
Acta Math., 197 (2006), 167–289
DOI: 10.1007/s11511-006-0011-7
c© 2006 by Institut Mittag-Leffler. All rights reserved

Resolution of singularities of real-analytic
vector fields in dimension three

by

Daniel Panazzolo

Universidade de São Paulo

São Paulo, Brazil

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
1.1. Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
1.2. Previous works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
1.3. Overview of the paper . . . . . . . . . . . . . . . . . . . . . . . . 170
1.4. An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
1.5. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
1.6. Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

2. Blowing-up and singularly foliated manifolds . . . . . . . . . . . . . . 176
2.1. Manifolds with corners . . . . . . . . . . . . . . . . . . . . . . . 177
2.2. Singularly foliated manifolds . . . . . . . . . . . . . . . . . . . . 177
2.3. Multiplicity and weighted blowing-up in Rn . . . . . . . . . . 180
2.4. Directional charts of blowing-up . . . . . . . . . . . . . . . . . . 183
2.5. Weighted trivializations and blowing-up on manifolds . . . . 184
2.6. Blowing-up of singularly foliated manifolds . . . . . . . . . . . 185
2.7. Axis definition and controllability . . . . . . . . . . . . . . . . . 186

3. Newton polyhedron and adapted coordinates . . . . . . . . . . . . . . 189
3.1. Adapted local charts . . . . . . . . . . . . . . . . . . . . . . . . . 189
3.2. Newton map and Newton data . . . . . . . . . . . . . . . . . . . 190
3.3. Derived polygon and displacements . . . . . . . . . . . . . . . . 192
3.4. Regular-nilpotent configurations and main vertex . . . . . . . 195
3.5. The class Newi,m

∆,C . . . . . . . . . . . . . . . . . . . . . . . . . . 197
3.6. The subgroups G∆,C . . . . . . . . . . . . . . . . . . . . . . . . . 198
3.7. Action of G via adjoint map . . . . . . . . . . . . . . . . . . . . 200

4. Local theory at NElem∩D . . . . . . . . . . . . . . . . . . . . . . . . . 202
4.1. Stable Newton data and final situations . . . . . . . . . . . . . 203
4.2. The local invariant . . . . . . . . . . . . . . . . . . . . . . . . . . 206
4.3. Regular-nilpotent transitions . . . . . . . . . . . . . . . . . . . . 208
4.4. Resonant configurations . . . . . . . . . . . . . . . . . . . . . . . 209

This work has been partially supported by the CNPq/Brasil Grant 205904/2003-5 and Fapesp
Grant 02/03769-9.



168 d. panazzolo

4.5. Basic edge-preparation and basic face-preparation . . . . . . . 214
4.6. Formal adapted charts and invariance of (m, ∆, C) . . . . . . 218
4.7. Stabilization of adapted charts . . . . . . . . . . . . . . . . . . . 221
4.8. Newton invariant and local resolution of singularities . . . . . 228
4.9. Directional blowing-ups . . . . . . . . . . . . . . . . . . . . . . . 231
4.10. x-directional blowing-up . . . . . . . . . . . . . . . . . . . . . . 233
4.11. The effect of a ramification . . . . . . . . . . . . . . . . . . . . . 235
4.12. The x-directional projected group and the group G∆,C . . . . 236
4.13. x-directional blowing-up (∆1=0) . . . . . . . . . . . . . . . . . 238
4.14. Effect of translations in the x-directional blowing-up (∆1=0) 243
4.15. x-directional blowing-up (∆1>0) . . . . . . . . . . . . . . . . . 244
4.16. Effect of translations in the x-directional blowing-up (∆1>0) 246
4.17. y -directional blowing-up . . . . . . . . . . . . . . . . . . . . . . . 247
4.18. Effect of translations in the y -directional blowing-up . . . . . 248
4.19. The z -directional blowing-up . . . . . . . . . . . . . . . . . . . . 251
4.20. Proof of the local resolution of singularities . . . . . . . . . . . 251

5. Global theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
5.1. Upper semicontinuity of the virtual height at NElem∩D . . . 252
5.2. Upper semicontinuity of the invariant at NElem∩D . . . . . . 256
5.3. Points in NElem\D and generic Newton polygon . . . . . . . 258
5.4. Generic edge-stability and equireducible points . . . . . . . . 260
5.5. Local blowing-up at equireducible points . . . . . . . . . . . . 262
5.6. Distinguished vertex blowing-up . . . . . . . . . . . . . . . . . . 263
5.7. Nonequireducible points are discrete . . . . . . . . . . . . . . . 266
5.8. Extending the invariant to NElem\D . . . . . . . . . . . . . . 269
5.9. Extended center, bad points and bad trees . . . . . . . . . . . 270
5.10. Maximal invariant locus and global multiplicity . . . . . . . . 275
5.11. Global reduction of singularities . . . . . . . . . . . . . . . . . . 280
5.12. Proof of the main theorem . . . . . . . . . . . . . . . . . . . . . 282

Appendix A. Faithful flatness of C[[x, y, z]] . . . . . . . . . . . . . . . . . 282

Appendix B. Virtual height . . . . . . . . . . . . . . . . . . . . . . . . . . 283

Appendix C. Comments on final models . . . . . . . . . . . . . . . . . . . 285

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

1. Introduction

1.1. Main result

Let χ be an analytic vector field defined on a real-analytic manifold M . We shall say
that χ is elementary at a point p∈M if one of the following conditions holds:

(i) (nonsingular case) χ(p) 6=0, or
(ii) (singular case) χ(p)=0, and the Jacobian map

Dχ(p):mp/m2
p −!mp/m2

p,

[g] 7−! [χ(g)],
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(mp⊂OM,p is the maximal ideal) has at least one nonzero eigenvalue.
Here χ( ·) denotes the action of χ as a derivation in Op.
If we fix a local coordinate system (x1, ..., xn) for M at p and write

χ= a1
∂

∂x1
+...+an

∂

∂xn
,

then the Jacobian map is given by the real matrix

Dχ(p) =
(

∂ai

∂xj
(0)
)n
i,j=1

.

We say that χ is reduced if gcd(a1, ..., an)=1 at each point p∈M (this implies that the
set Ze(χ)={q∈M :χ(q)=0} has codimension strictly greater than 1).

Let us state our main result. We briefly define the necessary concepts and postpone
the details to the next section.

A singularly foliated manifold is a 4-tuple M=(M,Υ,D, L), where
(i) M is a real-analytic 3-dimensional manifold with corners;
(ii) Υ∈L is an ordered list of natural numbers;
(iii) D=DΥ is a Υ-tagged divisor on M with normal crossings;
(iv) L is a singular orientable analytic line field on (M,D) which is D-preserving.
At each point p∈M , the line field L is locally generated by an analytic vector

field χp which is tangent to the divisor D. This local generator is uniquely defined up to
multiplication by a strictly positive analytic function.

We say that the singularly foliated manifold M is elementary at a point p∈M if
the local generator χp is an elementary vector field at p. The complement of the set of
elementary points in M will be denoted by NElem(M).

A singularly foliated manifold M is said to be elementary if NElem(M)=∅.

Theorem 1.1. (Main theorem) Let χ be a reduced analytic vector field defined in
a real-analytic 3-dimensional manifold M without boundary. Then, for each relatively
compact set U⊂M , there exists a finite sequence of weighted blowing-ups

(U, ∅, ∅, Lχ|U ) =:M0
Φ1 −−M1

Φ2 −− ...
Φn −−Mn (1)

such that the resulting singularly foliated manifold Mn is elementary. Moreover , the
center Yi of the blowing-up Φi is a smooth analytic subset of NElem(Mi) for each
i=0, ..., n−1.

In the above statement, Lχ denotes the singular orientable line field which is asso-
ciated with the vector field χ.
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1.2. Previous works

The theorem of resolution of singularities for vector fields in dimension 2 was present
in the work of Bendixson [Be]. The first complete proof of this result was given by
Seidenberg in [S].

In [Pe], Pelletier gives an alternative proof of this result through the use of the
weighted blowing-ups.

In the book [C1], Cano proves a result of local reduction of singularities in the formal
context for complex 3-dimensional vector fields.

The paper [Sa] studies generic equireduction of singularities for vector fields in ar-
bitrary dimension.

In a recent paper [CMR], the authors prove a local uniformization theorem for
analytic vector fields in dimension 3. Their proof is based on the analysis of valuations
defined by nonoscillating subanalytic integral curves.

The literature on the Newton polyhedron and its applications is extensive. For some
results related to the use of the Newton polyhedron in resolution of singularities, we refer
the reader to [H2], [H3] and [Y].

In the book [B], Bruno uses the Newton polyhedron and normal form theory to
describe many explicit algorithms for studying the asymptotic behavior of integral curves
of vector fields near elementary and nonelementary singular points.

1.3. Overview of the paper

The proof of Theorem 1.1 consists of two parts: the description of the local strategy
for resolution of singularities, given in §4, and the proof that this local strategy can be
globalized, which will be explained in §5.

Let us briefly describe the ingredients used in the central result of the paper: the
theorem on local resolution of singularities.

For definiteness, we assume here that M=(R3
(x,y,z), 0), and that the origin is con-

tained in a divisor with normal crossings D which is given either by {(x, y, z)∈R3 :x=0}
(briefly, {x=0}) or by {xy=0}. We further assume that the reduced vector field χ de-
fined in M is tangent to the divisor D, and that the origin is a nonelementary singular
point. Finally, we assume that the vertical axis {x=y=0} is not entirely contained in
the set NElem of nonelementary points.

Using the logarithmic basis {x∂/∂x, y∂/∂y, z∂/∂z}, we can write

χ= fx
∂

∂x
+gy

∂

∂y
+hz

∂

∂z
,
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Figure 1. Regular and nilpotent configurations.

where fx, gy and hz are germs in R{x, y, z}. The Newton polyhedron of χ (with respect
to the coordinates (x, y, z)) is the convex polyhedron

N =conv(supp(f, g, h))+R3
>0,

where conv( ·) denotes the operation of convex closure, supp(f, g, h)⊂Z3 is the set of
integer points v=(v1, v2, v3)∈Z3 such that the monomial xv1yv2zv3 has a nonzero coef-
ficient in the Laurent expansion of either f, g or h; and the “+” operator is the usual
Minkowski sum of convex polyhedrons.

The higher vertex of N is the vertex h∈N which is minimal with respect to the
lexicographical ordering in R3. By the hypothesis, it follows that this vertex has the
form h=(0, h2, h3) for some integers h2, h3∈Z>−1. Moreover, the intersection of N with
the plane {v∈R3 :v1=0} is in one of the situations shown in Figure 1.

Referring to Figure 1, the configurations (a) and (b) are called regular and the
configuration (c) is called nilpotent. As indicated in the figure, we define the main vertex
m=(m1,m2,m3) by m=h in cases (a) and (b), and by m=n in case (c). Now, we
consider the intersection

N ′ =N∩
{
v∈R3 : v3 =m3− 1

2

}
,

and call the polygon N ′ the derived polygon (see Figure 2).
The derived polygon has some similarities with the characteristic polygon introduced

by Hironaka [H3] in his proof of the resolution of singularities for excellent surfaces.
However, there are some essential differences which will be discussed in §3.3.

Let us denote by m′=
(
m′

1,m
′
2,m3− 1

2

)
the minimal vertex of N ′ (with respect to

the lexicographical ordering) and write the displacement vector m′−m as 1
2 (∆1,∆2,−1),

for some nonzero rational vector ∆=(∆1,∆2)∈Q2.
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Figure 2. The derived polygon.

The main invariant for the vector field χ (with respect to the coordinates (x, y, z))
is given by the 6-tuple of natural numbers

inv = (h,m2+1,m3,#ι−1, λ∆1, λ max{0,∆2}),

where λ=(m3+1)!, #ι∈{1, 2} is the number of local irreducible components of the divisor
at the origin and the virtual height h is the natural number defined by

h =
{
bm3+1−1/∆2c, if m2 =−1 and ∆1 =0,
m3, if m2 =0 or ∆1 > 0,

where bαc:=max{n∈Z:n6α} (see Figure 3 for an example).
In §4.5 we shall introduce the fundamental notion of stable coordinates. Roughly

speaking, if we start with a system of local coordinates (x, y, z) as above, we obtain a
new system of coordinates (x̃, ỹ, z̃) by an analytic change of coordinates of the form

x̃=x, ỹ = y+G(x) and z̃ = z+F (x, y), (2)

in such a way that the main invariant inv, when computed with respect to the new
coordinates (x̃, ỹ, z̃), has nice analytic properties such as being an upper semicontinuous
function. Moreover, we shall see that inv is an intrinsic object attached to the germ
of vector fields χ, up to fixing an additional geometric structure on the ambient space
called an axis (see §2.7).

The local strategy of reduction of singularities will be read out of the Newton poly-
hedron N and the main invariant inv, provided that these objects are computed with
respect to a stable system of coordinates.
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Figure 3. The Newton polyhedron for χ=x2y∂/∂x+(z4+xz)∂/∂y+y4∂/∂z.

The notion of stable coordinates is similar to the notions of well-prepared and very
well-prepared systems of coordinates, as defined by Hironaka [H3] in the context of func-
tion germs. However, new difficulties appear in the context of vector fields, since the
action of the Lie group of coordinate changes given in (2) is much harder to study in this
situation. An example of new phenomena is the appearance of the so-called resonant
configurations, described in §4.4.

Let us now briefly introduce a second ingredient of our proof: the notion of weighted
blowing-up. Given a vector of nonzero natural numbers ω=(ω1, ω2, ω3)∈N3

>0, the ω-
weighted blowing-up (with respect to the coordinates (x, y, z)) is the proper analytic
surjective map given by

Φω:S2×R+−!R3,

((x̄, ȳ, z̄), τ) 7−! (x, y, z) = (τω1 x̄, τω2 ȳ, τω3 z̄).

Similarly, for a weight-vector of the form ω=(ω1, 0, ω3) with ω1 and ω3 nonzero, we
define

Φω:S1×R+×R−!R3,

((x̄, z̄), τ, y) 7−! (x, y, z) = (τω1 x̄, y, τω3 z̄).

We define analogously the blowing-ups for weight-vectors ω of the forms (0, ω2, ω3) and
(ω1, ω2, 0). Notice that the blowing-up center, in these four cases, is given respectively
by {x=y=z=0}, {x=z=0}, {y=z=0} and {x=y=0}.
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Suppose now that (x, y, z) is a stable system of coordinates at the origin, and let
inv∈N6 be the corresponding main invariant. Starting from §4.8, we prove the following
result on local resolution of singularities for vector fields: There exists a choice of weight-
vector ω for which the strict transform χ̃ of the vector field χ under the ω-weighted
blowing-up

Φω: M̃ −!M

is such that, for each nonelementary point p̃∈M̃∩Φ−1(0), and each choice of a stable
system of coordinates (x̃, ỹ, z̃) with center at p̃, the corresponding main invariant ĩnv is
such that

ĩnv <lex inv,

where <lex is the usual lexicographical ordering in N6.
The second part of the proof of Theorem 1.1 is given in §5. There we show that the

local strategy for resolution of singularities described in the previous paragraph can be
globalized.

To prove this, the main ingredient is the fact that both the main invariant inv and the
choice of a weight-vector ω are independent of the given stable system of coordinates.
Moreover, we shall see in §5.2 that inv is an upper semicontinous function on the set
NElem of nonelementary singular points of the vector field.

Based on these facts, the global strategy of resolution is similar to the one presented
by Cano in [C2], based on the notion of generic equireducibility and bad points. The
main distinction is the fact that our strategy leads to a unique choice of local center and
an a priori absence of cycles, due to a conveniently chosen enumeration of the exceptional
divisors. Moreover, we can guarantee that the blowing-up centers are always contained
in the set of nonelementary points.

1.4. An example

The following example was communicated to me by F. Sanz. It justifies the use of weighted
blowing-ups in the resolution of singularities of vector fields in dimension greater than 2.

Example 1.2. Consider the nonelementary germ of vector fields

χ=x

(
x

∂

∂x
−αy

∂

∂y
−βz

∂

∂z

)
+xz

∂

∂y
+(y−λx)

∂

∂z
, (3)

for some real constants α, β>0 and λ>0. We claim that this germ cannot be simplified
by any sequence of homogeneous blowing-ups (i.e. blowing-ups with weight equal to 1)
with center contained in the set of singularities.
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In fact, since the blowing-up center Y is contained in the set of singularities, there are
two possible blowing-up strategies:

(a) blow-up with center at the point Y ={x=y=z=0};
(b) blow-up with center at the curve Y ={x=y=0}.
In case (a), the x-directional blowing-up is given by

x= x̃, y = x̃ỹ and z = x̃z̃.

Therefore, the blowing-up of χ will be given by the following expression (dropping the
tildes to simplify the notation):

χ=x

(
x

∂

∂x
−α′y

∂

∂y
−β′z

∂

∂z

)
+xz

∂

∂y
+(y−λ)

∂

∂z
,

where α′=α+1 and β′=β+1. If we make the translations ỹ=y−λ and z̃=z−α′λ, we
obtain (dropping again the tildes)

χ=x

(
x

∂

∂x
−α′y

∂

∂y
−β′z

∂

∂z

)
+xz

∂

∂y
+(y−λ′x)

∂

∂z
, (4)

where λ′=α′β′λ. Notice that the vector field (4) can be obtained from (3) simply by
making the replacement of the constants

(α, β, λ) 7−! (α′, β′, λ′).

In case (b), the x-directional blowing-up is given by

x= x̃, y = x̃ỹ and z = z̃,

and we get (dropping the tildes)

χ=x

(
x

∂

∂x
−α′y

∂

∂y
−βz

∂

∂z

)
+z

∂

∂y
+x(y−λ)

∂

∂z
,

where α′=α+1. After the translation ỹ=y−λ, we obtain

χ=x

(
x

∂

∂x
−α′y

∂

∂y
−βz

∂

∂z

)
+(z−λ̄x)

∂

∂y
+xy

∂

∂z
, (5)

where λ̄=α′λ. Notice that the vector field (5) can be obtained from (3) simply by making
the replacement of the constants

(α, β, λ) 7−! (α′, β, λ′),

and interchanging the roles of the variables y and z. This proves that no improvement
has been made neither by the blowing-up (a) nor by the blowing-up (b).

Remark 1.3. Up to some additional computations, we can further prove that no
improvement can be made if we choose, as blowing-up centers, arbitrary analytic curves
which are left invariant by the vector field.
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1.6. Notation

� N={n∈Z:n>0}, N>k={n∈Z:n>k}.
� R+={x∈R:x>0}, R∗={x∈R:x 6=0}.
� R>α={x∈R:x>α}, R>α={x∈R:x>α}.
� Rn

s =(R+)s×Rn−s.
�

R=R∪{∞} is the extended field of real numbers, with the usual extended ordering

relation (we define similarly 
Q and 	Z).
� Mat(n,R) is the set of real n×n matrices.
� R[[x]] is the ring of real formal series in the variables x.
� L is the set of all reverse ordered lists of natural numbers. A typical element ι∈L

is written

ι = [i1, ..., ik], where i1, ..., ik ∈N and i1 >i2 > ...> ik;

#ι=k denotes the length of the list ι.
� For two lists ι, %∈L , we denote by ι∪%, ι∩% and ι\% the new lists which are ob-

tained by the usual operations of concatenation, intersection and difference (for instance,
[3, 2, 1]∪[5, 3]=[5, 3, 2, 1], [5, 3, 2]∩[3, 1]=[3] and [5, 4, 3, 2]\[5, 4, 1]=[3, 2]).

� For u,v∈Rn, the notation v<lexu indicates that v is lexicographically smaller
than u, i.e. the relation

n−1∨
i=0

[(v1, ..., vi) = (u1, ..., ui) ∧vi+1 <ui+1]

holds.
� For α∈R, bαc=max{n∈Z:n6α} and dαe=min{n∈Z:n>α}.
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2. Blowing-up and singularly foliated manifolds

2.1. Manifolds with corners

We shall work on the category of analytic manifolds with corners. Recall that an n-
dimensional manifold M with corners is a paracompact topological space which is locally
modeled by

Rn
s = {(x1, ..., xn)∈Rn :x1 > 0, ..., xs > 0}.

A local chart (or local coordinate system) at a point p∈M is a pair (U, φ) such that
U⊂M is an open neighborhood of p and φ:U!Rn

s is a diffeomorphism with φ(p)=0.
Note that φ(U∩∂M) is mapped to ∂Rn

s :=
⋃s

i=1{xi=0}.
For notational simplicity, we shall sometimes omit the subscript s when we refer to

the space Rn
s .

The number b(p):=s is the number of boundary components which meet at p (it is
independent of the choice of local chart). Note that ∂M :={p∈M :b(p)>1}.

In this work, we shall say that a subset N⊂M is a submanifold if for each point
p∈N there exists a local chart (as defined above) such that

N =Rn
s ∩{xi1 = ...=xik

=0},

for some sublist of indices [i1, ..., ik]⊂[n, ..., 1].
The connected components of ∂M\∂∂M will play a role similar to the irreducible

components of the exceptional divisors in the classical results of resolution of singularities.
For this reason, we call an irreducible divisor (or divisor component) of M a connected
submanifold of codimension 1 which is contained in ∂M . A divisor with normal crossings
(or, shortly, a divisor) is a subset D⊂∂M formed by some union of irreducible divisors.

We shall denote by OM the sheaf of germs of analytic functions on M . If there is
no risk of ambiguity, the stalk of OM at a point p∈M will be simply denoted by Op.

We refer to [Mi] and [Me] for further details on the theory of manifolds with corners.

2.2. Singularly foliated manifolds

Let M be a real-analytic 3-dimensional manifold (with corners) and let Υ∈L be a list of
natural numbers.

Definition 2.1. A Υ-tagged divisor on M is a divisor with normal crossings D⊂M ,
together with a bijection

Υ−! {irreducible components of D},

which associates to each index i∈Υ an irreducible component Di⊂D. We shall shortly
write D=DΥ to indicate that D is a Υ-tagged divisor.
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Let χ be an analytic vector field on M . Given a point p∈M and a prime germ g∈mp

(where mp⊂Op is the maximal ideal), consider the ideal Iχg ⊂Op which is generated by
the set

{χ(h) :h∈ (g)Op},

where χ(h) is the action of χ (seen as a derivation) on h∈Op.

Definition 2.2. The vector field χ will be called nondegenerate with respect to the
divisor D, if for all points p∈M and all primes g∈mp, one of the following two cases
occurs:

(i) the set {g=0} is not a local irreducible component of the divisor, and Iχ(mp) is
not divisible by g;

(ii) the set {g=0} is a local irreducible component of the divisor, and Iχ(g) is not
divisible by g2.

Choose some coordinate system (x1, ..., xn) at p, and suppose that g=x1. If we write

χ= a1
∂

∂x1
+...+an

∂

∂xn
, a1, ..., an ∈Op,

then the ideal Iχ(mp) is generated by {a1, a2, ..., an}, and the ideal Iχ(g) is generated
by {a1, a2x1, ..., anx1}. Hence, conditions (i) and (ii) can be rewritten as follows:

(i) if {x1=0}6⊂D, then {a1, ..., an}6⊂(x1)Op;
(ii) if {x1=0}⊂D, then there exists no collection of germs {b1, ..., bn}⊂Op such that

we can write a1=x2
1b1 and aj =x1bj for j>2.

Remark 2.3. Suppose that we consider (as in [C1]) the sheaf ΘM [log D] of vector
fields adapted to D (i.e. the dual of the sheaf of logarithmic forms with respect to D).
Then an element χp∈ΘM [log D]p is nondegenerate if and only if the adapted coefficients
are without a common divisor.

Note that a reduced vector field (as defined in the introduction) is automatically
nondegenerate. However, a nondegenerate vector field can have a set of singularities Z

of codimension 1. For instance,

χ=x1
∂

∂x1
+0

∂

∂x2
+...+0

∂

∂xn

is a nondegenerate vector field in Rn (if the divisor D contains {x1=0}). Note that each
singular point on the hypersurface Z={x1=0} is elementary.

Remark 2.4. Let p∈M be a singular point of a nondegenerate vector field χ. Suppose
that, for some neighborhood U⊂M of p, we have Ze(χ)∩U={f=0}, for some analytic
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function f such that df(p) 6=0. Then, writing χ=fχ1 for some analytic vector field χ1

defined in U , we obtain the following equivalence:

p is an elementary singular point of χ ⇐⇒ χ1(f)(p) 6=0

(where χ1 acts as a derivation on f).

As we shall see, even if we start with a vector field χ which is reduced, the procedure
of resolution of singularities can produce new vector fields which belong to the more
general class of nondegenerate vector fields. This is due to the occurrence of the so-
called dicritical situations (see Example 2.10).

A singular orientable analytic line field on (M,D) is given by a collection of pairs
L={(Uα, χα)}α∈A, where {Uα}α∈A is an open covering of M and

χα:Uα −!TUα

is an analytic vector field in Uα which is nondegenerate with respect to Uα∩D (see
Definition 2.2) and such that for each pair of indices α, β∈A,

χα =hαβ ·χβ

for some strictly positive analytic function hαβ :Uα∩Uβ!R>0.
An analytic vector field χ defined in a neighborhood U⊂M of a point p is called

local generator of L if the collection {(Uα, χα)}α∈A∪{(U, χ)} is still a singular orientable
analytic line field.

Let Y ⊂M be an analytic subset and L be a singular orientable analytic line field
on (M,D). We shall say that L is Y-preserving if for each point p∈M and each local
generator χ of L at p, we have

χ(g)∈I(Yp) for all g ∈I(Yp),

where I(Yp) is the ideal in the local ring Op which defines the germ Yp, and χ(g) is the
action of χ (seen as a derivation on Op) on g.

Definition 2.5. A singularly foliated manifold is a 4-tuple M=(M,Υ,D, L), where
(i) M is an analytic 3-dimensional manifold with corners;
(ii) Υ∈L is a list of natural numbers;
(iii) D=DΥ is a Υ-tagged divisor on M ;
(iv) L is a singular orientable analytic line field on (M,D) which is D-preserving.
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For each point p∈M , we define the incidence list at p as the sublist

ιp = {i∈Υ : p∈Di}, (6)

where Di is the ith irreducible component of D (note that 06#ιp6n). We shall say
that p is a divisor point if #ιp>1.

Given a singularly foliated manifold M=(M,Υ,D, L), we consider the analytic sub-
sets

Ze(M) = {p∈M :χ(p) = 0} and Elem(M) = {p∈M :χ is elementary at p},

where χ is a local generator for L at p. The set NElem(M)=Ze(M)\Elem(M) will be
called the set of nonelementary singular points of L.

Proposition 2.6. The set NElem(M) is a closed analytic subset of M of codimen-
sion strictly greater than 1.

Proof. Given a point p∈M , fix some local coordinates (x1, ..., xn) and a local gen-
erator χ=a1∂/∂x1+...+an∂/∂xn for L at p. Then NElem(M) is locally defined by the
analytic conditions

{p∈M :χ=0 and the spectrum of Dχ at p is zero}.

Let us prove that this germ of analytic sets NElem(M)p has codimension strictly greater
than 1. If this is not the case, there exists some prime element f∈mp such that {f=0} is
contained in NElem(M)p. By the coherence of OM , we can suppose (possibly replacing
p by some neighboring point) that df(p) 6=0. Using Remark 2.4, we conclude that χ is
necessarily divisible by f2. This contradicts the hypothesis of nondegeneracy for χ.

2.3. Multiplicity and weighted blowing-up in Rn

A weight-vector is a nonzero vector of natural numbers ω=(ω1, ..., ωn)∈Nn.
The ω-multiplicity of a monomial xv=xv1

1 ... xvn
n (with v∈Zn) is the integer number

µω(xv) = 〈ω,v〉 :=ω1v1+...+ωnvn.

More generally, the ω-multiplicity of a formal series f∈R[[x]] is given by

µω(f) =min{d∈N : f has a monomial ∗xv with µω(xv) = d}

(where ∗ denotes some nonzero real number). We denote by Hd
ω the subset of all formal

series with ω-multiplicity equal to d.



resolution of singularities of vector fields in dimension three 181

Given formal series a1, ..., an∈R[[x]], the corresponding formal n-dimensional vector
field

χ= a1
∂

∂x1
+...+an

∂

∂xn

is a derivation on the ring R[[x]]. The ω-multiplicity of χ is the integer number

µω(χ) =max{k∈Z :χ(Hd
ω)⊂Hd+k

ω for all d∈N},

where χ(Hd
ω) denotes the action of χ (seen as a derivation) on the subset Hd

ω.

