Remark 1.0.4. The super-potential %5 can be extended to a function on weakly
positive closed currents of bidegree (k—p+1,k—p+1). For simplicity, we consider only
(strongly) positive currents. We can also define super-potentials for weakly positive
closed (p, p)-currents; they are functions on (strongly) positive closed currents of bidegree
(k—p+1,k—p+1). The super-potentials are introduced on currents of mass 1 but they
can be easily extended by linearity to currents of arbitrary mass. Their domain of

definition can also be extended to positive closed currents of arbitrary mass.

Other notation. A, is the disc of center 0 and of radius r in C, A denotes the unit
disc, A¥ the unit polydisc in C*¥ and A*:=A\{0}. The group of automorphisms of P is
a complex Lie group of dimension k24 2k that we denote by Aut(P*)~PGL(k+1,C). We
will work with a fixed holomorphic chart and local holomorphic coordinates y of Aut(P¥).
The automorphism with coordinates y is denoted by 7,. Choose y so that |y|<2 and
y=0 at the identity id€ Aut(P*). In order to simplify the notation, choose a norm |y| of
y which is invariant under the involution 7—7~!. Fix a smooth probability measure o
with compact support in {y:|y|<1}. Choose p radial and decreasing when |y| increases.
So, the involution 7+ 77! preserves go. The mass of a positive or negative (p, p)-current
S on P* is defined by ||S||:=|({S,w*P)|. Throughout the paper, Sy, Ry, ..., will denote
the regularization of S, R, ..., defined in §2.1 below.

Acknowledgment. We thank the referee who has carefully read the first version of
this paper. He suggested several clarifications which allowed to improve the exposition.
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2. Geometry of currents on projective spaces

In this section, we introduce some basic facts about the convex set €, of positive closed

(p, p)-currents of mass 1 in P¥,

2.1. Topology and distances on the spaces of currents

Let X be a complex manifold of dimension k. Recall that a (p,p)-form ® on X is
(strongly) positive if it is positive at every point a€ X, that is, ® is equal, at the point a,

to a linear combination of forms with positive coefficients of the type

(to1 A1) A A (T ABp),

where ¢; are (1,0)-forms on X. Positive (0,0)-forms are positive functions and positive
(k, k)-forms are products of volume forms with positive functions.

A (p,p)-form @ is weakly positive if DAY is a positive form of maximal bidegree
for every positive (k—p, k—p)-form ¥. A (p,p)-current T on X is positive (resp. weakly
positive) if TAW is a positive measure for every weakly positive (resp. positive) smooth
(k—p, k—p)-form U. Positive forms and currents are weakly positive. The notions of
positivity and of weak positivity coincide only for bidegrees (0,0), (1,1), (k—1,k—1)
and (k, k). We also say that ® and T are negative or weakly negative if —® and —T are
positive or weakly positive. For real (p,p)-currents T and T’, we will write T>T" and
T'<T when T —T" is positive.

Assume that X is a compact Kdhler manifold and wx is a Kéahler form on X. If T
is a positive or negative (p, p)-current, the mass of T on a Borel set K CX is the mass

of the trace measure T/\w?{p of T' on K; that is,
k—
Tk = (T wx ) e

The mass of T means its mass ||T|| on K=X. Assume that T is positive and closed.
Then, ||T|| depends only on the class of T' in the Hodge cohomology group H??(X,C).
We recall the notion of density of positive closed currents. Let z denote local coordinates
in a neighbourhood of a point a€X such that =0 at a, and B:=dd|z|?> denote the
standard Euclidean form. Let B, denote the ball {z:|z|<r}. The Lelong number of T
at a is defined by

v(T,a):=lim 7”T/\ﬁk_p”Br

r50 qk—Pp2k—2p '
When r decreases to 0, the expression on the right-hand side decreases to v(T, a), which
does not depend on the choice of coordinates x [47]. The Lelong number compares the
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mass of the current on B, with the Euclidean volume 7*~Pr2%=2P /(k—p)! of a ball of
radius 7 in C¥~P. A theorem of Siu says that {a:v(T,a)>c} is an analytic subset of X
of dimension <k—p for every ¢>0 [47].

The Kihler manifolds we consider in this paper are the projective space P* and the
product P* xP*. Let m; and 7 be the canonical projections of Pk xP* onto its factors.

Let w denote the Fubini-Study form on P* normalized so that ka wF=1, and define

w = (w) 473 (W),

the canonical Kihler form on P xP*. If T is a positive closed (p, p)-current on P¥, one

proves easily that v(T,a)<||T|| for every a€P¥.

Example 2.1.1. Let V be an analytic subset of pure dimension k—p in P¥. Lelong
showed in [39] that the integration on the regular part of V' defines a positive closed
(p,p)-current [V]. The mass of [V] is equal to the degree of V, i.e. the number of points
in the intersection of V' with a generic projective plane P of dimension p. By a theorem
of Thie, the Lelong number of [V] at a is the multiplicity of V at a, i.e. the multiplicity
at a of VNP for P generic passing through a. This number is also equal to the number of
points, in a small neighbourhood of a, of VNP’ for P’ generic close enough to P. From

the definition of the Lelong number, we deduce that there are constants c, ¢’ >0 such that
cr®* =2 <volume(VNB) < /r?k—2

for every ball B with center in V' of radius r<1.

We will use the weak topology in €, i.e. the topology induced by the weak topology of
currents. Recall that a sequence {R,, }n>0 of (p, p)-currents converges weakly to a current
R if (R, ®)— (R, ®) for every smooth (k—p, k—p)-form ® on P¥. Since the currents in
¢, are positive, we obtain the same topology on %, if we consider real continuous forms
® instead of smooth forms. For this topology, %, is compact.

We introduce some natural distances on %, as follows. For a>0 let [a] denote the
integer part of a. Let €', be the space of (p, q)-forms whose coefficients admit derivatives
of all orders <[a] and these derivatives are (a—[a])-Holder continuous. We use here the
sum of ¥*-norms of the coefficients for a fixed atlas. If R and R’ are currents in %,
define

disto (R, R'):= sup |(R—R',®),
2llge<1
where @ is a smooth (k—p, k—p)-form on P*. Observe that %, has finite diameter with
respect to these distances, since (R, ®) and (R’, ®) are bounded.
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LEMMA 2.1.2. For every 0<a<[3<oo there is a constant co >0 such that
distp < dist, < caﬁ[distg]a/ﬁ.

In particular, a function on €, is Holder continuous for dist, if and only if it is Holder

continuous for distg.

Proof. The first inequality is clear. Let L:6°  ,  —C be a continuous linear form.

Assume that there are constants A and B such that
[L(®)| < A[[®]lgo  and  [L(®)| < B||®||¢e.
The theory of interpolation between Banach spaces [49] implies that

|L(®)| < ca pA /P BY7 |2

go
with ¢, 3 independent of A, B and L. Applying this to L:=R—R’ with R and R’ as
above, gives the second inequality in the lemma. O

When p=£k, % is the convex set of probability measures on P* and its extremal
elements are the Dirac masses. One can identify the set of extremal elements of %
with P*. Let &, and &, denote the Dirac masses at a and b, and let [Ja—b|| denote the

distance between a and b induced by the Fubini-Study metric.

LEMMA 2.1.3. We have
disto (6, 6) = ||a—b|™intet),

Proof. Tt is enough to consider the case where a and b are close. Let z=(z1, ..., zx)
be local coordinates so that a and b are close to 0. Without loss of generality, one can
assume that a=0 and b=(t, 0, ...,0). It is clear that

disto (04, 05) = sup |®(a)—®(b)| < ||a7b||min{a,1}.
[®llga<1

Using a cut-off function, one easily constructs a function ® with bounded €*-norm such
that, near 0, ®(z)=|Re(z1)|* if a<1 and ®(z)=Re(z1) if a>1. Hence,

diste (0a, 0p) = |®(a) —®(b)| = ||a—b|™ {1}

This implies the lemma. O

PROPOSITION 2.1.4. For a>0, the topology induced by dist,, coincides with the weak

topology on €,. In particular, €, is a compact separable metric space.
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Proof. 1t is clear that the convergence with respect to dist,, implies the weak conver-
gence. Conversely, if a sequence converges weakly in %), then it converges uniformly on
compact sets of test forms with uniform norm. By Dini’s theorem, the set of test forms
® with ||®||4e <1 is relatively compact for the uniform convergence. The proposition
follows. O

Note that, since the convex set €, is a Polish space, measure theory on %), is quite
simple. We show in Lemma 2.1.5 and Proposition 2.1.6 below that smooth forms are
dense in %); see [18] for the case of arbitrary compact K&hler manifolds. Here, since
P* is homogeneous, one can use the group Aut(P*) of automorphisms of P* in order to
regularize currents; see also [13] and [43].

Let hg(y):=0y denote the multiplication by §€C and for |#|<1 define gg:=(hg).0; see
the introduction for the notation. Then, gy is the Dirac mass at the identity id € Aut(P*)
and gy is a smooth probability measure if §£0. Moreover, for every a>0 there is a
constant ¢, >0 such that

lollien < calo] > 472,

where 2k?+4k is the real dimension of Aut(P*). Define, for any positive or negative
(p,p)-current R on P¥ not necessarily closed,

Ro= [ ) Rdaw= [ Go)Rdet)= [ ) Raotw)

Aut(Pk)

The last equality follows from the fact that o is radial and the involution 77! preserves
the norm of y.

Define Ry, :=(7py)R. If R is positive and closed, then Ry, and Ry are also positive
and closed. Observe that, since g is radial, Rg=Ry when |0|=16'|.

LEMMA 2.1.5. When 0 tends to 0, Rg, and Ry converge weakly to R. If the restric-
tion of R to an open set W CPF is a form of class €, then Ry, and Ry converge to R
in €*(W') for any WeW.

Proof. The convergence of Ry, follows from the fact that 7, converges to the identity
in the € topology. This and the definition of Ry imply the convergence of Ry. O

PROPOSITION 2.1.6. If 0#0, then Ry is a smooth form which depends continuously

on R. Moreover, for every a>=0 there is a constant c,, independent of R such that
— 27 —
| Rollwe < callRI |6] 72 407
If K is a compact set in A*, then there is a constant cq x>0 such that for 6,0'€ K,

|Ro— R || e < ca, i || BRI 0—0].
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Proof. We may assume that R is supported at a point a, that is, R=4§, AWV for some
tangent (k—p, k—p)-vector ¥ defined at a with norm <1 (here, we use Federer’s notation
and we consider the vector ¥ as a form with negative bidegree (p—k,p—k)). The general

case is deduced using a disintegration of R as currents with support at a point. We have
Ry =/ (67, (@) N(73) = V) dog (y)-
Aut(P*)

Hence, Ry is smooth and depends continuously on R. The estimate on || Rg||¢« follows
from the estimate on the ¥*-norm of gg. The last estimate in the proposition follows

from the inequality | 09— 0¢/ ||z« S|0—6'| on K. O

Remark 2.1.7. We call Ry the 6-reqularization of R. In Proposition 2.1.6 we can
replace || ~2°~4k= by |9|=2k= but the estimates become more technical.

Let dist(7,7") denote the distance between 7 and 7’ for a fixed smooth metric on

Aut(P*). The following simple lemma will be useful in the next sections.

LEMMA 2.1.8. Let K be a compact subset of Aut(P*). Let W and Wy be open sets
in P* such that WoC7(W) for every T€K. If R is of class €* on W, a>0, then 7.(R)

is of class €% on Wy. Moreover, there is a constant ¢>0 such that for all 7,7 €K,

7 (R) e (o) < el Rllgo ()

and
17 (R) =L (R) |l (w) < €l| Rl g (w) dlist (7, 7)™,

Proof. Since Wy C (W), it is clear that 7.(R) is of class €% on Wy. For T€ K, we

have |71

wa+1 <A, which implies the first estimate. For the second one, observe that
Tu(R) =7 (R) =T [R—m"T/(R)] = 7[R~ (7" 'o7')(R)].

This and the inequality

|77 o7’ —id||gars Sdist(r, ')

imply the estimate. O

2.2. Quasi-plurisubharmonic functions and capacity

Positive closed currents of bidegree (1, 1) admit quasi-potentials which are quasi-plurisub-
harmonic functions (quasi-psh for short). The compactness properties of these functions
are fundamental in the study of positive closed (1, 1)-currents. We recall here some facts;
see [13] and [21].
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A quasi-psh function is locally the difference of a psh function and a smooth one;
see [13]. The first important property we will use is the following that we state only in

dimension 1. It is a direct consequence of [38, Theorem 4.4.5].

LEMMA 2.2.1. Let F be a compact family in L}

oo (A) of subharmonic functions on

A. Then, for every compact subset K CA, there are constants ¢>0 and A>0 such that
||67A“H31(K) <c for every ue . F.

Recall that a function ¢: PF—RU{—oc} is quasi-psh if and only if

e ¢ is integrable with respect to the Lebesgue measure and dd“p>—cw for some
constant ¢>0;

e ¢ is strongly upper semi-continuous (strongly u.s.c. for short), that is, for any Borel
subset ACP* of full Lebesgue measure, we have ¢(z)=limsup, ., ¢(y) with ye A\{z}.

A set ECPF is pluripolar or completely pluripolar if there is a quasi-psh function ¢
such that ECp~1(—00) or E=¢~!(—00), respectively.

If p is as above, then the (1, 1)-current T:=dd p+cw is positive closed and of mass
¢, since it is cohomologous to cw. We say that ¢ is a quasi-potential of T’ it is defined
everywhere on P¥. There is a continuous one-to-one correspondence between the positive
closed (1, 1)-currents of mass 1 and the quasi-psh functions ¢ satisfying ddp>—w, nor-
malized by ka owk=0 or by maxpr p=0. The following compactness property is deduced

from the corresponding properties of psh functions.

PROPOSITION 2.2.2. Let {¢n}ns0 be a sequence of quasi-psh functions on P¥ with
dd®pn>—w. Assume that , is bounded from above by a constant independent of n.
Then, either {@n}n>0 converges uniformly to —oo, or there is a subsequence {pn;}j>0

converging, in £LP for 1<p<oo, to a quasi-psh function ¢ with dd®p>—w.
The next result is a consequence of the classical Hartogs lemma for psh functions.

PROPOSITION 2.2.3. Let ¢, and ¢ be quasi-psh functions on P* with dd®p, >—w
and dd®p>—w. Assume that ¢, converge in ' to ¢. Let $ be a continuous function
on a compact subset K of P* such that ¢<@ on K. Then, ¢, <@ on K for n large

enough. In particular, we have limsup,, ., pn < on PF.

We recall a compactness property of quasi-psh functions and also an approximation

result (see also Proposition 3.1.6 below).

PROPOSITION 2.2.4. Let {¢n}n>0 be a decreasing sequence of quasi-psh functions
with dd®p, >—w. Then, either p, converge uniformly to —oo, or , converge pointwise
and also in LP, 1<p<oo, to a quasi-psh function ¢ with dd°p>—w. Moreover, for every
quasi-psh function ¢ with dd°p>—w, there is a sequence {@y}n>0 of smooth functions

such that dd®p, > —w which decreases to .
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Consider now a hypersurface V' of P¥ of degree m and the positive closed (1,1)-
current [V] of integration on V' which is of mass m. Let ¢ be a quasi-potential of [V],
i.e. a quasi-psh function such that dd°e=[V]—mw. Let § be an integer such that the
multiplicity of V' is <¢ at every point. The following lemma will be useful in the next

sections.

LEMMA 2.2.5. There is a constant A>0 such that
dlogdist(-,V)— A< o <logdist(-, V)+A.

Proof. Let x=(x1,...,x%)= (2, z3) denote the coordinates of C*. Let II: C¥—CF~!
with TI(x):=2’ be the projection on the first k—1 factors. We can reduce the problem to
the local situation where V is a hypersurface of the unit polydisc A* such that the pro-
jection II: V— AF~1 defines a ramified covering of degree s<d. For 2’ € A*~!, denote by
T, 1, .. Tk, s the last coordinates of points in H_l(x’)ﬂV. Here, these points are repeated

according to their multiplicity. So, V' is the zero set of the Weierstrass polynomial
P(z)=(zr—2k1) .. (Th—2Tks)-

This is a holomorphic function on A*. Tt follows that o(x)—log|P(z)| is a smooth

function. We only have to prove that
dist(z, V)® <|P(z)| Sdist(z, V)

locally in A, The first inequality follows from the definition of P. Since the derivatives
of P are locally bounded, it is clear that for every a in a compact set of V' we have

|P(z)| =|P(z)-P(a)| S |z —a.

Hence, |P(z)| <dist(x, V). O

Recall that an integrable function ¢ on P* is said to be dsh if it is equal outside a
pluripolar set to a difference of two quasi-psh functions [21]. We identify two dsh functions
if they are equal outside a pluripolar set. The space of dsh functions is endowed with

the following norm:
lellps =[]l 22 +inf [T,
where T* are positive closed (1,1)-currents such that dd®o=T"—T". The currents T+

and T~ are cohomologous and have the same mass. Note that the notion of dsh function
can be easily extended to compact Kahler manifolds. We have the following lemma.
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LEMMA 2.2.6. Let x:RU{—00}—R be a convex increasing function such that x' is
bounded. Then, for every dsh function ¢, x(¢) is dsh and

Ix(¢)llpsa S 1+[l¢llpsh-

Proof. Up to a linear change of coordinate on RU{—oc}, we can assume that
lellpsa<1. Since x(z)<1+|z|, ||x(¢)|lz: is bounded. So, it is enough to prove that
X(¢) is dsh and to bound dd°x(yp). We can write p=¢p" —p~ outside a pluripolar set,
where ¢* are quasi-psh with bounded DSH-norm such that dd®p*>—w. Since ¢* can
be approximated by decreasing sequences of smooth quasi-psh functions, it is enough to
consider the case where p* and ¢ are smooth. It remains to bound dd®x(p). Since x”

is positive, we have

dd®x(p) = X' (@) dd°o+X" (@) dpNd°p = x'(p) dd°p = —||X|| T~

Because x’ is bounded, dd®x(p) can be written as a difference of positive closed currents

with bounded mass. The lemma follows. O

Let V; denote the t-neighbourhood of V', i.e. the open set of points whose distance

from V is smaller than ¢.

LEMMA 2.2.7. For every t>0 there is a smooth function x:, 0<x¢<1, with compact
support in Vs, equal to 1 on Vi and such that ||x:|[psu<Ai, where A1>0 is a

constant independent of t.

Proof. We only have to consider the case where t<1. We will construct x; using
Lemma 2.2.6 applied twice to the function ¢ in Lemma 2.2.5. Let x: RU{—00}—0, o0|
be a smooth function which is convex increasing. We choose x such that x(z)=0 on
[0, —1] and x(z)==x for £>1. So, we have max{z,0}<x<max{z,0}+1. Let ¢ and A

be as in Lemma 2.2.5. Define

¢r:=—x(p—logt—A—1) and x;:=x(¢+1).

Then ¢;—logt and x; are smooth. From the computation in Lemma 2.2.6, their DSH-
norms are bounded uniformly with respect to t. We deduce from the properties of y
that x;2>0, ¢;<0 and ¢;=0 on V;. It follows that x;=1 on V;. Outside V4, 415 with
A;>1, by Lemma 2.2.5, we have that ¢—logt—A—1>0, hence ¢p;=—¢p+logt+A+1.
We deduce that ¢;+1<—1 and x;=0 there. This implies the lemma. O

We recall a notion of capacity that we introduced in [21] which can be extended to

any compact Kéhler manifold; see also [3] and [45]. Let

P = {(p quasi-psh : ddp > —w and max = 0}~
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For ECP¥, define
FE):= inf ( )
cap(E) Jnf exp(sup

We have cap(P¥)=1, and F is pluripolar if and only if cap(FE)=0.
Consider a quasi-potential ¢ of a current T €%}, i.e. a quasi-psh function such that
dd®p=T —w. Quasi-potentials of T differ by constants. We can associate with each point

a€P* the Dirac mass 0, at a. Define a function % on the extremal elements of €} by
U (0a) :=p(a).

We can extend this function in a unique way to an affine function on %% by setting
U (v) ::/ pdv for veE.
Pk

The upper semi-continuity of ¢ implies that % is also u.s.c. on 6. We say that % is a
super-potential of T. Super-potentials of a given current differ by constants.
Let
P = {% super-potential of a current T € €1 :rr(lgax% = 0}.
k
For each set E of probability measures in %%, define
cap(F):= inf ex (su 4 u).
p(E):=  jnf exp( sup % (v)

It is easy to check that for a single measure v, cap(v) >0 if and only if quasi-psh functions
are v-integrable, i.e. v is PB in the sense of [17] and [21]. A definition of super-potentials

for currents of any bidegree will be given in the next section.

LEMMA 2.2.8. Let E'CP* be a Borel set. Let E be the set of measures v€%y, with
v(E')=1. Then, cap(E’)=cap(FE).

Proof. Since % is affine and u.s.c., the supremum can be taken on the set of extremal
points. It follows that maxe, % =0 if and only if maxpr ¢=0. Moreover, we have that
Supy Z =supg: ¢. It is now clear that cap(E’)=cap(F). O

2.3. Green quasi-potentials of currents

Let R be a current in 6, with p>1. If U is a (p—1, p—1)-current such that dd°U=R—w?,
we say that U is a quasi-potential of R. The integral (U, w*~P*+1) is the mean of U. Such
currents U exist but they are not unique. When p=1 the quasi-potentials of R differ by
constants, when p>1 they differ by dd°-closed currents which can be singular. Moreover,
for p>1, U is not always defined at every point of P¥. This is one of the difficulties in the
study of positive closed currents of higher bidegree. We will constantly use the following
result which gives potentials with good estimates.
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THEOREM 2.3.1. Let R be a current in 6,. Then, there is a negative quasi-potential
U of R, depending linearly on R, such that for every r and s with 1<r<k/(k—1) and
1<s<2k/(2k—1), one has

Uz <cr and |dU|| sz <cs

for some positive constants ¢, and cs independent of R. Moreover, U depends continu-

ously on R with respect to the £" topology on U and the weak topology on R.