Remark 2.7. Using the expression χ=a1∂/∂x1+...+an∂/∂xn, we have

µω(χ) =min{µω(a1)−ω1, ..., µω(an)−ωn}.

Given a weight-vector ω∈Nn
>0, the ω-weighted blowing-up of Rn is the real-analytic

surjective map

Φω:Sn−1×R+−!Rn,

(�x, τ) 7−! τω
�x=(τω1 x̄1, ..., τ

ωn x̄n),

where we put Sn−1={�x∈Rn :x̄2
1+...+x̄2

n=1}.
More generally, given an arbitrary weight-vector ω∈Nn, we can reorder the co-

ordinates and write ω=(ω1, ..., ωk, 0, ..., 0), where ω1, ..., ωk are strictly positive. The
ω-weighted blowing-up is the map

Φω:Sk−1×R+×Rn−k −!Rn,

(�x, τ,x′) 7−! (τω
�x,x′),

where x′=(xk+1, ..., xn). The sets

Y = {x1 = ...=xk =0} and D =Φ−1
ω (Y ) =Sk−1×{0}×Rn−k

will be called the blowing-up center and the exceptional divisor of the blowing-up, re-
spectively. The set M̃=Sk−1×R+×Rn−k will be called the blowed-up space.

It is obvious that Φω restricts to a diffeomorphism between M̃ \D and Rn\Y . The
blowing-up creates a boundary component ∂M̃=D.

The definition of ω-weighted blowing-up can be easily extended to the spaces with
corners Rn

s , thus defining an analytic surjective map

Φω: M̃ −!Rn
s .

It is easy to describe the effect of the blowing-up on a divisor D⊂Rn
s . If D⊂Rn

s is a
divisor, then the set

D̃=Φ−1
ω (D)∪D

is a divisor in M̃ . The divisor D̃ will be called the total transform of D.
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Remark 2.8. It follows from our definition of manifold with corners that a divisor
D⊂Rn

s is always given by a finite union of coordinate hyperplanes, namely

D=
⋃
i∈ι

{xi =0},

for some sublist ι⊂[n, ..., 1].

Now, let us fix an analytic (not identically zero) vector field χ in Rn
s . Consider the

analytic vector field χ∗ defined in M̃ \D as the pull-back of χ under the diffeomorphism

Φω: M̃ \D−!Rn
s \Y.

The following result is obtained by a straightforward computation.

Proposition 2.9. Let m=µω(χ) be the ω-multiplicity of χ (seen as a formal vector
field at the origin). Then, the new vector field

χ̃= τ−m ·χ∗

satisfies the following conditions:
(i) χ̃ has an analytic extension to M̃ ( which we still denote by χ̃);
(ii) the exceptional divisor D is an invariant manifold for χ̃;
(iii) if χ is nondegenerate with respect to some divisor D⊂Rn

s , then χ̃ is nonde-
generate with respect to the total transformed divisor D̃.

Proof. See, e.g., [P].

The vector field χ̃ will be called the strict transform of χ.

Example 2.10. Let us see an example of a typical dicritical situation, where the
blowing-up of a reduced vector field results into a nondegenerate vector field whose set
of singularities has codimension 1. Consider the vector field in R3

(x,y,z)

χ= y
∂

∂y
+z

∂

∂z
,

and choose the weight-vector ω=(0, 1, 1). The ω-weighted blowing-up (with center Y =
{y=z=0}) gives the manifold M̃=Rx×S1

θ×R+
τ with the exceptional divisor

D = {(x, θ, τ)∈ M̃ : τ =0}.

Since µω(χ)=0, the strict transform of χ is the radial vector field χ̃=τ ∂/∂τ , which
vanishes identically on D.
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φr,ε

Φω

Φr,ε
ω

Figure 4. The xr-directional chart (dotted lines indicate the fibration {d �x=0}).

2.4. Directional charts of blowing-up

Let ω=(ω1, ..., ωk, 0, ..., 0) be a weight-vector as above.
Given an index 16r6k, the xr-directional ω-weighted blowing-up is the pair of

analytic maps

Φr,+
ω :U −!Rn∩{xr > 0} and Φr,−

ω :U −!Rn∩{xr 6 0},

with domain U :=Rr−1×R+×Rn−r, which are defined as follows. Write the coordinates
in U as (x̃1, ..., x̃n). Then, for ε∈{+,−}, the map x=Φr,ε

ω (x̃) is given by
xi = x̃ωi

r x̃i for i=1, ..., r−1, r+1, ..., k,
xr = εx̃ωr

r ,
xj = x̃j for j = k+1, ..., n.

Proposition 2.11. For ε∈{+,−}, there exists an analytic diffeomorphism

φr,ε:V r,ε −!U,

with domain V r,ε :={(�x, τ,x′)∈Sk−1×R+×Rn−k :εx̄r>0}, which makes the following di-
agram commutative:

V r,ε
Φω //

φr,ε

��

Rn∩{εxr > 0}

id

��

U
Φr,ε

ω // Rn∩{εxr > 0},

where id is the identity map.
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Proof. See [DR].

The pairs (V r,+, φr,+) and (V r,−, φr,−) will be called xr-directional charts of the
blowing-up.

Notice that the exceptional divisor D is mapped by φr,ε to the hyperplane {x̃r=0}.
Moreover, the union of the domains of all directional charts,

V 1,+∪V 1,−∪...∪V k,+∪V k,−,

gives an open covering of the blowed-up space M̃=Sk−1×R+×Rn−k.

2.5. Weighted trivializations and blowing-up on manifolds

Let us fix a weight-vector ω=(ω1, ..., ωk, 0, ..., 0). We shall say that an analytic map
φ:U!Rn with an open subset U⊂Rn as domain preserves the ω-quasihomogeneous
structure on Rn if

φ∗(Hd
ω)⊂Hd

ω

for each natural number d∈N.

Let M be an n-dimensional analytic manifold (with corners) and Y ⊂M be a sub-
manifold of codimension k. A trivialization atlas for Y ⊂M is a collection of pairs
{(Uα, φα)}α∈A, where {Uα}α∈A is an open covering of Y and

φα:Uα −!Rn
s

is a local chart such that φα(Y ∩Uα)={0}×Rn−k
s′ for some s′6s.

We shall say that {(Uα, φα)}α∈A is an ω-weighted trivialization atlas if for each pair
of indices α, β∈A, the transition map

φαβ :=φβ �φ
−1
α :φα(Uα∩Uβ)−!φβ(Uα∩Uβ)

preserves the ω -quasihomogeneous structure on Rn.

Proposition 2.12. Let {(Uα, φα)}α∈A be an ω-weighted trivialization atlas for a
submanifold Y ⊂M . Then, there exists an n-dimensional analytic manifold M̃ and a
proper analytic surjective map

Φ: M̃ −!M

such that the following conditions hold :
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(i) Φ induces a diffeomorphism between M \Y and M̃ \D, where D:=Φ−1(Y );
(ii) there exists a collection of local charts {(Ũα, φ̃α)}α∈A in M̃ , where {Ũα}α∈A is

an open covering of D and

φ̃α: Ũα −!Sk−1
s′′ ×R+×Rn−k

s′

is an analytic diffeomorphism (where Sk−1
t ={x̄∈Sk−1 :x̄1>0, ..., x̄t>0} and s′+s′′=s),

such that the following diagram is commutative:

Ũα

φ̃α

��

Φ // Uα

φα

��

Sk−1
s′′ ×R+×Rn−k

s′
Φω // Rn,

where Φω is the ω-weighted blowing-up in Rn.

Proof. See [DR, Proposition II.9].

The map Φ: M̃!M will be called an ω-weighted blowing-up of M with center on Y ,
with respect to the trivialization {(Ũα, φ̃α)}α∈A.

Remark 2.13. The existence of an ω -weighted trivialization for a submanifold Y ⊂M

can be a strong topological restriction. This condition can be defined in a more intrinsic
way as the existence of a certain nested sequence of subbundles in the conormal bundle
N∗Y (see, e.g., [Me, §5.15]).

2.6. Blowing-up of singularly foliated manifolds

Let M=(M,Υ,D, L) be a singularly foliated manifold and Y ⊂M be a submanifold which
has an ω-weighted trivialization. An ω-weighted blowing-up of M with center Y is a
mapping

Φ: M̃−!M

defined by taking the 4-tuple M̃=(M̃, Υ̃, D̃, L̃) in the following way:
(i) The mapping Φ: M̃!M is the ω-weighted blowing-up of M with center on Y ;
(ii) The list Υ̃ is given by Υ∪[n], where

n :=
{

1+max{i : i∈Υ}, if Υ 6= ∅,
1, if Υ = ∅;
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(iii) The divisor D̃ is the total transform of D, with the tagging

Υ̃3 i 7−!
{

D′
i, if i∈ Υ̃\[n],

D̃, if i=n,

where D̃:=Φ−1(Y ) and D′
i is the strict transform of the corresponding divisor Di⊂M

(for each i∈Υ);
(iv) The line field L̃ is obtained as follows: up to some refinement of the coverings,

we can suppose that the line field L is given by a collection {(Uβ , χβ)}β∈B , where χβ is a
nondegenerate analytic vector field defined in Uβ , and that there exists some subcollection
of indices A⊂B such that {(Uα, φα)}α∈A is the ω-weighted trivialization of Y . For each
α∈B, we can consider the strict transform χ̃α of χα (see Proposition 2.9) as an analytic
vector field defined in Ũα=Φ−1(Uα). Now, Proposition 2.12 implies that the collection
{(Ũα, χ̃α)}α∈B defines a singular line field L̃ on M̃ which satisfies our requirements
(see [DR] or [P] for the details).

2.7. Axis definition and controllability

Let M=(M,Υ,D, L) be a singularly foliated manifold of dimension 3.
As we explained in §1.3, the local strategy for the resolution of singularities at a point

p∈NElem(M) is based on some invariants attached to the Newton polyhedron. This
Newton polyhedron depends on the vector field χ which locally generates the line field,
but also on the choice of local coordinates (x, y, z) at p. This usually creates difficulties
for obtaining a global strategy for the resolution, since the information obtained from
the polyhedron is coordinate-dependent.

In order to obtain intrinsic invariants, we have to restrict the choice of local coordi-
nates and require that they respect some additional structure on the ambient space. We
now introduce such a structure.

Definition 2.14. An axis for M is given by a pair Ax=(A, z), where A⊂M is an
open neighborhood of the set NElem(M), and z is a singular orientable analytic line field
defined on A such that the following conditions hold:

(i) z is D∩A-preserving;
(ii) Ze(z)=∅ (where Ze(z) is the set of singularities of z);
(iii) for each point p∈A∩D, if we choose a local chart (U, (x, y, z)) such that z is

locally generated by ∂/∂z, then
Ip 6⊂ Jp,

where Ip⊂Op is the ideal which defines the germ of analytic sets NElem(M)p and Jp⊂Op

is the defining ideal of the set {x=y=0} (i.e. the leaf of the axis through the point p);
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z

NElem(M)

Figure 5. Axis.

(iv) for each point p∈A\D, if we choose a local chart (U, (x, y, z)) such that z is
locally generated by ∂/∂z, then

χ(Jp) 6⊂ Jp,

where χ is a local generator of L.

The requirement in condition (iii) is equivalent to saying that {x=y=0} is not
contained in NElem(M). The (stronger) requirement in condition (iv) is equivalent to
saying that {x=y=0} is not an invariant curve for the line field L.

Remark 2.15. It is not always possible to define an axis for a singularly foliated line
field. For instance, if there exists a point p∈NElem(M) such that #ιp=3, then any line
field which is D-preserving necessarily vanishes at p. In this case, the requirement in
condition (ii) of the definition cannot be satisfied.

We shall say that the singularly foliated manifold M is controllable if there exists an
axis Ax as defined above. The pair (M,Ax) will be called a controlled singularly foliated
manifold.

The next result describes a situation where an axis can always be defined. Let M be
an analytic manifold of dimension 3 without boundary and let χ be a reduced analytic
vector field defined in M . We consider the singularly foliated manifold M=(M,Υ,D, L),
where Υ=∅, D=∅ and L=Lχ is the analytic line field generated by χ.

Proposition 2.16. Given a singularly foliated manifold M=(M, ∅, ∅, Lχ) as above,
there exists an axis Ax=(A, z) for M. The pair (M,Ax) is a controlled singularly foliated
manifold.

Proof. The set of nonelementary points of M is a 1-dimensional analytic subset
NElem⊂M . Let S⊂NElem be the discrete subset of points where NElem is not locally
smooth.



188 d. panazzolo

p
q

Γ

QΓ

x

z

Figure 6. The definition of ZQ on the strip Q.

First of all, we are going to define a nonsingular vector field Zp in an open neigh-
borhood Up⊂M of each point p∈S with the property that no trajectory of Zp is a leaf of
L∩Up. We fix arbitrary local coordinates (x, y, z) in a neighborhood of p and construct
the Newton polyhedron N for the vector field χ with respect to these coordinates. If the
support of N contains at least one point in the region

({−1}×{0}×Z)∪({0}×{−1}×Z),

then it suffices to locally define Zp as the vector field ∂/∂z. Otherwise, it follows that
{x=y=0} is an invariant curve for the vector field χ. In this case, it is immediate to
verify that we can choose natural numbers s, t∈N>0 such that the change of coordinates

x̃=x+zs, ỹ = y+zt and z̃ = z

results in a new coordinate system (x̃, ỹ, z̃) where the above property holds.
Now, we are going to glue together the collection of vector fields {Zp}p∈S in a C∞

way along the smooth part of NElem. Let Γ⊂NElem\S be a regular analytic curve
connecting two points p, q∈S. Possibly restricting Up to some smaller neighborhood
of p, we may assume the Zp is transversal to Γ∩Up (recall that Γ is an analytic arc).
Therefore, in some neighborhood of Γ∩Up, we can define a 2-dimensional strip Qp formed
by the union of all trajectories of Zp starting at points of Γ∩Up. The same argument
gives us a 2-dimensional strip Qq with base Γ∩Uq.

Using the tubular neighborhood theorem, we can glue together these two strips in
a C∞ way, as shown in Figure 6. Therefore, we get a global 2-dimensional strip Q with
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base Γ. Using partitions of unity, it is easy to define a nonsingular C∞ vector field ZQ

in an open neighborhood of Q such that the following conditions hold:
(i) ZQ is tangent to the strip Q;
(ii) ZQ∩Up=Zp and ZQ∩Uq=Zq;
(iii) no trajectory of ZQ is left invariant by χ.
Putting together all these local constructions, we finally obtain a nonsingular C∞

vector field Z defined in an open neighborhood A⊂M of NElem(M) which has the
following property:

(P) No trajectory of Z is invariant by the vector field χ.
Using Grauert’s embedding theorem [G], we can analytically embed the manifold M

in Rk, for some sufficiently large k∈N. Doing so, the vector field Z can be seen as a
map Z:A!Rk, and it is clear that property (P) is an open property for the Whitney
topology on C∞(Rk,Rk). Therefore, using Weierstrass’ approximation theorem (in the
version of [G]), we can approximate Z by an analytic nonsingular vector field Z̃:A!TM

which also has property (P). This proves the proposition.

3. Newton polyhedron and adapted coordinates

3.1. Adapted local charts

Let (M,Ax) be a controlled singularly foliated manifold, with M=(M,Υ,D, L) and
Ax=(A, z).

A local chart (U, (x, y, z)) centered at a point p∈A will be called an adapted local
chart if the following conditions hold:

� z is locally generated by ∂/∂z;
� if p∈D and ιp=[i], then Di={x=0};
� if p∈D and ιp=[i, j] (with i>j), then Di={x=0} and Dj ={y=0};

where ιp is the incidence list defined in (6).
Notice that an adapted local chart can always be defined at a point p∈A. The

condition p∈A∩D automatically implies that #ιp∈{1, 2}, by Remark 2.15.
Despite the fact that the definition of adapted local chart is given for all points in A,

we shall be mostly concentrated (at least until the end of §4) on points lying in A∩D.
In Figure 7 we represent the two possible configurations with the corresponding

position of the divisors.

Proposition 3.1. Let (U, (x, y, z)) and (U ′, (x′, y′, z′)) be two adapted local charts
at a point p∈A. Then, the transition map has the form

x′ =F (x, y), y′ =G(x, y) and z′ = f(x, y)+zw(x, y, z),
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ιp=[i] ιp=[i, j]

x

y

z

x

y

z
Di Di

Dj

Figure 7. Adapted local charts (with i>j).

where w is a unit and
∂(F,G)
∂(x, y)

(0, 0) 6=0.

More specifically, if #ιp=1 then F and G have the particular form

F (x, y) =xu(x, y) and G(x, y) = g(x)+yv(x, y),

where u and v are units and g(0)=0. Similarly , if #ιp=2 then

F (x, y) =xu(x, y) and G(x, y) = yv(x, y)

for some units u and v.

Proof. The change of coordinates should map the vector field ∂/∂z into the vector
field U ·∂/∂z′ (for some unit U∈Op). Moreover, if #ιp>1, it maps the divisor {x=0}
into {x′=0}. If #ιp=2, the divisor {y=0} should also be mapped to {y′=0}.

3.2. Newton map and Newton data

Let (M,Ax) be a controlled singularly foliated manifold, with M=(M,Υ,D, L) and
Ax=(A, z).

We fix a point p∈A and an adapted local chart (U, (x, y, z)) centered at p. Our
goal is to define the Newton polyhedron of (M,Ax) at p with respect to the coordinates
(x, y, z).

First of all, we choose an analytic vector field χ which generates L at U . Next, we
expand χ in the logarithmic basis: Consider the meromorphic functions

f :=χ(lnx) =
χ(x)

x
, g :=χ(ln y) =

χ(y)
y

and h :=χ(ln z) =
χ(z)

z
, (7)

where χ acts as a derivation on R{x, y, z}. Then, we can write

χ= fx
∂

∂x
+gy

∂

∂y
+hz

∂

∂z
.
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Remark 3.2. If χ is {x=0}-preserving (respectively, {y=0}- and {z=0}-preserving)
then f (respectively, g and h) is an analytic germ in R{x, y, z}.

We can write the Laurent series expansion of the functions (f, g, h) given in (7) as

(f, g, h) =
∑
v∈Z3

(fv, gv, hv)·xv1yv2zv3 ,

where (fv, gv, hv) is a vector in R3 for each integer vector v=(v1, v2, v3)∈Z3. The
Newton map for χ at p, relative to the chart (U, (x, y, z)), is the map

Θ:Z3−!R3,

v 7−! (fv, gv, hv).

The support of Θ is given by

supp(Θ)= {v∈Zn : Θ(v) 6=0}.

Remark 3.3. The Newton map Θ has the following properties:
� supp(Θ)⊂N3∪({−1}×N2)∪(N×{−1}×N)∪(N2×{−1});
� v∈({−1}×N2) ⇒ Θ(v)∈R×{0}×{0};
� v∈(N×{−1}×N) ⇒ Θ(v)∈{0}×R×{0};
� v∈(N2×{−1}) ⇒ Θ(v)∈{0}×{0}×R.

The Newton polyhedron for (M,Ax) at p, relative to the chart (U, (x, y, z)), is the
convex polyhedron in R3 given by

N =conv(supp(Θ))+R3
+,

where conv( ·) is the convex closure operation and the “+” operator denotes the usual
Minkowski sum of convex polyhedrons.

Lemma 3.4. The Newton polyhedron is independent of the choice of the local gener-
ator of L.

Proof. Indeed, if χ and χ′ are two local generators, we know that χ′=Uχ for some
unit U∈R{x, y, z}. Going back to the definition of the Newton polyhedron, it is clear
that the corresponding polyhedrons N and N ′ will coincide.

It is obvious that different choices of the local coordinates (x, y, z) lead to different
Newton polyhedrons. Later on, we shall see that certain essential properties of N are
preserved by the action of the group of coordinate changes defined by Proposition 3.1.
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e (main edge)

F (main face)

Figure 8. The main vertex, the main edge and the derived polygon for n.

From now on, we shall adopt the usual language of the theory of convex polyhedrons,
and refer to the vertices, edges and faces of N (the faces will always be 2-dimensional).

Given a face F⊂N , there exists a weight-vector ω∈N3 and an integer µ∈Z such
that

F =N∩{v∈R3 : 〈ω,v〉=µ}.

Notice that if this property is satisfied for a pair (ω, µ), then it is satisfied on the entire
positive ray R={t·(ω, µ):t>0}. The weight-vector and the multiplicity associated with F

are given by the unique pair (ω, µ)∈R such that ω=(ω1, ω2, ω3) is a nonzero vector of
natural numbers satisfying gcd(ω1, ω2, ω3)=1.

Definition 3.5. The triple Ω=((x, y, z), ιp,Θ) will be called a Newton data for the
controlled singularly foliated manifold (M,Ax) (centered) at the point p.

For notational simplicity, we shall write vertices, edges and faces of Ω when referring
to the corresponding objects of the Newton polyhedron N . We shall also refer to the
support of the Newton map Θ simply as supp(Ω).

3.3. Derived polygon and displacements

Let us fix a Newton data Ω=((x, y, z), ιp,Θ) at a point p∈A, and let N be the corre-
sponding Newton polyhedron. The derived polygon associated with a vertex n∈N is
given by

N ′(n) :=N∩
{
(v1, v2, v3)∈R3 : v3 =n3− 1

2

}
.

Thus, N ′(n) is a convex polygon contained in the plane
{
v:v3=n3− 1

2

}
(see Figure 8).
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(0, 1, 2)
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N ′
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(
0, 1

2

)(
1
2
, 0
) N ′′

Figure 9. The Hironaka characteristic polygon and the derived polygon are distinct.

Remark 3.6. The derived polygon has some similarities with the characteristic poly-
gon introduced by Hironaka is his proof of the resolution of singularities for excellent
surfaces (we refer to [H3] for the precise definition of this polygon). The following ex-
ample shows that these two notions are distinct in the context of vector fields: Consider
the germ of vector fields

χ=(z3x+xyz2)
∂

∂x
+xz3 ∂

∂y
+y7 ∂

∂z
.

The associated Newton polyhedron is shown in Figure 9 (left). Let us choose the vertex
n=(0, 0, 3) (this is the minimal vertex of N with respect to the lexicographical ordering
in R3). Then, the derived polygon and the Hironaka characteristic polyhedron are given
respectively by

N ′ =N∩
{
v∈R3 : v3 = 5

2

}
and N ′′ =N∩{v∈R3 : v3 =2}.

The resulting polygons are depicted in the right part of Figure 9.

Proposition 3.7. Suppose that the vertex n is such that n3>1. Then, the derived
polygon N ′(n) is nonempty.

Proof. Indeed, suppose by contradiction that N ′(n)=∅. Then, since n3>1, the
Newton polyhedron N should be contained in the region {(v1, v2, v3)∈Z3 :v3>1}. Ac-
cording to the definition of N , this would imply that the line field L is locally generated
by a vector field χ which is degenerate (because the ideal Iχ(z) would be divisible by z2).
This contradicts our assumptions.
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Figure 10. The derived polygon.

For the rest of this subsection, let us assume that the derived polygon N ′(n) is
nonempty.

The main derived vertex of N ′(n) is the minimal vertex m′(n) of N ′(n) with respect
to the lexicographical ordering. We write

m′(n) =
(
m′

1(n),m′
2(n), n3− 1

2

)
.

The main edge associated with the vertex n is the unique edge e(n)⊂N which contains
the segment n,m′(n).

Proposition 3.8. The rational numbers m′
1(n) and m′

2(n) always belong to the
finite grid

1
2(n3+1)!

Z.

Proof. Indeed, the main edge associated with n has the form e(n)=n,v, for some
vertex v=(v1, v2, v3) such that −16v3<n3. Then, it is clear that

m′
1(n) =n1+

v1−n1

2(n3−v3)
and m′

2(n) =n2+
v2−n2

2(n3−v3)
.

Now, it suffices to remark that the denominator of these fractions fractions always lies
in the range {1, ..., 2(n3+1)!}.

We picture N ′(n) in the 2-dimensional plane as in Figure 10, with the horizontal
axis corresponding to the v1-coordinate. Using this representation, we enumerate the
sides of N ′(n) from left to right as e0, e1, ..., en, with e0 being the infinite vertical side
and en being the infinite horizontal side.

The main side f(n) of N ′(n) is defined as follows (see Figure 10):

f(n) :=
{

e0, if m′
1(n) > 0,

e1, if m′
1(n) = 0.
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By the definition of N ′(n), to each each side e∈N ′(n) there corresponds a unique
face F of N such that

F∩N ′(n) = e.

The main face associated with the vertex n is the unique face F(n)⊂N such that

F(n)∩N ′(n) = f(n)

(see Figure 8). By construction, the edge e(n) can be uniquely written as

e(n) = {n+t(∆,−1) : t∈ I},

where I⊂R is a compact interval and ∆∈Q2\{(0, 0)} is a nonzero vector of rational
numbers. Using this, the derived vertex m′(n) can be rewritten as

m′(n) =
(
n1+ 1

2∆1, n2+ 1
2∆2, n3− 1

2

)
.

Similarly, the main side f(n) of N ′(n) can be uniquely written as

f(n) = {m′(n)+t(C,−1, 0) : t∈ I},

where I⊂R is an interval and C is a number in 
Q>0 :=Q>0∪{∞}.

Remark 3.9. Observe that C=∞ and C=0 correspond to the cases where the main
side is the infinite horizontal and the infinite vertical side, respectively (see Figure 11).

We will call ∆(n):=∆ and C(n):=C the vertical and the horizontal displacement
vector associated with the vertex n, respectively.

3.4. Regular-nilpotent configurations and main vertex

Let us keep the notation of the previous subsection. In this subsection, we further assume
that the base point p∈A belongs to the divisor D.

The higher vertex is the minimal point h∈N with respect to the lexicographical
ordering in R3. It is immediate to see that the minimal point always exists and that it
is a vertex of N (see Remark 3.3).

Proposition 3.10. The higher vertex h=(h1, h2, h3) has the following properties:
(i) if #ιp=1, then h1=0 and h2, h3>−1;
(ii) if #ιp=2, then h1=0, h2>0 and h3>−1.
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Figure 11. The vertical and horizontal displacements.

Proof. To prove (i), we observe that the surface {x=0} is preserved by the vector
field χ if and only if

supp(N )∩{−1}×N2 = ∅.

This is equivalent to saying that h1>0 and h2, h3>−1. However, if h1>1, the ideal
Iχ(x)∈R{x, y, z}, which is generated by (fx, gxy, hxz), would be divisible by x2. This
would contradict the hypothesis that χ is a nondegenerate vector field (see Definition 2.2).

The proof of (ii) is analogous.

The main edge associated with the higher vertex is given by

e(h) =h,n, (8)

where n is also a vertex of N . It follows from Proposition 3.7 that this edge always exists
if h3>1. We define e(h):=∅ if the derived polygon N ′(h) is empty.

We shall say that the Newton data Ω is in a nilpotent configuration if the following
three conditions are satisfied:

(i) #ιp=1;
(ii) h=(0,−1, h3) for some integer h3∈N;
(iii) n=(0, 0, n3) for some integer n3<h3.
If one of these conditions fails, we shall say that Ω is in a regular configuration.

Remark 3.11. As we shall see in §4, the treatment of nilpotent configurations con-
stitutes one of the points where the method of resolution of singularities for vector fields
differs essentially from the usual methods of resolution of singularities for functions and
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Figure 12. The regular and nilpotent configurations.

analytic sets. At several points during our proof, we will have to address the delicate
issue of the transition between regular and nilpotent configurations.

The main vertex m of Ω is chosen as follows:

m :=
{

h, if Ω is in a regular configuration,
n, if Ω is in an nilpotent configuration,

(where n is defined by (8)). The corresponding vertical and horizontal displacements

∆ :=∆(m) and C :=C(m)

will be called the vertical displacement vector and the horizontal displacement of Ω.

The face F :=F(m) and the edge e:=e(m) will be called the main face and the main
edge associated with Ω, respectively. The polygon N ′=N ′(m) will be called the main
derived polygon.

3.5. The class Newi,m
∆,C

Let Ω=((x, y, z), ιp,Θ) be a Newton data for (M,Ax) at a point p∈A∩D. We shall say
that Ω belongs to the class Newi,m

∆,C if the following conditions hold:
(i) #ιp=i;
(ii) m is the main vertex of Ω;
(iii) ∆ is the vertical displacement vector of Ω;
(iv) C is the horizontal displacement of Ω.