We will construct U using a kernel solving the dd®-equation for the diagonal of
Pk x Pk, We need a negative kernel with tame singularities. In the case of arbitrary com-
pact Kahler manifolds, this is not always possible [9]. In order to simplify the notation,
consider the following general situation. Let X be a homogeneous compact Kéhler man-
ifold of dimension n and let G be a complex Lie group of dimension N acting transitively
on X. The following proposition gives some precisions on a result in Bost—Gillet—Soulé

[9, Proposition 6.2.3]; see also Andersson [4].

ProPOSITION 2.3.2. Let D be a submanifold of pure dimension n—p in X with
p=1 and Q be a real closed (p,p)-form cohomologous to the current [D]. Then, there is
a negative (p—1,p—1)-form K on X smooth outside D such that dd°K=[D]—Q which

satisfies the following inequalities near D:
K ()]loo S —dist(-, D)*~* logdist(-, D) and [|[VK(-)[leo Sdist(-, D) 727

Moreover, there is a negative dsh function n and a positive closed (p—1,p—1)-form ©
smooth outside D such that K>nO, [|O(+)|lec <dist(-, D)?>72P and n—logdist(-, D) is

bounded near D.

Note that [[VK e is the sum >, VK|, where the K;’s are the coefficients of K

for a fixed atlas of X. We first prove the following lemmas.

LEMMA 2.3.3. There is a negative dsh function n on X smooth outside D such that
n—logdist(-, D) is bounded.

Proof. Let 7 X=X be the blow-up of X along D. Denote by ZA)::ﬂfl(D) the
exceptional divisor. If o is a real closed (1,1)-form on X cohomologous to [D], there
is a negative quasi-psh function 7} such that ddcf]:[ﬁ]foz. It is clear that 7 is smooth
outside D and fj—log dist(~,lA)) is bounded. Define n:=fon~!. Hence, n—logdist(-, D)
is bounded. Moreover, by a theorem of Blanchard [§], X is Kéhler. Hence, dd°n can be
written as a difference of positive closed currents. It follows that dd®n=m,(dd°7) is also
a difference of positive closed currents. We deduce that n is dsh. O
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Proof of Proposition 2.3.2. Let I'p CG x D x X denote the graph of the map
GxD— X,
(g,2) — g(x).

Let II¢ and ITx denote the projections of I'p onto G and X, respectively. Observe that
II; defines a trivial fibration. The map ITx also defines a fibration which is locally trivial.

Indeed, we can pass from a fiber to another one using the action

(9,2, 9(x)) — (7(9), z, 7(g(x))

on GxDxX, of an element 7 of G. So, IIx is a submersion. The integrals that we
consider below are computed on some compact subset of I'p.

Let z be a local coordinate on G with |z|<1 such that z=0 at the identity. Let
X be a smooth positive function with compact support in {z:|z|<1} and equal to 1 in
a neighbourhood of 0. Define Kg:=x(dd®log|z|)N~1log|z|. This is a negative current
with support in {z:|z|<1} and Qg:=—dd°Kg+dp is a smooth form. We have

1K ()l S 127 log|z| and [[VEG(-)]e < lel' 7.

Observe that l~)::H51 (id)NT' p is compact and is sent by ITx biholomorphically to D.
Therefore, locally near ﬁ, one can find coordinates (zp, 0p, z¢) EC" P x CP x CN~P such

that ﬁz{gD:xG:O} and IIx(xp, 0p,2c)=(xp,0p). Define the negative form K by
K o= (M) (T (Kq)).

So, K is smooth outside D. Using the coordinates (zp,op,zs) and the fact that
IIg:T'p—G is a trivial fibration, we obtain

nellx <logdist(-, D) < —log|Mgl|.
This, Lemma 2.3.3 and the above estimates on K imply that
KZn (x).(5(0a)),

where O¢:=x(dd®log |z|)N 1.
Define
0:=(Ilx)«(II5(0¢)).

Using the local coordinates (zp, op,z¢) and the fact that

ITTE(06) oo Sdist(-, D)* >N < (Jop|* +]zal?) ' ™Y
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on I'p, we obtain

dl‘G de
LNy < D
T Jiwal<r (epP+lea PN Jgi<a lep PN 2 a2
| ot oot [ s Sleol
= Jo lop[PN—24z2N—2~10D , 1ts2N-z~lep :

So, we have the estimate ||©(+)||oo Sdist(-, D)?72P.
We then deduce the desired estimate on ||K(-)|s. We also have, near D,

IVITG (K)(-)lloo S dist(-, D) 2N,

A similar computation as above gives that |[VK (+)|le Sdist(-, D)1 =2, So, the singular-
ities of K satisfy the estimates in the proposition. We have finally

dd°K = (Ilx ). (Ilg; (dd°K¢)) = (ILx ) (I (610 — Qi)
= (Ix )+ (g (0ia)) — (Tx )« (15 (26))
= [D]-(IIx). (M5 (Qc)) = [D] -9,
Because Q¢ is smooth, ' :=(Ilx).(II§(2¢)) is also smooth. Since 2 and Q' are both
cohomologous to [D], there is a smooth real (p—1,p—1)-form U such that dd°U=Q-'.
Adding to U a positive closed form large enough allows one to assume that U is positive.

Replacing K by K—U gives a negative form such that dd°K=[D]— with the desired

tame singularities. O
Proof of Theorem 2.3.1. We apply Proposition 2.3.2 to X :=P* xP*,
G := Aut(P*) x Aut(P¥)

and D the diagonal of X. Since Aut(P¥)~PGL(k+1,C), we can identify Aut(P*) with
a Zariski open set in PK°+2% which is the projective space associated with the space of
(k+1)x (k+1) matrices. The assumptions in Proposition 2.3.2 are easily verified. Let
(2,€) denote the homogeneous coordinates of P¥ x P¥ with z=[zg:...:2;] and &:=[£p:...: &)
The diagonal D is given by {(z,£):2=¢£}. Choose

This form is cohomologous to [D]. Using the notation from Proposition 2.3.2, we define

U(Z)::/# R(§NK(z, ).
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Observe that K is smooth outside D and that its coefficients have singularities like
|2—€[*"** log |2 —¢|

near D (there is an abuse of notation: we should write |z—¢&|>~ 2! log |2 —¢| on charts
{(2,€):2z;=¢;=1}, j=0,..., k, which cover D). It follows that the definition of U makes
sense for every current R with measure coefficients. This is a form with coefficients in
ZL". An easy way to see this, is to disintegrate R into currents with support at a point.
The continuity with respect to the .Z"-norm of U and the weak topology on %), and the
estimate on the £ -norm of U are easy to check.

For the rest of the theorem, by continuity, we may assume that R is a smooth form

in %,. Denote by m; and 73 the projections of Pk x Pk onto its factors. Note that
U = (m1)«(m3(R)AK).
Hence, U is negative since K is negative and R is positive. As R is closed, we also have
dd°U = (1)« (w5 (R)ANddK) = (1)« (15 (R)A[D]) = (1)« (3 (R)AQ) = R—w”.
Therefore, U is a quasi-potential of R. We also have
dU = (m1) (75 (R) NAK).

Since dK has singularities like |z —¢[*~2* near D, it is clear that ||dU||.- is bounded by

a constant independent of R. O

Remark 2.3.4. We call U the Green quasi-potential of R. By Theorem 2.3.1, the
mean m of U is bounded by a constant independent of R. So, U—mwP~! is a quasi-
potential of mean 0 of R. Its mass is bounded uniformly with respect to R. Note that
U depends on the choice of K.

We now give some properties of Green quasi-potentials.

LEMMA 2.3.5. Let W/ &@W be open subsets of P* and R be a current in €,. Assume
that the restriction of R to W is a bounded form. Then, there is a constant ¢>0
independent of R such that

[Ullerwry < eI+ Rlloo,w)-

Proof. Observe that the derivatives of the coefficients of K have integrable singu-
larities of order |z —¢&|'~2*. This and the definition of U imply the result. O
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The precise estimate on the behavior of U in the following proposition will be needed

for the dynamical applications. It is used several times in the proof of Theorem 5.4.4.

PRroproOSITION 2.3.6. Let V, V; and 6 be as in Lemmas 2.2.5 and 2.2.7. Let Tj,
1<j<k—p+1, be positive closed (1,1)-currents on P*, smooth on P*\V. Assume that
the quasi-potentials of T; are a;-Hoélder continuous with 0<o;<1. If U is the Green

quasi-potential of a current R€%,, then

/ UNTIA AT p—pya| < ct®,  with 3:=(20k%5) *ay ... Qh—p+t1,
Vi\V

where ¢>0 is a constant independent of R and of t.

We will use the notation from Theorem 2.3.1 and Proposition 2.3.2. For M >0,
define npr:=min{0, M +n}. As in Lemma 2.2.6, we can show that ||na/||psn is bounded
independently of M. We have ny—M <n. Define Kp;:=—MO and K);:=ny0O. Then,
K is negative closed and we have K+ K/}, SK. Define also

Uni(2) = /5 REAKw(€) and Uly(z) = /E R(EAK Y (,€).

The form Uy, is negative closed of mass ~M and Uy +Uj,; SU. Choose M:=t=#. We
estimate Uy, and Uj, separately. Recall that U is negative and that © has singularities
of order dist(z, )22k,

LEMMA 2.3.7. We have
<t.

/ Um /\u)kierl
Vi

Proof. We may assume that t<%. We do not need that R is closed. So, we may
assume that R has support at a point a€P*. We define U); using the same integral
formula as above. Then, the coefficients of Uy, have singularities of type M|x|?>~2,
where z are local coordinates such that =0 at a. The problem is local. We may assume

1/2

that V is a hypersurface in a neighbourhood of the unit ball B. Since M <t™"/=, it is

sufficient to prove that

/ |$|2_2k<ddc|x|2>k 51&3/2.
ViNB

Let A be a maximal subset of VNB such that the distance between two points in A
is >t. The balls of radius 2t with center in A cover VNB and the ones of radius 3t
cover V;NB. Let A, be the set of points p€ A such that nt<|p|<(n+1)t and m,, be the
number of elements of A,,. Observe that the mg+...4+m,, balls of radius %t with centers
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in A;U...UA,, are disjoint. They cover an open subset of VN{z:|z|<(n+2)t}. Using

Lelong’s estimate in Example 2.1.1, see also [39], gives that

mo—+...+my, <n2,
Note that mg is 0 or 1 and the integral of |z|2~2*(dd®|z|?)* on a ball of radius 3t with
center in Ay is bounded by the integral of this function on the ball of center 0 and of

radius 4¢. Hence, it is of order t2. For n>>1, it is clear that the integral of the considered

form on a ball with center in A, is of order n?>~2¥¢2. Using the estimates on m, and

Abel’s transform, one obtains

/ |$‘2_2k(ddc|$|2)k St2_|_ Z mnn2—2kt2
ViNB

1<n<1/t

<24 Z (252 (n—1)2k—2)2 2k 2
1<n<1/t

S+ Y 1

n
1<n<1/t
This implies the lemma. O

We continue the proof of Proposition 2.3.6. By continuity, it is enough to consider

the case where R and U are smooth. We also have that Uj; is smooth.

LEMMA 2.3.8. For every 0<I<k—p+1 we have

<tP where By :=(20k%6) Loy ... oy

/ U ATy A AT AWFP—HT
Vi

Proof. The proof is by induction. The previous lemma implies the case [=0. Assume

the lemma for [—1. Let y; be as in Lemma 2.2.7. We want to prove that
/(—XtUMATlA...ATlAw’“*P*l“) <P

Write Tj=w+ddu with u negative quasi-psh of class €. By the induction hypothesis,

since x; has support in V) ;1/5, we obtain
/(—XtUMATlA...ATl_1 AWkTPIF2Y <487 By <41
Therefore, we only have to prove that

/(—XtUMATlA...A:Fl_lAddcqu’“*P*l“) <th,
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By Proposition 2.1.6 and Lemma 2.1.8, there is a smooth function u. such that

fucllge Se2 %2 and  fu—uco0 S

Using Stokes theorem we can write the left-hand side of the previous inequality as
/(_XtUM /\Tl /\/\Tl—l Addcua /\wk_p—l-i-l)
+/(_ddCXt/\UM/\T1/\.../\Tl_l(u_ue)/\wk*pfwl).

By the induction hypothesis, the previous estimates on ||uc|/42 and Lemma 2.2.7, we

2 .
—2kT—4k=2 1f we write

obtain that the first term is of order at most equal to 8 Biorg
dd®x;=T"—T~ with T* positive closed of bounded mass, the second term is of order

less than
g /T+/\UM/\T1/\.../\TZ_1/\wk_p_l+1+5°"/T‘/\UM/\Tl/\.../\Tl_l/\wk_p_lH.

These integrals can be computed cohomologically. The currents 7% have bounded mass.
Since Kj;=—M©O, we deduce from the definition of Uj; that —Uj; is positive and closed
of mass M=t~P. Therefore, the last sum is <t~ P,

Take g:= ' (2k*+4k+2+0) " Bi-1 We have

2k2+4k+2 L
2k2+4k+24a; ~ 10k2°

Then
t57151715—2k2—4k—2 < t5715171(10k2)71az < el
and
tiﬁ{—:al < t*ﬁt(lok%)_lﬁl—laz <4826 < B
This implies the desired estimate. O

LEMMA 2.3.9. We have ||U}, || Sexp(—3M).

Proof. We can forget that R is smooth and assume that R has support at a point a.
The behavior of n implies that U}, has support in the ball of center a and radius
Sexp(—3M). The coefficients of U}, have singularities <—|z|>~2*log |z| for local co-
ordinates  with =0 at a. Hence, ||U}, || Sexp(—3M). O

The following lemma completes the proof of Proposition 2.3.6, since

M =t"P>|logt|.
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LEMMA 2.3.10. For every 0<I<k—p+1 we have
‘/ Uy ATiA AT, Awk—p=i+1 < exp(f%(lok@)*lal alM).
Proof. The previous lemma implies the case [=0. Assume the lemma for [—1 and
use the notation from the proof of Lemma 2.3.8. The integral to bound is equal to

/(_UJ/W/\Tl/\"'/\Tlfl/\ddcus/\wk*P*lJrl)

+/ (=K AREATL(2) A ATy 1 (2)dde (u(2) —ue (2)) Aw(z)F P71,
Pk x Pk
Choose e=exp(—(10k%)~!ay ... ¢j_1 M). Using the estimate on ||u||«2, by the induction
hypothesis, the first integral is of order at most equal to

exp(—%(lOkQ)_lHal al,lM)s_%z_‘lk_g < exp(—%(lOsz)_lal alM).

The second one is equal to

/mm(—ddCKMAR(&)ATl(Z)A-~-ATz—1(Z)(U(Z)—ue(Z))Aw(Z)kfple)

Since the DSH-norm of 7y, in the definition of K}, is bounded, the first term in the
last integral can be bounded by a positive closed current with bounded mass. So, this

integral is of order at most equal to
=100 < e = exp(—(10k?) "Ly ... ay_10qy M).
This implies the result. O]
We will use the following lemma in the study of deformation of currents.

LEMMA 2.3.11. Let R be a current in 6, and U be a quasi-potential of mean m
of R. Let Roy=(79y)+«(R) be defined as in §2.1. Then, there is a quasi-potential Uy, of
Rgy of mean m such that Uy, —(7ey)«(U) is a smooth form with

1Ty — (70y)+ () ll5= < c(1+[|U1])[6],
where ¢>0 is a constant independent of R, U, 6 and y.

Proof. Since ||(Tgy)s(wP)—wP |2 <S|0], there is a (p—1,p—1)-form Qp, such that
10y |lz2 S10] and ddQg, = (7'91,) (wP)—wP. Tt is clear that the mean m” of Qg, is of
order S[0]. Set Uy, :=(7py)«(U)+gy. So, the mean m' of Uy, satisfies

|m/ —m| = ‘/ Toy )« Awk_p+1+m"—/UAwk_p+1

< |m”|+\ / U Al(ray)* (@F P+ b2,

The last term is of order <||U|||0] since ||(7p,)* (w*=PT1) —wF=PHL|| o is of order <|6].
Subtracting from Up, the form (m/ —m)wP~1 which is of order <|0], gives a quasi-
potential satisfying the lemma. O
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2.4. Structural varieties in the spaces of currents

The notion of structural varieties of %, was introduced in [22]; see also [15]. In some
sense, we consider ¢, as a space of infinite dimension admitting “complex subvarieties”
of finite dimension. The emphasis is that in order to connect two closed currents we
use a closed current in higher dimension. Holomorphic families of analytic cycles of
codimension p are examples of structural varieties in ¢),. Other examples of structural
varieties can be obtained by deforming a given current in %), using a holomorphic family
of automorphisms. The reader will find in Dujardin [26] and in [16] an application of
such a deformation to the dynamics of Hénon-like maps; see also [50]. General structural
varieties are more flexible, and this is crucial in our study.

Let X be a complex manifold, and 7x: X xP¥*—X and 7: X xP*—P* denote the
canonical projections. Consider a positive closed (p,p)-current Z in X xP¥. By slicing
theory [28], the slices (Z,7x,x) exist for almost every x€X. Such a slice is a positive
closed (p, p)-current on {x} xP* (following [22], we can prove that the slices exist for

outside a pluripolar set). We often identify (%, 7x,x) with a (p,p)-current R, in P*.
LEMMA 2.4.1. The mass of R, does not depend on x.
Proof. Set #':=% A*(wF~P). Then, %' is positive closed on X xP*¥ and (rx).(%’)

is closed of bidegree (0,0) on X. Hence, it is a constant function. So, the function

P(0) = (# mx. ) = [ R = R

is constant. The lemma follows. O

We assume that the mass of R, is equal to 1. The map z+— R, is defined almost

everywhere on X with values in %),.
Definition 2.4.2. We say that the map x+— R, or the family {R;},cx defines a
structural variety in 6,. The positive closed (1, 1)-current
g = (Tx) (B AT (WFTPHL))
on X is called the curvature of the structural variety, see Propositions 3.1.3 and 3.2.1
below.

Definition 2.4.3. A structural variety associated with & is said to be special if R,

exists for every x€ X, R, depends continuously on x and the curvature is a smooth form.

In order to simplify the argument, we restrict to special structural varieties or discs.
The most useful structural discs in this work are {Rg}oeca; see the introduction and
Lemma 2.5.3 below.
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2.5. Deformation by automorphisms

Using the automorphisms of P*, we will construct some special structural discs in G

that we will use later on. We first construct large structural varieties parametrized by
X =Aut(PF).

PROPOSITION 2.5.1. Let R be a current in 6,. Then, the map h: Aut(P*)—%), with
h(T)=R;:=7.(R) defines a special structural variety in 6,. Moreover, its curvature is

bounded by a smooth positive (1,1)-form independent of R.

Proof. For any smooth test form ®, we have (R, ®)=(R, 7*(®)). So, clearly T7—R,
is continuous. Consider the holomorphic map H: Aut(P*) x P¥ —P¥ defined by H(r, z):=
771(2). The current Z:=H*(R) is positive closed of bidegree (p,p). It is easy to check
from the definition of slices that R, =(%, wx, 7). Hence, h defines a continuous structural
variety.

Now, we have to show that the curvature
az = (mx)«(H* (R)AT(WFPH)

is a smooth form. We prove this for any current R of mass <1 not necessarily closed.
Then, we may assume that R is supported at a point a, that is, there is a tangent
(k—p, k—p)-vector ¥ at a of norm <1 such that R=0,A¥ (the general case is obtained

using a disintegration of R into currents of the previous type). We have

where W is a (k—p, k—p)-vector field with support in H~!(a) such that H,(¥)=U.
Because H is a submersion, we can choose ¥ smooth on H1(a).

Since H~!(a) is a holomorphic graph over Aut(P*), the form ag defined above is
the direct image of [H~1(a)] AU AT* (w*P+1) by 7x. So, ag is smooth. Moreover, the
%*-norm of aiz on any fixed compact subset of Aut(IP¥) is uniformly bounded for every

$>0. The proposition follows. O

Remark 2.5.2. If j: A— Aut(P*) is a holomorphic map, then x+j(z),R, which is
equal to hoj, defines a special structural disc. We can also construct a structural disc
passing through R and through the current of integration on a fixed plane of codimen-

sion p [15]. So, 6, is connected by structural discs.

Let R be a current in ¢,. The following lemma gives us a useful special structural
disc passing through R.
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LEMMA 2.5.3. Let Ry be the currents constructed in §2.1. Then, the family {Rg}oca
defines a special structural disc whose curvature is bounded by a smooth positive (1,1)-

form a which does not depend on R.

Proof. By Proposition 2.5.1, for |y|<1, the family {Rg,}gca defines a special disc
in é,. Moreover, the €*-norm of its curvature is bounded uniformly with respect to R
and y. In particular, this curvature is bounded by a positive form « which does not
depend on R and y.

Let %, denotes the (p,p)-current on AxPF associated with the structural disc
{Roy}oca and define Z:= [ %, do(y). Recall that Ro=[ Rg,do(y). Hence, {Ro}sea
is the family of slices of % and it defines a structural disc in %,. We know that R
depends continuously on #. This and the above properties of {Rgy,}gea imply that the
curvature of {Rg}gca is bounded by «a. O

3. Super-potentials of currents

Consider a current S in %6,. We introduce a super-potential associated with S. It is
an affine upper semi-continuous (u.s.c. for short) function %g defined on 6;_p41, with

values in RU{—o0}.

3.1. Super-potentials of currents
Assume first that .S is a smooth form in %,. The general case will be obtained using a
regularization of S. Consider an element R of 6}_,41 and fix a real number m. Define

Us(R):=(S,Ug), Ug a quasi-potential of mean m of R. (3.1)

LEMMA 3.1.1. The integral (S,Ugr) does not depend on the choice of Ur with a fized
mean m. It defines an affine continuous function s on €y—p+1. Moreover, if Ug is a

smooth quasi-potential of S with mean m, then %Zs(R)=(Us, R). In particular, we have
Us(wWF—PH)=m.

Proof. Let Ug be a smooth quasi-potential of S with mean m. Using Stokes formula,

we obtain
%S(R) = <S, UR> = (S—wp, UR>+<UJp, UR> = <dchs, UR)+m

= (Ug,dd°Ug)+m= (Us, R—w* Pt tm = (Us, R).

This also shows that %s(R) is independent of the choice of Ug and it depends continu-
ously on R. It is clear that %s is affine. O
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We say that %s is the super-potential of mean m of S. One obtains the super-
potential of mean m’ by adding m’—m to the super-potential of mean m. We will see
later that the following lemma holds also for an arbitrary current S in %, smooth or not;

see Corollary 3.1.7 below.

LEMMA 3.1.2. There is a constant ¢=0 independent of S such that if Us is the

super-potential of mean m of S, then %s<m+c everywhere.

Proof. Without loss of generality, we may assume that m=0. Let Uj, be the Green
quasi-potential of R which is a negative current and let m’ be the mean of Uy. Then,
Ur:=Upr—m'wk~P is a quasi-potential of mean 0 of R. By Lemma 3.1.1, since U is

negative and S is positive, we have
Us(R)=(S,Ugr) = (S, Uﬁ) —-m/ <—-m/.

We have seen in Remark 2.3.4 that |m/| is bounded by a constant independent of R. This
implies the result. O

As we have seen in §2.5, the convex set €;—_p+1 can be considered as an infinite-
dimensional space admitting “complex subvarieties” of finite dimension. With this point
of view, we can consider %s as a quasi-psh function on €_p,+1. More precisely, we will
show that the restriction of Zg to a special structural variety is a quasi-psh function, see
Proposition 3.2.1 below.

We now extend the definition of %g to an arbitrary current .S in ,. For R smooth,
define Zs(R) as in (3.1) with Ug smooth. Observe that Zs(R) depends continuously
on S. We can show, as in Lemma 3.1.1, that the definition is independent of the choice
of Ur. We will extend %s to a function on €j—_p,+1 with values in RU{—oco}. The reader
can check that for p=1 we will obtain the same super-potentials as introduced in §2.2.

Let {Rg}oen be the special structural disc in 6j_p4+1 constructed in §2.1 and §2.5
and let o be as in Lemma 2.5.3. Recall that Ry is smooth for 6#0.

LEMMA 3.1.3. The function u(0):=%s(Ry) defined on A* can be extended as a

quasi-subharmonic function on A such that dd“u>—a.

Proof. Proposition 2.1.6 implies that u is continuous on A*. Lemma 3.1.2 holds for
S singular and R smooth. So, u is bounded from above. Let % be the (k—p+1,k—p+1)-
current in A x P* associated with {R¢}ocn, and let 7o and 7 be as in §2.5. Observe that
Z is smooth on A* x Pk, If Ug is a quasi-potential of mean m of S, then, by the definition
of s, we have

u=(ma)«(ZN1*(Us))
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in the sense of currents on A*. It follows that
ddu= (ma)«(Z AT (dd°Ug)) =2 — (7))« (Z AT (WP)) 2 —au.

If v is a smooth function such that dd°v=q, then u+wv is subharmonic on A*. Since u
is bounded from above, u+wv can be extended to a subharmonic function. The lemma
follows. Observe that if R is a smooth form, then u(f) is defined and is a continuous

function on A. It is quasi-subharmonic and satisfies ddu>—a. O

Recall that Sy is defined as in §2.1 and §2.5 for S instead of R. By Lemma 2.1.5

and Proposition 2.1.6, Sy is smooth and converges to S when 6 tends to O.

PROPOSITION 3.1.4. Let %s, denote the super-potential of mean m of Sy. Then,
Us,(R) converges to u(0) when 6—0. In particular, if R is a smooth form, then s, (R)
converges to %s(R).

Proof. When R is smooth, we have u(0)=%s(R). So, we deduce easily the last
assertion from the first one. By Lemma 3.1.3, there is a constant A>0 independent of R
and S such that u(6)+ A|6]? is subharmonic. Since this function is radial (recall here that
o is radial; see the introduction), it decreases to u(0) when |6| decreases to 0. Therefore,

the proposition is deduced from Lemma 3.1.5 below. O
LEMMA 3.1.5. There is a constant ¢>0 independent of R and S such that
|%sy (R)—Us(Ro)| = |Us,(R)—u(0)| < |6
for 0 A*.

Proof. Since R can be approximated by smooth forms in 6j_,41, we may assume
that R is smooth. Then, we may also assume that S is smooth. Indeed, the following
estimates are uniform with respect to R and S. Let Ug be a smooth quasi-potential of

mean m of S with bounded mass. Define Uy, :=(79p,)*Us. We have

Us(Ry) = / (Us, (7o) R) do(y) = / (Usy, R) doy).

y y
As in Lemma 2.3.11, we show that there is a quasi-potential Uy, of mean m of (7g,)*(5)
such that [|Ug, —Usgy |2 S10]. We have

s, (R) = / (Us, R) do(y).

The estimate on Uéy —Up, implies that

|Us, (R)—Us(Ry)| =

/ (U}, —Usy Rdo(y)| <16].
Yy

The proof is complete. O
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PROPOSITION 3.1.6. There is a sequence of smooth forms {Sp }n>0 in 6, with super-
potentials Uy, of mean m,, such that

e supp(Sy) converge to supp(S);

e S, converge to S and m,—m;

o {%,}n>0 is a decreasing sequence;
Moreover, if S,, my, and %, satisfy the last two properties, then %,(R) converge to
w(0). In particular, if R is a smooth form in €i_py1, then %,(R) converge to %s(R).

Proof. Consider S,,:=Sy, , where {8, },>0 is a sequence in A* such that |6,| decrease
to 0 and that Y |6, is finite. Define

My 1= m+A|9n\2+202 16,1,
j=n
where ¢ and A are the constants introduced in Lemma 3.1.5 and in the proof of Propo-
sition 3.1.4. It is clear that S,, —.5, supp(S,,) —supp(S) and m, —m. Define

Uy, = Us, +mp—m.
This is the super-potential of mean m,, of S,,. Lemma 3.1.5 implies that
Un(R) = Up1(R) > Us, (R)~Us, ., (R)+A(|0n|* = |0n41 %) +2¢[ 0]
> [u(0n) + Al0n ] = [w(On41) + AlOn+1 ]

We have seen that u(0)+A|6]? is radial subharmonic and decreases to u(0) when |6
decreases to 0. Hence, {%,}n>0 is decreasing. This implies the first assertion of the
proposition.

For the second assertion, we show that w,(0) converge to u(0). Observe that, by
definition, %, converge to %s on smooth forms R in €_p+1. Define u,(8):=%,(Ry).
Hence, u, converge to u pointwise on A*. On the other hand, Lemma 3.1.3 implies
that (u,+A|0]?) is a decreasing sequence of subharmonic functions for A large enough.
Hence, it converges pointwise to a subharmonic function. We deduce that u,,(0) converge
to u(0). This completes the proof. O

COROLLARY 3.1.7. %s can be extended in a unique way to an affine u.s.c. function
on Gr—pt+1 with values in RU{—oo}, also denoted by %s, such that

%S(R) = lim %Se (R) =lim @/S(Rg).
6—0 6—0
In particular, we have

Us(R) =limsup Zs(R') with R’ smooth.
R'—R

Moreover, if c is the constant in Lemma 3.1.2, then %s<m-+-c, independently of S.
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Proof. Proposition 3.1.6 implies that the decreasing limit of %s, is an extension of
%s. Denote also this extension by %s. Since %s,, are affine and continuous, % is affine

and u.s.c. with values in RU{—o0}. In particular, we have

Us(R) >limsup Zs(R') with R’ smooth.
R'>R
Proposition 3.1.6 implies also that %s(R)=u(0). By Proposition 3.1.4 and Lemma 3.1.5,
we have

Us(R)=u(0) = gli% u(f) = gli% Us(Ry) = élir(l) Us,(R).
The second limit is bounded above by

limsup Zs(R') with R’ smooth.
R'>R
It follows that

WUs(R) =limsup Zs(R') with R’ smooth.
R'>R

The uniqueness of the extension of % is clear. The inequality Zs<m-cis a consequence
of Lemma 3.1.2. O

Definition 3.1.8. We call s the super-potential of mean m of S.

It is clear that if g is the super-potential of mean m of S, then the super-potential
of mean m’ of S is equal to Zs+m’—m. The following result applied to /=@, shows

that the super-potentials determine the currents.

PROPOSITION 3.1.9. Let I be a compact subset in P¥ with (2k—2p)-dimensional
Hausdorff measure 0. Let S and S’ be currents in 6, with super-potentials %s and Us:.
If Us=%Us' on smooth forms in Cy_p+1 with compact support in P\, then S=S'.

Proof. If R is a current in %3_p11 with compact support in P*\ I, then Ry has
compact support in P*\I for # small enough. On the other hand, since Ry is smooth,
we have

Us(R) =1lim %s(Ry) = lim s/ (Ry) = Us/ (R).
0—0 6—0

Hence, %s=%s' on every current R with compact support in P*\ I. The hypothesis on
the Hausdorff measure of I implies that a generic projective subspace P of dimension
p—1 does not intersect I. We can write w* P*! as an average of currents [P]. Since
Us=Us: at [P] and since s and %5 are affine, they are equal at w*~P*!. Hence, %5
and %s: have the same mean. We may assume that this mean is 0.

If K is compact in P*\ I, using an average of [P], we may construct a smooth form
Ry in €%—p+1 with compact support in P¥\ I which is strictly positive on K. We show
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that S=S" on K. Let ® be a smooth (k—p, k—p)-form with compact support on K.
If ¢>0 is a large enough constant, cR;+dd°® is a positive closed form of mass ¢ since
it is cohomologous to cRi. We can write cRi+dd°®=cRy with Ry€%},_,+1. We have
Us(R1)=%s (R1) and %s(Re)=%s'(Rz). If Ug is a quasi-potential of mean 0 of S, we

have
(S, @) = (S—wP, @)+ (wP, ®) = (dd°Ug, @)+ (wP, ®) = (Ug, dd°®) + (w?, D)
=(Ug,cRa—cRy)+ (WP, ®) = c%s(Ra) —c%s(Ry)+ (WP, D).
The current S’ satisfies the same identity. We deduce that (S, ®)=(S’, ®). Hence, S=5"

on K. Tt follows that S=S’ on P¥\I. The hypothesis on the Hausdorff measure of I
implies that S and S’ have no mass on I [37]. Therefore, S=5" on P*. O

3.2. Properties of super-potentials

The following proposition extends Lemma 3.1.3. It shows that in some sense super-
potentials can be considered as quasi-psh functions on 4% _,+1. In particular, they inherit

the compactness property of 4.

PROPOSITION 3.2.1. Let {R;}zex be any special structural variety in 6i—_pt1 and let
a be the associated curvature. Then, either Us(Ry)=—00 for every x€X or x—%s(Ry)
is a quasi-psh function on X such that dd°%s(R.)>—«.

Proof. By Proposition 3.1.6, it is enough to consider the case where S is smooth.
The proof is the same as in Lemma 3.1.3. Let &%, mx and 7 be as in §2.4. Then,

x—=Us(Ry) is continuous and we have
Us(Ry) = (7x)«(Z 17" (Us)),
which implies that
dd“Us(Ry) = (mx)«(ZA7"(ddUs)) Z —(nx )« (ZN7" (WP)) = —0v.
This completes the proof. O

The following result is the analogue of the classical Hartogs lemma for psh functions;

see also Proposition 2.2.3.

PROPOSITION 3.2.2. Let {Sy, }n>0 be a sequence in €, converging to a current S. Let
Us,, (resp. Us) be the super-potential of mean my, (resp. m) of S, (resp. S). Assume
that m,, converge to m. Let % be a continuous function on a compact subset K of
Ci—p+1 such that Us<% on K. Then, for n large enough, we have %s, <% on K. In
particular, we have Uimsup,,_, . %s, <Us on Cr—p+1-
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Proof. Recall that %s is u.s.c., % is continuous and éj_p+1 is compact. The propo-
sition can be applied to K=%}_p+1. Assume that there are currents R,, in K such that
Us, (Rn) =% (R,,). Extracting a subsequence allows one to assume that R,, converge to
a current R in K. Let {R, 0}oca be the special structural disc associated with R,, con-
structed as in §2.1 and §2.5. Define u,,(6):=%s,, (Rn0). Proposition 3.2.1 implies that
Uy, is quasi-subharmonic and dd®u,, > —« with « as in Lemma 2.5.3. The first assertion of
Proposition 2.1.6 implies that w,, converge pointwise to u(0):=%s(Ry) on A*. It follows
from the Hartogs lemma for subharmonic functions that

Us(R) =u(0) > limsup u, (0) =limsup %s, (R,) > % (R).

n—oo n—0o0

This is a contradiction. The proof of the first assertion is complete. Taking K={R} and
U (R)=%s(R)+¢ gives the second assertion. O

Definition 3.2.3. Let Sy, S, %s,, s, my, and m be as in Proposition 3.2.2. If
Us, =>Us for every n, then we say that S,, converge to S in the Hartogs sense, or Sy
H-converge to S for short. If a current S’ in %, admits a super-potential %/ such that
Us1 >Us, we say that S’ is more H-reqular than S or simply S’ is more diffuse than S.

Remarks 3.2.4. By Lemma 3.2.5 below, the property that %s, converge pointwise
to %g implies that m,, —»m and S,, —S. If S,, H-converge to S as in Definition 3.2.3 then,
by Proposition 3.2.2, we have that %s, —%s pointwise. If %g_ decrease to s, then S,
H-converge to S; see also Corollary 3.2.7 below. We have seen in Proposition 3.1.6 that
Sy H-converge to S when 6—0.

LEMMA 3.2.5. Let {S,, }n>0 be a sequence in 6, and s, be super-potentials of mean
My, of Sy. Assume that %s, converge to a finite function % on smooth forms in Ck—pt1.
Then, m,, converge to a constant m, S, converge to a current S and % s equal to the

super-potential of mean m of S on smooth forms in €r_pi1.

Proof. We have m,,=%s, (w*~P*1). Hence, m,, converge to m:=% (w*~P*1). Let S
and S’ be limit currents of {S,,}n>0. From the definition of super-potential, we deduce
that the super-potentials of mean m of S and of S’ are equal to % on smooth forms in
©k—p+1. By Proposition 3.1.9, S=5". Hence, {S,}»>0 is convergent. O

We now give a compactness property of super-potentials.

PROPOSITION 3.2.6. Let %s, be a super-potential of a current Sy in €,. Assume
that {%s,, tn>0 ts bounded from above and does not converge uniformly to —oo. Then,

there is an increasing sequence {n;};>o of integers such that Sy, converge to a current S

and %gnj converge on smooth forms in €i—py1 to a super-potential %s of S. Moreover,

lim sup %Snj <Us.

Jj—oo
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Proof. By the last assertion in Corollary 3.1.7, since {%s, }n>0 is bounded from
above and does not converge to —oo, their means m,, are bounded from above uniformly
with respect to n and do not converge to —oo. Extracting a subsequence allows one to
assume that S, converge to a current S and m,, converge to a finite value m. So, we
may assume that m,=m=0. Let %s denote the super-potential of mean 0 of S. By
the definition of Zs(R) for R smooth, we have that %s, (R)—%s(R). The inequality
limsup; ., %s, <%s is a consequence of Proposition 3.2.2. O

COROLLARY 3.2.7. Let %s, be super-potentials of mean my, of S,. Assume that
Us, decrease to a function % which is not identically —oo. Then, S, converge to a

current S, my, converge to a constant m and % is the super-potential of mean m of S.

Proof. By Lemma 3.2.5, S,, converge to a current S and m,, converge to a con-
stant m. Define u(0):=% (Rp) and u,(0):=%s, (Rg). As in Proposition 3.1.6, the func-
tions u,, are quasi-subharmonic and decrease to u. Hence, u is quasi-subharmonic. On the
other hand, since Ry is smooth for 40, we have that u(0)=%s(Ry) for 6£0, where %s is
the super-potential of mean m of S. The function 8+ Zs(Ry) is also quasi-subharmonic
on A. So, we necessarily have %Zs(R)=u(0)=% (R). This holds for every R in €x—p+1.
Therefore, % is the super-potential of mean m of S. O

COROLLARY 3.2.8. Let s and %R be super-potentials of the same mean m of S
and R, respectively. Then, Us(R)=%r(S).

Proof. We have seen in the proof of Lemma 3.1.1 that the corollary holds for
smooth S. Let S,, be smooth forms as in Proposition 3.1.6. The upper semi-continuity
implies that

Us(R)= lim %s, (R)= lim %r(Sn)<%gr(S5).

n—oo n—00

In the same way, we prove that Zr(S)<%s(R). O

LEMMA 3.2.9. Let S and S’ be currents in 6,, and let %s and Us: be their super-
potentials of mean m. Assume that there is a positive (p—1,p—1)-current U such that
ddU=8"—-8. Then, s +||U||=>%s. In particular, if S has bounded super-potentials,
then S’ has bounded super-potentials. If g is a super-potential of a current RE €y _p+1,
then Ur(S")+|U||>%r(S5).

Proof. Let Ug be a quasi-potential of mean m of S. Then, Ug+U is a quasi-potential

of mean m+||U|| of S§’. For R smooth, we have
Us (R)+|U|| = (Us+U, R) > (Us, R) = s (R).

Then, Corollaries 3.1.7 and 3.2.8 imply the result. O
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We have the following important result which can be considered as a version of

Lemma 2.2.1 for super-potentials. We can apply it to K =W =P*.

PROPOSITION 3.2.10. Let W CP* be an open set and KCW be a compact set. Let
S be a current in €, with support in K and R be a current in €x—p+1. Assume that the
restriction of R to W is a bounded form. Then, the super-potential %s of mean 0 of S

satisfies

|%s(R)| < c(1+log" [|Rl[oc,w),
where ¢>0 is a constant independent of S and R, and log™ :=max{0,log}.

Proof. Recall that u(0):=%s(Ry) is a quasi-subharmonic function on A such that
dd°u>—a. By Proposition 2.1.6, the family of these functions u for (S, R) €6, X €k—p+1
is compact. So, Lemma 2.2.1 implies that He‘A“||gl(A1/2) <c for some positive constants
c and A.

Suppose that the estimate in the lemma is not valid. Recall that Zs is bounded from
above by a constant independent of S. Then, for e >0 arbitrarily small, there is an R such
that M:=log || R||oo,w >0 and Zs(R)<—2M/e. It follows that u(0)=%s(R)<—2M/=.
We will show that u(6)<—M/e on a disc of radius e~ which contradicts the above
estimate on e~4" for £ small enough.

Let U be the Green quasi-potential of R and let m be its mean. The mass of U is
bounded by a constant independent of R. By Lemma 2.3.11, there is a quasi-potential

Uy, of Rgy of mean m such that
1Ty = (o)« (U)o S 161
We deduce that

|%s(Re)—Us(R)| =

[s.03,-0) d@(y)‘ <16+
Yy

/ (S, (70, (U) U do(y)].

Because 6 is small, 7'0_yl (K)CW’ for some fixed open set W/€W. Since 7y, is close to

the identity, using Lemma 2.3.5, we obtain
1(70y)(U) =Ulloo, i S 161Ul wry S 6]

Therefore,
|u(0) —u(0)| = |%s(Ro)—%s(R)| S 10]e™.

This implies the above claim and completes the proof. O
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3.3. Currents with regular super-potentials

The PB or PC currents are introduced in [17], [19] and [21] in the study of holomorphic
dynamical systems. They correspond to currents with bounded or continuous super-
potentials. We first recall the definition of the space DSH* P(P*) of dsh currents. A
real (k—p, k—p)-current @ of finite mass is dsh if there are positive closed currents R*
of bidegree (k—p+1,k—p+1) such that(!) dd°®=R*—R~. Define

12/Ipsn = || ®[|+min | B* |

with R* as above. We consider a weak topology on DSH*P(P*). A sequence {®,,},>0
converges to ® in DSH” P (P*) if ®,, — ® in the sense of currents and ||®,,||psy is uniformly
bounded. A positive closed (p,p)-current S is said to be PB if there is a constant ¢>0
such that

(5, ®)| < c|®psn

for smooth real forms ® of bidegree (k—p,k—p). We say that S is PC if it can be
extended to a linear form on DSH”P(IP*) which is continuous with respect to the weak
topology on DSH*P(P*).

ProroSITION 3.3.1. If a super-potential %s of S is finite everywhere, then it is
bounded. A current S is PB if and only if the super-potentials of S are bounded. A

current S is PC if and only if the super-potentials of S are continuous.

Proof. Subtracting a constant from %g, we may assume %s<0. Assume that %s is
unbounded. Then, there are currents R,, such that Zs(R,)<—2". Set R::ZZO:() 27 "R,.
Since % is affine and negative, we have that %S(R)ngf:o 27"Ys(R,,) for every N.
Hence, Zs(R)=—o0. This is a contradiction. So, %s is bounded. Note that this property
is false for quasi-psh functions on P*.