The union of all the classes of Newton data will be denoted simply by New.
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Let us consider the Lie group G of all polynomial changes of coordinates in R3 which
have the form

x̃=x, ỹ = y+g(x) and z̃ = z+f(x, y), (9)

where f∈R[x, y] and g∈R[x] are real polynomials. The group operation is the composi-
tion, and the inverse of the map (9) is simply given by

x= x̃, y = ỹ−g(x̃) and z = z̃−f(x̃, ỹ−g(x̃)). (10)

For simplicity, we shall denote the map (9) by (f, g)∈G and its inverse by (f, g)−1. We
define also the subgroups G1=G and G2={(f, g)∈G :g=0}.

Remark 3.12. The Lie algebra associated with G is the algebra G of all polynomial
vector fields of the form

G(x)
∂

∂y
+F (x, y)

∂

∂z
,

with polynomials G∈R[x] and F∈R[x, y].

There is a natural action of the Lie group G on the class of Newton data New, given
as follows: The action of a map (f, g)∈G in the data Ω=((x, y, z), ι, Θ) is the Newton
data given by

((x̃, ỹ, z̃), ι̃, Θ̃),

where (x̃, ỹ, z̃) are the coordinates given by (9), the list ι̃ is the incidence list at the point
p̃=(x̃, ỹ, z̃)−1(0), and Θ̃ is the Newton map for (M,Ax) at p̃, relative to this new adapted
local chart. We denote this action simply by (f, g)·Ω.

Remark 3.13. In the cases that we will consider more often, we have f(0)=g(0)=0.
In this case, p̃=p, i.e. the Newton data Ω̃ is centered at the same point as Ω. If this
is not the case, we tacitly assume that the point p̃=(x̃, ỹ, z̃)−1(0) lies in the domain of
definition of the local adapted chart (U, (x, y, z)).

3.6. The subgroups G∆,C

Recall that the support of a polynomial H∈R[x] is the subset

supp(H) = {v∈Zn :xv is a nonzero monomial of H}.

According to the support of the polynomials f and g given in (9), we shall now define
several subgroups in G.
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Given ∆=(∆1,∆2)∈Q2
>0 and C∈
Q>0, we define G∆,C as the subgroup of all maps

(f, g)∈G such that the following conditions hold:
(i) the support Sf =supp(f) is contained in the set

{(a, b)∈∆+s(C,−1) : s∈
Q>0}∩N2, if ∆1 =0,

{∆}∩N2, if ∆1 > 0;

(ii) the support Sg=supp(g) is contained in the set

{C}∩N, if ∆1 =0,

∅, if ∆1 > 0.

We further define the subgroups G1
∆,C and G2

∆,C as

G1
∆,C =G∆,C and G2

∆,C =G∆,C∩{(f, g)∈G∆,C : g =0}.

Remark 3.14. In the above definition, we have the following extreme cases for G∆,C :
� if C=∞, then g=0 and f=ξx∆1y∆2 , where the constant ξ∈R necessarily vanishes

if ∆ /∈N2;
� if ∆1=0 and C=0, then f∈R[y] is a polynomial in y of degree at most δ2, and

g=η, for some constant η∈R;
� if ∆=(0, 0) and C=∞, then g=0 and f=ξ, for some real constant ξ∈R.
In the last two cases, the change of coordinates (9) correspond to translations ỹ=

y+η, z̃=z+f(y) and ỹ=y, z̃=z+ξ, respectively.

It will be useful to consider the following decomposition of the group G: Define the
subgroup

G∆ := {(f, g)∈G∆,C : g =0, f = ξx∆1y∆2 , ξ ∈R}

(the constant ξ necessarily vanishes if ∆ /∈N2), and the normal subgroup

G+
∆,C = {(f, g)∈G∆,C :∆ /∈ supp(f)},

which will be called the subgroup of edge-preserving maps. It is easy to see that

G+
∆,C∩G∆ = {0} and G∆,C =G∆�G+

∆,C =G+
∆,C �G∆.

In other words, G∆,C is the semi-direct product of G∆ and G+
∆,C . Similar decompositions

hold for the subgroups G1 and G2.
Later on, we shall need the following remark.
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Remark 3.15. For a map (f, g)∈G+
∆,C , the support of f is such that

Sf ⊂{(a, b)∈N2 : a>Cτ(∆2)},

where

τ(∆2) :=
{

1, if ∆2 ∈N,
∆−b∆c, otherwise.

3.7. Action of G via adjoint map

The action of the group G on a Newton data Ω can be studied via the associated Lie
algebra G. Indeed, a map (f, g)∈G is the time-one map of the flow associated with the
vector field Γf,g∈G given by

Γf,g = g(x)
∂

∂y
+f(x, y)

∂

∂z
.

Therefore, if Ω is associated with the vector field χ, the Newton data (f, g)·Ω can be
obtained from the transformed vector field

((f, g))∗χ=χ+
1
2
[Γf,g, χ]+

1
6
[Γf,g, [Γf,g, χ]]+... =

∞∑
n=0

1
n!

(ad(Γf,g))nχ, (11)

because ead( ·)=Ad(Exp( ·)), where Ad( ·) and ad( ·) are the adjoint map and its differ-
ential, respectively.

Using this remark, we can see how the action of a map in G∆,C modifies the
multiplicity of a vector field. Let ω=(ω1, ω2, ω3)∈N3 be a weight-vector such that
gcd(ω1, ω2, ω3)=1 and

〈ω, (−1,∆1,∆2)〉= 〈ω, (0,−1, C)〉=0

(with the convention that ω1=0 if C=∞). Then, ω is the weight-vector associated with
the main face F of the Newton polyhedron N (Ω).

Recall from §2.3 that each analytic vector field χ has an associated ω-multiplicity

µω(χ) := max{k∈Z :χ(Hd
ω)⊂Hd+k

ω for all d∈N}.

Lemma 3.16. If (f, g)∈G∆,C is nonzero, then µω(Γf,g)=0.

Proof. This follows directly from the definition of the group G∆,C .

It follows that, if µω(χ)=m and (f, g) is nonzero, then µω([Γf,g, χ])=m. As a
consequence, we have the following result.
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Corollary 3.17. Choose (f, g)∈G∆,C . Then, the vector field χ̃=(f, g)∗χ is such
that

µω(χ̃) =µω(χ).

Proof. It suffices to use Lemma 3.16 and formula (11).

In the same way, we can prove that the coordinate change associated with (f, g)
always preserves the ω-quasihomogeneous structure on R3 (see §2.5).

Let us now study the action of G∆,C on a single differential monomial given by

m =xv1yv2zv3

(
αx

∂

∂x
+βy

∂

∂y
+γz

∂

∂z

)
,

with constants v=(v1, v2, v3)∈Z3 and α, β, γ∈R. The corresponding Newton map Θ is
such that supp(Θ)={v}.

For the particular case of a map (f, g)∈G∆,C of the form (f, g)=(ξxδ1yδ2 , 0), the
coordinate change ỹ=y+g(x) and z̃=z+f(x, y) maps m to the vector field

m̃ =xv1yv2(z−ξxδ1yδ2)v3

(
αx

∂

∂x
+βy

∂

∂y
+(γz+ξ((αδ1+βδ2)−γ)xδ1yδ2)

∂

∂z

)
(where we drop the tildes). In particular, it is easy to see that the Newton map Θ̃
associated with m̃ has support contained in the set

{u∈Z3 :u=v+t(δ1, δ2,−1), t > 0}.

Similarly, for a map (f, g) of the form (f, g)=(0, ηxC), we get (dropping the tildes)

m̃ =xv1(y−ηxC)v2zv3

(
αx

∂

∂x
+(βy+η(Cα−β))

∂

∂y
+γz

∂

∂z

)
,

and the the Newton map Θ̃ associated with m̃ has support contained in the set

{u∈Z3 :u=v+s(C,−1, 0), s > 0}.

Now, an arbitrary map (f, g)∈G∆,C can be written as the composition of a finite number
of maps of the form (ξxδ1yδ2 , 0) and (0, ηxC). Therefore, the above computations give
the following result.

Lemma 3.18. Consider the differential monomial m given above. Then, for an
arbitrary pair (∆, C) and for an arbitrary map (f, g)∈G∆,C , the Newton data for the
vector field (f, g)∗m has its support contained in the set

{u∈Z3 :u=v+t(∆1,∆2,−1)+s(C,−1, 0), t > 0, s > 0}

(see Figure 13).
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Figure 13. The support of (f, g)∗m for a differential monomial m.

More generally, we can consider the action of (f, g) on an arbitrary vector field χ as
follows. Write the expansion of χ as

χ=
∑
i∈I

mi,

where, for each i∈I, mi is a differential monomial whose Newton data has support at
vi∈Z3. For a map (f, g)∈G∆,C , we clearly have

(f, g)∗χ=
∑
i∈I

(f, g)∗mi,

and this gives the following result.

Corollary 3.19. Let χ be as above. For an arbitrary pair (∆, C) and for an
arbitrary map (f, g)∈G∆,C , the Newton data for the vector field (f, g)∗χ has its support
contained in the set⋃

i∈I

{u∈Z3 :u=vi+t(∆1,∆2,−1)+s(C,−1, 0), t > 0, s > 0}.

Remark 3.20. In [AGV], the authors use these kind of coordinate changes to study
normal forms of quasihomogeneous functions. In [H3], Hironaka uses similar transforma-
tions in his definition of well and very well preparations of function germs.

4. Local theory at NElem∩D

Let (M,Ax) be a controlled singularly foliated manifold. Throughout this section, we
fix a divisor point p∈A∩D, an adapted local chart (U, (x, y, z)) for (M,Ax) at p, and let
Ω∈Newi,m

∆,C be the corresponding Newton data.
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Proposition 4.1. The main vertex m=(m1,m2,m3) associated with Ω is such that
m1=0 and m2∈{−1, 0}.

Proof. Suppose by contradction that the main vertex m does not satisfy the above
requirements. Then, one of the following conditions holds:

(a) m1=−1;
(b) m1>1;
(c) m2>1.
In case (a), it follows from the definition of the Newton polyhedron that the plane

{x=0} is not invariant. This contradicts the definition of an adapted local chart at p

and the hypothesis that p belongs to A∩D.
In case (b), choose a nondegenerate vector field χ which is a local generator for the

line field L. Then, the condition m1>1 implies that the ideal Iχ(x)⊂Op is divisible
by x2. This contradicts Definition 2.2.

Thus, in case (c), we may assume that m1=0 and m2>1. This clearly implies that

supp(Ω)∩({0}×{−1, 0}×R) = ∅. (12)

If we write the vector field χ as

χ= fx
∂

∂x
+gy

∂

∂y
+hz

∂

∂z

(with fx, gy, hz∈R{x, y, z}), then (12) is equivalent to saying that the functions f, g

and h vanish identically along the vertical line l:={x=y=0}. A simple computation
shows that it is equivalent to asserting that the Jacobian matrix Dχ|l has the form

Dχ|l =

 0 0 0
∗ 0 0
∗ ∗ 0

,

where the ∗’s denote some arbitrary real numbers. It follows that the line l is contained
in the set of nonelementary points NElem(M), which contradicts Definition 2.14.

4.1. Stable Newton data and final situations

In the next definitions, we consider the action of the transformation group Gi
∆,C on the

Newton data Ω. The following notions will be essential in the sequel to study the effect
of the translations in the blowing-up chart.

We say that Ω is stable if
(f, g)·Ω∈Newi,m

∆,C
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for all (f, g)∈Gi
∆,C with f(0)=g(0)=0. In other words, Ω is stable if the action of Gi

∆,C

preserves the main vertex, the value of the vertical displacement vector ∆ and the value
of the horizontal displacement C.

A weaker notion of stability will also be useful. We say that Ω is edge-stable if for
each map (f, g)∈Gi

∆,C with f(0)=g(0)=0 there exists a constant C̃∈
Q>0 such that

(f, g)·Ω∈Newi,m

∆,C̃
.

Remark 4.2. Intuitively, the notions of stable and edge-stable Newton data can be
seen as weaker versions of the notion of maximal contact introduced in the work of
Hironaka [H1]. As said above, the main goal is to take into account the effect of the
translations in the blowing-up chart.

More precisely, for a stable (respectively, edge-stable) Newton data, one guarantees
that the main invariant strictly decreases after a conveniently chosen blowing-up map
followed by any translation of the form (ỹ=y+η, z̃=z+ξ) (respectively, (z̃=z+ξ)). We
refer to §4.8 for the precise statements.

In the context of vector fields, the usual notion of maximal contact is too strong and
often leads to divergent formal objects. For instance, the computation of the maximal
contact variety (in the sense of [H1]) for the Euler vector field

x2 ∂

∂x
+(y−x)

∂

∂y

leads to the formal power series V =
{
y−
∑∞

n=1(n−1)!xn
}
, which has zero as radius of

convergence.

Using these concepts, we can now identify when the Newton data Ω is centered at
an elementary point p∈Elem(M).

First of all, we introduce the following notion. We shall say that Ω is in a final
situation if, looking at the higher vertex h∈N (see definition in §3.4) and the associated
edge e(h), one of the following conditions is satisfied (see Figure 14):

(i) the vertex h=(h1, h2, h3) is such that h1=0 and either

(a) (h2, h3) = (0, 0), (b) (h2, h3) = (−1, 0), or (c) (h2, h3) = (0,−1);

(ii) the edge e(h) is given by [(0,−1, k), (0, 0,−1)] for some k>1;
(iii) the edge e(h) is given by [(0,−1, k), (0, 0, 0)] for some k>1;
(iv) the edge e(h) is given by [(0,−1, 1), (0, 1,−1)] and Ω is edge-stable.
The following result justifies the above nomenclature.

Proposition 4.3. If the Newton data Ω is in a final situation then it is centered at
an elementary point p∈Elem(M).
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(i.a) (i.b) (i.c)

(ii) (iii) (iv)

Figure 14. The final situations.

Proof. Consider a vector field χ which locally generates the line field L, in a neigh-
borhood of p. If χ(p) 6=0 we are done. Otherwise, we can write the linear part Dχ(p) as
the matrix λ 0 0

∗ a b

∗ c d

,

where λ, a, b, c, d∈R and the ∗’s denote some arbitrary real constants. We consider the
following cases:

(a) λ 6=0;
(b) λ=0.
In case (a), it is clear that λ belongs to the spectrum of Dχ(p), and therefore χ is

elementary.
In case (b), it clearly suffices to prove the following claim.

Claim. The matrix

B =

(
a b

c d

)
is not nilpotent (it is obvious that B 6=0).

To prove the claim, suppose initially that b=0 or c=0. Then, it follows from the
definition of a final situation that (a, d) 6=(0, 0), and therefore B contains at least one
nonzero eigenvalue.
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Ω

m

(f, g)·Ω

m

Figure 15. The transition from Ω to (f, g)·Ω.

Suppose now that b 6=0 and c 6=0. It follows that ∆=(0, 1) and m=(0,−1, 1). Assume
by contradiction that B is nilpotent and consider the Gi

∆,C-map (f, g)=((a/b)y, 0), which
corresponds to the coordinate change

ỹ = y and z̃ = z+(a/b)y

(see Figure 15). It is easy to see that the Newton data (f, g)·Ω (associated with the local
chart (U, (x, ỹ, z̃))) is such that the corresponding matrix B is given by

B =

(
0 b

0 0

)
.

This implies that (f, g)·Ω belongs to the class Newi,m

∆̃,C̃
, for some vertical displace-

ment vector ∆̃>lex(0, 1). This contradicts the assumption that Ω is edge-stable. The
claim is proved.

Remark 4.4. The above result has the following partial converse (which we will not
need in the sequel). If Ω is an edge-stable Newton data centered at an elementary point
p∈Elem(M), then Ω is necessarily in a final situation.

4.2. The local invariant

Let us now introduce the main invariant used in the local strategy of the resolution of
singularities. First of all, we prove the following result.

Lemma 4.5. Suppose that p belongs to NElem(M). Then the main derived poly-
gon N ′ is nonempty.

Proof. According to Proposition 3.7, it suffices to prove that m3>1. But this is a
direct consequence of the fact that the Newton data Ω is not in a final situation.
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v1

v2

v3

(0, 0, m3)

F

v1

v2

v3

(0,−1, m3)
(0, 0, t)

F

inv=(m3, 0, m3, ... ) inv=(bt+1c,−1, m3, ... )

Figure 16. The invariant inv(Ω).

Let us suppose that p belongs to NElem(M). Writing the main vertex as m=
(m1,m2,m3) and the vertical displacement vector as ∆=(∆1,∆2), we define the virtual
height associated with Ω as the natural number

h :=
{
bm3+1−1/∆2c, if m2 =−1 and ∆1 =0,
m3, if m2 =0 or ∆1 > 0.

For m2=−1 and ∆1=0, the virtual height h is the smallest integer which is strictly
greater than the height of the point of intersection between the main edge and the vertical
plane {v=(v1, v2)∈R2 :v2=0} (as shown in Figure 16).

We refer the reader to §4.13 for an example which motivates the use of the notion
of virtual height.

Definition 4.6. The primary invariant is the vector

inv1 := (h,m2+1,m3).

The secondary invariant is the vector

inv2 =(#ιp−1, λ∆1, λ max{0,∆2}),

where λ:=2(m3+1)!. The invariant associated with the Newton data Ω is the pair

inv(Ω) := (inv1, inv2).

Remark 4.7. It follows from the assumption #ιp>1, from the choice of λ and from
Proposition 3.8 that the vector inv(Ω) always belongs to N6.
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4.3. Regular-nilpotent transitions

Let us introduce the following notation. Given a subset A⊂Z3, let Ω|A=((x, y, z), ιp,Θ|A)
be the Newton data which is obtained from Ω by considering the restricted Newton map

Θ|A:Z3−!R3

defined by

Θ|A(v) =
{

Θ(v), if v∈A,
0, if v∈Z3\A.

If Ω is associated with a vector field χ (which is a local generator of the line field
at p), we denote by χ|A the vector field associated with Ω|A. Notice that χ|A is possibly
a degenerate vector field.

Lemma 4.8. The Newton data Ω is edge-stable if and only if for all (f, 0)∈G∆, there
exists a constant C̃∈
Q>0 such that

(f, 0)·Ω∈Newi,m

∆,C̃
.

Proof. It suffices to notice that each map (f, g)∈Gi
∆,C can be uniquely written as a

composition
(f, g) = (f0, 0)�(f̃ , g̃),

where (f0, 0) belongs to G∆ and (f̃ , g̃) is a map belonging to the normal subgroup

Gi,+
∆,C CGi

∆,C .

Now, Corollary 3.19 implies that, if we denote the main edge associated with Ω by e,
the Newton data Ω̃:=(f̃ , g̃)·Ω is such that

Ω̃|e =Ω|e.

Moreover, e is also the main edge of Ω̃. This concludes the proof.

Recall that the Newton data can be either in a regular or in a nilpotent configuration
(see §3.4). Let us say that Ω is in a potentially nilpotent situation if it is in a regular
configuration but

m=(0,−1,m3) and ∆ =(0, 1)

for some m3>1. The next result describes some basic aspects of the action of a Gi
∆,C-map

on Ω.
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m

e

(f, g)· m̃

ẽ

Figure 17. The regular-nilpotent transition.

Lemma 4.9. Given (f, g)∈Gi
∆,C , the Newton data Ω̃:=(f, g)·Ω belongs to the class

Newi,m̃

∆̃,C̃
, where two cases may occur :

(i) if Ω is not in a potentially nilpotent situation then

m̃=m and (∆̃, C̃) >lex (∆, C); (13)

in particular, if Ω is in a regular (respectively , nilpotent) configuration, then Ω̃ is also
in a regular (respectively , nilpotent) configuration;

(ii) if Ω is in a potentially nilpotent situation then either
(ii.a) m̃=m and (∆̃, C̃)>lex(∆, C), or
(ii.b) Ω̃ is in a nilpotent configuration and

m̃=(0, 0,m3−1) and ∆̃ >lex ∆.

Proof. It suffices to use Corollary 3.19.

In case (ii.b), we say that the data Ω is in a hidden nilpotent configuration and that
the transformation Ω!Ω̃ is a regular-nilpotent transition.

In view of Lemma 4.8, a hidden nilpotent configuration may be detected just by the
action of the subgroup G∆.

4.4. Resonant configurations

This is a rather technical subsection, whose main goal is to characterize those types of
Newton data (called resonant configurations) for which the action of the group G is not
effective. This characterization is essential to prove the uniqueness of the local strategy
for the resolution of singularities at points p∈NElem(M)∩D.
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We remark in passing that the occurrence of these resonant configurations has no
analogues in the theory of resolution of singularities for functions and analytic sets.

Suppose that Ω is a Newton data associated with an adapted local chart (U, (x, y, z))
with center at a divisor point p∈D∩A such that p∈NElem(M).

Let us study how effective the action of the group Gi
∆,C is on the support of Ω.

Recall that the support is given by

supp(Ω) := {v∈Z3 : Θ(v) 6=0},

where Θ:Z3!R3 is the Newton map associated with Ω. To state our next result, we
need the following definition. Let e be the main edge of Ω. We shall say that Ω is in
c-resonant configuration (for some c∈N) if there exists a map (f, g)∈Gi

∆,c\G∆ such that

supp((f, g)·Ω|e)⊂ e.

In other words, there is a map (f, g)∈Gi
∆,c\G∆ (i.e. not of the form (ξx∆1y∆2 , 0)) whose

action on the restricted Newton data Ω|e results into a Newton data which still has the
support on e.

Lemma 4.10. Suppose that Ω∈Newi,m
∆,C is a Newton data which is in a c-resonant

configuration. Then, Ω is not edge-stable. Moreover , i=1 and ∆=(0, s) for some s>0.
Considering the associated vector field χ, one of the following situations occurs:

(i) ∆=(0, 1) and the restriction of χ to the main edge is given by

χ|e =(z+λy)m

(
α

(
x

∂

∂x
+cy

∂

∂y
+cz

∂

∂z

)
+β(z+λy)

∂

∂y
+γ(z+λy)

∂

∂z

)
for some m>1, λ∈R and (α, β, γ)∈R3 such that β 6=0 and (α, γ+λβ) 6=(0, 0);

(ii) ∆=(0, 1/τ) for some τ∈N>2, and

χ|e = zτm

(
α

(
x

∂

∂x
+cy

∂

∂y
+

c

τ
z

∂

∂z

)
+βzτ ∂

∂y
+γz

∂

∂z

)
for some m>1 and (α, β, γ)∈R3 such that β 6=0 and (α, γ) 6=(0, 0).

Proof. If ∆=(∆1,∆2) for some ∆1>0, then Gi
∆,c=G∆ by definition, and nothing

has to be proved.
Let us assume that Ω is edge-stable. Up to an x-directional blowing-up with weight-

vector ω=k ·(1, c, sc) (where k∈N is chosen in such a way that ω∈N3), we can write

χ|e =F (y, z)x
∂

∂x
+G(y, z)

∂

∂y
+H(y, z)

∂

∂z
,
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where F , G and H are (1, s)-quasihomogeneous functions of degrees M , M+1 and M+s,
respectively, for some rational number M∈Q.

After this blowing-up, the map (f, g) is transformed into an element of the group
Gi

(0,s),0. Keeping the same notation for this map, we can write

(f, g) = (a0+a1y+...+akyk, η), with a0, ..., ak, η ∈R, (14)

where k :=bsc and (f, g) 6=(asy
s, 0). Our problem reduces to finding conditions on F , G

and H such that there is one such map for which

supp((f, g)·Ω|e)⊂ e. (15)

Let us consider the four possible cases:
(1) s∈N and s>2;
(2) s=1;
(3) s=1/τ with τ∈N and τ >2;
(4) s /∈N∪1/N.

In case (1), two possible expressions for F , G and H may appear:
(1.a) if the main vertex has the form m=(0,−1,m), then

F (y, z) =F0(y, z), G(y, z) =G0(y, z) and H(y, z) = ys−1H0(y, z), (16)

where F0, G0 and H0 are (1, s)-quasihomogeneous functions of degree ms−1, ms and
ms, respectively; moreover, G0(0, z)=βzm, for some β 6=0;

(1.b) if the main vertex has the form m=(0,−1,m), then

F (y, z) =F1(y, z), G(y, z) =G1(y, z)y and H(y, z) =H1(y, z)z+H2(y, z)ys, (17)

where F1, G1, H1 and H2 are (1, s)-quasihomogeneous functions of degree ms.
Assuming that condition (15) holds, it is easy to see that, in expression (16), F0≡0,

and G0 and H0 should be a power of a common (1, s)-quasihomogeneous form of degree s:

G0(y, z) =β(z+λys)m and H0(y, z) = γ(z+λys)m

for some β, λ∈R∗ and γ∈R. Looking only at the function G0, we see that the only
possible map (f, g) satisfying our requirements is given by

f =−λ((y+η)s−ys) and g = η for some η 6=0.

In this case, the restricted vector field χ|e is transformed to (dropping the tildes)

(z+λys)m

(
β

∂

∂y
+
(
−sλβys+(γ+sλβ)(y−η)s−1

)
∂

∂z

)
.
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Therefore, since s>2 and (15) is assumed, the relation γ+sλβ=0 necessarily holds.
But if we consider the original expression of the vector field χ|e and apply the G∆-map
(f ′, g′)=(λys, 0), we get (dropping again the tildes)

zm

(
β

∂

∂y
+
(

γ+sλβ)ys−1

)
∂

∂z

)
= zm

(
β

∂

∂y

)
(i.e. the support of Ω|e has a single point). This implies that Ω is not edge-stable, yielding
a contradiction.

Similarly, for the expression (17), a simple computation shows that if there is a
nonzero (f, g) which fixes the support of Ω|e, then F1, G1 and H should necessarily be
powers of a (1, s)-quasihomogeneous form of degree s, namely

F1(y, z) =α(z+λys)m, G1(y, z) =β(z+λys)m and H(y, z) = γ(z+λys)m+1

for some λ∈R. Moreover, since (f, g) 6=(asy
s, 0), we conclude from the general expres-

sion (17) that G1=0. Therefore, χ|e has the general form

χ|e =(z+λys)m

(
αx

∂

∂x
+γ(z+λys)

∂

∂z

)
.

Notice, however, that this expression implies that Ω is not edge-stable. In fact, applying
the map (f ′, g′)=(λys, 0), we get a new Newton data (f ′, g′)·Ω∈Newi,m

∆′,C′ with ∆′>lex∆.
This gives a contradiction.

If we suppose that s=1, then the reasoning used above leads us to the general
expression

χ|e =(z+λy)m

(
αx

∂

∂x
+β(z+λy)

∂

∂y
+γ(z+λy)

∂

∂z

)
,

with λ∈R and (α, β, γ)∈R3\{(0, 0, 0)}. If we apply the map (f1, g1)=(λy, 0), we see
that if β=0 or (α, γ+λβ)=(0, 0) then Ω is not edge-stable. If this is not the case, we are
precisely (up to blowing-up) in the configuration listed in item (i) of the statement.

Suppose now that s=1/τ , with τ∈N and τ >2. Then, (f, g)=(η, ξ) for some ξ, η∈R
and we obtain the general expression

χ|e = zτm

(
αx

∂

∂x
+βzτ ∂

∂y
+γz

∂

∂z

)
,

with m>1 and (α, β, γ)∈R3. Since supp(Ω)∩e has at least two points, we see that β 6=0
and (α, γ) 6=(0, 0). This is precisely (up to blowing-up) the configuration listed in item
(ii) of the statement.
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m

e

F

(f, g)·

m

e

F̃

Figure 18. The action of a map (f, g)∈Gi
∆,c\G∆ with c<C.

It remains to study the case where s /∈N∪1/N. Here, under the assumption (15),
we get

χ|e = zm/s

(
αx

∂

∂x
+βy

∂

∂y
+γz

∂

∂z

)
for some (α, β, γ)∈R3\{(0, 0, 0)}. However, this expression implies that supp(Ω) and e

intersect in a single point, yielding again a contradiction.

Notice that the configurations (i) and (ii) of the previous lemma do not represent
edge-stable Newton data.