Assume that the super-potential %s of mean 0 of S satisfies |%s|<M for some
constant M >0. Consider a real smooth form ® of bidegree (k—p, k—p) and a constant
A>||®|psu. We will prove that |[(S, ®)|<A(14+2C+2M) with C'>0 independent of S.
This implies that S is PB. Since we can approximate S in the Hartogs sense by smooth
forms, it is enough to prove this inequality for smooth S. Write dd°®=A(R"—R~) with
|R*||=1. By Remark 2.3.4, there are quasi-potentials U* of mean 0 of R* such that
|U*|psu<C, where C>0 is a constant. Define W:=®— AU+ AU~. Then dd*¥=0 and

Il <[]+ AU [+ANU ]| < A(1+2C).

(1) It is also useful to consider the space generated by such currents ® which are negative. This is
necessary in order to defined the pull-back of dsh currents by holomorphic maps.
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As dd°U=0 and since S is cohomologous to wP, we have
(S, W)| = [{", O)[ < A(1+420).
It follows that

[(S, @)| <[(S, U)[+A[(S, UT)+A|(S,U)]
= (S, W)+ A|%s(R*) |+ A|%s(R)| < A(1+2C+2M).

Hence, S is PB.

Conversely, if S is PB, we show that % is bounded. Consider a smooth form R in
Gr—p+1- Let Ur be a quasi-potential of R of mean 0 such that ||Ug|psu<C. We have
Us(R)=(S,Ug). Since S is PB, Zs(R) is bounded by a constant independent of R. This
implies that %s is bounded.

It is clear that if S is PC, (S,Ug) for smooth R can be extended to a continuous
function on 6% _p+1. Indeed, we can choose Ur, depending continuously on R with respect
to the weak topology in DSH* P (P*); see Theorem 2.3.1 and Remark 2.3.4. This implies
that %s is continuous. Conversely, if %s is continuous, we show that S is PC. If & and

R* are smooth as above, we obtain
(S, ®) = (WP, U)+A%s(R")— A%s(R™).

The right-hand side depends on ¥ and on ART— AR~ =dd°® but not on the choice of
A and R*. Hence, since ¥ and dd°® depend continuously on ®, we can extend S to
a continuous linear form on DSH*~?(P*). The continuity is with respect to the weak
topology on DSH*~P(P*). This completes the proof. O

LEMMA 3.3.2. If S is a form of class £° with s>k, then S has continuous super-

potentials.

Proof. Let r be the positive number such that 1/r4+1/s=1. Then, r<k/(k—1). The
Green quasi-potential Ug of R is a form of class Z". Moreover, with respect to the £
topology, it depends continuously on R, see Theorem 2.3.1. The mean mp of Ur depends

continuously on R. On the other hand, the super-potential of mean 0 of S satisfies
Us(R)=(S,Ur)—mpg

for smooth R. The right-hand side is defined for every R and depends continuously on

R. Therefore, Zr is continuous. O

Remark 3.3.3. Ug is in the Sobolev space W17 with r<2k/(2k—1). So, we can
assume that S€W 1 with 1/r+1/s=1, and still %5 is continuous.
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PROPOSITION 3.3.4. Let S and S’ be currents in €, such that S'<cS for some posi-
tive constant c. If S has bounded super-potentials, then S’ has bounded super-potentials.

If S has continuous super-potentials, then S’ has continuous super-potentials.

Proof. Write S=AS"+(1—X)S"” with 0<A<1 and S” being a current in %,. Let %5,
Us: and %s» denote the super-potentials of mean 0 of S, S’ and S”. By the definition
of super-potentials, we have A%g/ + (1—\)%s» =% s on smooth forms R. Corollary 3.1.7
implies that this equality holds for every R. Since %g is bounded from above, if % is
bounded, it is clear that %5/ is bounded. If %5 is continuous, as Zs: and s~ are u.s.c.,
they are continuous. O

PROPOSITION 3.3.5. Let S be a current with bounded super-potentials. Then, S has
no mass on pluripolar sets of P*. In particular, S does not give mass to proper analytic
subsets of PF.

Proof. Assume that S has bounded super-potentials. Let ECPF be a pluripolar
set and u be a quasi-psh function such that dd°u>—w and EC{z:u(z)=—00}. Define
R:=(dd°u+w)Aw*~P. This is a current in €j— 1.

Let {un}n>0 be a sequence of smooth functions decreasing to u and such that
dd®uy, >—w. Define Rn::(ddcunan)/\wk’p. Observe that u,w* P are quasi-potentials
of mean mn::f upw® of R,. If s is the super-potential of mean m::f uw® of S, then
(S, u,wk~P) decrease to Zs(R). Hence, %s(R)= (S, uw*~P). Since S has bounded super-
potentials, (S, uw®~P) is finite. It follows that S has no mass on {z:u(z)=—0oc}. O

PROPOSITION 3.3.6. Assume that S admits a super-potential which is a-Hélder con-
tinuous with respect to the distance disty on €y_p+1 for some exponent a<l. Let og
denote the trace measure of S. There is a constant ¢>0 such that if B, is a ball of

2k—2p+a

radius r, then og(B,)<cr In particular, S has no mass on Borel subsets of PF

with Hausdorff dimension less than 2(k—p)+a.

Using Lemma 2.1.2, we deduce analogous results for a general distance distg on
©i—p+1. Note that the last assertion in the proposition is deduced from the first one and
some classical arguments. In order to prove the first assertion, it is enough to consider
r small. So, we may assume that B, is a ball of center 0 in an affine chart C* CP*. It is
sufficient to show that fA’; SAwk=P <p2k=2pte et 2 denote the canonical coordinates
in C*.

LEMMA 3.3.7. There are positive constants A and c independent of r, a positive
(k—p, k—p)-current ® and two currents R* in €j_p+1 such that ®>(dd¢|z|?)*=P on
AR ®|| < Ar?k=2p42 | qdd=cr?*=2P(R* — R™) and dist;(R*, R™)< Ar.
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Proof. Observe that (dd®|z|?)*~P is a combination of the forms
(’idel /\dzjl)/\.../\(idek_p /\dzjk_p).

Without loss of generality, one only has to construct ® and R* satisfying the last three

properties in the lemma and the inequality
@ > (idzy AdZ1) A A(tdzk—p ANdZ—p)

on AF. Taking a combination of such currents gives currents satisfying the lemma.

Let x be a smooth cut-off function with compact support in A%, equal to 1 on A¥.
Let v(zk—pt+1) be a smooth function with support in {zx_p41:|2k—p+1]/<2r} such that
0<v<, [u]ler Srty flollgz Srm2 and v=1 on {zx—pt1:|2k—pt1|<r}. Let m: Ck—Cr=P
and 7': Ck¥—C*~P+! denote the canonical projections on the first factors of C*. Consider
the restriction © of idz; Adz A...Aidzg—p AdZg—p to AF~P and define

B = 0(z1_ps1)x(2)7(O).

Then, ® satisfies the desired lower estimate on A¥. We have to check the last three
properties in the lemma.

Since 7 can be extended to a rational map from P¥ to P¥~P, 7%(©) can be extended

2k—2p

to a positive closed current on P* of mass ||©|~r Moreover, Cauchy—-Schwarz’s

inequality implies that
—dd°[(z—py1)X(2)] ST 2id 2 p 1 NdZ— i1 0.
Denote by ©’ the restriction of idzq Adzy A... Nidzg—py1 AdZk—pi1 to AF7Px Ay, and let
Q= A\(1)*(r 20" )+ AT (O)

with A\>0 large enough independent of . Then, Q7:=Q~ 4+dd“® is positive and closed.
We have dd“®=Q"—Q~. The currents Q* can be extended to positive closed currents
on P*. They have the same mass since they are cohomologous. This mass is of order

r2k=2P and we denote it by c¢r?*~2P. We obtain
dd“® = cr®*"*"(R*—R")

with R*:=c~1r?=2*Q*  The currents R* and R~ are in ¢;_,+1. We want to bound
dist; (R*, R™). For any test form ¥ with ||¥|41 <1, we have

(R =R, W)| = 1% (dd°®, W) | = 22| (@°®, W) | S 122 |
On the other hand, we deduce from the definition of ® that
7] < 1222 0], 07420,

This implies the result. O
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End of the proof of Proposition 3.3.6. Let s be a super-potential of S. Since Zg

is a-Holder continuous, we deduce from the previous lemma that

/ ) SAWETP (S, ®) = (WP, ®) + (dd°Us, ®) = (wP, ®) + (Us, dd°®)
AR
(WP, ®) 1282 (Y (RT) —Us(R™)) Srh—2pte,

~

This is the required estimate. O

3.4. Capacity of currents and super-polar sets

We will define a notion of capacity for Borel subsets £ of €;_p+1. This capacity does
not describe how “big” the set FE is, but rather how singular the currents in F are. The
definition mimics the notion of capacity that we introduced in [21] for compact Kéahler

manifolds. Let

Py = {%g super-potential of S € €,: max %s= O}.

Cr—p+1

Definition 3.4.1. We define the capacity of E to be the following quantity:

cap(E):= a]/lél(f@p exp( glé%%(R))

It is clear that the capacity is increasing as a set function. Propositions 3.1.6
and 3.2.2 imply that, when E is compact, in the previous definition we obtain the same ca-
pacity if we only consider super-potentials of smooth forms. We also have cap(€;—_p+1)=1
and it follows that the set of smooth forms in 4%_,; has capacity 1. Dense subsets of
smooth forms in €%_,+1 also have capacity 1. So, there is a countable subset of 6}, _,11

with capacity 1.
Definition 3.4.2. We say that E is super-polar or completely super-polar in €j_p41
if there is a super-potential %s of a current S in %), such that

Ec{R:%s(R)=—o0} or E={R:%s(R)=—oc},

respectively.

Let E be the barycentric hull of E, i.e. the set of currents J Rdv(R), where v is
a probability measure on %%_p+1 such that v(E)=1. Denote by E the set of currents
cR+(1—c¢)R’ with REE, R €%6k—p+1 and 0<c<1. Then, E and E are convex.
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PROPOSITION 3.4.3. The following properties are equivalent:

(1) E is super-polar in €x_py1;

(2) E is super-polar in Cr—p+1;

(3) E is super-polar in Cr—p+1;

(4) cap(E)=0.

Moreover, a countable union of super-polar sets is super-polar, completely super-
polar sets are conver and cap(E)zcap(E).

Proof. Since every function % in &7, is affine and negative, if % is equal to —co on E,
it is also equal to —oo on EandE. T herefore, the first three properties are equivalent. We
also deduce that if E is completely super-polar, then F is convex and E=E. Moreover,
for any % we have supp % =supg % . This implies that cap(E):cap(E).

It is clear that if E is super-polar, then cap(F)=0. Assume that cap(F)=0. We
show that F is super-polar. There are super-potentials %s, of S,, such that max %s, =0
and s, <—2" on E. Corollary 3.1.7 implies that the means of %s, are bounded. This
and Corollary 3.2.7 imply that % =)""" | 27" %s, is a super-potential of Y > 27"G,.
It is equal to —oo on E. Hence, F is super-polar. A similar argument implies that a

countable union of super-polar sets is super-polar. O

PRoOPOSITION 3.4.4. Let EC%y,—p11 be a compact set. Then, E has positive capac-
ity if and only if its barycentric hull contains a current with bounded super-potentials.
Moreover, there is a current R in the barycentric hull E of E such that its super-potential

of mean O satisfies

Ur >logcap(E) on 6.

Proof. If R is a current with bounded super-potentials, then, by symmetry, % (R)#
—oo for every % € ). Proposition 3.4.3 implies that {R} is not super-polar. Hence, if
E contains a current with bounded super-potentials, E has positive capacity. Proposi-
tion 3.4.3 also implies that E has positive capacity. Now, assume that E has positive
capacity. We show that E contains a current with bounded super-potentials. In what

follows, the symbol % denotes a super-potential of mean 0. We have

inf sup Zs(R) > M :=logcap(FE).
S€% peR

The function %s(R) is affine in both variables R and S. Hence, for every convex compact

set € of continuous forms in ), the minimax theorem [46] implies that

sup inf Zs(R)= inf sup Zs(R)> M.
ReB 9€? €% ReE
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Consider an increasing sequence of compact sets {€7} and define
E; .= {RGE:@/S(R) > M—1/j for every S €%’}

So, {E;} is a decreasing sequence of compact sets. Take an element R in the intersection
of E;. If €7 are chosen so that their union is dense in 6}, then %x(S)=%s(R)>M for
every S€%,. This completes the proof. O

Consider the set of the super-potentials % of mean 0 of currents in %, and define

Ch,p=SUPgeq, max %g. Corollary 3.1.7 implies that this constant is finite.

COROLLARY 3.4.5. For every current R in 6,_py1, if %r is the super-potential of
mean 0 of R, then

log cap(R) > i(rglf —Clp+UR.

Proof. Let %s be the super-potential of mean 0 of S. By the definition of capacity

and of ¢, we have
> i — .
log cap(R) > [Slélép Us(R) ck,p}
Corollary 3.2.8 implies the result. O

COROLLARY 3.4.6. For every r>k, there is a constant ¢>0 such that if R is a form
in Cr_pr1 with coefficients in L7, then

log cap(R) > —cxp—c| Rl| -

Proof. Let s be the positive number such that 1/r+1/s=1. Then, s<k/(k—1). Let
Us be the Green quasi-potential of S. This is a negative form with .Z° norm bounded

uniformly with respect to S. Hence,
Ur(S) = (Us, R) Z —c||R|| ¢

for some constant ¢>0. We obtain the result from Corollary 3.4.5. O
The following result is a consequence of Proposition 3.2.10.

COROLLARY 3.4.7. There are constants ¢>0 and A\>0 such that for every bounded
form R in Crp—pt1,

cap(R) > cl| R
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4. Theory of intersection of currents

In this section, we develop the theory of intersection for positive closed currents of arbi-
trary bidegree. The method can be extended to currents on compact Kéahler manifolds
or in some local situation; see also [22]. Here, for simplicity, we only consider currents in

the projective space.

4.1. Some universal super-functions

Let p be an integer with 1<p<k. Define a universal function %, on 6, X €k—p+1 by
Uy(S,R):=Us(R)=%r(S),

where %s and %pg are super-potentials of mean 0 of S and R; see Corollary 3.2.8. We
have seen that, when S is fixed, %, is quasi-psh on special varieties of €j_p+1, and when

R is fixed, it is quasi-psh on special varieties of €.
LEMMA 4.1.1. The function %, is u.s.c. on €p X Ch—_pt1-

Proof. Let S, be currents in %, converging to S and R,, be currents in %;_p4+1
converging to R. Let %s, denote the super-potential of mean 0 of S,. Choose %
continuous with %s<% . By Proposition 3.2.2, for n large enough, %s, <% and hence
Us, (Rn) <% (Ry,). We then get

lim sup %s, (Rn) < % (R).

n—oo

Since 7% is arbitrary, we deduce that

limsup %s, (Rn) < Zs(R).

n—oo

This proves the lemma. O

LEMMA 4.1.2. Let S" and R’ be currents in 6, and €i_pi1, and let Us: and Ug
be their super-potentials of mean 0. Assume that there are constants a and b such that
Us +a>Us and Ur +b>Ur. Then, @/p(SQR’)}@/p(S, R)—a—b.

Proof. We have
Uy(S,R')=Up/ (S) > Ur(S)—b=%,(S,R)—b

and

U,(S',R') = Us (R) > Us(R)—a=%(S, R')—a.

This implies the result. O
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LEMMA 4.1.3. Let {Sy}n>0 and {Ry}n>0 be sequences of currents in 6, and €r—p11
H-converging to S and R, respectively. Then, %,(Sn, Ry) converge to %,(S,R). More-
over, if %,(S,R) is finite, then %,(Sn, Ry) is finite for every n.

Proof. Let %s, and g, be the super-potentials of mean 0 of S,, and R,,, respec-
tively. The H-convergence implies the existence of constants a,, and b,, with limit 0, such
that Zs, +an>%s and Ur, +bn,>%g. 1t follows from Lemma 4.1.1 that

lim sup %, (S, Rn) < %,(S, R).

n—oo

It is sufficient to prove that
Uy (Sn, Ry) = U(S, R)—an—by,.

This is a consequence of Lemma 4.1.2. O

4.2. Intersection of currents

Let pj, 1<j <!, be positive integers such that p;+...+p;<k. Let R; be currents in %},
with 1<5<I. We want to define the wedge-product R;A...AR;, as a current. In general,
one cannot define this product in a consistent way; for example, when R; and R, are
currents of integration on the same projective line of P2. We will define the intersection
of the R;’s when they satisfy a quite natural condition. Consider first the case of two

currents, i.e. [=2.

PRrROPOSITION 4.2.1. The following conditions are equivalent and are symmetric with
respect to Ry and Rs:

(1) %, (R1,R2AQ) is finite for at least one smooth form Q in Cr—p, —py+1;

(2) %, (R1,R2AQ) is finite for every smooth form Q in Cr—p,—p,+1;

(3) there are sequences {Rjn}n>0 in 6p, converging to R;, and a smooth form
in Crh—py—ps+1 Such that U, (R1n, Ron Q) is bounded.

Proof. 1t is clear that the second condition implies the third one: we can choose
R; ,=R;; and the third condition implies the first one because %, is u.s.c. Assume
the first condition. We show that %, (R1, R2ASY’) is finite for every smooth form ' in
Ch—pr—ps+1- Write Q' —Q=dd°U with U smooth. Adding a large positive closed form
to U, we may assume that U is positive. If V is a quasi-potential of RyAf€), then the
quasi-potential V 4+ R AU of Ro A€ is larger than V. Lemmas 3.2.9 and 4.1.2 imply that
Up, (R1, RoAQY) is finite. Therefore, the three previous conditions are equivalent.
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It remains to prove that the first condition is symmetric. We may assume that
Q=wF=P1=P2+1 Consider the case where R; is smooth. If U, is a quasi-potential of

mean 0 of Rs, then U A€ is a quasi-potential of mean 0 of RoAQ2. We have
Uy, (R1, RoNQ) = (R1,Us ANQ) = (U, R1 AQ) = U, (R2, R1 \Q).

Suppose now that R; is arbitrary. Let R; ¢ be the smooth forms constructed in §2.1,

starting with the current R;. We have
%pl (Rl, R2 /\Q) = éll’r(l] %pl (Rl’g, RQ/\Q) = })m(l) %pQ (RQ, Rly(;/\Q) < %pfz (RQ, R1 /\Q),
— —

since %,, is u.s.c. In the same way, we obtain %,,(Rz, R1 AQ) <%y, (R1, R2ARY). Hence,
Uy, (Ra, R1NQ) =%y, (R1, R2AQ). This implies the symmetry of the first condition in
the proposition. O

Definition 4.2.2. We say that Ry and Ry are wedgeable if they satisfy the conditions
in Proposition 4.2.1.

Note that for Ry fixed, the set of Ry such that R, and Ry are not wedgeable is a
super-polar set in %,,. Indeed, this is the set of Ry such that % (Rs)=—00, where %
is a super-potential of Ry AwF~P17P2F1 So R is wedgeable for every Ry if and only if

Ry AwF~P1=P2+1 has bounded super-potentials.

ProPOSITION 4.2.3. Let R; and R; be currents in €,,, j=1,2. Assume that Ry
and Ry are wedgeable. Then, R} and RY are wedgeable in the following cases:

(1) R} is more diffuse than R; for j=1,2;

(2) there is a constant c¢>0 such that R;<cR; for j=1,2.

Proof. The first assertion is a consequence of Lemma 4.1.2. For the second one, it
is enough to show that R; and R, are wedgeable. Then, in the same way, R} and R} are

wedgeable. Write Ry=AR5+(1—A\)RY with 0<A<1 and RY€%,,. From the fact that
Uy, is affine, we obtain that

Ay, (Ry, Ry Awh PPt
=Up, (R1, Ry A P12t — (1= \) %, (Ry, Ry AwF P 7Py o oo,
since %, (R1, R Aw* P17 P2H1) oL o0 and %, is bounded from above. This proves the
property. O

Assume that R; and Rs are wedgeable. We define the wedge-product (or the inter-
section) Ry ARy. This will be a current of bidegree (p1+pa, p1+p2). For every smooth
real form ® of bidegree (k—p1—p2, k—p1—p2), write dd°®=c(Qt—Q "), where QF are
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smooth forms in €;—p, —p,+1 and c is a positive constant. First, consider the case where
R; or Ry is smooth. So, Ry AR5 is defined. Let U; be a quasi-potential of mean 0 of R;.
Choose U; smooth if Ry is smooth. We have

<R1/\R2, > w”l/\Rg

P)+((R1—wP)ARy, ®)
Ry, wP* AD)

)

)

<dd(’(U1/\R2) >
(U1 ARy, dd°®)
(Rl, Ry /\Q+) —C%pl (Rl, Ry /\Qi).

( +
= +
(Ra, wP* AN®) 4+
= (Ra, WP AD®) 4%,

We deduce that the last expression is independent of the choice of ¢ and Q*. This
formally justifies the following formula for wedgeable R; and Ry. Define

<R1 AR, CI)> = <R2, wP? /\@>+C%pl (Rl, RQ/\QJF)*C%M (Rl, Rs /\Qf). (41)

The following theorem justifies our definition.

THEOREM 4.2.4. Assume that Ry and Ry are wedgeable. Then, the right-hand side
of (4.1) is independent of the choice of ¢ and Q*, and depends linearly on ®. More-
over, Ri ARy defines a positive closed (p1-+pa,p1+p2)-current of mass 1 with support in
supp(Rq)Nsupp(R2) which depends linearly on each R; and is symmetric with respect to

the variables.

Proof. First, observe that the linear dependence of ® and of R; are easily de-
duced from the properties of %),,. Write dd“®= &(QF —Q7) with &0 and QF smooth in
Cri—py—ps+1- We have

Q=) =T -,
Since %,, is affine on each variable, we have

Wy, (Ry, RoAQYY) =y, (Ry, RoAQY) = i, (Ry, RaAQYT) =%, (Ry, RaAQY).

So, the right-hand side of (4.1) does not change if we replace ¢ by ¢ and Q* by Q*.
Let R; ¢ be the currents constructed in §2.1 starting with the currents R;; they are
smooth for 0. Lemma 4.1.3 implies that %, (R1,0,, R2,0, ANQ*) converge to

%Pl (Rl, Rg/\Qi)

when 6;—0; see also Remarks 3.2.4. It follows that when 6;—0 and (61, 62)#(0,0), the
currents Ry g, ARg g, converge to i ARy. Hence, Ri ARy is a positive closed current of
mass 1. Since supp(R;,0)—supp(R;), Ri1 ARy has support in supp(Ri)Nsupp(Rz). We
also have that R; g, AR29,=R20, \R1,,, hence RiARy=RyA\R;. O
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LEMMA 4.2.5. Let R; and R;. be currents in €,,. Assume that Ry and Ra are
wedgeable. If R} is more diffuse than R; for j=1,2, then RiAR; is more diffuse than
RiNARs.

Proof. By Proposition 4.2.3, R} and Ry are wedgeable. Theorem 4.2.4 shows that
RiAR3, RiARy, RiAR) and Ry AR} are well defined. We show that R} ARs is more
diffuse than RyARy. In the same way, we will get that R} AR/ is more diffuse than
R} ARy, which will complete the proof.

The symbols U and % below denote quasi-potentials and super-potentials of mean 0.
By hypothesis, there is a constant a such that %g; +a>%g,. Consider a smooth form
R in 6%—_p, —p,+1 and choose Ui smooth. Since ddUp=R—w"—P1=P2%1 we deduce from
(4.1) that

%R/IAR2 (R) = <Rll AR, UR> = <R2, wP? /\UR>+62/R/1 (RQ /\R) _%R/l (R2 Awk7p17p2+l).
The same identity for R1 ARy and the inequality %g; +a>%g, imply that
%Ri/\Rz (R) _%RIARZ (R) > —a—%R/l (RQ AwF—P1 _p2+1)+%R1 (RQ/\wk_pl_p2+1).

The last expression is finite and independent of R. Hence, using the regularization Ry of
R for an arbitrary R in €%, —p,+1, we deduce that %g; nr, — %R, rR, is bounded below
by a constant. So, R} ARy is more diffuse than R; ARs. O

The following continuity result shows that the wedge-product is the right extension

to currents of the wedge-product of smooth forms.

PROPOSITION 4.2.6. Let Ri and Ry be wedgeable currents as above and let R,
be currents in 6, H-converging to R;, j=1,2. Then Ry, and Ry, are wedgeable and
Ry nAR2,, H-converge to RiAR,.

Proof. Let ;. and %; denote the super-potentials of mean 0 of R;, and R;. Let

a;n be constants converging to 0 such that %; ,,+a;,>%;. Define
En = %Ln(RQ /\wk—pl—pz-l-l)_%1(R2/\wk:—p1—p2+l).

We have ¢, >—a1 . Since % (R: Awk—P1=P2+1) g finite, Proposition 3.2.2 implies that

limsup,, . €, <0. So, €, —0. Define
K = {Rl,la RLQ, }U{Rl}
and

O = SUp |Uo,n(SAWFTPI=P2HL) g (S AR —P17P2HL)|
SeK
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We first show that 6, —=0. As % , —% >—as p, it is enough to prove that

lim sup 4/, <0,

n—oo

where

8! = sup (%o n(SAWF P12ty g (S AR PPy
SeK

Because R; ,—R;, K is compact. Since % ,, — % pointwise, we have

%Q(Rl,m/\wk_pl_m"'l) — 02/1,m(R2/\wk_p1_p2+1)

— U (Rs /\wk—pl—p2+1) =% (R, /\wk—pl—p2+1).

So %, restricted to K, is continuous. Proposition 3.2.2 applied to %|x +¢, implies that
limsup,,_, 0, <0. Therefore, §,, —0.

Proposition 4.2.3 implies that Ry, and Ry, are wedgeable, and R;, and Ry are
wedgeable. Let %,, %, and % denote the super-potentials of mean 0 of Ry ,ARg ,,
Rin ARz and RiARs. We obtain as in Lemma 4.2.5 for smooth R that %,(R) and

) (R) converge to % (R). Moreover,
Uy(R) =% (R) = —|a1 0|~ en]
and
Un(R) = Uy (R) 2 —|az.n|—0n.
Hence,

Un(R) > %(R)_‘al’ﬂ_‘a2,n|_|5n|_5n

for smooth R. Using the approximation of R by Ry, we deduce this inequality for
+|en|+06, are larger than % and
converge to % . Hence, the sequence R; , AR5, H-converges to Ry ARs. O

arbitrary R. The super-potentials %,+|a1,n|+|az,n

LEMMA 4.2.7. Let Ry and Ry be currents in ¢p,. Then, for TEAUt(P*) outside
some pluripolar set, Ry and 7.(R2) are wedgeable. Moreover, if Ry and Ry are wedge-
able, then RiAT.(Rz2) converge to Ry ARy when T—id in the fine topology on Aut(P¥),

i.e. the coarsest topology for which quasi-psh functions are continuous.

Proof. Let %r, be a super-potential of R;. Recall that %g, is an affine function
which is finite on smooth forms R in €%_,,+1. On the other hand, using an average of
7w (R2) AwF~P17P2+1 we can obtain a smooth form R in %}, +1. Therefore, the function
T UR, (T (R2) AwkF~P1=P2+1) ig not identically —oo. So, it is a quasi-psh function on
Aut(P*) and is finite outside a pluripolar set. Hence, Ry and 7,.(R») are wedgeable for 7
outside this pluripolar set.
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Assume now that R; and Ry are wedgeable. Let @ be a real smooth form of bidegree
(k—p1—p2,k—p1—p2). By (4.1), (RiAT«(R2), ®) can be written as a difference of quasi-
psh functions on Aut(P*). Hence, in the fine topology on Aut(P¥), (R;AT.(R2),®)
converge to Ry ARy when 7—id. The lemma follows. O

In order to define the wedge-product of several currents, we need the following result.

LEMMA 4.2.8. Assume that Ry and Ro are wedgeable, and that RiARs and Rs
are wedgeable. Then, Ro and Rs are wedgeable, and R; and RoARs are wedgeable.

Moreover, we have
(Rl /\RQ)/\Rg =R1/\<R2/\R3).

Proof. We use the symbols U and % for quasi-potentials and super-potentials of
mean 0. Since wP! is more diffuse than Ry, by Lemma 4.2.5, wP* ARy is more diffuse
than Ry ARs. Proposition 4.2.3 implies that wP* ARy and Rj3 are wedgeable. Hence,
Ur, (WF—P27Ps+L A Ry) is finite. It follows that Ry and Ry are wedgeable.

We show that R; and Ry A R3 are wedgeable. By Proposition 4.2.6 and Remark 3.2.4,
Ry 9 AR3 ¢ H-converge to RoAR3. Using Lemma 4.1.3, for p=p; +p2+p3, we obtain

Ur, (Ry ARz AwP—PHL)

= lim %p, (Ro,0\R3 g A" P
6—0
=1lim(Ug,, Ra,p AR g Aw* PF1)
6—0 ' ’
=lim <R3,97 UR1 /\RZ.G Awk7p+1>
6—0 ’
= lm Up, , (R1 ARz, AWFPTY) 4 (WP3 UR, AR g A P — ., (Ry AWk —P2—P3F1)
e :
=Ur,(R1AR2 AWE=PHY) L Y (Ry Ak —P1P2H) — U, (Ry Awh—P2—Pat1),

The last sum is finite. Hence, by Proposition 4.2.1, Ry and Ro A R3 are wedgeable.

We now prove the identity in the lemma. Proposition 4.2.6 and Remarks 3.2.4
imply that Ry gA(R2,9ARs3,9) converge to Ry A(ReAR3) and (R1 gAR2,9)AR3 ¢ converge
to (R1AR2)AR3. For 0, since R; g are smooth, we have

(R1,9AR2,0)ANR39=R1 9N (R29AR3p0).
Letting #—0 gives the result. O
Definition 4.2.9. We say that Ry,..., R are wedgeable if RiA...AR,, and R,,11 are

wedgeable for m=1,...,1—1.

Lemma 4.2.8 implies that this property and the wedge-product Ry A...AR; are sym-
metric with respect to R;. The wedge-product is a positive closed current of mass 1.
Applying inductively Proposition 4.2.6 gives the following result.
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THEOREM 4.2.10. Let {R;n}n>0 be sequences of currents in Gp; H-converging to
R;, j=1,...,1. Assume that R, ..., Ry are wedgeable. Then, Ri ., ..., R, are wedgeable
and Ry pA...ARy,, converge to RiA...AR; in the Hartogs sense.

Definition 4.2.11. Let S and R be wedgeable currents in %, and éj—, respectively.
Let a be a point in P*. We let vg(S, a) denote the mass of SAR at a and we refer to it

as the Lelong number of S at a relative to R.

This notion is related to the directional Lelong numbers of S developed in [12] and

[13]. Consider a classical example.

Example 4.2.12. Let S be a current in 41 and u be a quasi-potential of S. We
have S=w+ddu. If R is the current of integration on a projective line D which is
not contained in {z:u(z)=—oc}, then S and [D] are wedgeable and v|p|(S,a) exists for
every a. It is equal to the mass of SA[D]=dd‘(u[D])+wA[D] at a, i.e. to the mass of
dd®(u[D)) at a.

We will see in Proposition 4.3.4 below that if R is locally bounded in a neighbourhood
of a hypersurface, then v(S, a) exists for every S. For the classical case, when R is locally

bounded outside a; see [13].

4.3. Intersection with currents with regular potentials

In this section, we will give sufficient conditions for currents to be wedgeable.

PROPOSITION 4.3.1. Let R; be currents in %p]. with 1<j<l. Assume that R; have
bounded super-potentials for 1<j<l—1. Then, Ry, ..., R; are wedgeable. If moreover Ry
has bounded super-potentials, then RiA...\AR; has bounded super-potentials.

Proof. Consider R;- :=wPi. Their super-potentials of mean 0 vanish identically. It is
clear that R!,...,R)_,, R; are wedgeable. Since R; have bounded super-potentials, they
are more diffuse than R;-. Proposition 4.2.3 implies that Ry, ..., R; are wedgeable.

Assume that the super-potentials of R; are bounded. Then, R; are more diffuse than
R;. Lemma 4.2.5 implies that Ri A...AR; is more diffuse than R{A...AR]. It follows that
RiA...AR; has bounded super-potentials. O

PROPOSITION 4.3.2. Let R; be currents in 6,,, 1<j<l. Assume that R; have con-
tinuous super-potentials for 1<j<l—1. Then, RiA...AR; depends continuously on Rj.
If moreover R; has continuous super-potentials, then RiA...AR; has continuous super-

potentials.
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Proof. We only have to consider the case where [=2. Since R; has continuous super-
potentials, it follows from (4.1) that Ry A Ry depends continuously on Ry. Assume that R
also has continuous super-potentials. Let %g, g, and %r; denote the super-potentials
of mean 0 of R1 ARy and Rj, respectively. Applying (4.1) to a smooth quasi-potential

Ug of mean 0 of a smooth form R in €x_p, —p,+1 gives
UR, ARy (R) = <R1 ARs, UR> =Ur, (wpl /\R)—l—%Rl (RQ /\R) —Ur, (R2 AwhF—P1 _p2+1).

Since %r; are continuous and Rz AR depends continuously on R, the last expression can
be extended continuously to R in 6j_p,—p,+1. Hence, Ri ARy has continuous super-

potentials. m

Definition 4.3.3. A compact subset K of P* is (p+1)-pseudoconves if there is a

current in 6%, with compact support in P¥\ K; see also [32].

Observe that one can approximate the previous current by smooth elements of 6,
with compact support in P¥\ K. So, there is a smooth positive closed (k—p, k—p)-form
© with compact support in P¥\ K. If the 2(k—p)-dimensional Hausdorff measure of K
vanishes, then K is (p+1)-pseudoconvex. Indeed, generic projective planes of dimension p
do not intersect K. In particular, analytic sets of pure codimension p are p-pseudoconvex.

To explain the terminology, observe that we may assume that © has mass 1 and
there is a smooth (k—p—1,k—p—1)-form ® such that dd°®=—0+w*P. So, dd°® is
strictly positive on K. Adding a large positive closed form to ® allows one to assume

that @ is positive on P¥; compare with Definition 5.2.1 for X =P*.

PROPOSITION 4.3.4. Let R; be currents in €., j=1,2. Assume that R; are locally
bounded forms on open sets W; CP¥ such that PF\ (W1UWy2) is (p1+p2)-pseudoconver.
Then, Ry and Rs are wedgeable.

Proof. Let © be a smooth form in €;_p, —p,+1 With compact support in W;UWs.
Fix open sets W/€W); such that supp(©) CWjUW;. Reducing W; if necessary, we may
assume that R; are bounded on W;. Proposition 4.2.1 implies that it suffices to show
that
Up, (B1, RoNO) 2 —A(1+||Ral|oo,w, + || R0, W)

where A>0 is independent of ;. This estimate is uniform with respect to R;, we can
then use a regularization and assume that R; are smooth.
Let U; denote the Green quasi-potentials of R; and let m; denote their means.

Lemma 2.3.5 implies that

1U;

erwp S| Rylsow,) and  [my| <o
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for ¢>0 independent of R;. Let x; be positive smooth functions with compact support
in W} such that x1+x2=1 on supp(©). We have

%p] (R1, RQ/\@) = <U17 Rg/\@>—m1 = <X2U1, Rg/\@>+<X1U1, Rg/\@>—m1.

Since y1U; is bounded, we only have to estimate the first integral. By Stokes formula,

it is equal to the sum of (x2Uy,wP2AO), which is bounded, and of the integral

(x2Uy, dd°Us A®) = (x2dd°Uy, U AO) + (dx2 Ad°Uy, U AO)
—(d°x2AdU, Us A®Y+ (U Add® X2, Uz AO)

= (x2R1,UsAO)— (x2w"*, Us AO) — (dx1 Nd°Uy, U2 A O)
+(d°x1 AdUy, Uy AO) — (Uy Add®x1, Uy AO).

We used that dys=—dx1 and dd®x2=—dd®x; on supp(©). It is clear that the last sum is
of order at most equal to 14|/ R1|cc,w, +||R2|lcc,w,. Indeed, we have ||U;||<c and each

integral is over a domain where we can use the estimates on [|Uj[«1 (wy). O
Remark 4.3.5. It is enough to assume that R; are in .Z°_(W;) with s>2k.
We deduce from Proposition 4.3.4 and Lemma 2.3.5 the following results.

COROLLARY 4.3.6. Let R; be currents in 6p,, j=1,...,l. Assume, for j=2,...1,

R

that the intersection of the supports of Ri,...,R; is (p1+...4+p;)-pseudoconver. Then,
Ry, ..., Ry are wedgeable.

COROLLARY 4.3.7. Let Vj be analytic subsets of pure codimension p; in Pk 1<5<l.
Assume that their intersection is of pure codimension pi1+...+p;. Let I, denote the
components of ViN...0V; and m,, their multiplicities. Then, the currents of integration

on V; are wedgeable and we have
Vi AAVI] =Y ma(L).

Proof. 1t is clear that ViN...NV; is of pure codimension p;+...+p;. Hence, it is
(p1+...+p;)-pseudoconvex. By Corollary 4.3.6, V1, ..., V; are wedgeable and [V4]A...A[V]]
has support in ViN...NV;, which is of pure codimension py+...4+p;. Then [V1]A...A[V]]
is a combination of [I,]. For the identity in the corollary, by induction, it is enough to
prove it for [=2. Since ) m,[I,| depends continuously on V; and Vs, Lemma 4.2.7
implies that it is enough to prove the corollary for Vi and 7(V3), where 7 is a generic
automorphism close enough to the identity. So, we may assume that m,=1 for all n.
Hence, for a generic point a in V;NV5, a belongs to the regular parts of V; and V5, and
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V1 and V, intersect transversally at a. It is enough to prove that [Vi]A[Va]=[ViNV3]
in a neighbourhood of a. In this neighbourhood, the f-regularization [Va]g of [V3] is
an average of currents of integration on manifolds 7(V3), where 7 is an automorphism
close to the identity. Observe that 7(V5) is close to V5 and intersects V; transversally
on a manifold close to V1NV,. Hence, [V1]A[V2]g is an average of [ViN7(V2)]. When
0 tends to 0, this mean converges to [ViNV3]. On the other hand, we have seen in
Proposition 4.2.6 that [V1]A[Va]e converge to [Vi]A[Va]. Therefore, [Vi|A[Va]=[ViNV3].
The corollary follows. O

4.4. Intersection with (1,1)-currents

Consider now the case where py=...=p;=1. For 2<j </, there is a quasi-psh function u;
on P* such that
ddcu]' = Rj —W.

We have the following lemma.

LEMMA 4.4.1. The currents Ry, ..., R; are wedgeable if and only if, for all 2<j<I,
u; s integrable with respect to the trace measure of RiA...AR;_1. In particular, the last

condition is symmetric with respect to Ra, ..., Ry.

Proof. Tt is enough to consider the case [=2. We may assume that us is of mean 0.
Let ug g be the quasi-potential of mean 0 of Ry ¢. Since R ¢ H-converge to Ry, there are
constants ag converging to 0 such that ug g+ag=>ug, and ug ¢ converge pointwise to us.

If %, is the super-potential of mean 0 of Ry, then
OZ/Rl (RQ /\wk_pl) = lim %Rl (Rg)g /\wk_pl) = lim(Rl, U279wk_p1> = <R1, Uka_m).
6—0 6—0
Therefore, g, (Ra Aw*~P1) is finite if and only if uy is integrable with respect to the
trace measure Rq Aw*~P1 of Ry. This implies the lemma. O

If Ry has a quasi-potential integrable with respect to Ry, it is classical to define the
wedge-product R ARy by

Rl/\RQ = ddc(u2R1)+w/\R1.
One defines R1 A...AR; by induction.
LEMMA 4.4.2. The previous definition coincides with the definition given in §4.2.

Proof. Proposition 4.2.6 implies that R; ARz g converge to R ARy when 6 —0. Since

R5 g is smooth, we have
Rq /\R279 =RiN (ddCUQ,a +Ct)) = ddc(u2,9R1)+w/\R1.
It is clear that the last expression converge to dd®(usR1)+wAR;. O
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5. Complex dynamics in higher dimension

Super-potentials allow us to construct and study invariant currents in complex dynamics.

We will give here some applications of this new notion.

5.1. Pull-back of currents by meromorphic maps

The results in this section hold for meromorphic correspondences, in particular for the
inverse of a dominant meromorphic map. For simplicity, we only consider meromorphic
maps on P¥. Recall that a meromorphic map f:P*—PF is holomorphic outside an an-
alytic subset I of codimension >2 in P*. Let T denote the closure of the graph of the
restriction of f to P*\I. This is an irreducible analytic set of dimension k in P* x P*.

Let 7 and 7o denote the canonical projections of P*xP* on the factors. The
indeterminacy locus I of f is the set of points z€P* such that dim wfl(z)ﬂF>1. We
assume that f is dominant, that is, mo(I')=P¥. The second indeterminacy set of f is the
set I’ of points z€P* such that dim 7, '(2)NI'>1. Tts codimension is also at least equal
to 2. If A is a subset of P*, define

f(A) :=mo(rH(A)NT) and  f~Y(A):=m(my 1 (A)ND).

Define formally for a current S on P¥, not necessarily positive or closed, the pull-back
f7(S) by

FH(8) = (m)u (w2 (S)A[L), (5.1)

where [I'] is the current of integration of I'. This makes sense if the wedge-product

75 (S)A[L] is well defined, in particular, when S is smooth. Note that when S is smooth

f*(9) is an £ form. Consider now the case of positive closed currents. We need some

preliminary results.

LeEMMA 5.1.1. Let S be a current in 6,. Assume that the restriction of S to a
neighbourhood of I' is a smooth form. Then, formula (5.1) defines a positive closed

(p, p)-current. Moreover, the mass A, of f*(S) does not depend on S.

Proof. Since | is a finite map outside 7, *(I')NT, the current 75 (S)A[L] is well
defined there, and depends continuously on S; see [23]. So, if S is smooth in a neighbour-
hood of I’, w5(S)A[] is well defined in a neighbourhood of 75 *(I')NT, hence, f*(S) is
well defined and is positive. Let U be the Green quasi-potential of S. This is a nega-
tive form such that S—wP=dd°U. By [23], 75 (U)A[T] is well defined outside 75 *(I").
Lemma 2.3.5 implies that U is continuous in a neighbourhood of I’. Hence, as for S, we
obtain that f*(U) is well defined. We have f*(S)— f*(wP)=dd°f*(U). It follows that
f*(S) and f*(wP) are cohomologous. Therefore, they have the same mass. O
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The operator f, is formally defined by

fe(R) := (ma). (my (R)A[L]). (5:2)

LEMMA 5.1.2. Let R be a current in 6r_pt1 which is smooth in a neighbourhood
of I. Then, the formula (5.2) defines a positive closed (k—p+1,k—p+1)-current. More-

over, the mass of f.«(R) does not depend on R and is equal to Ap_1.