Indeed, the item (ii) of the lemma is obviously excluded because it represents a
nilpotent configuration with higher vertex h=(0,−1, τ(m+1)) and associated edge e(h)
given by

e(h) =h,n,

where n=(0, 0, τm). In this case, it follows immediately from the definition that the main
vertex associated with Ω is n and not h. The same reasoning can be used to exclude the
item (i) of the lemma with λ=0.

The item (i) with λ 6=0 is also excluded because it is not edge-stable. Indeed, the
coordinate change z̃=z+λy causes a regular-nilpotent transition (see Lemma 4.9).

The following result is an immediate consequence of Lemma 4.10.

Proposition 4.11. Let Ω∈Newi,m
∆,C be an edge-stable Newton data. Consider a map

(f, g)∈Gi
∆,c\G∆ with c<C. Then, (f, g)·Ω necessarily belongs to Newi,m

∆,c.

In other words, the map (f, g)∈Gi
∆,c\G∆ with c<C acts effectively on Newi,m

∆,C .
Using the same computations made in the proof of Lemma 4.10, we can immediately

prove the following result, which gives a more precise description of the action of Gi
∆,c\G∆

on the main edge of Ω.
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Lemma 4.12. Suppose that Ω∈Newi,m
∆,C is an edge-stable Newton data. Then, for

each (f, g)∈Gi
∆,c\G∆, the Newton data

Ω̃ = (f, g)·(Ω|e)

(i.e. the action of (f, g) in Ω|e) is such that the following conditions hold :
(i) for each pair (k, l)∈supp(f), we have supp(Ω̃)∩(e+(k, l,−1)) 6=∅;
(ii) for each c∈supp(g), we have supp(Ω̃)∩(e+(c,−1, 0)) 6=∅.

4.5. Basic edge-preparation and basic face-preparation

To state the next lemma, we consider the set

Newi,m
∆ :=

⋃
C

Newi,m
∆,C

containing all the classes of Newton data with fixed values for (i,m,∆).

Lemma 4.13. Suppose that the Newton data Ω∈Newi,m
∆,C is centered at a point

p∈NElem(M). Then, if Ω is not edge-stable, there exists a unique map (f, 0)∈G∆ such
that

(f, 0)·Ω /∈Newi,m
∆ . (18)

Proof. Choose an arbitrary map (f, 0)∈G∆ satisfying (18) and define Ω̃:=(f, 0)·Ω
(there exists at least one such map, by Lemma 4.8). Let m̃ and ∆̃ be the main vertex
and the vertical displacement vector associated with Ω̃.

Suppose, first of all, that m̃ 6=m. Then, it follows from Lemma 4.9 that Ω is in a
hidden nilpotent configuration and that Ω!Ω̃ is a regular-nilpotent transition.

In these conditions, we know that m=(0,−1,m3) and ∆=(0, 1). Therefore, m3>2
(because otherwise Ω would be associated with an elementary point p, by Proposition 4.3)
and moreover f has the particular form f=ξy for some constant ξ∈R.

Let us suppose that there exists another map (f ′, 0)=(ξ′y, 0) such that Ω̃′=(f ′, 0)·Ω
does not belong to Newi,m

∆ . Then, the composition (f̃ , 0)=(f ′, 0)�(f, 0)−1 is such that f̃

is given by f̃=(ξ′−ξ)y and it maps Ω̃ to Ω̃′.
We claim that f̃=0. Assume on the contrary that ξ 6=ξ′. If e is the main edge

associated with Ω, then

χ|e =F (y, z)x
∂

∂x
+G(y, z)

∂

∂y
+H(y, z)

∂

∂z
,

where F , G and H are homogeneous polynomials of degrees m3−1, m3 and m3, re-
spectively. The hypothesis that m=(0,−1,m3) implies that G(y, z)=%zm3 +... for some
nonzero constant %∈R.
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If we apply the change of coordinates z̃=z+ξy to χ|e, we get a vector field

χ̃|e = f̃x
∂

∂x
+g̃

∂

∂y
+H̃

∂

∂z̃
,

with
f̃ =F, g̃ =G and H̃ =H+ξG.

The assumption that Ω̃ is in a nilpotent configuration implies that z̃=0 is a root of
multiplicity >m3−1 of g̃(1, z̃). This is equivalent to saying that z=−ξ is a root of
multiplicity >m3−1 of G(1, z). Let us split the proof into two cases:

(a) Ω̃′ is in a regular configuration;
(b) Ω̃′ is in a nilpotent configuration.
In case (a), the same computations made in the previous paragraph imply that the

polynomial G(1, z) should have z=−ξ′ as a root of multiplicity >m3. This is absurd,
since m3>2 and therefore m3+(m3−1)>m3 .

In case (b), we conclude that z=−ξ′ should also be a root of G(1, z) of multiplicity
m3−1. This implies that 2(m3−1)6m3, i.e. m362.

Since we assume that m3>2, it remains to treat the case (b) with m3=2. Here, χ̃|e
is necessarily given (dropping the tildes) by

χ̃|e = %z(z+βy)
∂

∂y
+z

(
αx

∂

∂x
+γz

∂

∂z

)
for some (α, β, γ)∈R3\{(0, 0, 0)} and % 6=0. If we apply the coordinate change z′=z+ηy

(where η :=ξ−ξ′), we get (dropping the primes)

%(z−ηy)(z+(β−η)y)
(

∂

∂y
+η

∂

∂z

)
+(z−ηy)

(
αx

∂

∂x
+γ(z−ηy)

∂

∂z

)
.

We now use the assumption that Ω̃′ is in a nilpotent configuration. Looking at the
coefficients of ∂/∂x and ∂/∂y, this implies that α=0 and η=β. Therefore, the coefficient
of ∂/∂z has the form

(z−ηy)(%ηz+γ(z−ηy))

and, since this expression should be equal to γ′z2 (for some nonzero real constant γ′),
we conclude that necessarily η=0. This proves the claim.

We now prove the lemma in the simpler case where m̃=m. Here, the vertical
displacement vector ∆̃ is such that

∆̃ >lex ∆.
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Suppose that there exists another map (f ′, 0)∈G∆ such that the Newton data

Ω̃′ := (f ′, 0)·Ω

also has a displacement vector ∆̃′>lex∆. We claim that the map

(f̃ , 0) := (f ′, 0)�(f, 0)−1 ∈G∆,

which sends Ω̃ to Ω̃′, is necessarily the identity. In fact, if χ̃ denotes the vector field
which is associated with Ω̃, then

χ̃|e = ym2zm3

(
αx

∂

∂x
+βy

∂

∂y
+γz

∂

∂z

)

for some (α, β, γ)∈R3\{(0, 0, 0)} such that α=γ=0 if m2=−1.

If we write f̃=ξx∆1y∆2 , then the map (f̃ , 0) transforms χ̃|e to

ym2(z−ξx∆1y∆2)m3

(
αx

∂

∂x
+βy

∂

∂y
+(γz−ξ(γ−α∆1−β∆2)x∆1y∆2)

∂

∂z

)
. (19)

Since m3>1, the assumption ∆̃′>lex∆ necessarily implies that ξ=0.

The map (f, 0)∈G∆, which is defined by Proposition 4.13, will be called the basic
edge-preparation map associated with Ω.

Remark 4.14. The expression obtained in (19) has the following simple consequence,
which will be needed in §4.11. Suppose that the Newton data Ω is such that ∆1>0 and

supp(Ω|e)∩{v∈Z3 : v3 =m3−1}= ∅.

Then, Ω is edge-stable. Indeed, for all maps (f, 0)∈G∆ we know that (f, 0)·Ω has the
same main vertex of Ω (because no regular-nilpotent transition can occur, since ∆1>0).
Moreover, the expression (19) implies that supp((f, 0)·Ω|e) contains at least two points.
Therefore, (f, 0)·Ω has the same main edge as Ω.

Lemma 4.15. Suppose that Ω∈Newi,m
∆,C is an edge-stable Newton data. Then

(f, 0)·Ω

also belongs to Newi,m
∆,C , for all maps (f, 0)∈G∆.
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Proof. If C=∞ or C=0 then nothing has to be proven. If 0<C<∞ then the main
face F of the Newton polyhedron N associated with Ω contains at least one vertex
v∈supp(Ω) which is not in the main edge e and is such that

(v−∆)∩N = ∅. (20)

Indeed, choose some arbitrary vertex v′∈supp(Ω)∩F\e (there exists at least one such
vertex, because 0<C<∞). If v′ satisfies (20), then choose v=v′. Otherwise, there
necessarily exists some ε>0 such that the segment {v−t∆:t∈[0,−ε]} is an edge of F .
Then, it suffices to choose v to be the other extreme of that edge, i.e. v:=v′−ε∆.

Now, if we choose the vertex v∈supp(Ω) as above, it is clear that Ω̃(v)=Ω(v).
Therefore, since v and e are affinely independent and Ω is edge-stable, we conclude that
Ω̃∈Newi,m

∆,C .

In the next lemma, we consider the action of the subgroup Gi,+
∆,C of edge-preserving

maps (see §3.6).

Lemma 4.16. Suppose that Ω∈Newi,m
∆,C is an edge-stable Newton data which is not

stable. Then, there exists a unique edge-preserving map (f, g)∈Gi,+
∆,C such that

(f, g)·Ω∈Newi,m

∆,C̃

for some C̃>C.

Proof. To prove the existence part, let (f, g)∈Gi
∆,C be such that (f, g)·Ω∈Newi,m

∆,C̃
.

Then, we can uniquely decompose (f, g) as (f2, 0)�(f1, g1), where (f2, 0) belongs to G∆

and (f1, g1)∈Gi,+
∆,C is an edge-preserving map.

We claim that Ω1 :=(f1, g1)·Ω belongs to Newi,m

∆,C̃
for some C̃>C. Indeed, suppose,

by contradiction, that this is not the case. Then, Ω1 is an edge-stable Newton data in
Newi,m

∆,C . Using Lemma 4.15, we conclude that (f2, 0)·Ω1 also belongs to Newi,m
∆,C . This

yields a contradiction.
To prove the uniqueness of (f, g)∈Gi,+

∆,C , consider two maps (f1, g1) and (f2, g2) in
Gi,+

∆,C such that
Ωj := (fj , gj)·Ω∈Newi,m

∆,Cj

for some Cj >C, j=1, 2. Then, if we define the composed map

(f̃ , g̃) := (f2, g2)�(f1, g1)−1 ∈Gi,+
∆,C ,

we get Ω2=(f̃ , g̃)·Ω1. Using Proposition 4.11, we conclude that (f̃ , g̃)=(0, 0).

Given an edge-stable Newton data Ω, the map (f, g)∈Gi,+
∆,C which is defined by

Lemma 4.16 will be called the basic face-preparation map associated with Ω.
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4.6. Formal adapted charts and invariance of (m, ∆, C)

For a fixed adapted local chart (U, (x, y, z)) at a divisor point p∈D∩A, and a choice of
local generator for the line field L, there is an associated Newton data Ω. In §3, we have
seen how to associate certain combinatorial quantities (m,∆, C) to the Newton data.

A natural question is how these combinatorial quantities depend on the choice of
the adapted local chart. Our present goal is to answer this question.

First of all, we need to slightly extend the concept of adapted local chart (see §3.1).
A formal adapted chart at a divisor point p∈D∩A is a triple (x, y, z) formed by

elements of the formal completion Ôp⊃Op (with respect to the Krull topology) such
that the following conditions hold:

(i) the formal functions x, y and z are independent at p (i.e. their residue class
generates m̂p/m̂2

p);
(ii) z is locally generated by ∂/∂z;
(iii) if ιp=[i] then Di={x=0};
(iv) if ιp=[i, j] (with i>j) then Di={x=0} and Dj ={y=0}.
It is immediate that the construction of §3.2 can be carried out in the present setting.

Thus, up to a choice of a local generator χ for the line field at p, there exists a well-defined
formal Newton map

Θ:Z3−!R3

for (M,Ax) at p, relative to (x, y, z). We call the triple ((x, y, z), ιp,Θ) a formal Newton
data for (M,Ax) at p. We define the classes Newi,m

∆,C exactly as above.
Given two formal adapted charts (x, y, z) and (x̃, ỹ, z̃) at p, the transition map is

given by

x̃=xu(x, y), ỹ = g(x)+yv(x, y) and z̃ = f(x, y)+zw(x, y, z), (21)

where g∈R[[x]], u, v, f∈R[[x, y]] and w∈R[[x, y, z]] are such that g(0)=f(0)=0, u, v

and w are units, and g=0 if #ιp=2. The set of all such changes of coordinates forms a
group, which we denote by Ĝ. An element of Ĝ will be shortly denoted by (f, g, u, v, w).
We consider also the subgroups

Ĝ1 =Ĝ and Ĝ2 = {(f, g, u, v, w)∈ Ĝ : g =0}.

Remark 4.17. The Lie algebra associated with the group Ĝ is formed by all formal
vector fields having the form

xu(x, y)
∂

∂x
+(g(x)+yv(x, y))

∂

∂y
+(f(x, y)+zw(x, y, z))

∂

∂z
,

where u, v, w are units and g(0)=f(0)=0.
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(∆1, ∆2)

(C,−1)

Sf

C Sg

Figure 19. The supports of Sf and Sg in the definition of Ĝi
∆,C .

We denote by Ĝi
∆,C the subgroup of all maps (f, g, u, v, w)∈Ĝi such that the supports

of the maps f and g satisfy the following conditions (see Figure 19):

Sf ⊂{(a, b)∈N2 : 〈(1, C), (a, b)−∆〉> 0 and (a, b) >lex ∆} and Sg ⊂{c∈N : c>C}.

If C=∞, the former condition is replaced by Sf⊂{(a, b)∈N2 :b>∆2}. We shall say
that Ĝi

∆,C is the group of (∆, C)-face maps.
The following lemma relates the groups Ĝi

∆,C and Gi
∆,C .

Lemma 4.18. There exists a normal subgroup Ĝi,+
∆,C CĜi

∆,C such that the quotient
Ĝi

∆,C/Ĝi,+
∆,C is naturally isomorphic to Gi

∆,C . We shall say that Ĝi,+
∆,C is the subgroup of

(∆, C)-face preserving maps.

Proof. We define explicitly the subgroup Ĝi,+
∆,C as follows:

(a) if C∈{0,∞} then (f, g, u, v, w)∈Ĝi
∆,C belongs to Ĝi,+

∆,C if and only if

Sf ⊂{(a, b)∈N2 : (a, b) >lex ∆} and Sg ⊂{c∈N : c> C};

(b) if 0<C<∞ then (f, g, u, v, w)∈Ĝi
∆,C belongs to Ĝi,+

∆,C if and only if

Sf ⊂{(a, b)∈N2 : 〈(1, C), (a, b)−∆〉> 0}.

It is immediate to verify that this gives a normal subgroup of Ĝi
∆,C . Moreover,

Gi
∆,C∩Ĝi,+

∆,C = {0} and Ĝi
∆,C =Ĝi,+

∆,C �G
i
∆,C =Gi

∆,C �Ĝ
i,+
∆,C

(i.e. Ĝi
∆,C is the semi-direct product of Gi

∆,C and Ĝi,+
∆,C).

The group Ĝi acts in an obvious way on the set of formal Newton data. Given
Ω∈New, we denote by Ĝi ·Ω its orbit under this action. We adopt a similar notation for
the action of the subgroups Ĝi

∆,C and Ĝi,+
∆,C .
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Lemma 4.19. Given a formal Newton data Ω∈Newi,m
∆,C , the orbit

Ĝi,+
∆,C ·Ω

lies entirely in the class Newi,m
∆,C . If we further assume that Ω is stable then the orbit

Ĝi
∆,C ·Ω

also lies in the class Newi,m
∆,C .

Proof. This is an immediate corollary of Lemma 4.18, Corollary 3.19 and the defi-
nition of a stable Newton data.

As a consequence, we obtain the following result on the invariance of the quantities
(m,∆, C).

Proposition 4.20. Let Ω∈Newi,m
∆,C and Ω̃∈Newi,m̃

∆̃,C̃
be two stable Newton data

which lie on the same Ĝi-orbit. Then (m,∆, C)=(m̃, ∆̃, C̃).

Proof. Let (f, g, u, v, w)∈Ĝi be the map such that (f, g, u, v, w)·Ω=Ω̃. We shall
prove that (f, g, u, v, w) belongs to the subgroup Ĝi

∆,C .
We define P⊂
Q2×
Q as the subset of all pairs (∆0, C0) such that (f, g, u, v, w)

belongs to the subgroup Ĝi
∆0,C0

.
Since the union

⋃
∆,C Ĝi

∆,C exhausts Ĝi, we know that P is nonempty. Let us fix
an element (∆̄, 
C)∈P . Using Lemma 4.18, we can uniquely write

(f, g, u, v, w) = (f̄ , ḡ)�(f1, g1, u1, v1, w1),

with (f̄ , ḡ)∈Gi
∆̄,	C

and (f1, g1, u1, v1, w1)∈Ĝi,+

∆̄,	C
. From the discussion in §3.6, we can

further write the decomposition

(f̄ , ḡ) = (f0, 0)·(f1, g1), (22)

with (f0, 0)∈Gi
∆̄

and (f1, g1)∈Gi,+

∆̄,	C
.

First of all, let us assume by contradiction that m 6=m̃. Then, we immediately see
that either Ω̃ or Ω is in a hidden nilpotent configuration, and that the action of the map
(f̄ , ḡ) (or its inverse) causes regular-nilpotent transition. This contradicts the hypothesis
that both Ω and Ω̃ are stable.

Assuming that m=m̃, let us suppose by contradiction that ∆>lex∆̃. Then, the
pair (∆̃, C0) necessarily lies in the set P (for some constant C0). Moreover, in the
corresponding decomposition (22) for (∆̄, 
C):=(∆̃, C0), one has

(f0, 0) = (ξx∆̃1y∆̃2 , 0) for some constant ξ 6=0.



resolution of singularities of vector fields in dimension three 221

However, using the above decomposition of (f, g, u, v, w), we immediately see that

(f0, 0)−1 ·Ω̃ /∈Newi,m̃

∆̃,C̃
,

and this contradicts the hypothesis that Ω̃ is stable.
Finally, we assume by contradiction that (m,∆)=(m̃, ∆̃) and C>C̃. We prove the

following statement.

Claim. There exists a constant C0<C such that the pair (∆, C0) lies in P . Moreover,
the decomposition (22) for (∆̄, 
C):=(∆, C0) is such that the map

(f1, g1)∈Gi,+
∆,C0

is nonzero.

Indeed, if the claim is false, the map (f, g, u, v, w) should lie in Ĝi
∆,C and Lemma 4.19

would imply that Ω̃ also lies in Newi,m
∆,C . This contradicts the assumption that C>C̃.

Using the above claim and Proposition 4.11, we conclude that (f1, g1)·Ω belongs to
Newi,m

∆,C0
. Consequently, Ω̃ also lies in Newi,m

∆,C0
(i.e. C̃=C0). Taking the inverse map,

we see that
(f1, g1)−1 ·Ω̃ /∈Newi,m

∆,C0
.

This contradicts the hypothesis that Ω̃ is stable. The proposition is proved.

4.7. Stabilization of adapted charts

The main goal of this subsection is to prove that one can always find a stable Newton
data for (M,Ax) at a nonelementary point p lying on the divisor D.

Proposition 4.21. Let p∈D∩A be a divisor point belonging to NElem(M). Then,
there exists an analytic adapted local chart (U, (x, y, z)) at p such that the associated
Newton data Ω=((x, y, z), ιp,Θ) is stable.

Proposition 4.21 will be an immediate consequence of the following result.

Proposition 4.22. (Stabilization of adapted charts) Let p∈D∩A be a divisor point
belonging to NElem(M) and let (U, (x, y, z)) be an analytic adapted local chart at p.
Then, there exists an analytic change of coordinates

ỹ = y+g(x) and z̃ = z+f(x, y), where f ∈R{x, y} and g ∈R{x},

with f(0)=g(0)=0, such that the Newton data associated with the new adapted local chart
(U, (x, ỹ, z̃)) is stable.



222 d. panazzolo

We shall prove this proposition using two lemmas which describe the stabilization
of Newton data. We shall say that a map (f, g, u, v, w)∈Ĝi is a stabilization map for Ω
if f(0)=g(0)=0 and (f, g, u, v, w)·Ω is a stable Newton data. Similarly, we say that
(f, g, u, v, w)∈Ĝi is an edge-stabilization map for Ω if f(0)=g(0)=0 and (f, g, u, v, w)·Ω
is an edge-stable Newton data.

Lemma 4.23. Let Ω be the Newton data for a divisor point p∈D∩A belonging to
NElem(M). Then, there exists an edge-stabilization map for Ω which has the form

(f, 0, 1, 1, 1)∈ Ĝi

for some f∈R{x, y}.

Proof. Define Ω0 :=Ω and consider the sequence

Ω0, Ω1 =(f0, 0)·Ω0, ..., Ωn+1 =(fn, 0)·Ωn, ..., (23)

where each Ωn+1 is obtained by applying the basic edge-preparation map

(fn, 0) = (ξnxanybn , 0)

to Ωn (see §4.5).
If there exists a finite natural number n such that Ωn is edge-stable, then we are

done. In fact, the polynomial map

f(x, y) =
n−1∑
i=0

ξix
aiybi

is such that (f, 0, 1, 1, 1)·Ω is edge-stable.
Otherwise, {(an, bn)}n>0 is an infinite sequence, strictly increasing for the lexico-

graphical ordering. Up to discarding a finite initial segment of the sequence (23), we
may assume that all Ωn have the same main vertex. In fact, it follows from Lemma 4.9
that a regular-nilpotent transition in this sequence can occur after at most m3+1 basic
edge-preparation maps (where m=(m1,m2,m3) is the main vertex of Ω0).

Therefore we may assume that, for each n>0,

Ωn ∈Newi,m
(an,bn)

and (an+1, bn+1)>lex(an, bn). Two cases can occur (see Figure 20):
(i) an!∞ as n!∞;
(ii) there exist two natural numbers a,N∈N, with a>∆1, such that

an = a for all n >N,

and bn!∞ as n!∞.
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m

∆

(i)

(ii)

a

Figure 20. Cases (i) and (ii) for the edge-stabilization sequence.

We first prove that case (i) yields a contradiction. In fact, if we consider the formal
series

f(x, y) =
∞∑

i=0

ξix
aiybi , (24)

it is clear that Ω̃=(f, 0, 1, 1, 1)·Ω belongs to Newi,m
(∞,∞).

If we write the vector field associated with Ω as

χ=F (x, y, z)
∂

∂x
+G(x, y, z)

∂

∂y
+H(x, y, z)

∂

∂z
,

then the change of coordinates z̃=z+f(x, y) gives the formal vector field

χ̃= f̃(x, y, z̃)
∂

∂x
+g̃(x, y, z̃)

∂

∂y
+H̃(x, y, z̃)

∂

∂z
,

where f̃(x, y, z̃)=F (x, y, z̃−f(x, y)), g̃(x, y, z̃)=G(x, y, z̃−f(x, y)) and

H̃(x, y, z̃) =H(x, y, z̃−f(x, y))+
∂f

∂x
(x, y)f̃(x, y, z̃)+

∂f

∂y
(x, y)g̃(x, y, z̃).

If we write m=(m1,m2,m3) then the condition Ω̃∈Newi,m
(∞,∞) implies that there exists

a factorization  f̃

g̃

H̃

= z̃m3

 f̃1

g̃1

z̃H̃1

,
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for some formal germs F1, G1 and H1. Going back to the original variables, we get F

G

H

=(z+f(x, y))m3

 F1

G1

(z+f(x, y))H1

,

where (F1, G1,H1) is given by F1

G1

H1

=

 1 0 0
0 1 0

−∂f/∂x −∂f/∂y 1


 f̃1

g̃1

H̃1

.

Recall now that m3>1 (because Ω is centered at a point p∈NElem(M)). Therefore, we
can apply Corollary A.2 to conclude that f(x, y) is necessarily an analytic function.

As a consequence, the Newton data Ω̃=(f, 0)·Ω is analytic. Notice, however, that
the associated vector field χ̃ violates the condition of being nondegenerate with respect
to the divisor (see Definition 2.2). Indeed, the ideal Iχ̃(z̃) is generated by

Iχ̃(z̃) = (z̃f̃ , z̃g̃, H̃),

and therefore Iχ̃(z̃) is divisible by z̃. Since {z=0} is not a component of the divisor, we
get a contradiction to the assumption that χ̃ is nondegenerate.

Suppose now that (ii) holds. Then, the formal map f given in (24) can be written
in the form

f(x, y) = fδ(y)xδ+fδ+1(y)xδ+1+...+fa(y)xa, with fδ, ..., fa ∈R[[y]], (25)

where δ :=∆1. We claim that fδ, fδ+1, ..., fa are analytic germs.
Indeed, let us apply the change of coordinates z̃=z+f(x, y). Keeping the same

notation as above, we get the formal vector field

f̃(x, y, z̃)
∂

∂x
+g̃(x, y, z̃)

∂

∂y
+H̃(x, y, z̃)

∂

∂z
,

which is associated with the (formal) Newton data Ω̃=(f, 0)·Ω. From the hypothesis, we
know that Ω̃ belongs to Newi,m

∆̃,C̃
, for some ∆̃=(ã, b̃) such that ã>a. This is equivalent

to saying that, if we consider the homomorphic images [f̃ ], [g̃] and [H̃] in the quotient
ring R̂a=R[[x, y, z]]/(xa)R[[x, y, z]], we get [f̃ ]

[g̃]
[H̃]

= [z̃]m3

 [f̃1]
[g̃1]

[z̃H̃1]

.
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Going back to the original functions F , G and H and using the same reasoning as above,
we conclude, by Corollary A.3 of Appendix A, that the germ [z−f(x, y)]∈R̂a belongs to
the homomorphic image of a convergent germ.

Therefore, using the expression (25), we conclude that fδ, fδ+1, ..., fa are convergent
germs, and the function f given by (25) is analytic. This proves the claim.

Let us call the map (f, 0)∈Ĝi the extended edge-preparation step associated with Ω.
If the Newton data

Ω(1) := (f, 0)·Ω

is edge-prepared, then we are done. Otherwise, we can start all over again, defining
a new extended edge-preparation step (f (1), 0) associated with Ω(1), and setting Ω(2)=
(f (1), 0)·Ω(1), Ω(3)=(f (2), 0)·Ω(2), and so on.

Suppose that we can iterate this procedure infinitely many times. Then, we get a
sequence of Newton data {Ω(n)}n>0, where each element of the sequence is obtained from
its predecessor by an extended edge-preparation step (f (n), 0), for some analytic germ
f (n)∈R{x, y} such that

f (n) =O
(
x∆

(n)
1
)
, (26)

for some strictly increasing sequence {∆(n)
1 }n>0 of natural numbers. We claim that there

exists a finite n∈N such that Ω(n) is edge-prepared.
Indeed, suppose by contradiction that this sequence is infinite. Then, it follows from

the expression (26) that the composed map

fn = f (n)
�f (n−1)

�...�f (1)
�f

converges in the Krull topology, as n!∞, to a formal map f̃∈R[[x, y]]. Moreover, the
formal Newton data Ω̃:=(f̃ , 0)·Ω belongs to Newi,m

(∞,∞). Using the same reasoning as for
item (i), we get a contradiction.

Lemma 4.24. Let Ω be an analytic Newton data centered at a divisor point p∈D∩A

belonging to NElem(M). Assume that Ω is edge-stable. Then, there exists a stabilization
map for Ω which has the form

(f, g, 1, 1, 1)∈ Ĝi

for some convergent germs g∈R{x} and f∈R{x, y} with f(0)=g(0)=0.

Proof. Define Ω0 :=Ω and consider the sequence

Ω0, Ω1 =(f0, g0)·Ω0, ..., Ωn+1 =(fn, gn)·Ωn, ...,

where Ωn+1 is obtained by applying the basic face-preparation map (fn, gn) to Ωn

(see §4.5). Notice that, for each n>0,

Ωn ∈Newi,m
∆,Cn
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C

m

∆

m

∆

Figure 21. The sequence of basic face-preparations.

and C0<C1<C2<... is a strictly increasing sequence of rational numbers.
Notice that the rational numbers Cn always belong to the discrete lattice

1
((m3+1)∆)!

Z

(see Remark 3.15). Therefore Cn!∞ as n!∞.
If there exists a finite natural number n such that Ωn is stable, then we are done.