Proof. We obtain the first part as in Lemma 5.1.1. Since f,(w* P*1) and f*(wP~1)

have Z! coefficients, we also have

IIf*(R)H=Hf*(wk"’“)||:/f*(wk"’“)wp_l:/ EPEIA WP = A,

which proves the last assertion in the lemma. O

In order to define f*(S), we need to define 75(S)A[I']. For this purpose, we can
introduce the notion of super-potential in P¥ x P* and study the intersection of currents
there. We avoid this here. We call A, the intermediate degree of order p of f. Let,
for simplicity, L::)\glf* and A=A 11f* With this normalization, for S€%), and Re
Ck—p+1, the currents L(S) and A(R) have mass 1 when they are well defined.

LEMMA 5.1.3. Let S be a smooth form in 6, and %s be a super-potential of S. If
Ur (v is a super-potential of L(wP), then )\Zlep,l?/soA—i—@/L(wp) is equal to a super-
potential of L(S) on the currents R€E €y _py1 which are smooth on a neighbourhood of I.

Proof. We may assume that %s and %y (,») are of mean 0. Let %5y be the super-
potential of mean 0 of L(S). Let Ug be a smooth quasi-potential of mean 0 of S and
Ug be a quasi-potential of mean 0 of R which is smooth in a neighbourhood of I. Since
L(S) and L(wP) are smooth outside I, the following computation holds

S— Waf*(UR» A WP, £ (UR))

dd°Us, f.(Up))+A, (" (wP), Ur)

Us, f+(dd°UR)) +%p(w»)(R)

Us, fo(R)) =X, (Us, fo (@ 7PF)) + Up ) (R)
"Npo1%s(M(R)) =N, (Us, fu(wPH1) + U1 () (R).

1

SR
—
o~ o~~~

This implies the result, since the second term in the last line is independent of R. O
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Definition 5.1.4. We say that a current S in €, is f*-admissible if there is a current
Ry in €j—p41 which is smooth on a neighbourhood of I, such that the super-potentials
of S are finite at A(Rp).

LEMMA 5.1.5. Let S be an f*-admissible current in 6,. Then, the super-potentials
of S are finite at A(R) for every smooth R in Cr—pt1. In particular, if S'€%, is such
that S’ <cS for some positive constant c, or if S’ is more diffuse than S, then S’ is also

f*-admissible.

Proof. Since R admits a smooth quasi-potential, we can find a positive current U
such that dd°U=R— Ry and U is smooth in a neighbourhood of I. We have dd°A(U)=
A(R)—A(Rp) and, by Lemma 3.2.9,

Us(M(R)) = Us(A(Ro)) = [ A(U)]-
This implies the first assertion. When S’'<¢S, as in Proposition 3.3.4, we obtain
%gl(A(Ro)) > —00.
This also holds when S’ is more diffuse than S. Hence, S’ is f*-admissible. O

LEMMA 5.1.6. Let S be an f*-admissible current in 6,. Let S, be smooth forms
in 6, H-converging to S. Then, f*(S,) H-converge to a positive closed (p,p)-current of

mass A, which does not depend on the choice of S,,.

Proof. Let %s, and %s be super-potentials of mean 0 of S, and S. Let ¢, be
constants converging to 0 such that %s, +c,>%s. Recall that %s, converge pointwise
to Zs. If R is smooth in a neighbourhood of I, we have

A N1 s, (M(R)) + Uy oy (R) = Ay \p1 Us (M(R)) + U r) (R).

Lemma 5.1.5 implies that the last sum is not identically —oo.
Lemmas 5.1.3 and 3.2.5 imply that L(S,) converge to a positive closed current S’
of bidegree (p,p). Lemma 5.1.1 implies that the mass of S’ is 1. Moreover,

)\;1/\1),1 Us, OA-‘rOZ/L(wp) (resp. A;l)\p,l%soA-‘r%L(wp))

is equal on smooth forms R to some super-potential of L(S,) (resp. of S”). Denote by
U1(s,) and %s' these super-potentials. We have @/L(Sn)—&—)\;l)\p_lcn}%gl on smooth
forms R. Corollary 3.1.7 implies that this inequality holds for every R. Therefore,
L(S,)—S’ in the Hartogs sense.

Finally, observe that if S/, are smooth forms in %, H-converging to S, then S;, S7,
Sa, 5%, ... H-converge also to S. It follows that L(Sy), L(S7), L(S2), L(S5%), ... converge.
We deduce that the limit S’ does not depend on the choice of S,,. We can also obtain
the result using the fact that %s/(R) does not depend on the choice of S,,. O
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Definition 5.1.7. Let S and S, be as in Lemma 5.1.6. The limit of f*(S,,) is denoted
by f*(S) and is called the pull-back of S under f. We say that S is invariant under f*
or f*-invariant if S is f*-admissible and f*(S)=\,S5.

The following result extends Lemmas 5.1.3 and 5.1.6 when S and S,, are not neces-

sarily smooth.

PROPOSITION 5.1.8. Let S be an f*-admissible current in 6. Let Us and Uy (u»)
be super-potentials of S and L(wP). Let S, be currents in 6, H-converging to S. Then,
Sy are f*-admissible and f*(S,) H-converge towards f*(S). Moreover,

A;lAp,1%50A+%L(wp)

is equal to a super-potential of L(S) for RE€6y—_pt1, smooth in a neighbourhood of I.

Proof. If %s, are super-potentials of mean 0 of S,,, there are constants ¢,, converging
to 0 such that %s, +c,>%s. The last assertion in the proposition was already obtained
in the proof of Lemma 5.1.6. Let %,(g) denote the super-potential of L(S) which is equal
to A;lx\p_l%goA—i—OZ/L(wp) for smooth R in €} _p11. Let % s,) denote the analogous
super-potentials of L(S,). Since %s, —%s pointwise, %y,s,)— %1(s) on smooth forms
in €x—p+1. As in Lemma 5.1.6, we obtain OZZL(S”)—F/\;l)\p_lcn}OZ/L(S), and this implies
that L(S,) H-converge towards L(S). O

In the same way, we have the following.

Definition 5.1.9. We say that a current R in €x_p41 is fi-admissible if the super-
potentials of R are finite at L(Sy) for at least one current Sy in 6, which is smooth in a

neighbourhood of I’ (or equivalently, for every Sy smooth in 6,).

If R'€%6);—p+1 is such that R'<cR for some positive constant ¢, or R’ is more diffuse
than R, then R’ is also f.-admissible. We easily get the following lemma.

LEMMA 5.1.10. Let R be an f.-admissible current in 6,_py1. Let R, be smooth
forms in Gj_p+1 H-converging to R. Then, R, are f.-admissible and f.(R,) H-converge
to a positive closed (k—p+1,k—p+1)-current of mass Ap—1 which does not depend on
the choice of R,.

Definition 5.1.11. Let R and R, be as in Lemma 5.1.10. The limit of f.(R,) is
denoted by f.(R) and is called the push-forward of R under f. We say that R is invariant
under f, or f.-invariant if R is f.-admissible and f.(R)=MA,_1R.
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PROPOSITION 5.1.12. Let R be an f.-admissible current in €y—p+1. Let Ur and
Up(wr—v+1) be super-potentials of R and A(WF=PH) . Let R, be f.-admissible currents
in Gr—pt1 H-converging to R. Then, f.(R,) H-converge to f.(R). Moreover,

APA;E1%30L+%A(wk7p+1)
is equal to a super-potential of A(R) on S€%,, smooth in a neighbourhood of I'.

Note that if an analytic subset H of pure dimension in P*, of a given degree, is
generic in the Zariski sense, then [H] is f*- and f.-admissible. One can check that f*[H]
and f.[H] depend continuously on H.

5.2. Pull-back by maps with small singularities

In this section we will give sufficient conditions, easy to check, in order to define the pull-
back and push-forward operators. We need some preliminary results. In what follows,

X is a complex manifold of dimension k£ and wy is a Hermitian form on X.

Definition 5.2.1. A compact subset K of X is weakly p-pseudoconvex if there is a
positive smooth (k—p, k—p)-form ® on X such that dd°® is strictly positive on K.

Note that, using a cut-off function, we may assume that & has compact support
in X. It follows from the discussion after Definition 4.3.3 that p-pseudoconvex sets in P*

are weakly p-pseudoconvex.

LEMMA 5.2.2. If the (2k—2p+1)-dimensional Hausdorff measure of K is zero, then

K is weakly p-pseudoconver.

Proof. Consider a point a in K. We construct a positive smooth (k—p, k—p)-form
@, such that dd°®, is positive on K and strictly positive at a. Since K is compact, there
is a finite sum ® of such forms satisfying Definition 5.2.1. Consider local coordinates
z=(z1, ..., zx) such that z=0 at a. Define z":=(z1, ..., 2k—p) and 2" :=(zx_p41, ..., 2 ). The
hypothesis on the measure of K allows us to choose z so that K does not intersect the set
{#z:]7/|<1 and 1—e<|z"|<1}, where € >0 is a constant. Let © be a positive (k—p, k—p)-
form with compact support in the unit ball {2’:|2’| <1} of C*¥~P, strictly positive at 0. Let
© be a positive function with compact support in the unit ball of CP such that o=|z"|?
for |2”|<1—e. Let m denote the projection z+— 2" and define U,:=p(2")7*(0). It is
clear that W, is positive with compact support in X and dd°¥,>0 on K. Nevertheless,
dd°¥, is not strictly positive at 0, but it does not vanish at 0. Observe that if 7 is a
linear automorphism of C* close enough to the identity, then 7*(¥,) satisfies the same
properties as ¥, does. Taking a finite sum of 7*(¥,) gives a form ®, which is strictly
positive at 0. L]
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The following result is a version of Oka’s inequality; see [32].

PRrROPOSITION 5.2.3. Let K be a weakly p-pseudoconvex compact subset of X. Let
T be a positive (p,p)-current on X, not necessarily closed. Then, for every negative
(p—1,p—1)-current U on X with dd°U>—T, we have

10Ul x <c(I+UlLx\x),

where ¢>0 is a constant independent of U.

Proof. Since ||Ul|x =[|U||x\k +||U||x, we only have to bound the mass of U on K.
Let ® be as in Definition 5.2.1 with compact support. Without loss of generality, we may

assume that dd¢® Zw];(_p 1 on K. We have, for some positive constant ¢/,

K= Aw < - A = Add°®— A
U U AwhPtt U Add°® UNdd®— [ Undd°®
K K X\K X

<CIHU”X\K—/ dch/\<I><CI||UHX\K+/ TAD.
X X

This implies the result, since T is fixed. O

Let ¥’ denote the analytic subset of the points x in I' such that 7y restricted to I'
is not locally finite at 2. Define X/:=m;(X'). We have ¥'Cr; *(I')NI" and X' C f~1(I).
The following proposition gives a sufficient condition in order to define the pull-back
of a (p, p)-current, see also Lemma 5.2.7 below. The result can be applied to a generic
meromorphic map in P¥; see Proposition 5.3.6 below. Note that the hypothesis is satisfied
for p=1, and in this case the result is due to Méo [40].

PROPOSITION 5.2.4. Assume that dim Y’ <k—p. Then, every positive closed (p,p)-
current S is f*-admissible. Moreover, the pull-back operator S— f*(S) is continuous

with respect to the weak topology on currents.

Proof. Let S, be smooth forms in %, converging to S. Let %s, denote the super-
potentials of mean 0 of S,,. It is sufficient to prove that, for R smooth in €j—p1,
Us, (A(R)) converge to a finite number. Propositions 5.1.8 and 3.2.2 will imply that S
is f*-admissible. The convergence implies also that the limit does not depend on the
choice of S, (see the last argument in Lemma 5.1.6) and that f* is continuous.

Let Ug, denote the Green quasi-potentials of S,, which are smooth negative forms
such that dd°Ug, >—wP. These forms converge in .#! to the Green quasi-potential Ug
of S. Hence, the means cg, of Ug, converge to the mean cg of Ug. Since Ug, and R are

smooth, we have

Us,(A(R)) = (Us,, A(R)) —cs, =\, 21 (f*(Us, ), R) —cs,-
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So, it is enough to prove that f*(Us, ) converge in the sense of currents.

The restriction of my to F\f]’ is a finite map. Under this hypothesis, it was proved
in [23] that 73 (Us, ) A[['] converge in P¥ x P¥ outside 3. Tt follows that f*(Us,) converge
outside ¥’. Hence, the mass of f*(Ug, ) outside a small neighbourhood V" of ¥’ is bounded
uniformly with respect to n. By Lemma 5.2.2, ¥/ is weakly p-pseudoconvex in P*. Hence,
since V is small, V is also p-pseudoconvex. Using the fact that dd¢f*(Us, )= —f*(wP),
Proposition 5.2.3 gives

117 (Us, )l < c(+[1£*(Us, ) lprrv)

with ¢>0 independent of S,,. Therefore, the mass of f*(Ug, ) is bounded uniformly with
respect to n. We can extract convergent subsequences from f*(Ug, ). In order to prove
the convergence of f*(Usg, ) in P, it remains to check that the limit values U of f*(Ug, )
have no mass on 3.

Let W be a small open set in P¥. Write f*(wP)=dd°® with ® negative on W.
So, ® and U':=U+® are negative currents with dd® positive. Since the currents U
and ® are of bidimension (k—p+1,k—p+1) and dim ¥’ <k—p, it follows from a result
of Alessandrini-Bassanelli [2, Theorem 5.10] that ® and U’ have no mass on ¥’. This
implies the result. O

Remark 5.2.5. Assume that dim ¥’ <k—p. The previous proof gives a definition of
f*(Ug) which depends continuously on Ug. The definition can be extended to negative
currents U such that ddU is bounded below by a negative closed current of bounded

mass. We still have that f*(U) depends continuously on U.

PROPOSITION 5.2.6. Under the hypothesis of Proposition 5.2.4, if R is a current in
Cr—pt+1 with bounded (resp. continuous) super-potentials, then R is f.-admissible and

A(R) is a current in Gi—pt1 with bounded (resp. continuous) super-potentials.

Proof. Assume that the super-potentials of R are bounded. It is clear that R is
f+-admissible. Proposition 5.1.12 implies that A(R) admits a super-potential equal to
Ap)\p_ill%RoL*I’%A(wkfpﬁ»l) on smooth S€%,. The first term is bounded. By Proposi-
tion 5.2.4, it can be extended to a continuous function on %), if R has continuous super-
potentials. So, it is sufficient to prove that the super-potential %} (,x-»+1) of mean 0 of
A(wk=P+1) is continuous. Let Ug be the Green quasi-potential of S and cg be its mean.
Recall that Us —cswP~! is a quasi-potential of mean 0 of S and cg depends continuously

on S. For smooth S, we have
Up(w+—v+1)(S) = (Us—cswP™ A(wF—PH1)) = )\;;11<f*(US)—Csf*(wp_1), Wkt

By Remark 5.2.5, the left-hand side can be extended continuously to S in %,. So,

U\ (k—r+1y is continuous. l
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If g: P* —P* is a dominant meromorphic map, the composition gof is well defined
on a Zariski dense open set. We extend it as a meromorphic map by compactifying the
graph. The iterate of order n of f is the map f™:=fo...of (n times). The inverse of f™
is denoted by f~™. It should be distinguished from f~1o...c f~1. Define I,,, I/, and %,

as above for f" instead of f. The following lemma will be useful in our dynamical study.

LEMMA 5.2.7. The following conditions are equivalent:

(1) dim¥' <k—p;

(2) dim f~Y(A)<k—p for every analytic subset A of P* with dim A<k—p;
(3) dim X! <k—p for every n>1.

Proof. Tt is easy to check that (1) implies (2) and (3) implies (1). Suppose now that
(2) holds. We prove that (1) is satisfied. If not, we can find an irreductible analytic
subset A of I, of minimal dimension, such that dimm (r5 ' (A)NY')>k—p. The second
condition in the lemma implies that dim A>k—p. Let A be an irreducible component
of w5 1 (A)N3’ such that A’:=7;(A) has dimension >k—p. By definition of 3, we have
dim A>dim A+1>k—p+2.

Choose a dense Zariski open set € of A such that 71: Q— A’ and mo: Q— A locally
are submersions. Denote these maps by 71 and 75. If H is a hypersurface of A then
ﬁ[::Tgl (H) is a hypersurface of . It has dimension >k—p+1. The minimality of dim A
implies that dim n(ﬁ[)gk—p< dim H. Hence, the fibers of 7; are of positive dimension.
Moreover, Tl(fNI ) has positive codimension in A’. Therefore, since His a hypersurface
in A, it should be a union of components of the fibers of 7. This holds for every H.
Hence, the fibers of 79, which can be obtained as intersections of such H , are unions of
components of the fibers of 71. The intersection of a fiber of 7 and a fiber of 75 contains
at most one point. We deduce that 77 is locally finite, which is a contradiction.

Now, assume that (1) and (2) hold. It remains to check that dim X} <k—p for n>2.
Using (2) inductively, we get that f~'o...o f~1(¥’) has dimension <k—p. Observe that
Y/ is the union of the components of dimension >1 in the fibers f~"(z). So, X/ is
contained in the union of f~to...o f~1(¥’). This gives the result. O

5.3. Green super-functions for algebraically stable maps

Consider a dominant meromorphic map f on P* of algebraic degree d>2 and the asso-
ciated sets I, I’, I,, I, &' and ¥/ as in §5.1 and §5.2. Some results in this section can
be easily extended to the case of correspondences, in particular to f~! instead of f. Let
Ap denote the intermediate degree of order p of f and A\,(f™) the intermediate degree of
order p of f™. Note that A;(f)=d. We have the following elementary lemma; see [18]
and [20] for a more general context.
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LEMMA 5.3.1. The sequence of intermediate degrees Ap(f™) is sub-multiplicative,
B.e. Ap (ST KN (F™N(F™). We also have Xpiq(f™) SN (F™) NG (f™) and A, (f™)<dP™.

Proof. Observe that (f™")*(wP) has no mass on analytic sets. Let S; be smooth
positive closed forms of mass \,(f™) converging locally uniformly to (f™)*(w?) on a
Zariski open set. Then, the currents (f™)*(S;) are of mass A, (f™)A,(f™) and converge
to (f™+)*(wP) on a Zariski open set. If S is a limit of (f™)*(S;) in P¥, it is of mass
Ap(f™MAp(f™) and it satisfies S>(f™*")*(wP). Hence, [|S||=[|(f™"")*(wP)||. The first
inequality in the lemma follows.

In the same way, we approximate (f™)*(wP) and (f™)*(w?) locally uniformly on a
suitable Zariski open set by smooth forms S; and S;. If S is a limit current of Sj/\S§
in P*, it satisfies S>(f™)*(wPT9). This implies that Apiq(f™) <Ap(f")A(f™). For p=1,
the first assertion in the lemma implies that A;(fP)<dP. Applying the second inequality
inductively for g=1 gives A\, (f™)<dP™. O

The previous lemma implies that the limit
dyi= lim Ap(f")V" =inf A, (f")H/"

exists. It is called the dynamical degree of order p of f. We have d, <dP for every p. The
last dynamical degree dj, is also called the topological degree of f. It is equal to the number
of points in a generic fiber of f, and we have Ay (f™)=d}. In general, A\,(f™) is the degree
of f~"(H), where H is a generic projective plane of codimension p. So, A,(f") is an
integer. A result by Gromov [36, Theorem 1.6] implies that p—log A, (f™) is concave in
p. It follows that p—logd, is also concave in p. If f is holomorphic, we have d,=\,=dP".
If f is not holomorphic, it is easy to prove that dj<d*. Indeed, if a is the intersection
of generic hyperplanes Hy, ..., Hg, then f=!(a)C f~Y(Hy)N...0f~1(Hy)\I. By Bézout’s

theorem, the last set has cardinal <d*—1 since all the hypersurfaces f~!(H;) contain I.
Definition 5.3.2. We say that f is algebraically p-stable if )\p(f”):)\;‘ for every n>1.

For such a map we have d,=M\;,. For p=1, the algebraic 1-stability coincides with
the notion introduced by Forneess and the second author [44], i.e. no hypersurface is sent
by f™ to I; see also [41] and Lemma 5.3.4 below.

LEMMA 5.3.3. Assume that dim X' <k—p. Then, [ is algebraically p-stable if and
only if (f*)"=(f")* on .
Proof. Recall that, by Proposition 5.2.4 and Lemma 5.2.7, (f)* is well defined and

is continuous on 6. If (f*)"=(f")* on %,, it is clear that

Ap(f") =) (@) =)™ (WP = A
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Hence, f is algebraically p-stable. Conversely, by continuity, it is enough to prove the
identity (f*)"=(f")* on smooth forms S in 4,. Observe that (f*)"(S)=(f")*(S) on
a Zariski dense open set V such that V, f(V), ..., f"~1(V) do not intersect I. As we
observed after definition (5.1), since S is smooth, (f™)*(S) has no mass on analytic sets.
So, (f*)"(S)=(f")*(S). When f is algebraically p-stable, (f*)™(S) and (f™)*(S) have
mass Ay and A, (f"), which are equal. It follows that (f*)"(S)=(f")"(S). O

LEMMA 5.3.4. Assume that dim X' <k—p. For every analytic subset Ay of P* of
dimension k—p, define by induction A,:=f(A,—1\I), and assume that A, is not con-

tained in I for every n>=0. Then, f is algebraically l-stable for I<p.

Proof. Tt is enough to show that (f*)"(w!)=(f")*(w'). We have seen that the iden-
tity holds outside A:=ITUf~*(I)U...u(f~1)"(I) and that (f*)"(w")>(f")*(w'). The hy-
pothesis implies that A is of dimension <k—p. Hence, (f*)"(w') has no mass on A
because (f*)"(w') is of bidimension (k—I, k—1). This completes the proof. O

PROPOSITION 5.3.5. If dim X/ <k—p, then [ is algebraically l-stable for I<p. In
particular, if f is finite, i.e. I'=@, then f is algebraically p-stable for every p.