In fact, the composed map

(fn,gn) := (fn, gn)�...�(f0, g0)

is a polynomial map and (fn,gn, 1, 1, 1)∈Ĝi is such that (fn,gn, 1, 1, 1)·Ω is stable.
Otherwise, {Ωn}n>0 forms an infinite sequence, and the condition that (fn, gn)∈

Gi
∆,Cn

implies that the sequence of composed maps {(fn,gn)}n>0 converges (in the Krull
topology) to a pair of formal maps (f, g) such that

(f, g, 1, 1, 1)∈ Ĝi.

Moreover, f∈R[[x, y]] can be written in the form

f(x, y) = f0(x)+f1(x)y+...+fb−1(x)yb−1,

with each fi belonging to R[[x]] and b=d∆2e. Notice that

Ω̃ := (f, g, 1, 1, 1)·Ω

is a formal Newton data which belongs to Newi,m
∆,∞.

We claim that (f, g, 1, 1, 1) is an analytic map.
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m

e
B

m2+∆2m3

Figure 22. The number B.

Suppose initially that g=0. Let us write the vector field associated with Ω̃ as

f̃(x, ỹ, z̃)
∂

∂x
+g̃(x, ỹ, z̃)

∂

∂ỹ
+H̃(x, ỹ, z̃)

∂

∂z
.

From the hypothesis, we know that the coefficients f̃(x, ỹ, 0), g̃(x, ỹ, 0) and H̃(x, ỹ, 0) are
such that

f̃(x, ỹ, 0), H̃(x, ỹ, 0)∈ (ỹB)R[[x, y]] and g̃(x, ỹ, 0)∈ (ỹB+1)R[[x, y]], (27)

where B :=dm2+∆2m3e (see Figure 22). Since Ω is centered at a point p∈NElem(M),
we know also that B>1 (because otherwise Ω would be in a final situation, contradicting
Proposition 4.3). Hence, we can use the same reasoning as in the proof of Lemma 4.23
to show that f is analytic.

Let us suppose now that g 6=0. Then, from the definition of Newi,m
∆,C , we know that

{y=0} is not a local irreducible component of the divisor at the point p.
Moreover, it follows from the condition (27) that the coefficients f̃ , g̃ and H̃ belong

to the ideal (ỹ, z̃). This is equivalent to saying that the analytic coefficients F , G and H

of the original vector field χ are contained in the ideal

J =(y+g(x), z+f(x,−g(x)).

Since {y=0} is not a divisor component and χ is nondegenerate, the ideal J is necessarily
the defining ideal of an irreducible 1-dimensional component of the germ Ze(χ)p (the
analytic set of zeros of χ).

In other words, the prime ideal J is an element of the irreducible primary decompo-
sition of I :=rad(F,G,H). Therefore, it follows from Lemma A.1 that the functions g(x)
and f(x,−g(x)) are necessarily analytic.
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Now, we can decompose the map (f, g, 1, 1, 1) in a unique way as

(f, g, 1, 1, 1) = (f̃ , 0, 1, 1, 1)�(f1, g1, 1, 1, 1),

where f1(x):=f(x,−g(x)), g1(x):=g(x) and

f̃ = f̃0(x)+...+f̃b−1(x)yb−1 ∈R[[x, y]]

is a conveniently chosen formal map. Since (f1, g1, 1, 1, 1)·Ω is analytic, we conclude as
above that (f̃ , 0, 1, 1, 1) is also analytic. This completes the proof of the lemma.

Proof of Proposition 4.22. We define the stabilization map (f, g, 1, 1, 1)∈Ĝi as the
composition

(f, g, 1, 1, 1) := (f2, g2, 1, 1, 1)�(f1, 0, 1, 1, 1),

where (f1, 0, 1, 1, 1) is the edge-stabilization map given by Lemma 4.23 and (f2, g2, 1, 1, 1)
is the face stabilization map given by Proposition 4.24.

We denote by StΩ the stabilized Newton data defined by the above construction.
The transition from Ω to StΩ will be called the stabilization of the Newton data.

We remark that the notion of stable Newton data at a point p is independent of
the choice of the local generator for the line field from which this data is defined (see
Lemma 3.4).

For this reason, and for notational simplicity, we often say that an adapted local
chart (U, (x, y, z)) at p is stable (respectivley, edge-stable) whenever the corresponding
Newton data Ω=((x, y, z), ιp,Θ) is stable (respectively, edge-stable), where Θ is defined
by fixing some arbitrary choice of local generator for the line field at p.

Remark 4.25. Given a formal Newton data Ω at a point p∈NElem(M), it is easy to
see that the condition ∆1>0 immediately implies that the formal curve {x=z=0} lies
entirely in the set NElem(M).

Note also that the condition of nondegeneracy for the local generator χ of the line
field guarantees that NElem(M)∩{z=0} is an analytic set of dimension at most equal
to 1, and therefore {x=z=0} is necessarily an analytic curve.

However, these conditions do not imply that the formal coordinates (x, y, z) are
analytic. This is the reason why we needed extra arguments to prove the analyticity of
the stabilization map at the end of the proof of Lemma 4.24.

4.8. Newton invariant and local resolution of singularities

Let (M,Ax) be a controlled singularly foliated manifold, and let p∈D∩A be a divisor
point belonging to NElem(M).
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In Proposition 4.22, we have proved that there always exists an (analytic) adapted
local chart (U, (x, y, z)) for (M,Ax) at p such that the associated Newton data Ω is
stable.

The Newton invariant for (M,Ax) at p is the vector of natural numbers

inv(M,Ax, p) = inv(Ω)∈N6,

where inv(Ω) is given by Definition 4.6.
Let N be the Newton polyhedron associated with Ω. The weight-vector for (M,Ax)

at p is the nonzero vector ω∈N3 such that gcd(ω1, ω2, ω3)=1 and

F =N∩{v∈R3 : 〈ω,v〉=µ} for some µ∈Z,

where F is the main face of N . The integer µ in the formula is called the face order for
(M,Ax) at p.

Remark 4.26. If Ω belongs to the class Newi,m
∆,C , then we can explicitly compute that

ω=k α, where α is defined by

α=


(1, 0,∆1), if C =0,
(0, 1,∆2), if C =∞,
(1, C, C∆2), if 0 <C <∞,

and k∈N is the least natural number such that kα belongs to N3.

The local blowing-up center associated with (M,Ax) at p is the submanifold Yp⊂U

defined by

Yp =


{x= y = z =0}, if ω =(∗, ∗, ∗),
{x= z =0}, if ω =(∗, 0, ∗),
{y = z =0}, if ω =(0, ∗, ∗),

where the ∗’s denote nonzero natural numbers.

Lemma 4.27. The local blowing-up center Yp lies in NElem(M).

Proof. Let us consider the case where Yp={x=z=0}, which corresponds to the
second case in the above definition (the reasoning for the third case is analogous). Fixing
some local generator χ for the line field at p, and writing ω=(ω1, 0, ω3) with ω1, ω3∈N>0,
we have

χ=F
∂

∂x
+G

∂

∂y
+H

∂

∂z
,

where F , G and H are analytic germs with ω-multiplicity given by µ−ω1, µ and µ−ω3,
respectively. Consider now a translation of coordinates (x̃, ỹ, z̃)=(x, y−η, z), for some
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constant η∈R, and let χ̃=F̃ ∂/∂x̃+G̃∂/∂ỹ+H̃∂/∂z̃ be the resulting local generator of
the line field. Since ω2=0, it is obvious that the germs F̃ , G̃ and H̃ have ω-multiplicity
at least µ−ω1, µ and µ−ω3, respectively. Therefore, the point p̃∈Yp, which is the center
of the new coordinates (x̃, ỹ, z̃), also belongs to NElem(M).

Proposition 4.28. Let (U, (x, y, z)) and (Ũ , (x̃, ỹ, z̃)) be two stable adapted local
charts at p. Then, the corresponding numbers

inv(M,Ax, p), ω and µ,

associated with these two charts, are equal. Moreover , the respective local blowing-up
centers Yp and Ỹp coincide on U∩Ũ . Finally, the transition map

φ(x, y, z) = (x̃, ỹ, z̃)

preservers the ω-quasihomogeneous structure on R3.

Proof. The first part of the statement follows from Proposition 4.20.
In order to prove the second part, it suffices to remark that the transition map φ

has the form
x̃=xu, ỹ = g(x)+y v and z̃ = f(x, y)+z w,

and the map (f, g, u, v, w) is a member of the subgroup Ĝi
∆,C (by the proof of Proposi-

tion 4.20). Using the explicit definition of this subgroup and Remark 4.26, we immedi-
ately conclude that φ preservers the ω-quasihomogeneous structure on R3.

Let Ω be a stable Newton data for (M,Ax) at p, associated with an adapted local
chart (U, (x, y, z)).

The local blowing-up for (M,Ax) at p is the ω-weighted blowing-up of

Φ: M̃−!M∩U

with center on Yp, with respect to the trivialization given by (U, (x, y, z)).
The apparent arbitrariness in the choice of (U, (x, y, z)) can be removed as follows.

Consider two local blowing-ups at p,

Φi : M̃i −!M∩Ui, i =1, 2,

associated with distinct stable adapted charts (Ui, (xi, yi, zi)), i=1, 2.
Using Proposition 4.28, it follows that (up to restricting each Ui to some smaller

neighborhood of p), there exists an isomorphism Ψ: M̃1!M̃2 (in the obvious sense of
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isomorphism between singularly foliated manifolds) which makes the following diagram
commutative:

M̃1

Ψ //

Φ1

��

M̃2

Φ2

��

M∩U
id // M∩U,

where id is the identity map and U=U1∩U2.
The main theorem of this section can now be stated as follows.

Theorem 4.29. (Local resolution of singularities) Let (M,Ax) be a controlled sin-
gularly foliated manifold and let p∈D∩A be a divisor point in NElem(M). Consider the
local blowing-up for (M,Ax) at p,

Φ: M̃−!M∩U,

with respect to some stable adapted chart (U, (x, y, z)). Then, there exists an axis

Ãx= (Ã, z̃)

for M̃ such that each point p̃∈Φ−1(p)∩Ã belonging to NElem(M̃) is such that

inv(M̃, Ãx, p̃ ) <lex inv(M,Ax, p).

The proof of Theorem 4.29 will be given in §4.20.

4.9. Directional blowing-ups

Let us fix a stable adapted chart (U, (x, y, z)) at a divisor point p∈NElem(M) and con-
sider the corresponding ω-weighted local blowing-up

Φ: M̃−!M∩U,

as defined in the previous subsection.
Theorem 4.29 will be proved by studying the effect of this blowing-up in the x-, y-,

and z -directional charts (see §2.4).
Let Ω=((x, y, z), ιp,Θ) be the Newton data associated with the adapted local chart

(U, (x, y, z)) (for some choice of local generator χ of L). It will be convenient to look
at the directional blowing-ups as transformations on the Newton map Θ. For this, we
consider the following matrices.

(i) x-directional transformation matrices:

Bx =

ω1 ω2 ω3

0 1 0
0 0 1

 and Mx =

 1/ω1 0 0
−ω2/ω1 1 0
−ω3/ω1 0 1

.
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(ii) y -directional transformation matrices:

By =

 1 0 0
ω1 ω2 ω3

0 0 1

 and My =

 1 −ω1/ω2 0
0 −1/ω2 0
0 −ω3/ω2 1

.

(iii) z -directional transformation matrices:

Bz =

 1 0 0
0 1 0
ω1 ω2 ω3

 and Mz =

 1 0 −ω1/ω3

0 1 −ω2/ω3

0 0 1/ω3

.

We consider also the permutation matrices

I =

 0 1 0
1 0 0
0 0 1

 and J =

 0 0 1
1 0 0
0 1 0

.

The directional blowing-ups of Θ are the Newton maps BlxΘ, BlyΘ and BlzΘ given
respectively by

BlxΘ(Bxv−µe1)= εv1MxΘ(v) (defined for ω1 > 0),
BlyΘ(IByv−µe1)= εv2IMyΘ(v) (defined for ω2 > 0),
BlzΘ(JBzv−µe1)= εv3JMzΘ(v) (defined for ω3 > 0),

where ε∈{−1, 1} and v∈Z3. The directional blowing-ups of the Newton data Ω are
defined as follows:

(i) x-directional blowing-up: BlxΩ=((x̄, ȳ, z̄), ῑ,BlxΘ),
(ii) y-directional blowing-up: BlyΩ=((x̄, ȳ, z̄), ῑ,BlyΘ),
(iii) z-directional blowing-up: BlzΩ=((x̄, ȳ, z̄), ῑ,BlzΘ),

where ῑ=ιp∪[n] (with n=1+max{i:i∈Υ} for Υ 6=∅ and n=1 for Υ=∅) and (x̄, ȳ, z̄) is
a chart respectively defined by the following singular changes of coordinates

x-directional blowing-up: x= εx̄ω1 , y = x̄ω2 ȳ and z = x̄ω3 z̄,

y-directional blowing-up: x= x̄ω1 ȳ, y = εx̄ω2 and z = x̄ω3 z̄,

z-directional blowing-up: x= x̄ω1 ȳ, y = x̄ω2 z̄ and z = εx̄ω3 ,

followed by a division by x̄µ. Notice that there exists a cyclic permutation of coordinates
in the y- and z -directional blowing-ups (corresponding to the permutation matrices I

and J).
In Figure 23, we give an illustration of the movement of the Newton polyhedron

which is caused by these maps.
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F

x-dir.

y -dir.

z -dir.

Figure 23. The directional blowing-ups.

4.10. x-directional blowing-up

Let (M,Ax) be a controlled singularly foliated manifold and let p∈D∩A be a divisor
point in NElem(M).

Let Ω∈Newi,m
∆,C be a stable Newton data at p, with coordinates (x, y, z). In this

subsection, we assume that the corresponding weight-vector ω=(ω1, ω2, ω3) is such that
ω1>0. Geometrically, this assumption means that the local blowing-up center is distinct
from the axis {y=z=0}.

The x-directional translation group is defined by

Gtr
x :=

{G1
(0,0),0, if ∆1 =0,

G2
(0,0),0, if ∆1 > 0.

In other words, if ∆1>0 then Gtr
x is the group of all translations

z̃ = z+ξ

for some real constant ξ∈R. If ∆1=0 then Gtr
x is the group of all translations

ỹ = y+η and z̃ = z+ξ

for some real constants η, ξ∈R. In this subsection, we shall prove the following result.
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Proposition 4.30. Given a stable Newton data Ω, let 	Ω=BlxΩ be its x-directional
blowing-up. Then, for each (ξ, η)∈Gtr

x , either the translated Newton data

	Ωξ,η := (ξ, η)·	Ω

is centered at an elementary point p̃∈Elem(M̃) or

inv(Ω̃ξ,η) <lex inv(Ω),

where Ω̃ξ,η=St	Ωξ,η is the stabilization of 	Ωξ,η.

The proof of Proposition 4.30 will be given at the end of §4.15 and will depend on
several lemmas. First of all, let us look at the effect of Blx on the main face F .

Lemma 4.31. Let 	Ω:=BlxΩ be the x-directional blowing-up of Ω. Then, there exists
a bijective correspondence

supp(Ω)∩F −! supp(	Ω)∩{0}×Z2,

v =(v1, v2, v3) 7−!πx(v) = (0, v2, v3),

such that the corresponding Newton maps 
Θ and Θ satisfy 
Θ[πx(v)]=MxΘ[v].

Proof. This is immediate from the definition of Blx.

The matrices Mx and Bx which appear in the definition of the x-directional blowing-
up Blx can be written as products Bx=B2

x B1
x and Mx=M2

x M1
x , where

B1
x =

ω1 0 0
0 1 0
0 0 1

 and M1
x =

 1/ω1 0 0
0 1 0
0 0 1

,

and

B2
x =

 1 ω2 ω3

0 1 0
0 0 1

 and M2
x =

 1 0 0
−ω2 1 0
−ω3 0 1

.

Therefore, the map Blx can be written as the composition Blx=Bl2x�Bl1x, where

Bl1xΘ(B1
xv) = εv1M1

xΘ(v) and Bl2xΘ(M2
xv−µe1) =M2

xΘ(v).

Notice that the maps Bl1x and Bl2x correspond, respectively, to the singular changes of
coordinates

x= ε x̄ω1 , y = ȳ and z = z̄,

and
x= x̄, y = x̄ω2 ȳ and z = x̄ω3 z̄,

followed by a division by x̄µ (for ε∈{−1, 1}).
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4.11. The effect of a ramification

The expressions given in the previous subsection show that an x-directional blowing-up
can always be written as a composition of a ramification x=εx̄ω1 followed by a sequence
of homogeneous blowing-ups.

Example 4.32. For ω=(2, 3, 2), the x-directional blowing-up can be decomposed as
the ramification (x, y, z)=(x̄2, ȳ, z̄) followed by the sequence of blowing-ups

(x̄, ȳ, z̄) = (x1, x1y1, x1z1), (x1, y1, z1) = (x2, x2y2, x2z2) and (x2, y2, z2) = (x3, x3y3, z3).

Notice that the last blowing-up has its center on the curve Y ={x2=y2=0}.

The example from §1.4 shows that the use of ramifications is unavoidable in order
to obtain a complete resolution of singularities for vector fields.

Our present goal is to study the effect of a ramification on the Newton data. If Ω
belongs to the class Newi,m

∆,C , it is obvious that 	Ω=Bl1xΩ belongs to the class Newi,m
∆̄,	C

,
where

∆̄ = (ω1∆1,∆2) and 
C =ω1C.

Moreover, we have the following result.

Lemma 4.33. For each map (f, g)∈Gi
∆,C there exists a unique map (f̄ , ḡ)∈Gi

∆̄,	C

which makes the following diagram commutative:

Ω
(f,g)·

//

Bl1x

��

(f, g)·Ω

Bl1x
��

	Ω
(f̄ ,ḡ)·

// (f̄ , ḡ)·	Ω.

Proof. We can explicitly define f̄(x, y)=f(εxω1 , y) and ḡ(x)=g(εxω1).

The next lemma implies that the stability property is preserved by the transforma-
tion Bl1x.

Lemma 4.34. Suppose that Ω is stable. Then 	Ω=Bl1xΩ is also a stable Newton data.

Proof. First of all, let us prove that 	Ω is edge-stable. For this, assume by contradic-
tion that there exists a map (f̄ , 0)∈Gi

∆̄
such that

(f̄ , 0)·	Ω /∈Newi,m
∆̄,	C

. (28)

We must treat the following two cases:
(a) ∆1=0;
(b) ∆1>0.
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In case (a), it follows that f̄ is a function of y only. Therefore, Lemma 4.33 implies
that there exists a map (f, 0)∈G∆ such that (f, 0)·Ω /∈Newi,m

∆,C . This contradicts the fact
that Ω is stable.

In case (b), note that C=0. Write ∆1=p1/q1 and ∆2=p2/q2, with gcd(pi, qi)=1
(i=1, 2). Then, by Remark 4.26, the weight-vector is given by ω=(q1, 0, p1). Let us split
the discussion into two subcases:

(b.1) q1=1;
(b.2) q1>2.
In case (b.1), the map Bl1x is just the identity map and we are done.
In case (b.2), we notice that the support of the Newton data Ω is such that

supp(Ω|e)⊂m+nt

(
p1

q1
,
p2

q2
,−1

)
for n∈N,

where t is the least common multiple of q1 and q2. In particular, t>2. Therefore, we get

supp(Ω|e)∩{v∈Z3 : v3 =m3−1}= ∅,

and the same property holds for supp(	Ω|ē). Remark 4.14 now implies that 	Ω is edge-
stable.

Now suppose, by contradiction, that there exists a map (f̂ , ĝ)∈Gi
∆̄,	C

\Gi
∆̄

such that

(f̂ , ĝ)·	Ω /∈Newi,m
∆̄,	C

.

Let us look at the action of the inverse map (f̂ , ĝ)−1 on the restricted Newton data 	Ω|e.
Notice that

(f̂ , ĝ)−1 ·	Ω|e

is precisely the restriction of 	Ω to the main face 
F .
Looking at the points on the support of 	Ω|


F and using Lemma 4.12, we can easily
see that (f̂ , ĝ)−1 should necessarily be of the form

(f̂ , ĝ)−1 =(f(xω1 , y), g(xω1))

for some f∈R[x, y] and g∈R[x]. Using Lemma 4.33, this implies that Ω is not stable,
yielding a contradiction.

4.12. The x-directional projected group and the group G∆,C

Let us now introduce another subgroup of G, which will be mainly used for studying the
effect of the translations on the x-directional blowing-up BlxΩ.



resolution of singularities of vector fields in dimension three 237

The x-directional projected group adapted to Newi,m
∆,C is defined by

PrGx :=
{G1

(0,∆2),∞, if ∆1 > 0,

G1
(0,∆2),0

, if ∆1 =0.

In other words, if ∆1>0 then each (f, g)∈PrGx has the form

g =0 and f = ξy∆2 ,

where the constant ξ∈R necessarily vanishes if ∆2 /∈N. If ∆1=0 then each (f, g)∈PrGx

has the form
g(x) = η and f(x, y) = a0+a1y+...+aby

b,

where b:=b∆2c and η, a0, ..., ab∈R are constants.

Lemma 4.35. Suppose that ω1=1. Then, given a map (f, g)∈PrGx, there exists a
unique map (fω, gω)∈G1

∆,C which makes the following diagram commutative:

New
(fω,gω)·

//

Blx

��

New

Blx

��

New
(f,g)·

// New.

Proof. Suppose first that ∆1=0 and that (f, g)=(ξyk, η) for some constants η, ξ∈R
and 06k6b. The change of coordinates which is associated with (f, g) is

ỹ = y+η and z̃ = z+ξyk.

Now, if we apply the blowing-up map (X, Y, Z)=(x, xω2y, xω3z) on both sides of these
equalities and simplify common powers of X, we get

Ỹ =Y +ηXω2 and Z̃ =Z+ξXω3−kω2Y

(notice that ω3>kω2). Therefore it suffices to define

(fω, gω) := (ξXω3−kω2Y, ηXω2).

By the same reasoning, we obtain fω from an arbitrary polynomial f, by making
the formal replacement

yk 7−!Xω3−kω2Y k,

and we obtain gω from g by making the formal replacement

1 7−!Xω2 .



238 d. panazzolo

Suppose now that ∆1>0. Here, the blowing-up map is given by (X, Y, Z)=(x, y, xω3z)
and an element (f, g)∈PrGx corresponds to a change of coordinates of the form

z̃ = z+ξy∆2 ,

where ξ=0 if ∆2 /∈N. The corresponding change of coordinates in the (X, Y, Z) variables
is given by

Z̃ =Z+ξXω3Y ∆2

and, therefore, it suffices to get (fω, gω)=(ξXω3Y ∆2 , 0).

Remark 4.36. If (f, g)∈PrGx is such that g=0, then the map (fω, gω)∈G∆,C given
by Lemma 4.35 is such that gω=0. In particular, for g=0, the map (fω, gω) belongs to
the subgroup G2

∆,C .

4.13. x-directional blowing-up (case ∆1=0)

In this subsection, we shall study the x-directional blowing-up of a stable Newton data Ω
in the case where ∆1=0.

Our goal is to prove that the main invariant inv strictly decreases at each nonele-
mentary point p̃∈Φ−1(p)∩NElem(M̃) which lies in the domain of the x-directional
blowing-up.

The following example shows that the height m3 of the main vertex m can increase
after an x-directional blowing-up. This is the main reason for introducing the concept
of virtual height h in §4.2.

Example 4.37. Consider the vector field χ=(y2+xz3)∂/∂y+z3∂/∂z. The associated
Newton polyhedron is depicted in Figure 24 (left). The primary invariant is given by
(h,m2+1,m3)=(2, 1, 2). The x-directional blowing-up with weight ω=(1, 2, 1) results in
the vector field

χ̃=(y2+z3)
∂

∂y
+z3 ∂

∂z

(see Figure 24 (right)). Note that m̃3=3>2=m3. However, the primary invariant asso-
ciated with χ̃ is given by (h̃, m̃2+1, m̃3)=(2, 0, 3), which is lexicographically smaller than
(2, 1, 2).

Up to a preliminary transformation of type Bl1x (see the previous subsection), we
may assume that the weight-vector ω is such that ω1=1.

The following simple lemma will be the key to understanding the behavior of the
virtual height under blowing-up and to prove Proposition 4.30.
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v1

v2

v3

m=(0, 0, 2)(1,−1, 3)

(0, 1, 0)
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m̃=(0,−1, 3)

(0, 0, 2)

(0, 1, 0)

Figure 24. The height of the main vertex increases after an x-directional blowing-up.
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Figure 25. Illustration of Lemma 4.38.

Lemma 4.38. Let us consider three rational points in Q2, with coordinates (0,m),
(0, n) and (v, 0) such that v>2 and 16n<m. Let ∆:=v/m and ∆̃:=v/n be the slope of
the lines m,v and n,v, respectively. Consider the rational numbers

h :=m− 1
∆

and h̃ :=n− 1
∆̃

.

Then, one necessarily has h̃<h. Moreover , one the following situations occurs:
(i) ∆̃<1, or
(ii) h>n−1.

Proof. Figure 25 illustrates the statement of the lemma. The assertion that h̃<h is
obvious. Suppose now that v/n=∆̃>1. Then, ∆>n/m, and if we write m=n+s (for
some s>0), we get

h =m− 1
∆

>
n2+n(s−1)−s

n
.
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Therefore, the quantity h−n+1>s(1−1/n) is always positive or zero.

Lemma 4.39. Suppose that ∆1=0. Suppose further that the x-directional blowing-up
BlxΩ is centered at a nonelementary point p̃∈NElem(M̃). If the main vertex �m of BlxΩ
is such that �m 6=m, then one necessarily has inv1(Ω̃)<lex inv1(Ω), where Ω̃=StBlxΩ is
the stabilization of BlxΩ.

Proof. First of all, let us suppose that the vertex �m=(0,
m2,
m3) is such that

(
m2,
m3) <lex (m2,m3).

Under this hypothesis, we split the discussion into three cases:
(a) 
m2=m2=0 and 
m3<m3;
(b) 
m2=m2=−1 and 
m3<m3;
(c) 
m2=−1 and m2=0.
In case (a), it is obvious that �m is also the main vertex of Ω̃, because no regular-

nilpotent transition can occur in the passage from BlxΩ to Ω̃. Hence,

inv1(Ω̃) = (h̃, 1, m̃3) <lex (h, 1,m3) = inv1(Ω̃),

because h̃=
m3<m3=h.
To study cases (b) and (c), we consider the main vertex m̃=(0, m̃2, m̃3) of Ω̃. It

is obvious that either Ω̃ is in a regular configuration and m̃=�m, or Ω̃ is in a nilpotent
configuration and there occurs a regular-nilpotent transition in the passage from BlxΩ
to Ω̃. Notice that, in both cases, we have m̃36
m3.

To study case (b), we observe that the main edge e of Ω has the form e=m,v for
some point v=(0, v2, v3)∈supp(Ω) such that v2>1 and v3<m3. Two cases can occur:

(b.i) 
m36v3;
(b.ii) 
m3>v3.
In case (b.i), we get

inv1(Ω̃) = (h̃, m̃2+1, m̃3) <lex (h,m2+1,m3) = inv1(Ω̃),

because h̃6m̃36v3<h.
To treat case (b.ii), we define the numbers

m :=m3−v3, n :=
m3−v3 and v := v2+1.

By construction, we know that 16n<m and v>2, and we can apply Lemma 4.38 to
the points (0,m), (0, n) and (v, 0). If we denote the displacement vector of BlxΩ by
∆̄=(0, ∆̄2), and the associated virtual height by h̄, it follows that h̄6h, and one of the
following situations occurs:

(b.ii.1) ∆̄2<1;
(b.ii.2) h>
m3.
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In case (b.ii.1), we know that BlxΩ has a stable edge (because Gi
∆̄

={(0, 0)}). In
particular, no regular-nilpotent transition can occur in the passage from BlxΩ to Ω̃.
Therefore,

inv1(Ω̃) = (h̄, 0,
m3) <lex (h, 0,m3) = inv1(Ω).

In case (b.ii.2), if no regular-nilpotent transition occurs in the passage from BlxΩ
to Ω̃, we obtain the same conclusion by the estimate h̃6
m36h.

On the other hand, if such a regular-nilpotent transition occurs, then h̃=m̃3<
m36h

by the definition of nilpotent configurations.
Let us now study case (c). Here, keeping the notation as in the previous case, we

consider the following possibilities:
(c.i) 
m36v3;
(c.ii) 
m3>v3.
Case (c.i) is treated exactly as case (b.i). To study case (c.ii), it suffices to consider

the points

m :=m3+
1

∆2
−v3, n :=
m3−v3 and v := v2+1.

Since the vertex 
m has the form 
m=πx(n), for some n∈F\e, it follows that

0 > 〈ω,m−�m〉=ω2(−1)+ω3(
m3−m3),

and therefore (since ∆2=ω3/ω2), we have

n = m̃3−v3 <m3+
1

∆2
−v3 =m.

Using the same arguments as in case (b.ii), we conclude that inv1(Ω̃)<lex inv1(Ω).
It remains to study the case where (
m2,
m3)>lex(m2,m3). Here, one necessarily has

the conditions

m2 =0 >−1 =m2 and 
m3 < h,

where the second inequality follows from the fact that m̃=πx(n), for some point n∈F .
Therefore, the Newton data BlxΩ is already in a nilpotent configuration and �m is the
main vertex of Ω̃. These conditions imply that h̃=
m3<h.

Lemma 4.40. Suppose that ∆1=0. Suppose further that the x-directional blowing-
up BlxΩ is centered at a nonelementary point p̃∈NElem(M̃). If the main vertex of BlxΩ
coincides with that of Ω, then

inv(Ω̃) <lex inv(Ω),

where Ω̃=StBlxΩ is the stabilization of BlxΩ.
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Proof. We denote by
	Ω := (f, 0, 1, 1, 1)·BlxΩ

the analytic edge-preparation which is associated with BlxΩ (see Lemma 4.23).
If there exists a regular-nilpotent transition in this preparation (see Lemma 4.9), then

we are done. In fact, it is clear that the virtual height h̄ associated with 	Ω is at most
equal to h−1, because the main vertex of 	Ω is �m=(0, 0,m3−1) and h̄=m3−1<m3=h

(a regular-nilpotent transition can only occur if m2=−1 and the vertical displacement
vector of BlxΩ is equal to ∆=(0, 1)).

Therefore, let us assume that m is also the main vertex of 	Ω. Let ∆̄=(∆̄1, ∆̄2) be
the main displacement vector which is associated with 	Ω. Then, by definition,

inv1(Ω̃) = (h̄,m2+1,m3) and inv2(Ω̃) = (#ιp̃−1,M∆̄1,M max{0, ∆̄2}).

Since #ιp̃=#ιp=i, it clearly suffices to prove the following claim.

Claim. ∆̄1=∆1=0 and ∆̄2<∆2.

To prove the claim, suppose by contradiction that either ∆̄1>0 or ∆̄2>∆2. Then,
if we write the Taylor series of the map f(x, y) as

f(x, y) =
∑

i+j>1

fijx
iyj ,

it follows that the polynomial truncation ft :=
∑b

i=0 fi0x
i (with b:=b∆2c) is such that

the Newton data
Ωt := (ft, 0)·Ω̃

has a displacement vector ∆t>lex∆. Since the map (ft, 0) belongs to the x-directional
projected group PrGx, it follows from Lemma 4.35 that there exists a unique map (fω, 0)∈
Gi

∆,C such that
Ωt =Blx(fω, 0)·Ω.

We conclude, by Lemma 4.31, that the Newton data (fω, 0)·Ω does not belong to Newi,m
∆,C .

This contradicts the hypothesis that Ω is a stable Newton data.

Proposition 4.41. Suppose that ∆1=0 and that the x-directional blowing-up BlxΩ
is centered at a nonelementary point p̃∈NElem(M̃). Then, the Newton data Ω̃=StBlxΩ
is such that

inv(Ω̃) <lex inv(Ω).

Proof. This is an immediate consequence of Lemmas 4.39 and 4.40.
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4.14. Effect of translations in the x-directional blowing-up (case ∆1=0)

In this subsection, we study the effect of the coordinate translations to the Newton
data BlxΩ. As pointed out in Remark 4.2, the notions of stability and edge-stability
have been introduced precisely to take these effects into account.

Proposition 4.42. Suppose that ∆1=0 and that the Newton data (ξ, η)·BlxΩ is
centered at a nonelementary point p̃∈NElem(M̃), where (ξ, η)∈Gtr

x is an x-directional
translation. Then,

inv(Ω̃ξ,η) <lex inv(Ω),

where Ω̃ξ,η=St(ξ, η)·BlxΩ is the stabilization of (ξ, η)·BlxΩ.

Proof. Defining i=#ιp, we split the proof into two cases:
(a) i=2 and η 6=0;
(b) i=1 or η=0.
To treat case (a), we observe that the x-projected face F̃ :={πx(v):v∈F} is equal

to the intersection supp(Ω̃)∩({0}×Z2).
In particular, if we denote the main vertex of Ω̃ξ,η by m̃, it is immediate to see that

m̃6lex �m

(where �m is the main vertex of BlxΩ). It follows that

inv1(Ω̃ξ,η) = (h̃, m̃2+1, m̃3) 6lex (h,m2+1,m3) = inv1(Ω),

because h̃6m3=h. On the other hand, if we have an equality of the primary multiplicity
inv1( ·), then

inv2(Ω̃ξ,η) = (0, λ∆̄1, λ max{0,∆2}) <lex (1, λ∆1, λ max{0,∆2}) = inv2(Ω)

(because the assumption η 6=0 implies that the translated Newton data Ω̃ξ,η is centered
at a point p̃ such that #ιp̃=1<2=#ιp).

We now treat case (b). It follows from Lemma 4.35, that there exists a unique map
(f, g)∈Gi

∆,C such that
Ω̃ξ,η =StBlx(f, g)·Ω.

More explicitly, (f, g) is given by (ξxω3 , ηxω2), where η=0 if i=2.
Since Ω is a stable Newton data, the Newton data Ωf,g :=(f, g)·Ω is also stable.

Moreover,
inv(Ωf,g) = inv(Ω).

Thus, the result follows by applying Proposition 4.41 to Ωf,g, instead of Ω.
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4.15. x-directional blowing-up (case ∆1>0)

In this subsection, we keep the assumption that ω1=1. Recall that this condition can
always be obtained, up to a preliminary transformation of type Bl1x.

Lemma 4.43. Suppose that ∆1>0. Suppose further that the x-directional blowing-up
BlxΩ is centered at a nonelementary point p̃∈NElem(M̃). If ∆260, then

inv1(Ω̃) <lex inv1(Ω),

where Ω̃=StBlxΩ is the stabilization of BlxΩ.

Proof. Under the hypothesis of the lemma, we know that the main edge of Ω is given
by e=m,v, where v∈supp(Ω) is such that v26m2 and v3<m3. Using Lemma 4.31, we
conclude that the main vertex of BlxΩ is given either by

�m=(0, v2, v3)

(if BlxΩ is in a regular configuration) or by

�m=(0, 0,
m3)

for some 
m3<v3 (if BlxΩ is in a nilpotent configuration). Therefore, after applying the
stabilization map St to BlxΩ, we get

inv1(Ω̃) = (h̃, m̃2+1, m̃3) <lex (h,m2+1,m3),

because h̃6v3<m3=h.

Lemma 4.44. Suppose that ∆1>0. Suppose further that the x-directional blowing-up
BlxΩ is centered at a nonelementary point p̃∈NElem(M̃). If ∆2>0, then the stabilization
Ω̃=StBlxΩ of BlxΩ is such that

inv(Ω̃) <lex inv(Ω).

Proof. Under the hypothesis ∆2>0, we consider separately the following cases:
(a) BlxΩ is in a hidden nilpotent configuration;
(b) BlxΩ is not in a hidden nilpotent configuration.
In case (a), let

	Ω =(f, 0)·BlxΩ

be the edge-preparation of BlxΩ. Then, the virtual height h̄ associated with 	Ω is strictly
smaller than h=m3.
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Consider now case (b). The main vertex of both BlxΩ and 	Ω is m. Moreover, the
displacement vector ∆′ of BlxΩ is given by

∆′
1 =0 and ∆′

2 =∆2.

The argument is now similar to the one used in the proof of Lemma 4.40. Let

	Ω =(f, 0)·BlxΩ

be the edge-preparation of BlxΩ, and let ∆̄=(∆̄1, ∆̄2) be the displacement vector asso-
ciated with 	Ω. We claim that

∆̄1 =0 and ∆̄2 =∆2.

Indeed, suppose the contrary. Then, if we consider the polynomial truncation of f given
by ft=ξy∆2 (with ξ∈R equal to zero if ∆2 /∈N), it follows that

Ωt := (ft, 0)·BlxΩ

has a displacement vector ∆t>lex∆. Since (ft, 0) belongs to the x-projected group PrGx,
we can use Lemma 4.35 to conclude that that there exists a map (fω, 0)∈Gi

∆,C such that

(fω, 0)·Ω

has a vertical displacement vector which is (lexicographically) strictly greater than ∆.
But this contradicts the hypothesis that Ω is stable. The claim is proved.

Using the claim, we easily conclude that

inv1(Ω̃) 6lex inv1(Ω) and inv2(Ω̃) <lex inv2(Ω).

Proposition 4.45. Suppose that ∆1>0. Suppose further that the x-directional
blowing-up BlxΩ is centered at a nonelementary point p̃∈NElem(M̃). Then,

inv(Ω̃) <lex inv(Ω),

where Ω̃=StBlxΩ is the stabilization of BlxΩ.

Proof. It suffices to use Lemmas 4.43 and 4.44.
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4.16. Effect of translations in the x-directional blowing-up (case ∆1>0)

Let us now study the effect of the translations in the x-directional blowing-up chart for
the case where ∆1>0.

Proposition 4.46. Suppose that ∆1>0 and that the Newton data (ξ, 0)·BlxΩ is
centered at a nonelementary point p̃∈NElem(M̃), where (ξ, 0)∈Gtr

x is an x-directional
translation. Then,

inv(Ω̃ξ,η) <lex inv(Ω),

where Ω̃ξ,η=St(ξ, 0)·BlxΩ is the stabilization of (ξ, η)·BlxΩ.

Proof. If ξ=0, this follows from Lemma 4.45.
Let us assume that ξ 6=0. We split the proof into three cases:
(a) ∆2<0;
(b) ∆2>0;
(c) ∆2=0.
In case (a), we know that m=(0, 0,m3). Moreover, the main vertex of BlxΩ is given

by �m=(0,−1,
m3) for some 
m3<m3. It follows that the Newton data (ξ, 0)·BlxΩ is in
a final situation and therefore it is centered at an elementary point p̃∈Elem(M̃). This
contradicts the hypothesis in the statement.

In case (b), we have �m=m. Let �χ be the vector field associated with BlxΩ. Then,

�χ|m = ym2zm3

(
αx

∂

∂x
+βy

∂

∂y
+γz

∂

∂z

)
, (α, β, γ)∈R3\{(0, 0, 0)}

(where α=γ=0 if m2=−1). Since

πx(F)∩({0}×{m2}×R) = {m}

and m2∈{−1, 0}, it is clear that after the translation z̃=z+ξ we get a Newton data
(ξ, 0)·BlxΩ which is in a final situation. Again, this contradicts the hypothesis in the
statement.

It remains to study case (c). Here, we observe that the translation map (ξ, 0) belongs
to the x-projected group PrGx. It follows from Lemma 4.35 that there exists a unique
map (f, g)∈Gi

∆,C such that
Ω̃ξ =StBlx(f, g)·Ω.

More explicitly, (f, g) is given by (ξxω3 , 0).
Since Ω is a stable Newton data, the same holds for the Newton data Ωf,g :=(f, g)·Ω.

Moreover,
inv(Ωf,g) = inv(Ω).

Thus, the result follows directly by applying Proposition 4.45 to Ωf,g, instead of Ω.
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We are finally ready to give the proof of Proposition 4.30.

Prof of Proposition 4.30. In case ∆1=0, we apply Proposition 4.42. In case ∆1>0,
we apply Proposition 4.46.

4.17. y-directional blowing-up

Let (M,Ax) be a controlled singularly foliated manifold and let p∈D∩A be a divisor
point in NElem(M).

Let Ω∈Newi,m
∆,C be a stable Newton data, associated with some adapted chart at p

(and some local generator χ of L). In this subsection, we assume that the corresponding
weight-vector ω=(ω1, ω2, ω3) is such that ω2>0.

The y-directional translation group is the group Gtr
y :=G1

(0,0),∞. In other words, an
element of Gtr

y corresponds to a translation

z̃ = z+ξ

for some constant ξ∈R. We denote this element simply by (ξ, 0).

Proposition 4.47. Given a stable Newton data Ω, let 	Ω=BlyΩ be its y-directional
blowing-up. Then, for each (ξ, 0)∈Gtr

y , either the translated Newton data

	Ωξ := (ξ, 0)·	Ω

is centered at an elementary point p̃∈Elem(M̃) or

inv(Ω̃ξ) <lex inv(Ω),

where Ω̃ξ=St	Ωξ is the stabilization of 	Ωξ.

The proof of the proposition will be given at the end of §4.18. First of all, we state
the following analogue of Lemma 4.31.

Lemma 4.48. Let 	Ω:=BlyΩ be the y-directional blowing-up of Ω. Then, there exists
a bijective correspondence

supp(Ω)∩F −! supp(	Ω)∩{0}×Z2,

v =(v1, v2, v3) 7−!πy(v) = (0, v1, v3),

such that the corresponding Newton maps 
Θ and Θ satisfy 
Θ[πy(v)]=IMyΘ[v].

Proof. This is an immediate consequence of the definition of Bly.
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We remark that the Newton data BlyΩ=((x̄, ȳ, z̄), ῑ,
Θ) is always such that #ῑ=2.
As in the discussion for the x-directional blowing-up, we can decompose the map Bly

into two maps Bl2y and Bl1y, which are respectively associated with the singular changes
of coordinates

x= x̄, y = εȳω2 and z = z̄,

and
x= x̄ω1 ȳ, y = x̄ and z = x̄ω3 z̄,

followed by a division by x̄µ (for ε∈{−1, 1}). The first change of coordinates corresponds
to a ramification, and the second change of coordinates can always be written as a
composition of a finite sequence of homogeneous blowing-ups.

The following lemma is an analogue of Lemma 4.33.

Lemma 4.49. Suppose that Ω is edge-stable. Then 	Ω=Bl1yΩ is also an edge-stable
Newton data.

Proof. The proof is very similar to the proof of Lemma 4.34. We omit the details
for shortness.

Using this lemma, we may assume that ω2=1 without loss of generality in our results.

Lemma 4.50. Suppose that ω2=1. Then, given a translation map (ξ, 0)∈Gtr
y , there

exists a unique map (fω, 0)∈G∆ which makes the following diagram commutative:

New
(fω,gω)·

//

Bly

��

New

Bly

��

New
(f,g)·

// New.

Proof. The proof is analogous to the proof of Lemma 4.35. Consider the change of
coordinates z̃=z+ξ, and apply the map (X, Y, Z)=(xω1y, εx, xω3z) on both sides of the
equality. Cancelling common powers of x, we get

Z̃ =Z+ξ̄Y ω3 for ξ̄ = εω3ξ,

which corresponds to the map (ξ̄Y ω3 , 0) in the group G∆.

4.18. Effect of translations in the y-directional blowing-up

Let us keep the notation as in the previous subsection. Recall that we may assume,
without loss of generality, that ω2=1.

The proof of Proposition 4.47 will be given by considering separately the cases ∆2>1,
∆2=1 and ∆2<1.
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Proof of Proposition 4.47 (case ∆2>1). Suppose initially that ξ=0. Write the main
edge of Ω as e=m,v, where v=(0, v2, v3)∈supp(Ω) is such that v2>m2 and v3<m3.

By Lemma 4.48, we conclude that the main vertex of Ω̃:=Ω̃0 is given by m̃=(0, 0, v3).
Therefore,

inv1(Ω̃) = (h̃, 1, v3) <lex (h,m2+1,m3) = inv1(Ω),

because h̃=v3<m3=h (the last equality follows from the assumption that ∆2>1).
Suppose now that ξ 6=0. We claim that the main vertex of Ω̃ξ has the form

�m=(0, 0,
m3) for some 
m36m3−1.
Indeed, if this is not the case then necessarily �m=m (by Lemma 4.48). Using

Lemma 4.50, we conclude that there exists a map (f, 0)∈G∆ such that

(f, 0)·Ω

has a vertical displacement vector which is (lexicographically) strictly greater than ∆.
But this contradicts the hypothesis that Ω is stable (and, in particular, edge-stable). The
claim is proved.

Using the claim, we conclude again that inv1(Ω̃ξ)<lex inv1(Ω).

Let us now consider the case ∆2=1.

Proof of Proposition 4.47 (case ∆2=1). Let m=(0,m2,m3) be the main vertex of Ω
and ∆ be the vertical displacement vector. We split the proof into two cases:

(a) m2=−1;
(b) m2=0.
In case (a), the primary invariant is given by

inv1(Ω) = (m3, 0,m3).

We claim that Ω̃ξ has a main vertex �m=(0, 0,
m3) such that 
m36m3−2.
Indeed, if there exists ξ∈R such that Ω̃ξ has a main vertex with height 
m3=m3−1,

then it follows from the hypothesis that Ω should necessarily be in a hidden nilpotent
configuration. Using Lemma 4.50, this conclusion contradicts the assumption that Ω is
stable and m2=−1.

As a consequence of the claim, inv1(Ω̃ξ)<lex inv1(Ω), because h̃=m̃36m3−2<h.
Case (b) can be treated as in the proof of the case ∆2>1.

To conclude the proof of Proposition 4.47, we treat the case ∆2<1.

Proof of Proposition 4.47 (case ∆2<1). We consider separately the following cases:
(a) m2=0;
(b) m2=−1.
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In case (a), we can use exactly the same argument as in the proof of the case ∆2>1
to conclude that the main vertex �m of Ω̃ξ is such that 
m36m3−1. Therefore,

inv1(Ω̃) = (h̄, 1,
m3) <lex (h, 0,m3) = inv1(Ω),

because h̄=
m3<m3=h.
Let us treat case (b). Suppose initially that ξ=0. Write the main edge of Ω as

e=m,v, where v=(0, v2, v3) is such that v2>1 (the strict inequality follows from the fact
that Ω is not in a nilpotent configuration). Therefore v36bm3−1/∆2c. By Lemma 4.48,
we conclude that the main vertex of Ω̃:=Ω̃0 is given by m̃=(0, 0, v3). Therefore

inv1(Ω̃) = (h̃, 1, v3) <lex (h, 0,m3) = inv1(Ω),

because, by the definition of virtual height, h̃=v36bm3−1/∆2c<bm3−1/∆2+1c=h.
Suppose now that ξ 6=0. Let χ be the vector field which is associated with Ω. Then,

its restriction to the main edge e can be written as

χ|e =F (y, z)x
∂

∂x
+G(y, z)

∂

∂y
+H(y, z)

∂

∂z
,

where F , G and H are (ω2, ω3)-quasihomogeneous polynomials of degree µ, µ+ω2 and
µ+ω3, respectively. The hypothesis m2=−1 implies that G(0, z)=βzm3 for some nonzero
constant β∈R.

Using Lemma 4.48, we see that the vector field χ̃ which is associated with BlyΩ
(before the translation by ξ) is such that its restriction to πy(e) has the form

1
ω2

G(1, z)x
∂

∂x
+
(

F (1, z)y−ω1

ω2
G(1, z)y

)
∂

∂y
+
(

H(1, z)−ω3

ω2
G(1, z)z

)
∂

∂z
. (29)

Let us consider the polynomial

g̃(z) :=
1
ω2

G(1, z)

and denote by h̄ the virtual height associated with Ω̃ξ.
It follows that ξ is a root of g̃(z) of multiplicity h̄. On the other hand, Corollary B.3

(Appendix B) implies that

µξ(g̃) 6

⌊
m3−

1
∆2

⌋
<

⌊
m3−

1
∆2

+1
⌋

= h.

This concludes the proof of Proposition 4.47.
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4.19. The z -directional blowing-up

Let (M,Ax) be a controlled singularly foliated manifold and let p∈D∩A be a divisor
point in NElem(M).

Let Ω∈Newi,m
∆,C be a stable Newton data at p. From our constructions, it is clear

that the associated weight-vector ω=(ω1, ω2, ω3) is always such that ω3>0.

Lemma 4.51. Let 	Ω:=BlzΩ be the z-directional blowing-up of Ω. Then, there exists
a bijective correspondence

supp(Ω)∩F −! supp(	Ω)∩{0}×Z2,

v =(v1, v2, v3) 7−!πz(v) = (0, v1, v2),

such that the corresponding Newton maps 
Θ and Θ satisfy 
Θ[πz(v)]=JMzΘ[v].

Proof. This is an immediate consequence of the definition of Blz.

Proposition 4.52. Given a stable Newton data Ω, its z-directional blowing-up
	Ω=BlzΩ is always centered at an elementary point p̃∈Elem(M̃).

Proof. Using Proposition 4.3, it is sufficient to prove that BlzΩ is in a final situation.
If we write the main vertex of Ω as m=(0,m2,m3), it follows from Lemma 4.51

that Ω̃ contains the point
m̃ :=πz(m) = (0, 0,m2)

in its support. It is clear that this point is necessarily the new main vertex of Ω̃. Moreover,
since m2∈{−1, 0}, the Newton data Ω̃ is in a final situation.

4.20. Proof of the local resolution of singularities

Proof of Theorem 4.29. Consider the local blowing-up Φ: M̃!M∩U defined in the
statement of the theorem, and write

M̃=(M̃, Υ̃, D̃, L̃).

Let V x, V y and V z denote the domain of the x-, y - and z -directional charts, respectively.
First of all, we define an open subset Ã⊂M̃ and an analytic line field z̃ on Ã by

Ã =Φ−1(A)∩(V x∪V y) and z̃=Φ∗(z)|Ã,

where Φ∗(z) denotes the pull-back of z. We make the following observations:
(i) Proposition 4.52 implies that Ã is an open neighborhood of NElem(M̃);
(ii) on the domain V x∪V y, the pull-back foliation Φ∗(z) is everywhere regular.

Hence Ze(z̃)=∅.
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It follows that the pair Ãx=(Ã, z̃) satisfies all the conditions of Definition 2.14.
Hence, Ãx is an axis for M̃.

Now, let p̃∈Φ−1(p) be a point belonging to NElem(M̃). Then, either p̃ lies in the
domain V x or p̃ lies in V y\V x.

Firstly, suppose that p̃∈V x and let (x̄, ȳ, z̄) be the global coordinates of the x-
directional chart (given in §4.9). It follows that there exists a unique pair of constants
(ξ, η)∈R2 such that the coordinates

(x̄, ȳ−η, z̄−ξ)

define an adapted local chart at p̃. The stabilization of this chart corresponds to the
stabilization of the Newton data (ξ, η)·BlxΩ (where Ω is the Newton data centered at p).
Therefore, it follows from Proposition 4.30 that

inv(M̃, Ãx, p̃ ) <lex inv(M,Ax, p). (30)

This proves the theorem in the case where p̃∈V x.
Suppose now that p̃∈V y\V x and let (x̄, ȳ, z̄) be the global coordinates of the y -

directional chart (given in §4.9). Then, there exists a unique constant ξ∈R such that

(x̄, ȳ, z̄−ξ)

defines an adapted local chart at p̃. It suffices now to apply Proposition 4.30 to conclude
that (30) also holds. This proves the theorem.

5. Global theory

5.1. Upper semicontinuity of the virtual height at NElem∩D

In this subsection, our goal is to prove the upper semicontinuity of the virtual height. In
other words, we will prove that each point p∈NElem(M)∩D has an open neighborhood
V ⊂M such that

h(M,Ax, q) < h(M,Ax, p)

for each point q∈NElem(M)∩D∩V . For simplicity, denote the set of nonelementary
points simply by NElem, and let

h: NElem∩D−!N

be the virtual height function. The stratum of virtual height h at D is the subset

Sh∩D= {p∈NElem(M)∩D : h(p) =h}.
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To state the next result, we introduce the following notion. Let D⊂D be an irreducible
component of the divisor and let p∈NElem∩D be a point in D. We shall say that a local
chart (U, (x, y, z)) at p is D-adapted if

(i) z is locally generated by ∂/∂z;
(ii) D={x=0};
(iii) D∩U⊂{xy=0}.
We further say that the chart (U, (x, y, z)) is D-stable if the corresponding Newton

data Ω=((x, y, z), ι, Θ) is stable (for some choice of local generator for the line field).

Remark 5.1. If the point p belongs to the intersection D∩D′ of two divisors, then
in a D-adapted chart (U, (x, y, z)) we necessarily have D={x=0} and D′={y=0}.

Proposition 5.2. Given an irreducible component of the divisor D⊂D and a point
p∈Sh∩D, there exists an open neighborhood V ⊂M of p such that h(q)6h for each point
q∈V ∩D∩NElem(M). Moreover , with a fixed D-stable local chart (U, (x, y, z)) at p,

(i) if ∆1(D)>0, then we locally have Sh∩D={x=z=0};
(ii) if ∆1(D)=0, then we locally have Sh∩D={p};

where ∆(D)=(∆1(D),∆2(D)) is the vertical displacement vector of the corresponding
Newton data Ω.

Proof. First of all, we consider the case where ∆1(D)>0. We will show that there
exists an open neighborhood of the origin U⊂R2 such that for each (ξ, η)∈U , the trans-
lation map

ỹ = y+η and z̃ = z+ξ (31)

is such that one of the following two situations occurs:
(i.1) if ξ 6=0, then the translated Newton data Ω̃=(ξ, η)·Ω is in final situation;
(i.2) if ξ=0, then the virtual height at the translated point p̃ (i.e. the point which

is obtained from p by the local translation (31)) is equal to h.
Item (i.1) is easy. Indeed, let m=(0,m2,m3) be the main vertex of Ω. Then, it is

immediate that there exists a constant C>0 and a neighborhood of the origin U⊂R2

such that for each (ξ, η)∈U , the translated data Ω̃ evaluated at the point m̃=(0,m2, 0)
is such that

‖Ω̃(m̃)‖>C|ξ|m3+1

(where ‖ · ‖ denotes the Euclidean norm). Since m2∈{−1, 0}, we see that Ω̃ is in final
situation if ξ 6=0.

Let us prove item (i.2). If ξ=0, there exist constants C>0 and δ>0 such that for
each translation (0, η), with |η|<δ, we have

‖Ω̃(m)‖>C.
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(5)

m m̃ m m̃
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Figure 26. The effect of a translation.

Looking at the restriction of Ω to the set {0}×Z2, the translation causes the five possible
movements shown in Figure 26 (we denote the main vertex of Ω̃ by m̃). In each case, it
is immediate that h(p̃)=h.

We proceed now with the proof of the proposition in the case where ∆1(D)=0. We
will show that there exists an open neighborhood of the origin U⊂R2 such that for each
(ξ, η)∈U , the translation map

ỹ = y+η and z̃ = z+ξ

is such that one of the following two situations occurs:
(ii.1) if ξ 6=0 and η=0, then the translated Newton data Ω̃=(ξ, η)·Ω is in final situ-

ation;
(ii.2) if η 6=0, then the virtual height of the translated point p̃ is strictly smaller

than h.
The proof of (ii.1) is analogous to the proof of (i.1). In order to prove (ii.2), we

consider the following blowing-up in the parameters (ξ, η):

φ:R+×S1−!R2,

(r, θ) 7−! (η, ξ) = (r cos θ, rs sin θ),
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where s:=∆2(D). We claim that there exists a neighborhood 
U⊂R+×S1 of the set
{r=0} such that the corresponding neighborhood of the origin U :=φ(
U) satisfies the
conditions stated above.

From (ii.1), we know that Ω̃ is in final situation for θ=π/2 and r sufficiently small.
Therefore, since this is an open condition, there exists an open neighborhood 
V ⊂R+×S1

of the point (r, θ)=(0, π/2) such that Ω̃ is in final situation for each translation by (ξ, η)
in φ(
V ).

To complete the study, it suffices to study the collection of all translations by (ξ, η)
which are contained in the image of the directional blowing-up

η = η̄ and ξ = η̄sξ̄,

with η̄ varying in R and ξ̄ belonging to some compact subset K⊂R.
For this, we fix some stable local chart (V, (x, y, z)) at p and consider the local

blowing-up for (M,Ax):

Φ: M̃−!M∩V

(see §4.8). Under this blowing-up, the above collection of translations can be studied in
the domain of the y -directional chart, where the blowing-up can be written as

x= ȳω1 x̄, y = ȳω2 and z = ȳω3 z̄

(with ω2/ω3=1/s). Fixed ξ̄∈K, let p̄ denote the point on the exceptional divisor
D̃=Φ−1(Yp) which is obtained by the y -directional blowing-up followed by the verti-
cal translation

z̃ = z̄+ξ̄.