Proof. When dim ¥/ <k —p, Proposition 5.2.6, applied to {+1 instead of p, implies
that (fi)"(w*~!) is well defined and has no mass on analytic sets. We deduce, as in
Lemma 5.3.4, that (f.)"(wF=!)=(f").(wk~!) and that f is algebraically I-stable. O

Let f be a finite map. We have f~"=f"to...o f 71, n times, therefore,
L,=Tuf~YDu..uf~"t(I).

So, the dimension of I,, is independent of n. It is not difficult to prove that d,=d”
for p<k—dimI. Indeed, for such p, we have f*(wP)=f*"(w)A...Af*(w), p times. The
following proposition implies that generic maps in .#4(P*)\#;(P*) are algebraically
p-stable.

PROPOSITION 5.3.6. The family of finite meromorphic maps of algebraic degree d>2

on Pk, whose dynamical degrees d, satisfy dy<...<dy, contains a Zariski dense open set

of Ma(P*)\Hy(P*).

Proof. Let for simplicity .4 :=.#,(P*)\ 5;(P*) and recall that this is an irreducible
hypersurface of .#;(P*) [34]. We can easily check, using the coefficients of f, that the
set .#' of maps f in .# which are finite and of (maximal) topological degree d*—1 is a
Zariski open set in .#. For such a map, we have dj,_; <d*~! <dj, and since p+—log dp is
concave, we obtain d; <...<dj. It remains to check that .#’ is not empty.
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Consider the map defined on homogeneous coordinates by

fleot iz =28 e 2@ g — 282 g — 2 23 e 2.
The indeterminacy set is the common zero set of the components of f. So, I contains
only the point [1:0:...:0]. The map f is not holomorphic, hence d <d*—1. On the other
hand, if ¢ is a root of order d¥—1 of the unity, [lzt:td:...:tdkﬂ} is sent to I by f. Hence,
dp=d*—1. We show that f is finite, i.e. I’ is empty. If not, there is (ao,...,a;)#0 in
CF+1 such that the equations

zgflzlzam zgflzg—zf:al, ery zgflzl—zg:ak
define an algebraic set of positive dimension. Consider a sequence of solutions z(™ =
(z(()”),...,z,(j)) such that |2(™| tend to infinity and that z](")/|z(")\ converge to some

values x;. We have |z|=1 and

d—1 d—1 d d—1 d
Ty w1=0, x5 r2—27=0, .., x5 w1—2,=0.
Hence, |zg|=1 and z1=...=x,=0. Therefore, we may assume that z(()n) tends to infinity

and is strictly large than the other zgn). Extracting a subsequence allows one to assume

that for some index m>1, zr(,?) is the largest coordinate between z%n), ...,z,(c"). The

equation zgflzm—zgl_lzam implies that 27(,?)—>0. Hence, z](-n)—>0 for every j>1. On

the other hand, we deduce from the considered equations that zg:ao—ak. So, ap=ag

and z,i"):O. Using the given equations and the fact that zj(»n)—ﬂ), we obtain inductively
that zj(-n):O for j>1 and then a;=0 for every j>0. This is a contradiction. O

THEOREM 5.3.7. Let f:P*—P* be an algebraically p-stable meromorphic map of
dynamical degrees ds and let ¥/ be as above. Assume that dim ¥ <k—p and d,_1<d,.
Let S, be currents in 6, and let %s, be super-potentials of S,, such that

%5, |00 = od, " dy).-

Then, d,"(f")*(Sn) H-converge to an f*-invariant current T in 6, which does not

depend on S,,.

We call T the Green (p, p)-current associated with f. Set, for simplicity, L::dglf*
and A::d];llf*. Proposition 5.3.5 implies that f is algebraically (p—1)-stable. Hence,
Ap—1=dp—_1<dp. We have seen that L:%,— %), is continuous and L"=d,"(f")* on €.
It follows that the convex set of f*-invariant currents S in ¢, is not empty. Indeed, it

contains all the limit values of the Cesaro means

1 N-1 .
¥ > L(wP).
j=0
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Let ‘Klffp 41 denote the set of currents R in €%, with bounded super-potentials. By
Proposition 5.2.6, the operator A:%,gip H%‘K,ﬁ’fp 41 is well defined. Consider a current
S in €, a super-potential %s of S and a negative super-potential %, ») of L(w?).

LEMMA 5.3.8. The current L(S) admits a super-potential which is equal to
dp_ld;1%50A+%L(wp)

on ‘5£7P+1. If Sy is an f*-invariant current in 6,, then it admits a super-potential s,
satisfying Us, :dp_ld;1%50 o N+Up,wr) 0N %£7p+1.

Proof. We prove the first assertion. By Proposition 5.1.8, we may assume that
S is smooth. Moreover, there is a super-potential %7 (s) of L(S) which is equal to
dp_ld;1%50A+%L(wp) on smooth forms in %j_p+1. Consider a current R in %,ffpﬂ
and smooth forms R,, in 6,1 H-converging to R. We have %,(s)(Rn)— %1 (s)(R) and
Uy (wr)(Rn) = UL (wry(R). By Proposition 5.1.12, A(R,,)—A(R). Since %s is continuous,
we deduce that %s(A(Ry))—%s(A(R)). Therefore, %y, sy =dp1d,* Us > A+U(w») at R.

For the second assertion, if % is a super-potential of Sy, since L(Sp)=.Sp, the first
assertion implies that %:dp_ld;1%0A+%L(wp)+c on %£7p+1, where ¢ is a constant.
The super-potential %s,:=% —cd,(d,—d,—1)~" satisfies the lemma. Here we use the
property that d,#dp—_1. O

Proof of Theorem 5.3.7. Replacing %s, by s, +||%s,, || o allows one to assume that
Us, are positive. We apply inductively Lemma 5.3.8 for S=L7(S,,). We obtain that
L"(S,) admits a super-potential % g, ) satisfying
n—1 )
Urr(s,) = dy1dy " Us, oN"+ Y _ df_ 1 U )oY
§=0
on ‘5,5_1,+1. By hypothesis, the first term converges to 0. Since %, .») is negative, the
second term decreases to -
U= & A U)o V.
j=0
Hence, %1~ (s,) converge pointwise in ‘f,f_p_H to 7. We show that % is not identi-
cally —oo. Let Sy be an f*-invariant current in %), and %g, be a super-potential as in
Lemma 5.3.8. We have
Usy = dyp—1dy) Usyo N4 U, (ov)

on ‘Klffp 11 Iterating this identity gives

n—1
Us, = d_ydy " Us, o A"+ dd_ dy I Uy uryo V.
7=0
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Since %s, is bounded from above and since d,_1 <d,, letting n— oo gives % >%s,. So,
% is not identically —oo.

We deduce from Propositions 3.1.9 and 3.2.6 that L™(S,,) converge to a current
T which admits a super-potential equal to % on ‘€£7P+1. The fact that % does not
depend on S,, implies that T is also independent of S,,. Because %, are positive, the
convergence is in the Hartogs sense. We have

L(T):L( lim L”(Sn)) = lim L"*(S,)=T.

n—o0 n—o0
Hence, T is f*-invariant. O

THEOREM 5.3.9. Let f be as in Theorem 5.3.7. Then, the Green (p,p)-current T of
f is the most diffuse current in €, which is f*-invariant. In particular, T is extremal

in the convex set of f*-invariant currents in €.

Proof. We have seen in the proof of Theorem 5.3.7 that T admits a super-potential

r which is equal to % on %,f_p b1 It follows that

U = dpfldpil%ToA—’_%L(wp)

on %ffp 41 It is clear that % is the unique super-potential of T" satisfying this identity.
Let Sy and s, be as above. We have seen that %y >%s, on %£7p+1. By Corollary 3.1.7,
this inequality holds on 6j_p+1. Hence, T is the most diffuse current in 4, which is f*-
invariant.

We now prove that T is extremal among f*-invariant currents in %,. Assume that
T=1(Ty+T3) with T; in €, invariant under f*. By Lemma 5.3.8, the T} admit super-

potentials %7, such that
Ury = dprdy " Uy oMt U o)

on Sa”,ﬁ’fp 41~ This and the uniqueness of % imply that %T:%(%Tl +%r,). On the other

hand, we have %1 >%r,. Hence, %r=%r, and T;=T. This completes the proof. O

THEOREM 5.3.10. Let f:P¥—PF be a dominant meromorphic map of dynamical
degrees ds and X' be defined as above. Assume that dimY' <k—p and that d,<d,_1.
Let R,, be currents in 6x_py1 and %r, be super-potentials of R, such that

%R, |l = o((dp+€)""d;_1)

for some constant €>0. Then, d,"(f").(Ry) H-converge to an f.-invariant current 1"

in Cr—p+1 which does not depend on R, and has continuous super-potentials.
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Proof. Proposition 5.3.5 implies that f is algebraically (p—1)-stable. It follows that
Ap—1=dp_1. By Proposition 5.2.6, the operator A: ‘K,§7P+1 %%,i’ipﬂ is well defined. By
Proposition 5.2.4, L: 6,—%), is well defined and continuous, but we do not necessarily
have L"=d,;"(f")*. Replacing f by an iterate [, allows one to assume that A\, <d,_1
and || %, |lcc=0(A,"dy_1). We may also assume that %, are positive. Let % r-ri1)
be a negative super-potential of A(w*~P*1). By Proposition 5.2.6, U\ (w+—r+1y 1s contin-
uous. Proposition 5.1.12 implies that A™(R,,) admits a super-potential which equals

n—1
Ny ™ Up, oL+ Y Mo\ Un (v 2 I
j=0

on smooth forms in %,. Letting n—oo, the first term tends to 0, the second term
decreases to a continuous function on %, since %, (,»-»+1y and L are continuous and
Ap<dp—1. This function does not depend on R,,. We deduce that A™(R,,) converge to a
current 7" which is independent of R,,. The convergence is in the Hartogs sense because

g, are positive. Moreover, T” admits a super-potential % such that
> .
%T’ = Z )\g)d;fl%,\(wkfpﬂ) OLJ
§=0

on smooth forms in %,. We have seen that the right-hand side defines a continuous
function on %,. Hence, %7 is continuous and the last identity holds on %,. It follows

from the convergence of A"(R,,) that T" is f.-invariant. O

THEOREM 5.3.11. Let f and T’ be as in Theorem 5.3.10. Then, T' is the only f.-
invariant current in €y—py1 which has bounded super-potentials. Moreover, it is extremal

in the convex set of f.-invariant currents in €k—pi1-

Proof. Let R be a current in 6j—p+1 with bounded super-potentials. Theorem 5.3.10
implies that A™(R)—T’. So, if R is f.-invariant, then R=T". This implies the first
assertion. We deduce from this and Proposition 3.3.4 the extremality of T". O

5.4. Equidistribution problem for endomorphisms

Consider a holomorphic map f:P*—P* of algebraic degree d>2. Recall that f* acts
continuously on positive closed currents of any bidegree [23], [40]; see also §5.1 and
85.2. It is well known that d="(f™)*(w) converge to a positive closed (1, 1)-current T
with Holder continuous quasi-potentials. One deduces from the intersection theory of
currents that d=P"(f™)*(wP) converge to T?; see [29] and [44] for the first stages of the
theory. The current TP is the Green current of order p and its super-potentials are the
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Green super-functions of order p of f. In the following result, we give a new construction

and new properties of TP.

THEOREM 5.4.1. Let f:P*—P* be a holomorphic map of algebraic degree d>2.
Then, the Green super-potentials of f are Hélder continuous. Moreover, TP is extremal

in the convex set of f*-invariant currents S in €,. If S, are currents in 6, of super-
potentials Us, such that | s, ||co=0(d™), then d=P™(f™)*(S,) H-converge to T?.

We will see that the proof also gives that (f, R)— %r» (R) is locally Holder continuous
on 4 (P*) x€},—p+1. The following lemma is a special case of [19, Proposition 2.4]. For

the reader’s convenience, we here give the proof.

LEMMA 5.4.2. Let K be a metric space with finite diameter and A: K—K be a
Lipschitz map: ||[A(a)—A(b)||<A|la—b|| with A>0. Let % be an a-Hélder continuous
function on K. Then, ZZO:O d="U - A™ converges pointwise to a function which is (-
Holder continuous on K for every [ such that S<« and f<logd/log A.

Proof. Here, ||a—bl|| denotes the distance between two points a and b in K. Since K
has finite diameter (it is enough to assume that % is bounded), it is sufficient to consider
|la—bl|< 1. By hypothesis, there is a constant A’ >0 such that |% (a)—% (b)|<A’||a—b]||*.
Define A”:=||% ||o- Since K has finite diameter, A” is finite. If N is an integer, we have

i 4" Y oA"(a) — i 4" < A" (1)
n=0 n=0

N oo
<Y AU N (@)= U A b)|+ Y dT U oA (a) =% oA (D)]
n=0

n=N+1

N o]
<A dTAM (@)= A" B)|[* 24" D AT
n=0 n=N+1
N
Sla=bl[* > d A 4d N,
n=0
If A*<d, the last sum is of order at most equal to N|ja—b||*+d~". For a given 3,
0<B<a, choose No~—flog|la—b||/logd. So, the last expression is <|la—b[|”. In this
case, the function is B-Hélder continuous for every 0<f<a. When A%>d, the sum is
<d=NANY||a—b||*+d~N. If N~—log ||a—b||/log A, the last expression is <||a—b||® with
B:=logd/log A. Therefore, the function is S-Holder continuous. O

Define L:=d ™" f* and A:=d"P*! f,. Recall that L:6,—%, and A: Cx_p11—Cr—pt1

are well defined and continuous.
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LEMMA 5.4.3. The operator A is Lipschitz with respect to the distance disty, on
Cr—p+1 for a>0.

Proof. If ® is a €% test (p—1,p—1)-form such that |®|xe«<1, it is clear that
[If*(®)||¢a<cq for a constant c,>0 independent of ®. If R and R’ are currents in
Cr—p+1, We have

(A(R)—A(R),®)|=|(R—R',d P f*(®))| < ¢ dista (R, R').

The lemma follows. Observe that the estimates are locally uniform with respect to

feHL(PF). O

Proof of Theorem 5.4.1. Theorems 5.3.7 and 5.3.9 imply that L™(S,,) H-converge to
a current 7}, which does not depend on S,, and is extremal among f*-invariant currents
in ¢,. For S, =w? and %s, =0, the computation in those theorems shows that 7} admits

a super-potential %7, satisfying

%Tp = Z dij%L(wp) OAj

=0

on smooth forms in €% _p41. Since L(w?) is smooth, % (,»y is Lipschitz. By Lemmas 5.4.2
and 5.4.3, the latter sum defines a Hélder continuous function on €%_,41. It follows that
the last identity holds everywhere on €%_p4+1. So, 1), has Hoélder continuous super-
potentials.

Let T denote the first Green current of f. So, T is the limit of d~"(f™)*(w) in the
Hartogs sense. By Theorem 4.2.10, d~P"(f™)*(wP) converge to TP. Hence, T,=T7. O

Here is one of our main applications of super-potentials.

THEOREM 5.4.4. There is a Zariski dense open set J; (PX) in H5(P*) such that, if
fisin S (PF), then d=P™(f™)*(S)—T? uniformly with respect to SE€6,. In particular,

for fin ji”d*(]P’k), TP is the unique current in €, which is f*-invariant.
The open set 52 (P*) is given by the following lemma.

LEMMA 5.4.5. There is a Zariski dense open set S} (P*) in #,(P*) and an integer
N>1 such that, if f is in S (P*) and if § denotes the mazimal multiplicity of f~ at
a point in P¥ then (20k28)8% <d™.

Proof. Fix an N large enough. Observe that the set 7 (P¥) of f satisfying the
previous inequality is a Zariski open set in .%;(P*). We only have to construct such a
map f in order to obtain the density of ;" (P¥). Choose a rational map h: PL—P! of
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degree d whose critical points are simple and have disjoint infinite orbits. Observe that the
multiplicity of A" at every point is at most equal to 2. We construct the map f using an
idea of Ueda. Let o denote the group of permutations of {1, ..., k}. It acts in a canonical
way on P1x...xP! k times. Using the symmetric functions on (z1, ..., zx)EPt x ... x PL,
one shows that P! x...xP! divided by oy is isomorphic to P¥. Let m:P!x...x P! —PF
denote the canonical map. If f is the endomorphism of P! x ... x P!, k times, defined by
f(x1, ..., zr):=(h(x1), ..., h(x})), then there is a holomorphic map f:P¥—P* of algebraic
degree d such that for=mof. We also have fNor=mof¥. Consider a point = in P¥ and
a point # in 71 (z). The multiplicity of fV at 2 is at most equal to 2¥. It follows that
the multiplicity of fV at x is at most equal to 2¥k!, since 7 has degree k!. Therefore, f
satisfies the desired inequality if IV is large enough. O

Replacing f by fV, one may assume that f satisfies the lemma for N=1. Let § be
the maximal multiplicity of f at a point in P*¥. We introduce some notation. We call

dynamical super-potential of S the function ¥5 defined by
Vs 1= Us—Ur»—cs, where cg:=Us(T* P —Yrp(TFPHL),

and %s and %r» are the super-potentials of mean 0 of S and TP. We also call dynamical

Green quasi-potential of S the form
Vs:=Ug—Urp— (msfmTp +Cs)wp71,
where Ug and Up»r are the Green quasi-potentials of S and TP, and mg and my» their

means.

LEMMA 5.4.6. We have ¥s(T*=P+1)=0, ¥5(R)=(Vs, R) for smooth R in €y_pi1,
and “//L(S)zd_l“l/so/\ on Gx—pt1. Moreover, Us—"s is bounded by a constant indepen-
dent of S.

Proof. Tt is clear that #s(T* P+1)=0. Since T*~P*! has bounded super-potentials,
cg is bounded by a constant independent of S. Hence, as %r» is bounded, Zs— 75 is

bounded by a constant independent of S. For smooth R, we have
<Vs, R> S (<Us, R> —ms) — (<UT1>, R> —mTp) —Cg — %S(R) —%Tp (R)—Cs = Vs(R)

It remains to prove that ¥7,sy=d " '¥soA. Since A(TF*PT)=T""PT1 we have ¥}, (s)=
d='¥5oA=0 at TH~P*1. Hence, we only have to show that #7,s)—d~'¥5oA is constant.
By Proposition 5.1.8, we have

U (s)=d " Us o N+U (or)+const
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and, since L(TP)=TP, this implies that
WUpp =d  Up» o A+, (u»)+const.

It follows that
Vis)y=d ' UsoA—d ' Ur»oA+const.
So, 7/L(S)—d_17/go[\ is constant. O

LEMMA 5.4.7. Let W, be the e-neighbourhood of the set P of critical values of f
and W¢ be the complement of W, with 0<e<1. There is a constant c¢>0 independent
of € such that, for smooth R in €;_p+1 and for 0<e’<e, we have

IA(R)er = A(R)||co,we < cl| Rllgre ',

where A(R).s is the €’'-reqularization of A(R); see Remark 2.1.7 for the terminology.

Proof. Let B, be the ball of radius € centered at a given point a of W£. Since B,
does not intersect P, f admits d* inverse branches on B.. More precisely, there are d*
injective holomorphic maps g;: B. —P* such that fo g;=id on B.. Observe that, since f
is finite, when the diameter of a ball B tends to 0, the connected components of f~!(B)
tend to single points. So, g;(B.) have small size. Using Cauchy’s integral, it is easy to
check that all the derivatives of order n of g; on B/, are Se™". On B, we have

dk
A(R)=d P! Zg;(R).

For fixed local real coordinates (x1, ..., xar), R is a combination with smooth coefficients
of drj, A...Adxj,, _, ., Hence, the estimate on the derivatives of g; implies that

195 (R) |61 (B. ,2) S IRlgre 24273 < || R|jgre ™k,

It follows that
||A(R)||<€1(W;/2) S, ||R||<g1€75k.

Let 7 be an automorphism of P* close enough to the identity. Lemma 2.1.8 implies that
172 (A(R)) =A(R) [loo,we S [|Rllwre ™" dist(7, id).

We then deduce the desired estimate from the definition of A(R).-. O
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LEMMA 5.4.8. The quasi-potentials of f.(w) are §~1-Hélder continuous.

Proof. Let B be a small ball in P¥. The inverse image f~!(B) of B is a union of
small open sets. Hence, there is a smooth psh function v on f~!(B) such that w=dd“u

there. Define the function v on B by

wef1(z)

where the points in f~1(2) are repeated according to their multiplicity. It is clear that v
is continuous and dd°v= f.(w). We only have to show that v is §~1-Hélder continuous.
Recall that the multiplicity of f at every point is <¢. By Lojasiewicz’s inequality [24,

Lemma 4.3], we can write, for z and 2z’ in B,
1) ={wi,..wg} and  f7HE)={w], .., wl},
so that distps(w;, w}) Sdistps(2, 2')3"". Hence,
[v(z)—v(2")| < d* ||ul| 1 max distps (w;, w}) < distrs (2, 2

This implies the lemma. O

LEMMA 5.4.9. Let P denote the set of critical values of f as above. If R is smooth,
then Vs(A(R))=(Vs, A(R))px\ p-

Proof. Observe that A(R) is smooth outside P. We will show that
Us(A(R)) = (Us, A(R))pr\ p—ms.