It follows from the proof of Proposition 4.47 that h(p̄)<h(p)=h. Therefore, using the
compactness of K, it suffices to prove the following claim.

Claim. Let (
U, (x̄, ȳ, z̄)) be a stable local chart at p̄. Then, there exists a constant
δ>0 such that for each translation

ỹ = ȳ+η̄, (32)

with |η̄|<δ, the corresponding translated point p̃ is such that h(p̃)6h(p̄).

The proof of the claim is similar to the proof of (ii.1). Let 	Ω be the Newton data at
p̄, and ∆̄=(∆̄1, ∆̄2) be the corresponding vertical displacement. Two cases can occur:

(ii.2.a) ∆̄1>0;
(ii.2.b) ∆̄1=0.



256 d. panazzolo

In case (ii.2.a), item (i) treated above implies that h(p̃)=h(p̄).
In case (ii.2.b), let m=(0, 0,m3) be the main vertex associated with 	Ω, and let

e=m,v be the corresponding main edge. Then, if we write v=(v1, v2, v3) (with v3<m3),
there exist constants C>0 and δ>0 such that

‖Ω̃(ṽ)‖>C|η̄|v2+1, with ṽ =(0, 0, v3),

where Ω̃ is the Newton data obtained by the translation (32). We easily conclude that
h(p̃)6h(p̄).

5.2. Upper semicontinuity of the invariant at NElem∩D

Using the results of the previous subsection, let us prove the upper semicontinuity of the
function

inv: NElem∩D−!N6,

where inv(p) is a shorter notation for inv(M,Ax, p).
We recall that the invariant inv(p)=(inv1(p), inv2(p)) is given by

inv1 =(h,m2+1,m3) and inv2 =(#ιp−1, λ∆1, λ max{∆2, 0}),

where these quantities are computed using some stable local chart (U, (x, y, z)) for
(M,Ax) at p. The following remark will be useful in the sequel.

Remark 5.3. The definition of inv implies the following facts:
(1) if p∈Sh∩D is such that #ιp=2, then inv(p)=(h, 1, h, 1, ∗, ∗);
(2) if p∈Sh∩D is such that #ιp=1, then either

inv(p) = (h, 0,m3, 0, ∗, ∗) or inv(p) = (h, 1, h, 0, ∗, ∗);

where the ∗’s denote some arbitrary natural numbers.

Lemma 5.4. Let p∈Sh∩D be a point such that #ιp=1. Assume that the displace-
ment vector ∆=(∆1,∆2) satisfies

∆1 > 0.

Then, there exists a neighborhood V ⊂M of p such that for each point q∈(Sh∩D)∩V ,
the corresponding displacement vector ∆̃=(∆̃1, ∆̃2) satisfies ∆̃1=∆1.

Proof. Let us fix a stable local chart (U, (x, y, z)) for (M,Ax) at p. Then, the local
blowing-up center is given by Yp={x=z=0}. Let Φ: M̃!M∩U be the local blowing-
up with center Yp and weight-vector ωp=(q1, 0, p1) (where ∆1=p1/q1 is the irreducible
rational representation of ∆1).
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Suppose, by contradiction, that there exists a sequence of real numbers {ηk}, with
ηk!0, such that the corresponding sequence of Newton data Ω̃k which are obtained by
the translations ỹk=y+ηk have a displacement vector ∆k=(∆k

1 ,∆k
2) such that

∆k
1 >∆1.

Let {qk}, with qk!p, denote the sequence of points in Yp which are obtained by these
translations.

Using Lemmas 4.31 and 4.35, we see that, for each k, the set Φ−1(qk) contains at
least one nonelementary point q̃k such that

h(q̃k) = h(qk) =h. (33)

In fact, we can choose this point as the origin in the x-directional chart of the blowing-up.
On the other hand, the proofs of Lemmas 4.43 and 4.44 imply that each nonelemen-

tary point p̃ in Φ−1(p) satisfies one of the following conditions:
(a) h(p̃)<h;
(b) h(p̃)=h and ∆̃1=0;

where ∆̃=(∆̃1, ∆̃2) is the vertical displacement vector of the Newton data at p̃ (for some
fixed stable local chart).

Using item (ii) of Proposition 5.2 and the compactness of Φ−1(p), we conclude that
there exists some neighborhood Ṽ ⊂M̃ of Φ−1(p) such that each nonelementary point
q̃∈Ṽ \Φ−1(p) satisfies h(q̃)<h. This contradicts (33).

Proposition 5.5. The function inv: NElem∩D!N6 is upper semicontinuous (for
the lexicographical ordering on N6).

Proof. Given a point p∈NElem∩D, we have to prove that there exists a neighbor-
hood V ⊂M of p such that for each point q∈NElem∩D∩V ,

inv(q) 6lex inv(p).

The upper semicontinuity of the initial segment of the local invariant, namely

(h,m2+1,m3,#ιp−1),

is obvious by Remark 5.3 and Proposition 5.2.
Let us fix p∈Sh∩D. We claim that there exists a neighborhood V ⊂M of p such

that for each point q∈(NElem∩D)∩V , we have

inv1(q) = inv1(p) and #ιq =#ιp =⇒ inv2(q) 6lex inv2(p).
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Indeed, if inv1(q)=inv1(p) and #ιq=#ιp, then it follows from items (i) and (ii) of Propo-
sition 5.2 and from Remark 5.3 that

#ιp =1 and ∆1 > 0.

Therefore, using Lemma 5.4, we conclude (up to restricting V to some smaller neigh-
borhood of p) that ∆q

1=∆1 for each point q∈(NElem∩D)∩V . Moreover, for each fixed
stable local chart (U, (x, y, z)) at p, it is clear that the adapted local chart at q which is
obtained by the translation

x̃=x, ỹ = y+η and z̃ = z

(for some appropriately chosen constant η∈R) is also stable. Therefore, we obviously
have (up to a new restriction of V to some smaller neighborhood of p) that ∆q

26∆p
2.

This concludes the proof.

5.3. Points in NElem\D and generic Newton polygon

A point p∈NElem\D will be called smooth if the germ of analytic sets NElemp is locally
a smooth 1-dimensional analytic curve.

We shall say that an adapted local chart (U, (x, y, z)) for (M,Ax) at p is smoothly
adapted if

NElem = {y = z =0}.

It follows from Proposition 3.1 that the transition map between two smoothly adapted
local charts (U, (x, y, z)) and (U ′, (x′, y′, z′)) has the form

x′ = f(y)+xu(x, y), y′ = yv(x, y) and z′ = yh(x, y)+zw(x, y, z), (34)

where f, h, u, v and w are analytic functions such that f(0)=0 and u, v and w are units.
Let Ω be the Newton data for (M,Ax) at the smooth point p, relative to some

smoothly adapted local chart (U, (x, y, z)). The generic Newton map associated with Ω
is the map ΘG:Z2!{0, 1} given by

ΘG(v) =
{

0, if (Z×{v})∩supp(Ω) = ∅,
1, if (Z×{v})∩supp(Ω) 6= ∅

(see Figure 27). The generic Newton polygon associated with Ω is the convex polygon
in R2 given by NG(Ω)=supp(ΘG)+R2

+. The generic higher vertex of Ω is the minimal
point pG∈NG in the lexicographical ordering.
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v1

v2

v3

NG

Figure 27. The generic Newton polygon.

Remark 5.6. The generic Newton polygon can be equivalently defined as

NG =π(N ),

where π:R3!R2 is the linear projection π(v1, v2, v3)=(v2, v3) and N=N (Ω) is the New-
ton polyhedron of Ω.

The triple ΩG=((x, y, z), ιp,ΘG) will be called the generic Newton data at p.
The generic edge associated with pG is the unique edge e(pG)⊂NG which intersects

the horizontal line
{
(v1, v2)∈R2 :v2=p2− 1

2

}
(where we write pG=(p1, p2)), with the

convention that e(pG)=∅, if the intersection is empty.
We shall say that ΩG is in a nilpotent configuration if the following conditions are

satisfied:
(i) pG=(−1, p2) for some integer p2∈Z;
(ii) the edge e(pG) has the form pG,n, for some vertex n=(0, n2) with n2∈Z.
If one of these conditions fails, we shall say that ΩG is in a regular configuration.
The generic main vertex is a vertex mG∈NG which is chosen as follows:
(i) if ΩG is in a regular configuration, then mG :=pG;
(ii) if ΩG is in a nilpotent configuration, then mG :=n (where e(pG)=pG,n).
Let us write mG=(m1,m2). The generic main edge is the edge eG⊂NG which

intersects the horizontal line
{
(v1, v2)∈R2 :v2=m2− 1

2

}
, with the convention that eG=∅,

if this intersection is empty.
Note that we can write the generic main edge as

eG =mG+t(∆,−1),

where t belongs to a real interval of the form [0, L] (for some L>0) and ∆∈Q>0 is a
positive rational number. In this setting, we shall shortly say that the generic Newton
data ΩG belongs to the class NewmG

∆ .
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Figure 28. Newton polyhedron at a generic point.

The point p∈NElem\D will be called generic with respect to an adapted local chart
(U, (x, y, z)) if the following conditions hold:

(i) p is a smooth point;
(ii) (U, (x, y, z)) is a smoothly adapted local chart at p;
(iii) all the vertices of the corresponding Newton polyhedron N (Ω) belong to the

region {−1, 0}×Z2.

Remark 5.7. Suppose that p∈NElem\D is generic with respect to an adapted local
chart (U, (x, y, z)). Then, the generic main edge eG defines a face of the Newton polygon
N=N (Ω). More precisely, the Minkowski sum

F := eG+{t·(1, 0, 0) : t∈R+}

is a face of N .

5.4. Generic edge-stability and equireducible points

Let p∈NElem\D be a smooth point and let (U, (x, y, z)) be a smoothly adapted local
chart for (M,Ax) at p. We denote respectively by Ω and ΩG the associated Newton data
and generic Newton data (for some choice of local generator for the line field).

Given a rational number δ∈Q>0, the group of Gδ-maps is the group of all analytic
changes of coordinates of the form

z̃ = z+g(y),

where g is given by g(y)=ξyδ (for some constant ξ∈R) if δ∈N, and g≡0 otherwise.
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The group Gδ acts naturally on the class of Newton data via the coordinate change
(x, y, z) 7!(x, y, z̃). Given a map g∈Gδ, we denote this action on Ω simply by g ·Ω.

If ΩG belongs to the class NewmG

∆ , then we say that Ω is generic edge-stable if

(g ·Ω)G ∈NewmG

∆

for all maps g∈G∆ with g(0)=0. In other words, the generic Newton data associated
with g ·Ω lies in the class NewmG

∆ for all g∈G∆. The local chart (U, (x, y, z)) will be called
generic edge-stable if Ω is generic edge-stable.

Lemma 5.8. Suppose that the smoothly adapted local chart (U, (x, y, z)) is not generic
edge-stable. Then, there exists a unique map g∈G∆ such that the transformed generic
Newton data (g ·Ω)G does not belongs to NewmG

∆ .

Proof. The result can be proved by straightforward modifications of the proof of
Lemma 4.13.

Now, we are ready to give the main definition of this subsection. We shall say that a
smooth point p∈NElem\D is equireducible if there exists a smoothly adapted local chart
(U, (x, y, z)) for (M,Ax) at p such that

(i) p is generic with respect to (U, (x, y, z));
(ii) the corresponding Newton data Ω is generic edge-stable.
In this case, (U, (x, y, z)) will be called an equireduction chart for (M,Ax) at p.

Lemma 5.9. Let (U, (x, y, z)) and (U ′, (x′, y′, z′)) be two equireduction charts at an
equireducible point p. Then, the transition map (see (34)) has necessarily the form

x′ = f(y)+xu(x, y), y′ = yv(x, y) and z′ = yh(x, y)+zw(x, y, z),

for some analytic functions f, h, u, v and w such that f(0)=0 and u, v and w are units.
Moreover , the support of the function H(x, y)=yh(x, y) satisfies the following property

supp(H)⊂{(v1, v2)∈N2 : v2 >∆}.

Proof. This is a direct corollary of Lemma 5.8.

As a consequence of the second part of Lemma 5.9, the Newton data Ω′ associated
with the chart (U ′, (x′, y′, z′)) is such that

ΩG ∈NewmG

∆ ⇐⇒ (Ω′)G ∈NewmG

∆ .

Let us now characterize the generic Newton data centered at points in NElem\D.
First of all, we introduce the following notion. A generic Newton data ΩG is in a

final situation if one of the following conditions holds:
(i) the generic main vertex mG=(m1,m2) is such that m2∈{−1, 0};
(ii) the main edge is given by eG=mG,v, where mG=(−1, 1) and v=(1,−1).
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m2=0 m2=−1 m2=0

m=(−1, 1), v=(1,−1)

Figure 29. The final situations for the generic Newton data.

As a consequence of the definition of equireducible point, we get the following result.

Proposition 5.10. Let p∈NElem\D be an equireducible point and let (U, (x, y, z))
be an equireduction chart at p. Then, the associated generic Newton data ΩG is not in
a final situation.

Proof. This is analogous to the proof of Proposition 4.3.

5.5. Local blowing-up at equireducible points

Let p∈NElem(M)\D be an equireducible point. Let Ω be the Newton data for (M,Ax)
at p, with respect to some equireduction chart (U, (x, y, z)).

The generic virtual height for (M,Ax) at p is defined as

hG(M,Ax, p) :=
{
bm2+1−1/∆c, if m1 =−1,
m2, if m1 =0,

where mG=(m1,m2) is the main vertex of the generic Newton polygon of NG.
The local blowing-up center associated with (M,Ax) at p is the submanifold

Yp = {y = z =0}.

Assume that the generic Newton data ΩG belongs to the class NewmG

∆ . The weight-vector
associated with (M,Ax) at p is given by

ω =(0, q, p),

where ∆=p/q is the irreducible rational representation of ∆.
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Remark 5.11. It follows from Lemma 5.9 that hG(M,Ax, p), Yp and ω are indepen-
dent of the choice of the equireduction chart (U, (x, y, z)).

The local blowing-up for (M,Ax) at p is the ω-weighted blowing-up

Φ: M̃−!M∩U

with center on Yp, with respect to the trivialization given by (U, (x, y, z)).

Remark 5.12. Lemma 5.9 implies that the transition map between two equireduction
charts always preserves the ω-quasihomogeneous structure on R3.

The following theorem is a version of the local resolution of singularities for equire-
ducible points.

Theorem 5.13. Let (M,Ax) be a controlled singularly foliated manifold and let
p∈A\D be an equireducible point in NElem(M). Consider the local blowing-up for
(M,Ax) at p,

Φ: M̃−!M∩U,

with respect to some equireduction chart (U, (x, y, z)). Then, there exists an axis Ãx=
(Ã, z̃) for M̃ such that each point p̃∈Φ−1(p)∩Ã belonging to NElem(M̃) is such that

h(M̃, Ãx, p̃) < hG(M,Ax, p).

Proof. This is analogous to the proof of Theorem 4.29, using now the definition of
equireducible points.

The local invariant for (M,Ax) at an equireducible point p∈NElem\D is the vector
of natural numbers

inv(M,Ax, p) = (hG(M,Ax, p), 0, 0, 0, 0, 0)∈N6.

5.6. Distinguished vertex blowing-up

In this subsection, we describe a procedure which will be used to treat the points p∈
NElem\D which are not equireducible. The basic idea is to include these points in the
divisor D by an appropriately chosen weighted blowing-up.

Let (M,Ax) be a controlled singularly foliated manifold. We fix a point p∈NElem,
a local generator χ for the line field L and a local generator Z for the line field z which
defines the axis Ax.
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The primitive height for (M,Ax) at p is the minimal integer h=H(M,Ax, p) such
that the vector field

χh := (LZ)h(χ)

is nonzero at p. Here, (LZ)h is the h-fold composition of the Lie bracket operator
LZ( ·)=[Z, · ]. By convention, we set H(M,Ax, p)=∞ if χh(p)=0 for all h∈N.

Lemma 5.14. For p∈NElem\D, the primitive height H(M,Ax, p) is a well-defined
natural number. Moreover , it is independent of the choice of the local generators χ and Z.

Proof. Let us prove that H(M,Ax, p) is finite. For this, we fix an adapted local
chart (U, (x, y, z)) at p and write

χ=F (x, y, z)
∂

∂x
+G(x, y, z)

∂

∂y
+H(x, y, z)

∂

∂z

for some analytic germs F , G and H. We can also choose Z=∂/∂z. Therefore,

χh =
∂hF

∂zh
(x, y, z)

∂

∂x
+

∂hG

∂zh
(x, y, z)

∂

∂y
+

∂hH

∂zh
(x, y, z)

∂

∂z
.

If the collection of vector fields {χh} vanishes at the origin for all h∈N, then the germs
F , G and H necessarily belong to the ideal (x, y)Op. This contradicts the fact that Ax
is an axis for M (see Definition 2.14).

We now prove that the primitive height is independent of the choice of χ and Z. For
this, it suffices to observe that, if we write χ′=Uχ and Z ′=VZ, for some units U and V ,
then

[Z ′, χ′] = [VZ, Uχ] = UV [Z, χ]+VZ(U)χ+Uχ(V )Z.

Proceeding by induction, we conclude that (LZ′)h(χ′) vanishes at p if and only if (LZ)h(χ)
vanishes at p.

An adapted local chart (U, (x, y, z)) at a point p∈NElem\D will be called strongly
adapted if the associated Newton data Ω has a polyhedron with a vertex of the form
d=(−1, 0, d3), where

d3 =H(M,Ax, p).

The vertex d will be called distinguished vertex.
The following lemma shows that we can always construct a strongly adapted local

chart.

Lemma 5.15. Given an adapted local chart (U, (x, y, z)) at p∈NElem\D, there exists
a linear change of coordinates of the form

x̃=x, ỹ = y+ξx and z̃ = z (for some constant ξ ∈R),

such that the resulting local chart (U, (x̃, ỹ, z̃)) is strongly adapted.
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d

ωdist

N

Figure 30. Distinguished vertex and ωdist.

Proof. Indeed, since H=H(M,Ax, p) is finite, the Newton data Ω associated with
the chart (U, (x, y, z)) has a Newton polyhedron with at least one vertex of the form
(0,−1,H) or (−1, 0,H).

In the latter case, we are done. In the former case, it is immediate that a change of
coordinates as described in the statement leads to the desired situation.

Let us fix a strongly adapted local chart (U, (x, y, z)) at p∈NElem\D. Let Ω be the
corresponding Newton data for (M,Ax) and let N (Ω) be its Newton polyhedron.

The distinguished weight-vector for (M,Ax) at p (with respect to the fixed chart
(U, (x, y, z))) is the weight-vector ωdist∈N3

>0 of minimal norm, for which there exists an
integer µ∈Z such that

N∩{v∈R3 : 〈ωdist,v〉=µ}= {d},

where d=(−1, 0,H(M,Ax, p)) is the distinguished vertex. In other words, there exists
an integer µ such that the plane {v:〈ωdist,v〉=µ} intersects N at the single point d.

The distinguished vertex blowing-up of (M,Ax) at p (with respect to the chart
(U, (x, y, z))) is the ωdist-weighted blowing-up

Φ: M̃−!M

with center at p, relative to the local trivialization given by (U, (x, y, z)).

Proposition 5.16. Let Φ: M̃!M be as above. Then, there exists an axis Ãx for M̃
such that

h(M̃, Ãx, p̃) 6H(M,Ax, p)

for each point p̃∈NElem(M̃)∩Φ−1(p).
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Proof. Let Ω be the Newton data associated with the local chart (U, (x, y, z)). We
consider separately points lying in the domain of the z -, x- and y -directional charts of
the blowing-up, and use the computations made in the previous subsection.

In the z -directional chart, Lemma 4.51 implies that BlzΩ is in a final situation.
In the x-directional chart, it follows from Lemma 4.31 that the distinguished

vertex d=(0,−1,H(M,Ax, p)) becomes the higher vertex of BlxΩ. As a consequence,

h(M̃, Ãx, p̃) 6H(M,Ax, p)

for each nonelementary point p̃∈Φ−1(p) which lies in the domain of the x-directional
chart.

In the y -directional chart, it follows from Lemma 4.48 that the distinguished vertex
d=(0,−1,H(M,Ax, p)) is mapped to the point d̃=(0, 0,H(M,Ax, p)) which belongs to
the support of BlyΩ. Moreover,

supp(BlyΩ)∩({0}×Z2) = {d̃}.

Therefore, we conclude that h(M̃, Ãx, p̃)6H(M,Ax, p) for each point p̃∈Φ−1(p) which
lies in the domain of the y -directional chart.

To finish the proof, we can define an axis Ãx for M̃ exactly as in the proof of
Theorem 4.29.

5.7. Nonequireducible points are discrete

Let us now prove that the set of nonequireducible points in NElem\D is finite on each
compact subset of the ambient space.

The first lemma is an easy result of analytic geometry.

Lemma 5.17. Given an arbitrary point p∈NElem, there exists an open neighborhood
U⊂M of p such that each point q∈(NElem\D)∩(U \{p}) is smooth.

Proof. This is obvious, since the set of nonsmooth points is a Zariski closed subset
of the analytic set NElem.

Lemma 5.18. Let p∈NElem\D be an equireducible point. Then, there exists an open
neighborhood V ⊂M of p such that each point q∈NElem∩V is also an equireducible point.
Moreover , if (U, (x, y, z)) is an equireduction chart at p, then the translated coordinates

x̃=x+%, ỹ = y and z̃ = z

are equireduction coordinates at q (for some appropriately chosen constant %∈R).
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Proof. We have to prove that the generic Newton data associated with the translated
coordinates (x̃, ỹ, z̃)=(x+%, y, z) is edge-stable, for all |%| sufficiently small.

Suppose, by contradiction, that this is not the case. Then, for each ε>0, there
exists a constant %∈R with |%|<ε such that the corresponding translated point q (with
the coordinates (x̃, ỹ, z̃)) satisfies the following condition: there exists a map in G∆ of
the form

z̄ = z̃+ξỹ∆,

such that the transformed generic Newton data 	ΩG (at the point q) belongs to the class
NewmG

∆̄
for some ∆̄>∆.

Applying the local blowing-up Φ: M̃!M∩U for (M,Ax) at p, we can choose a point
q̄∈Φ−1(q) (for instance, the origin in the y -directional chart of the blowing-up) such that
its virtual height satisfies

h(q̄) > hG(q) > hG(p).

But this contradicts Theorem 5.13 and Proposition 5.2.

As an immediate consequence, we get the following result.

Corollary 5.19. (i) The set of equireducible points, denoted by Eq, is an open
subset of NElem\D (for the topology induced by the topology of M).

(ii) Given two equireducible points p and q in the same connected component of Eq,
the corresponding generic Newton data necessarily belong to the same class NewmG

∆ .

Finally, we can state the main result of this subsection.

Proposition 5.20. The set of nonequireducible points in NElem\D is finite on each
compact subset K⊂M .

Proof. By the compactness of NElem∩K, we just need to prove the following claim.

Claim. For each point p∈NElem∩K, there exists an open neighborhood U⊂M of p

such that each point in the set (NElem\D)∩(U \{p}) is equireducible.

In order to prove the claim, we consider separately the following cases:
(1) p∈NElem\D is an equireducible point;
(2) p∈NElem∩D;
(3) p∈NElem\D is nonequireducible.

In case (1), the claim is a direct consequence of Corollary 5.19.

In case (2), it suffices to prove that the result holds for each irreducible branch of
the (possibly singular) germ of analytic sets NElemp. Let us fix one such branch, which



268 d. panazzolo

we denote by γ. Let Yp be the local blowing-up center for (M,Ax) at p. We consider
separately the following two cases:

(2.a) γ=Yp;
(2.b) γ 6=Yp.
In case (2.a), if we fix an arbitrary stable chart (U, (x, y, z)) at p, then necessarily

γ = {y = z =0}.

Using the same reasoning as in the proof of Lemma 5.18, we conclude that, for each
sufficiently small constant %∈R, the translated coordinates (x+%, y, z) are equireduction
coordinates. Therefore, each point of γ which is sufficiently near p is equireducible.

In case (2.b), we consider the local blowing-up Φ: M̃!M∩U for (M,Ax) at p. The
strict transform of γ accumulates at some point

p̃∈NElem(M̃)∩Φ−1(p).

We can now repeat the analysis on this point p̃. If we fall in case (2.b), we make another
local blowing-up and proceed inductively.

By Theorem 4.29, we necessarily fall in case (2.a) after a finite number of such steps.
Finally, in case (3), we argue as follows. Let us fix some strongly adapted local chart

(U, (x, y, z)) at p and let Φ: M̃!M∩U be a distinguished local blowing-up for (M,Ax)
at p. Then, looking at the strict transform of NElem and using the compactness of
Φ−1(p), the result immediately follows from case (2).

We shall say that a controlled singularly foliated manifold (M,Ax) is equireducible
outside the divisor if each point in NElem(M)\D is equireducible.

Lemma 5.21. Let (M,Ax) be a controlled singularly foliated manifold and U⊂M be
a relatively compact subset. Let {p1, ..., pk}⊂NElem\D be the distinct nonequireducible
points of (M,Ax) on U \D. Then, there exist a blowing-up

Φ: M̃−!M

with center on p1, and an axis Ãx for M̃, such that the points

{Φ−1(p2), ...,Φ−1(pk)}⊂NElem(M̃)\D̃

are the only nonequireducible points for (M̃, Ãx) on the relatively compact subset

Φ−1(U)\D̃.



resolution of singularities of vector fields in dimension three 269

Proof. We fix a strongly adapted local chart (U, (x, y, z)) at the point p1 and let

Φ: M̃−!M

be a distinguished vertex blowing-up at p1, as defined in §5.6. The result immediately
follows from Proposition 5.16.

Corollary 5.22. Let (M,Ax) be a controlled singularly foliated manifold and let
U⊂M be a relatively compact subset. Then, there exist a finite sequence of blowing-ups

M=M0
Φ1 −−M1

Φ2 −− ...
Φk −−Mk,

and an axis Axk for Mk, such that (Mk,Axk) is equireducible outside the divisor , when
restricted to (Φk �...�Φ1)−1(U).

Let (M,Ax) be a singularly foliated manifold which is equireducible outside the
divisor. Then, each connected component Y of NElem\D is a smooth 1-dimensional
analytic curve. In this case, we define the generic virtual height for (M,Ax) along Y as
the natural number

h(M,Ax, Y ) := hG(M,Ax, p),

where p is an arbitrary point on Y . Using Corollary 5.19, one concludes that h(M,Ax, Y )
is independent of the choice of the particular point p∈Y .

5.8. Extending the invariant to NElem\D

In this subsection, let us assume that (M,Ax) is equireducible outside the divisor. In
particular, the virtual height function h(M,Ax, ·): NElem∩D!N can be extended to
the whole set NElem by setting

h(M,Ax, ·) := hG(M,Ax, ·) on NElem\D.

We denote this function shortly by h(p).
The stratum of virtual height h is the subset

Sh = {p∈NElem : h(p) =h}.

Lemma 5.23. Given a connected equireducible curve Y ⊂NElem\D, let 
Y ⊂NElem
be the smallest closed analytic subset which contains Y. Then, for each point p∈
Y ∩D,
we have h(Y )6h(p).
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Proof. Let (U, (x, y, z)) be a stable adapted chart at p. Firstly, suppose that the
point p is such that Yp=
Y ∩U (i.e. 
Y locally coincides with the local blowing-up at p).
Then, it follows from the argument used in the proof of Lemma 5.4 that h(Y )=h(p).

Suppose now that Yp 6=
Y ∩U and assume, by contradiction, that

h(Y ) > h(p).

We make the local blowing-up Φ: M̃!M∩U for (M,Ax) at p, and look at the strict
transform Y ′ of the curve Y . The closure of this curve 
Y ′ necessarily intersects the
exceptional divisor D̃=Φ−1(Yp) in at least one nonelementary point p̃. Moreover,

h(Y ′) = h(Y ) > h(p) > h(p̃),

as a consequence of Theorem 4.29.
Let us now set p:=p̃ and Y :=Y ′, and iterate the process. Theorem 4.29 implies

that after some finite number of iterations, we fall into a situation where D̃ has no
nonelementary points. This is a contradiction.