This and the same identity for 7?7 imply the result. Since R<cwF P! for a constant
c¢>0, we have
A(R) <ed" P fu( 7PH) Ced P [fu(w)] TP

Lemma 5.4.8 and Proposition 2.3.6 imply that, when 6—0, (Us,, A(R))pr\ p converge to
(Us, A(R))pr\ p- So, it is enough to consider the case where S is smooth. In this case,

Us is smooth. Since A(R) has no mass on P, we have
(Us, A(R))pr\p—ms = (Us, A(R)) —ms = Us(A(R)).

This completes the proof. O
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PROPOSITION 5.4.10. For every smooth form R in €y_p+1, d~*"/°¥s(A™(R)) con-
verge to 0 uniformly with respect to S. In particular, we have |log cap(A™(R))|=o0(d*"/?).

Fix an integer n large enough and define e:=d~". In what follows, the symbols <
and 2 mean inequalities up to multiplicative constants which are independent of n and j.
)™ for 0<j<n. The
main point here is that €;/¢;_1 has to be small. Define also by induction Ry:=R and

Observe that we may assume S to be smooth. Define e;:=g(20k°3

Rj:=A(R;j_1)c;, the gj-regularization of A(R;_1); see Remark 2.1.7 for the terminology.
Let V; be the Green dynamical quasi-potentials of L7(S). They are forms with bounded

mass.
LEMMA 5.4.11. We have d~7|¥s(R;)| < (—loge)d /4.

Proof. By Proposition 2.1.6, we have

912 a2
HRjHoo<5j2k 4k§€j4k.

Hence, Proposition 3.2.10 applied to K =P* implies that
A Vs(R;)| Sd I (—loge;) =d 7 (—log £)(20k>5) %
Lemma 5.4.5 implies the result. Recall that we suppose N=1. O
LEMMA 5.4.12. We have (V,i—j, A(Rj_1)—R;)pr\pZ—¢”.

Proof. An analogous inequality for =Ur» instead of V,,—; is easily deduced from the
Holder continuity of the Green super-functions, since dist; (A(R;j—1), R;)Sej. Observe
also that V,;_j:: n—j +Urr —cwP is negative for some universal constant ¢>0. Since

A(ijl) and R; have the same mass, we also have
<VT:—j’ A(Rj—l) 7Rj>IP’k\P = <Vn—j +Ur», A(Rj_l) 7Rj>Ip>k\P.

Proposition 2.1.6 implies that

—2k%2—4k—1 —5k2
j—1 5%71 .

| Rj—1

(51 5 €
Let W; denote the sgzmk)il—neighbourhood of P and W¥ its complement. We obtain from
Lemma 5.4.7 applied to R:=R,;_; that

10k) " Y5k _5K2 1/2 ;
AR 1) = Rjlloo,we SIRj1ller [§™7 )77y S e)/? <o
As V,_, has bounded mass, we deduce that

(Vo AR 1) — Rjywe| S

n—jo il
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It remains to prove that
(Vajs M(Rj—1) = Rj)wyp = —¢’.
Since V) _ ; Is negative and R; is positive, it is enough to bound the integral
(Vaejs MRj—1))w,\p-
By Proposition 2.1.6, we have
T N

It follows that
A(R;j1) Se; 5 few P Se Y [ fe(w)] P

Lemma 5.4.8 and Proposition 2.3.6 then imply that

— 10k) "1 (20k26) ks~ F —(20K26)%F _(20K26) 3k i
Ny e e e T N
This completes the proof. O

End of the proof of Proposition 5.4.10. Since 75 is bounded from above by a con-
stant independent of S, we only have to bound ¥5(A™(R)) from below. By Lemmas 5.4.6
and 5.4.9, since Ryp=R and the R; are smooth, we have

d™"Vs(A™(R)) =d ™"V n1(5)(A(Ro))

=d H(Voo1, A(Ro) = Ru)pw p+d ™ (Vo1 Ry)

A~ (Vo1, A(Ro) = Ry)pi\ p+d ™"V n-1(5)(R1)
d~ A(Rp)— R1>]P>k\p+d_ Vin-2(3)(A(R1)).

< n—1,
By induction, we obtain

dian/g(An(R)) =d! <Vn_1, A(Ro) 7R1>]pk\p
+...+d_n<VO, A(Rnfl) —Rn>Pk\p+d_n7/5(Rn).

It follows from Lemmas 5.4.11 and 5.4.12 that
d"Ys(A"(R)) > —d te—...—d " —d~"/*(—loge) > —e—d~™*(—loge).

Since e=d~", we get the result. O
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End of the proof of Theorem 5.4.4. Consider a current S in ¢}, and a smooth form
R in €x_pr1. We want to prove that L"(S) converge to TP uniformly with respect
to S. By Propositions 3.2.6 and 3.1.9, it is enough to show that ¥7»(s)(R) converge to 0
uniformly with respect to S. By Lemma 5.4.6, we have that

Vin(s)(R)=d " Vs(A"(R)).
Proposition 5.4.10 implies the result. O

PROPOSITION 5.4.13. Assume that f is in 5 (P*). For any a>0, there are con-
stants ¢>0 and A>1 such that if S is in 6, and ® is a test (k—p, k—p)-form of class
€, then

(d™P"(f)"(S) =T, D) < cA™"|| | g

In particular, if ¢ is a € function such that (T*,¢)=0, then
147" (f™)+ (@)oo <A™ [[plligo-

Proof. We prove the first assertion. Using the theory of interpolation as in Lem-
ma 2.1.2, we only have to prove the case a=3. Assume that ® has a bounded %3-norm.
Multiplying ® by a constant allows one to assume that dd°®=R*—R~, where R* are ¢!
forms in 6,41 with bounded ¢'-norm. A straighforward computation as above gives

(d7P" (") (8)=T7, @) =d™" Vs (A" (RT))—d " Vs(A"(R")).
The estimates we obtained above give
d™"Vs(A"(R¥)) Z —nd "/,
On the other hand, since ¥5 is bounded from above uniformly with respect to S, we have
d"Vs(A"(R*)) <d ™.

So, it is enough to take a A smaller than d'/4.

For the second assertion, if §, is the Dirac mass at a, then

(A7 (F7)*(8a)s ) = (80, d™ " (f")u(0)) = 75" (F") () (a).

Since (T*,¢)=0, we deduce from the first assertion that

5 ()« (@) (@) S A"l
This completes the proof. O
Note that, for a<2, we can take \ to be any constant smaller than d®/? if we replace
5 (P¥) by a suitable Zariski open set depending on A. In dimension 1, Drasin-Okuyama
proved in [25] that the second assertion holds for every f if a is a point on the Julia set,

i.e. on the support of the equilibrium measure.
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5.5. Equidistribution problem for automorphisms

In this section, we consider the class of regular polynomial automorphisms introduced
by the second author in [44]. Let f be a polynomial automorphism of C*. We extend f
to a birational map on P* that we still denote by f. Let I, and I_ be the indeterminacy
sets of f and f~!, respectively. With the notation of §5.1, we have I=I, and I'=1_.
They are analytic subsets of codimension >2 in P*. The map f is said to be regular if
I,NI_=@. We summarize here some properties of f, which are deduced from the above
assumption [44].

The indeterminacy sets I. are irreducible and there is an integer p such that
dim/l, =k—p—1 and dimI_ =p-—1.

They are contained in the hyperplane at infinity Lo,. We also have f(Loo\I;)=f(I_)=1I_
and f~Y(Loo\I_)=f"Y(I,)=I,. If d- denote the algebraic degrees of f*, then d* =d"".
Denote by K, (resp. K_) the set of points z in C* such that the forward orbit {f"(2)}n>0
(resp. the backward orbit {f~"(z)},>0) is bounded in C*. They are closed subsets in C*
and K.=/K.UI.. Moreover, [ is attracting for f and P¥\ K, is the attracting basin; I,
is attracting for f~! and P*\K_ is the attracting basin.

The positive closed (1, 1)-currents di"(f*")*(w) converge to the Green (1,1)-cur-
rents Ty associated with f*!. These currents have Holder continuous quasi-potentials
outside I, and satisfy f*(T\)=d, T, and f.(T_)=d_T_. The self-intersections T and
TP are positive closed currents of mass 1 with support in the boundaries of K, and

K_, respectively. The probability measure p:=TPAT" P

is supported in the boundary
of K:=K,NK_. The current T3, 1<s<p, is the Green current of order s of f and its
super-potentials are called Green super-potentials of order s of f.

Let €;—s+1(W) denote the set of currents in %%_s41 with compact support in an
open set W. We assume that W is a neighbourhood of I_ such that WNI,=@. Since
dimI_=p—1, Gi—s+1(W) is not empty for s<p. If 7 is a function on €j—_s+1(W), define

|%|cow = sup  |%(R)|.
REGk_oy1 (W)
In the following result, we give a new construction of the currents 7T'; and 7. Note that
we cannot apply the results of §5.3 here, since ¥’=L.,. Indeed, we apply f* only to

currents without mass on L.

THEOREM 5.5.1. Let f and W be as above. Then, the Green super-potentials of
order s of f, 1<s<p, are Hélder continuous on €x_s+1(W). Let S, be currents in €
and Us, be super-potentials of Sy, such that |%s, ||co,w=0(d7}) for an open set W which
contains K_. Then, d-°"(f")*(S,)—T%.
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It is shown in [44] that the current f*(w®) is of mass d5 for 1<s<(p; see also §5.1. It
follows that f.(w"~%) is of mass d3. Define Ls:=d;°f* and Ag:=d;*T'f,. Assume that
the super-potentials of S are finite on €x—s41(W). Then, S is f*-admissible, because
A (R) belongs to 6;—s+1(W) when supp(R) is close enough to I_. By Lemma 5.1.6
and Proposition 5.1.8, the current f*(S) is well defined and is of mass d3. Consider a
super-potential %7, (,+) of Ls(w?®). Since Ly(w®) is smooth on W, it is easy to check that
Uy, (w+) is Lipschitz on €311 (W). We first prove the following result.

PROPOSITION 5.5.2. Let S, be currents in €5 and %s, be super-potentials of S,
with ||%s,, ||co,w=0(d}). If S is a limit value of di*"(f™)*(Sy), then S admits a super-
potential which is equal on C—s1(PP\KL) to S0 o di" Uy, (we)o AL
equality holds on €j,_s11(PF\1,) when W contains K_.

Moreover, this

Proof. Reducing W allows one to assume that f(W)eW. If W contains K_, we can
keep this property. Fix an open set W relatively compact in P¥\ K, which contains I_.
If W contains K_, we can take W, relatively compact in P*\I,. Observe that f=™(W)
contains Wy for m large enough. So, replacing S, by di°™(f™)*(Sn+m) and W by some
open set of f~™ (W) allows one to assume that WoeW.

By Proposition 5.1.8, there is a super-potential of Ls(.S,) which is equal to

dil%SnOAs‘F%LS(wS)
on Gi_s+1(W). We apply again this proposition to Ls(S,). There is a super-potential
of L2(S,,) which is equal to
d:QGZ/SnOA?—I—%LS(ws)—l—d:l%Ls(ws)OAs
on 6j—s+1(W). By induction, LY(S,,) admits a super-potential %z (s, ) equal to
A7 Us, o N2+ U, (o) AT Up (o) o Ns oA UL (o) o AZTH

on Gx—s+1(W). By hypothesis, the first term tends to 0. Hence, %pn(s,) converge to
Yoo AU () o AT on G—sy1(W). This sum converges since %, (,+) is Lipschitz on
Cr—s+1(W).

By Proposition 3.2.6, it remains to show that %pn(s,) are bounded from above
uniformly with respect to m. For this purpose, it is enough to show that the means

Uin(s,) (wh=s+1) of U1 (s,) are bounded from above uniformly with respect to n. If Ro

is a smooth form in €%_s41(Wp), then we have
Uy (s,)(Ro) =d " Us, (N7 (Ro))+ %y, () (Ro) 4. +d " U, ey (N (Ro)).

This sum is bounded from above. On the other hand, Ry admits a positive quasi-
potential, since it is smooth. Lemma 3.2.9 implies the result. O
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End of the proof of Theorem 5.5.1. Since W contains K_, by Proposition 5.5.2, any
cluster point of L”(S,) has a super-potential which is equal to > di" UL (o) o NS
on 6j_s11(PF\I,). Proposition 3.1.9 implies that there is only one cluster point for
the sequence L7(S,), hence L7(S,) converge to a current Ts. This current does not
depend on S,,, since it admits a super-potential independent of S,,. For S,=w?®, we
obtain that T is the Green current of order s of f. It admits a super-potential %, equal
to Y00 o di " Up, (we) o AT on Cr—s1(PF\1). Lemma 5.4.2 implies that this function is
Holder continuous on 6x—s+1(W).

Let T', :=T7. We next want to prove that Ts=T". For this purpose, it is sufficient to
show that T and T} are wedgeable and Ts ATj=Ts1; when s+I<p. Since s+I<p, there is
a smooth form Q€% _,_;,1 with compact support in P*\I,. Hence, QAT; has compact
support in P*\ I, and the super-potentials of T, are finite at QAT;. It follows that T
and T; are wedgeable.

The computation in Proposition 5.5.2 implies that L”(w?®) admits a super-potential
Urn(ws) Which is equal to Z?:_Ol d;j%s(ws)oAg on Gx_s41(PF\I,). Fix a real smooth
test form ® of bidegree (k—s—I, k—s—1) with compact support in P*\ I,. As in Proposi-
tion 3.1.9, write dd°®=c(Q* —Q~) with ¢>0 and Q* in €},_,_;+1(P*\I,). The sequence
Qi/\L?(wl) converges to Q*AT). Since these currents have supports in a fixed com-
pact subset of P*\ I, the values of Ui () at QALY (w!) converge to the value of %7,
at Q*AT;. The formula (4.1) implies that L"(w*)ALl(w') converge to TsATj. On the
other hand, L" ,(w"™") and L(w*)AL}(w') are smooth forms which are equal outside
I,. They have no mass on I, because dim I, <k—s—I[. Hence, these currents are equal.

Therefore, letting n— oo gives T =T, AT}, and in particular T,=T7. O

THEOREM 5.5.3. The Green current 17 is the most diffuse f*-invariant current in

%s. In particular, it is extremal in the convex set of f*-invariant currents in €.

Proof. 1t follows from the convergence in Theorem 5.5.1 that 77 is f*-invariant. Let
T be an f*-invariant current in s and % be a super-potential of T'. Proposition 5.1.8
implies that L(7T) admits a super-potential % which is equal to djl%ToAS—&—%Ls(ws)
on smooth R in @%_sq1. Since Ls(T)=T, there is a constant ¢ such that % =%r+c.
Subtracting an appropriate constant from % gives another super-potential that we still
denote by %r, such that
Ur = d:l%ToAs—k@/Ls(ws)

on R in %j_s41 which is smooth in a neighbourhood of I.. The condition on R is
invariant under A. So, iterating the above identity gives

n—1
U = d:n%TOA?-i-Z d:j%Ls(ws) OAZ

=0
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Since %r is bounded from above, letting n— 0o, we obtain

oo
Ur <Y A7 Uy, (oeyo N, = Urs .
=0
This identity holds on smooth forms R in €,_s11. Hence, T' is more diffuse than T'.
We now prove that 77 is extremal among f*-invariant currents. Assume that 77 =
%(TJrT’) with T and T” in %, invariant by f*. Let %t be as above. Let % be the

analogous super-potential of 7”. It is the unique super-potential which satisfies
U = d:l%T/ oA, +%LS(WS)

on smooth forms in €j;_441. Observe that %(%T +%r) is a super-potential of T? satis-
fying the same property. It follows that

LU+ Urr) = Ur; .

We deduce from the inequalities %Té%Ti and % g%ﬁ_ that % and %r are equal to
%Ti' Hence, T=T"=T?. This implies the result. O

In the case of bidegree (p, p), we have the following stronger result which is another
main application of the super-potentials. It was proved by Fornass and the second author

in the case of dimension 2, [30].

THEOREM 5.5.4. The current T? is the unique positive closed current of bidegree
(p,p) of mass 1 supported in K.. The current TP is the unique positive closed current

of bidegree (k—p,k—p) of mass 1 supported in K_.

In what follows, we only consider currents S in %), with support in ;. By Propo-
sition 3.2.10, their super-potentials of mean 0 are bounded on %j—_p+1(W) uniformly
with respect to S when WePF\KC,. In particular, they are bounded at the current
Roo:=(deg I )~[I_]. We call dynamical super-potential of S the function ¥ defined by

“//s::%s—%Ti—cs, where cs::%s(Roo)—OZ/Ti(Roo),

and %s and %Ti are the super-potentials of mean 0 of S and T?. We also call the

dynamical Green quasi-potential of S the form
Vs :=Us—Ugp —(mg—mqr +cs)? ',

where Ug and UTﬁ are the Green quasi-potentials of S and T?, and mg and mrr are
their means. Denote, for simplicity, L:=L, and A:=A,,.
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LEMMA 5.5.5. Let WEPF\I, be an open set. Then, ¥s(Rs)=0, ¥s(R)=(Vs, R)
for smooth R in €x_py1(W) and V/L(S):dzl”f/soA on Cr—p+1(W). Moreover, Us—"7s
is bounded on €r_p11(W) by a constant independent of S.

Proof. Tt is clear that ¥s(Rs)=0. Recall that mg, mrey and cg are bounded. Since
%Ti) is continuous on €j—p+1(W), %s—"Vs is bounded on €jx—,+1(W) by a constant
independent of S. We also have, for smooth R in 6j_p+1(W),

(Vs, R) = ((Us, R)—ms) = ((Urz, R) —mqv) —cs = Us(R) = Urr (R) —cs = Vs(R).

It remains to prove that “I/L(S):dll“l/so/\ on 6i_p+1(W). Observe that, since I_
is irreducible, A(Roo)=Roo. We deduce that WL(S):djl“//soAzO at R.. Hence, we
only have to show that 7/L(S)—djl“//soA is constant. By Proposition 5.1.8 (see also

Proposition 5.5.2), we have

Up(sy=d; ' UsoN+Uyp ) +const,
and since L(T?)=T?, this implies that

%Ti = d;l@/Ti o A+ (u»)+const.

It follows that
Yi(s) = dil%sof\*djl?/ﬂ oA +const.

It is clear that 77, —d7 50 is constant. O

Proof of Theorem 5.5.4. Consider a current S in %, (P*) with support in K, . Define
Spi=d?"(f™).(S) on C*¥. These currents are positive closed with support in KC,. Since
K.=K,Ul,, S, are defined on P¥\I,. As dim I, <k—p, S,, can be extended to positive
closed currents on P* without mass on I, [37]. We also denote this extension by S,,.
Since f™ is an automorphism in C¥, we have (f")*(S,)=d}"S on C*. The equality holds
in P* because the currents have supports in K, and hence, have no mass at infinity. So,
necessarily, S,, have mass 1. Let ¥5, and ¥s denote the dynamical super-potentials of
S, and S, respectively. We want to prove that S=T7. According to Proposition 3.1.9,
it is enough to show that ¥s=0 on €%_,+1 (W) for any W disjoint from I,.

We have L™(S,)=5S, hence Lemma 5.5.5 implies that Ys=d;"¥5, A™. Since Y5,
is bounded from above on 6j;_p+1(WV) by a constant independent of n, the last identity
implies that ¥5<0 on €x—p+1(W). If #5#0 on Gi—pt1(W), there is a smooth form
R in €k—p+1(W) such that ¥5(R)<0. It follows that ¥s, (A"(R))S—d?. Let W be
a neighbourhood of K., disjoint from I_, such that f~Y(W"”)CW”. Hence, |[Df™!||
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is bounded on W” by some constant M. It follows that [|A™(R)eo,w» SM3*™. The
inequality ¥s, (A" (R))S—d} contradicts Proposition 3.2.10, which gives

|75, (A" (R))| S 1+1og M**".

So, ¥5=0 on 6;—p+1(W) and this completes the proof. O

The following result holds for currents of integration on generic varieties of dimension
k—p in P*.

COROLLARY 5.5.6. Let S be a current in %6, such that supp(S)NI_=@. Then,
d;P"(f™)*(S) converge to TY.

Proof. Let W be a neighbourhood of I_ such that f(W)€W and WNsupp(S)=2.
Hence, f~"(W)C f~"Y(W) and d ""(f™)*(S) has support in P*\ f="(W). It follows
that the limit values of d """ (f™)*(S) are supported in the complement of |, -, f~™(W),
which is contained in K. By Theorem 5.5.4, the only limit value is T?. Following the

proof of that theorem, it is not difficult to obtain here a speed of convergence. O

Remark 5.5.7. In [48], de Thélin proved that the measure p is hyperbolic. It admits
k—p strictly negative and p strictly positive Lyapounov exponents. Pesin’s theory implies
that if a point a is generic with respect to u, then it admits a stable manifold of dimension
k—p and an unstable manifold of dimension p. If p=k—1 and if 7: C—IC, is an entire
curve, using the Ahlfors construction [1], we obtain positive closed (k—1,k—1)-currents
with support in TC) Indeed, Ahlfors inequality implies the existence of r,, —oc such
that the currents of integration on 7(A,, ), properly normalized, converge to a positive
closed current of mass 1. Theorem 5.5.4 implies that this current is equal to Tf ~1. Hence

7(C) contains the support of TF=1. This result holds for generic stable manifolds of .

Remark 5.5.8. For 1<s<p, if S is a current in %, with super-potentials bounded on
Gi—s+1 (W) for some small neighbourhood W of I_, then we can prove in the same way
that d7*"(f™)*(S) converge to T'7. The proof follows the same lines as in Theorem 5.5.4.
We should choose W’ large enough, in particular we have W”UW =P*. In order to
apply Proposition 3.2.10, we write R as a combination of a current in €%—_,+1(W) and a

smooth form with bounded %°-norm.
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