Proposition 5.24. The function h: NElem!N is upper semicontinuous.

Proof. This is an immediate consequence of Proposition 5.2 and Lemma 5.23.

The Newton invariant inv(M,Ax, p) can also be defined globally on NElem. We
denote it shortly by inv(p) and remark that the following relations hold:

(1) if p∈Sh\D, then inv(p)=(h, 0, 0, 0, 0, 0);
(2) if p∈Sh∩D is such that #ιp=2, then inv(p)=(h, 1, h, 1, ∗, ∗);
(3) if p∈Sh∩D is such that #ιp=1, then either

inv(p) = (h, 0,m3, 0, ∗, ∗) or inv(p) = (h, 1, h, 0, ∗, ∗)

for some m3>h (where the ∗’s denote some arbitrary natural numbers).
As a consequence of this, combined with Propositions 5.5 and 5.24, we conclude the

following result.

Proposition 5.25. The function inv: NElem!N6 is upper semicontinuous (for the
lexicographical ordering on N6).

5.9. Extended center, bad points and bad trees

A controlled singularly foliated manifold (M,Ax) will be called a restriction if it is given
by the restriction of a controlled singularly foliated manifold (M′,Ax′) to some relatively
compact open subset U of the ambient space M ′.
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Figure 31. The extended centers.

In this subsection, we shall suppose that (M,Ax) is a restriction and, moreover,
that it is equireducible outside the divisor. In particular, this implies (by the upper
semicontinuity of the height function) that

hmax := sup{h(p) : p∈NElem}

is a finite natural number and that the divisor list Υ∈L has finite length.
The set Shmax ={p∈NElem:h(p)=hmax} will be called the stratum of maximal height.

Lemma 5.26. The stratum of maximal height Shmax is a closed analytic subset of
NElem. Moreover , Shmax∩D is a union of isolated points and closed analytic curves which
have normal crossings with the divisor.

Proof. The set Shmax is closed by the upper semicontinuity of the function h. More-
over, it follows from conditions (i) and (ii) of Proposition 5.2 that the set Shmax∩D is
locally smooth at each point p∈Shmax∩D.

The extended center associated with a point p∈NElem is the smallest closed analytic
subset 
Yp⊂NElem which coincides with the local blowing-up center Yp in a neighborhood
of p.

Remark 5.27. For instance, if Yp={p}, then 
Yp={p}. On the other hand, if Yp is
contained in some irreducible divisor component D⊂D, then 
Yp is entirely contained
in D.
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We say that 
Yp is a divisorial center if 
Yp⊂D.

Lemma 5.28. Let p∈Shmax be such that the extended center 
Yp is divisorial. Then,

Yp is either an isolated point or a smooth analytic curve which has normal crossings with
the divisor D.

Proof. This is an obvious consequence of Lemma 5.26, since the extended center 
Yp

is an irreducible closed analytic subset of Shmax∩D.

We say that the extended center 
Yp is permissible at a point q∈
Yp if 
Yq≡
Yp. In
other words, 
Yp is permissible at q if the the local blowing-up center for (M,Ax) at q

locally coincides with 
Yp. A point q∈
Yp is called a bad point if 
Yp is not permissible at q.
We denote by Bad(p) the set of all bad points in 
Yp. We shall say that the extended
center 
Yp is globally permissible if Bad(p)=∅.

Proposition 5.29. Fix a point p∈Shmax .
(i) If Yp={p}, then 
Yp is globally permissible.
(ii) Suppose that 
Yp is a smooth curve contained in some divisor component Di⊂D.

Then, each point of Bad(p) is contained in the intersection Di∩Dj for some index j>i.
(iii) If p∈Shmax \D is an equireducible point , then Bad(p) is a subset of 
Yp∩D.

Proof. Fact (i) is trivial. To prove fact (ii), notice that for each point q∈
Yp, the
following three situations can appear:

(a) ιq=[i];
(b) ιq=[i, k];
(c) ιq=[j, i];

for some indices k<i<j. In cases (a) and (b), it is clear that the extended center 
Yp

is permissible at q, because ∆q
1=∆p

1>0 (by Lemma 5.4). Therefore, a bad point of 
Yp

necessarily lies in the intersection of Di with some divisor Dj of larger index.
Fact (iii) is a direct consequence of the assumption that (M,Ax) is equireducible

outside the divisor D.

Corollary 5.30. For each point p∈Shmax∩Di, the following properties hold :
(1) if #ιp=2, then the set Bad(p) has at most one point ;
(2) if #ιp=1 and 
Yp⊂Di, then the set Bad(p) has at most two points.
In both cases each point q∈Bad(p) is such that ιq=[i, j] for some index j>i.

Proof. This is a direct consequence of Proposition 5.29 and the description of the
set Shmax∩D given by Lemma 5.26.

Lemma 5.31. Let p∈Shmax\D be an equireducible point. Then, for each point

q ∈Bad(p),
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the associated local blowing-up center Yq is such that


Yq ⊂D,

i.e. 
Yq is necessarily a divisorial center.

Proof. Indeed, suppose by contradiction that Yq is not a divisorial center and 
Yq 6=
Yp.
We fix a stable local chart (U, (x, y, z)) at q and let

Φ: M̃−!M∩U

be the local blowing-up (with center Yq) of (M,Ax) at q. It follows from Propositions 4.47
and 4.52 that each point p̃∈Φ−1(q) is such that either the Newton data is in a final
situation or h(p̃)<h(q)=hmax.

On the other hand, the strict transform of 
Yp under Φ contains at least one point
of Φ−1(q). But this contradicts the fact that 
Yp⊂Shmax .

A bad chain is a (possibly infinite) sequence of points {pn}n>0 which is contained
in Shmax and is such that

pn+1 ∈Bad(pn) for n > 0.

We shall say that a finite bad chain {p0, ..., pl} is complete if Bad(pl)=∅. The number l

will be called the length of the complete bad chain. A complete bad chain of length 2 is
illustrated in Figure 32.

Remark 5.32. It follows from Lemma 5.31 and Corollary 5.30 that for a bad chain
{pn}n>0, we always have #ιp1 >1 and ιpn =2 for all n>2.

Lemma 5.33. Each bad chain has a finite number of points.

Proof. By Remark 5.32, each bad chain {pn}n>0 is such that #ιpn =2 for all n>2.
Moreover, if we write ιpn =[jn, in] then

in <jn = in+1 <jn+1 = in+2 <jn+2 = ...,

and therefore the indices {in}n>0⊂Υ form a strictly increasing sequence (where Υ is the
list of divisor indices). Since we supposed that (M,Ax) is a restriction, the list Υ is
necessarily finite. The lemma is proved.

Given a point p∈Shmax , the set of bad chains starting at p is the set B(p) of all
complete bad chains {pn}n>0 such that p0=p.

Remark 5.34. It follows from Lemma 5.33 that the set B(p) has only a finite number
of elements.
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Di0
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Figure 32. The bad chain {p0, p1, p2} (here Bad(p2)=∅).

More generally, given a finite set of points P⊂Shmax , we define the P -bad chain as
the union

B(P ) :=
⋃
p∈P

B(p)

of all bad chains starting at points in P . Associated to B(P ), let us consider a directed
graph T =(V,E) defined as follows:

(i) the set of vertices V corresponds to the set of points of all bad chains starting at
points in P (for simplicity, we identify each element of V with the corresponding point
in the bad chain);

(ii) the directed edge q!r belongs to the set of edges E if there exists a bad chain
{pn}l

n=0 in B(P ) such that
pi = q and pi+1 = r

for some 06i6l−1.

Lemma 5.35. The graph T =(V,E) is a directed tree.

Proof. We need to prove that T has no cycles. Let us suppose, by contradiction,
that there exists a cycle in T,

q0−! q1−! ...−! qr −! qr+1 = q0,

where qn+1∈Bad(qn) for each 06n6r. Let us write ιqn =[in] (if #ιqn =1) and ιqn =[jn, in]
(if #ιqn =2).

First of all, suppose that the extended center 
Yq0 is divisorial (i.e. contained in D).
Then, it follows from Corollary 5.30 that the sequence i1<i2<...<in is strictly increasing.
Thus no cycle may appear.
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Suppose now that 
Yq0 is not divisorial. Then, Lemma 5.31 implies that 
Yqn is
divisorial, for all n>1. This contradicts the fact that qn+1=q0.

Definition 5.36. The directed tree T =(V,E) defined above will be called the bad
tree associated with P . We shall denote it by TrB(P ).

From now on, we adopt the usual nomenclature for trees. Thus, a branch is any
succession of points and directed edges:

p0−! p1−! ...−! pk.

In this case, the number k is called the length of the branch. A point q∈V is called a
descendant of a point p if there exists a branch of positive length as above such that
p0=p and pk=q. A point q is called a terminal if it has no descendants in the tree.

Remark 5.37. For each terminal point q∈TrB(P ), the extended center 
Yq is globally
permissible (because Bad(q)=∅).

The maximal length of a bad tree is the length L(TrB(P ))∈N of the longest branch
of TrB(P ).

Let F⊂B(P ) be the set of all terminal points which lie in branches of maximal length
(i.e. those branches of TrB(P ) which have length L(TrB(P ))). We define the maximal
final invariant of TrB(P ) as

inv(TrB(P )) := max lex{inv(q) : q ∈F},

where the maximum is taken in the lexicographical ordering in N6. The maximal final
locus is the finite set of points

Loc(TrB(P )) := {q ∈F : inv(q) = inv(TrB(P ))}.

Finally, we define the multiplicity of the bad tree TrB(P ) as the vector

Mult(TrB(P )) := (L(TrB(P )), inv(TrB(P )),#Loc(TrB(P )))∈N8, (35)

where #Loc(TrB(P )) is the cardinality of the set Loc(TrB(P )).

5.10. Maximal invariant locus and global multiplicity

In this subsection, we continue to assume that (M,Ax) is a a controlled singularly foliated
manifold which is a restriction (see §5.9) and equireducible outside the divisor.
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Therefore, the maximum of the invariant inv(p),

invmax(M,Ax) := sup lex{inv(p) : p∈NElem},

is a finite vector in N6. If (M,Ax) is clear from the context, we denote this number
simply by invmax. The subset

Sinvmax := {p∈NElem : inv(p) = invmax}⊂Shmax

will be called the maximal invariant stratum of (M,Ax).
Consider the subsets Di :={p∈NElem:#ιp=i} for i=0, 1, 2. We establish the follow-

ing definition: we say that Sinvmax is of
2-boundary type, if Sinvmax∩D2 6= ∅,
1-boundary type, if Sinvmax∩D2 = ∅ and Sinvmax∩D1 6= ∅,
0-boundary type, if Sinvmax∩(D1∪D2) = ∅ and Sinvmax∩D0 6= ∅.

Using this classification, the following result establishes some properties of Sinvmax .

Lemma 5.38. The maximal invariant stratum has the following properties:
(i) if Sinvmax is of 2-boundary type, then Sinvmax⊂D2;
(ii) if Sinvmax is of 1-boundary type, then Sinvmax⊂D1;
(iii) if Sinvmax is of 0-boundary type, then Sinvmax =Shmax⊂D0.

Proof. The result is a direct consequence of the definition of inv and Remark 5.3.

In the next lemmas, we give a more detailed description of Shmax .

Lemma 5.39. A 2-boundary type Sinvmax is the union of a finite number of distinct
points {p1, ..., pm}.

Proof. This follows immediately from the description of the set Sinvmax∩D which is
given in Lemma 5.26.

Lemma 5.40. A 1-boundary type Sinvmax is a finite union of distinct closed analytic
sets

Y1∪...∪Yr∪{p1, ..., pm}∪{q1, ..., qn},

for some natural numbers r, m, n∈N, such that the following conditions hold :
(i) Y1, ...,Yr are globally permissible 1-dimensional extended centers contained in D1;
(ii) each pi is an isolated point of Sinvmax∩D1 such that 
Ypi is a globally permissible

extended center contained in D1;
(iii) each qj is an isolated point of Sinvmax∩D1 such that the extended center 
Yqj is

not divisorial.
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Yp1


Yq

Figure 33. The 2-boundary maximal invariant stratum. Here, Bad(p1)={q}.

D

p1 Y1 s1
w

q1


Yq1

Figure 34. The 1-boundary maximal invariant stratum. Here, Bad(q1)={w}.

Proof. This follows immediately from the description of the set Shmax∩D which is
given in Lemma 5.26, and the assumption that Sinvmax∩D2=∅.

Lemma 5.41. A 0-boundary type Sinvmax is a finite union Y1∪...∪Yr of distinct
globally permissible 1-dimensional extended centers which are contained in D0.

Proof. It follows immediately from the assumptions that Sinvmax∩(D2∪D1)=∅ and
that (M,Ax) is equireducible outside the divisor.

Based on the above description of Sinvmax , we state the following definition.

Definition 5.42. A maximal point locus of (M,Ax) is a finite collection of distinct
points Pmax⊂Sinvmax , which is obtained as follows:

(i) if Sinvmax is a 2-boundary maximal invariant stratum, then

Pmax := {p1, ..., pm}=Sinvmax , (36)
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D

Y1

Y2

s1

s2

Figure 35. The 0-boundary maximal invariant stratum.

where {p1, ..., pm} is given by Lemma 5.39 (see Figure 33);
(ii) if Sinvmax is a 1-boundary maximal invariant stratum, then

Pmax = {s1, ..., sr, p1, ..., pm, q1, ..., qn}, (37)

where each si is an arbitrary point contained in the curve Yi, and the set

{Y1, ..., Yr, p1, ..., pm, q1, ..., qn}

is given by Lemma 5.40 (see Figure 34);
(iii) if Sinvmax is a 0-boundary maximal invariant stratum, then

Pmax := {s1, ..., sr}, (38)

where each si is an arbitrary point contained in the curve Yi, and the set {Y1, ..., Yr} is
given by Lemma 5.41 (see Figure 35).

The global multiplicity associated with (M,Ax) is the vector

Mult(M,Ax) := (invmax(M,Ax),Mult(TrB(Pmax))),

where Pmax is a maximal point locus of (M,Ax) and Mult(TrB(Pmax)) is the multiplicity
of the bad tree TrB(Pmax) (see definition (35)).

Remark 5.43. It is obvious that the value of Mult(M,Ax) is independent of the
choice of the points si∈Yi (i=1, ..., r) which is made in (37) and (38).

The globally permissible extended center Y =
Yq which is associated with a terminal
point q∈Loc(TrB(Pmax)) will be called a blowing-up center for (M,Ax).
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Proposition 5.44. Let Y ⊂M be a blowing-up center for (M,Ax). Then, there
exists a weight-vector ω∈N3 such that the following properties hold :

(i) for every point p∈Y \D and every equireduction chart (Up, (xp, yp, zp)) for
(M,Ax) at p,

ω =ωp and Y ∩Up =Yp

(i.e. ω is the local weight-vector at p and Y ∩Up is the local blowing-up center);
(ii) for every point p∈Y ∩D and every stable adapted chart (Up, (xp, yp, zp)) for

(M,Ax) at p,
ω =ωp and Y ∩Up =Yp.

Moreover , the collection of charts {(Up, (xp, yp, zp))}p∈A as defined above is an ω-
weighted trivialization atlas for Y ⊂M .

Proof. Properties (i) and (ii) follow from the fact that Y is a globally permissible
center.

In order to prove the last statement, we need to prove that the transition between
two charts in the above trivialization, say (Up, (xp, yp, zp)) and (Uq, (xq, yq, zq)), preserves
the ω-quasihomogeneous structure on R3.

If Y is a single point, it suffices to apply Proposition 4.28. If Y is a smooth curve,
then we can locally write

Y = {xp = zp =0} or Y = {yp = zp =0}.

In these cases we claim that, for each point q∈Y which is sufficiently close to p, the
respective translated chart,

(x̃q, ỹq, z̃q) = (xp, yp−%, zp) or (x̃q, ỹq, z̃q) = (xp−%, yp, zp),

is a stable local chart (or an equireduction chart) for (M,Ax) at q (for some conveniently
chosen constant %∈R).

Indeed, this claim can be proved by easy modifications of the proofs of Lemmas 5.4
and 5.18. Using the claim, combined with Proposition 4.28 and Remark 5.12, we conclude
that {(Up, (xp, yp, zp))}p∈A is a trivialization of Y which preserves the ω-quasihomoge-
neous structure on R3.

It follows from Proposition 2.12 that we can define the ω-weighted blowing-up of M
with center on Y :

Φ: M̃−!M (39)

(with respect to the trivialization given by Proposition 5.44). The transformed singularly
foliated manifold M̃ is defined according to §2.6.

The above map will be called a good blowing-up for (M,Ax).
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5.11. Global reduction of singularities

To state our next result, we recall that a controlled singularly foliated manifold (M,Ax)
is called a restriction if it is defined by a restriction of a controlled singularly foliated
manifold (M′,Ax′) to some relatively compact open subset of the ambient space.

Theorem 5.45. Let (M,Ax) be a controlled singularly foliated manifold which is a
restriction and is equireducible outside the divisor. Let

Φ: M̃−!M

be a good blowing-up for (M,Ax). Then, either M̃ is an elementary singularly foliated
manifold , or there exists an axis Ãx=(Ã, z̃) for M̃ such that :

(i) the singularly foliated manifold (M̃, Ãx) is a restriction;
(ii) (M̃, Ãx) is equireducible outside the divisor ;
(iii) Mult(M̃, Ãx)<lexMult(M,Ax).

Proof. Assume that the set NElem(M̃) of nonelementary points of M̃ is nonempty.
Let us denote by Y be the blowing-up center and recall that Φ locally coincides

with the local blowing-up for (M,Ax) at each point p∈Y . From this, we conclude from
Theorems 4.29 and 5.13 that there exists an axis Ãx=(Ã, z̃) for M (obtained by analytic
gluing) such that (M̃, Ãx) is a controlled singularly foliated manifold such that:

(i) (M̃, Ãx) is a restriction;
(ii) (M̃, Ãx) is equireducible outside the divisor.
Moreover, by Theorem 4.29, we conclude that

invmax(M̃, Ãx)6lex invmax(M,Ax).

If the inequality is strict, we are done. Otherwise, let us choose a maximal point locus
P̃max for (M̃, Ãx). Using again Theorems 4.29 and 5.13, we can write

P̃max =Φ−1(Pmax\Y )

for some maximal point locus Pmax of M. Indeed, we have

inv(M̃, Ãx, q̃) <lex invmax(M,Ax)

for each point q̃∈Φ−1(Y ), and therefore Sinvmax∩Φ−1(Y )=∅.
For simplicity, let us write the respective multiplicities of the bad trees TrB(Pmax)

and TrB(P̃max) simply as

Mult(TrB(Pmax))= (L, I, #) and Mult(TrB(P̃max))= (L̃, Ĩ, #̃).
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Then, we need to prove that

(L, I, #) <lex (L̃, Ĩ, #̃).

First of all, we claim that L6L̃. Indeed, it suffices to study how each branch

p0−! p1−! ...−! pl (p0 ∈Pmax) (40)

of the bad tree TrB(Pmax) is transformed by the blowing-up.
If pi /∈Y for all i=0, ..., l, then this branch is mapped isomorphically to a branch of

length l of the new bad tree TrB(P̃max).
Now, suppose that there exists an index 06i6l such that

{p0, ..., pi−1}∩Y = ∅ and pi ∈Y.

If i=0, it is immediate to see that the branch is completely destroyed. So, we suppose
that i>1. It follows from Propositions 4.30, 4.47 and 4.52 that each nonelementary point
q̃∈Φ−1(pi) satisfies one of the following conditions:

(1) h(M̃, Ãx, q̃)<h(M,Ax, pi);
(2) h(M̃, Ãx, q̃)=h(M,Ax, pi) and ∆q̃

1=0,
where ∆q̃=(∆q̃

1,∆
q̃
2) is the vertical displacement vector associated with q̃.

As a consequence, the points lying in case (2) are isolated points of S̃hmax∩D̃ (where
D̃:=Φ−1(Y ) is the exceptional divisor of the blowing-up and S̃hmax is the stratum of
maximal height for (M̃, Ãx)).

Now, observe that the strict transform of the extended center 
Ypi−1 intersects the set
Φ−1(pi) in a unique point q̃∈Shmax, which necessarily lies in case (2). This immediately
implies that Bad(q̃)=∅, and therefore the branch (40) is mapped to a unique branch in
TrB(P̃max), which has one of the following forms

p̃0−! p̃1−! ...−! p̃i−1−! q̃, or p̃0−! p̃1−! ...−! p̃i−1,

where p̃j =Φ−1(pj) for j=0, ..., i−1. In both cases, it is clear that the new branch has
length at most equal to the length of the original branch. We have proved that L̃6L.

Let us suppose that L̃=L. Then, since the blowing-up creates no new branches
of maximal length L, it follows immediately from the theorem of local resolution of
singularities (Theorem 4.29) that

Ĩ 6lex I.

It remains to prove that the conditions L̃=L and Ĩ=I imply that #̃<#. To see this, it
suffices to remark that the blowing-up satisfies the following properties:

(1) the blowing-up Φ creates no new branches of length L;
(2) the center Y contains at least one terminal point of a branch which has length

exactly equal to L.
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Applying again Theorems 4.29 and 5.13, we immediately conclude that #̃<#. This
completes the proof of the theorem.

5.12. Proof of the main theorem

We are now ready to prove the main theorem of this work.

Proof of Theorem 1.1. Let M=(M, ∅, ∅, Lχ) be the singularly foliated manifold as-
sociated with χ and let Ax be an axis for M, defined as in Proposition 2.16. Given a
relatively compact subset U⊂M , we denote by (M′,Ax′) the restriction of (M,Ax) to U .

Using Lemma 5.21, we know that there exists a finite sequence of blowing-ups

(M′,Ax′) = (M0,Ax0)−! (M1,Ax1)−! ...−! (Mk,Axk),

such that the resulting singularly foliated manifold (Mk,Axk) is equireducible outside
the divisor.

To finish the proof, it suffices to consider the controlled singularly foliated manifold
(Mk,Axk) and apply Theorem 5.45 repeatedly.

Appendix A. Faithful flatness of C[[x, y, z]]

In the proof of the stabilization of adapted charts, we need the following simple conse-
quence of the fact that C{x, y, z} is a unique factorization domain and that its completion
C[[x, y, z]] is faithfully flat (see e.g. [Ma, §4.C and §24.A]).

Lemma A.1. Let I⊂C{x, y, z} be a nonzero radical ideal and let

I ′ =J ′1∩...∩J ′k

be the irreducible primary decomposition of the ideal I ′=IC[[x, y, z]] in the ring of formal
series C[[x, y, z]]. Then, each J ′i , i=1, ..., k, can be written as J ′i =JiC[[x, y, z]] for some
prime ideal Ji⊂C{x, y, z}.

Corollary A.2. Let H=(H1, ...,Hr)∈R{x, y, z}r be a nonzero germ of analytic
maps. Suppose that we can write the factorization

H1

H2

...

Hr

=(z−f(x, y))


S1

S2

...

Sr

,

where f∈R[[x, y]] and S1, ..., Sr∈R[[x, y, z]]. Then, necessarily f∈R{x, y} is an analytic
germ.
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Proof. Indeed, the hypothesis implies that the ideal I=rad(H1, ...,Hr) is contained
in the principal ideal J=(z−f(x, y))C[[x, y, z]]. In particular, J is a member of the
irreducible primary decomposition of I in C[[x, y, z]]. Therefore, it suffices to apply
Lemma A.1 to conclude that f is necessarily an analytic germ.

Given a nonzero natural number a∈N, consider now the ideal

Îa =(xa)R[[x, y, z]]⊂R[[x, y, z]].

The elements of the quotient ring R̂a=R[[x, y, z]]/Ia are uniquely represented by the
polynomials in R[[y, z]] [x] whose degree in the variable x is at most a−1. We let Ra

denote the image of R{x, y, z} under the quotient map.

Corollary A.3. Let ([H1], ..., [Hr])∈Rr
a be a nonzero germ. Suppose that we can

write the factorization (in R̂a)
[H1]
[H2]

...

[Hr]

=(z−[f(x, y)])


[S1]
[S2]
...

[Sr]

,

where [f ]∈R̂a and [S1], ..., [Sr]∈R̂a. Then, the germ [f ] necessarily lies in Ra.

Proof. It suffices to use Corollary A.2.

Appendix B. Virtual height

Let us start with an elementary version of the Descartes’ lemma.

Lemma B.1. Let Q(z) be a polynomial in C[z] with m nonzero monomials. Then,
the multiplicity of Q at a point ξ 6=0 is at most m−1.

Proof. Given a polynomial Q∈C[z], let µ(Q) be the multiplicity of Q at the origin
(i.e. the greatest natural number k such that zk divides Q(z)). We consider the sequence
of polynomials Q0(z), Q1(z), ... which is inductively defined as follows:{

Q0 = z−µ(Q)Q,
Qi+1 = z−µ(Q′

i)Q′
i for i> 0,

(where ′ means d/dz). By induction, we can easily prove that Q has multiplicity k at
some point ξ 6=0 if and only if

Q0(ξ) = ...=Qk−1(ξ) = 0.
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However, it follows from the hypothesis and the above construction that Qm−1 is neces-
sarily a nonzero constant. Therefore, the maximum multiplicity of Q at a point ξ 6=0 is
at most m−1.

For the rest of this appendix, we shall adopt the following notation. Let P (x1, ..., xn)
be an n-variable polynomial whose support is contained in the straight line

r: t∈R+ 7−!p+t(∆,−1),

for some p=(p1, ..., pn)∈Nn and some vector ∆∈Qn−1
>0 of the form

∆=
(

a1

b1
, ...,

an−1

bn−1

)
, with ai ∈N, bi ∈N∗ and gcd(ai, bi) = 1.

Let c be the least common multiple of b1, ..., bn−1 and Q(z) be the 1-variable polynomial

Q(z) =P (1, ..., 1, z) = ∗zpn +...,

where ∗ denotes some nonzero coefficient.

Proposition B.2. The multiplicity µξ(Q) of the polynomial Q(z) at a point ξ 6=0
is at most equal to bpn/cc.

Proof. Let p1, ...,pk denote the points of intersection of the straight line r(t) with the
lattice Nn, ordered according to the last coordinate (so that pk=p). Lemma B.1 implies
that the multiplicity µξ(Q) is at most equal to k. The result now follows immediately
by noticing that each point ps is necessarily given by ps=p+(k−s)c(∆,−1).

Corollary B.3. Suppose that pn>c+1 and 16ai<bi for some i∈{1, ..., n−1}.
Then,

µξ(Q) 6 pn−
bi

ai
,

for all ξ 6=0.

Proof. Let us prove that the condition pn−bi/ai>bpn/cc is satisfied. Since bi6c, it
is clearly satisfied if

pn >
c2

c−1
. (41)

Now we use the facts that pn>c+1 and c>bi>2. It follows that inequality (41) is
immediately satisfied when pn>c+1. For pn=c+1, we compute⌊

pn

c

⌋
=
⌊
1+

1
c

⌋
=1 = pn−c6 pn−

bi

ai
.

This concludes the proof.
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Appendix C. Comments on final models

In this appendix, we shall indicate some possible refinements of our main theorem. First
of all, we introduce the notion of strongly elementary vector field.

We use the following notation: given a matrix A∈Mat(n,R) and a formal map
R=(R1, ..., Rn)∈R[[x]]n, the symbol

[Ax+R]
∂

∂x

denotes the formal vector field

n∑
i=1

[〈Ai,x〉+Ri]
∂

∂xi
,

where Ai is the ith row of the matrix A.
Let ι⊂[n, ..., 1] be a sublist of indices and

D=
⋃
i∈ι

{xi =0}

be the corresponding divisor of coordinate hyperplanes in Rn.
We say that a formal n-dimensional vector field η is D-preserving if it can be written

in the form
η =

∑
i∈ι

aixi
∂

∂xj
+

∑
j∈[n,...,1]\ι

aj
∂

∂xj
,

where a1, ..., an∈R[[x]] are formal series.
A formal n-dimensional vector field η is called a D-final model if η is D-preserving

and has one of the following expressions:
(1) (nonsingular vector field)

η =(λ+r(x))
∂

∂x1
,

for some nonzero constant λ∈R∗ and a germ r∈R[[x]] with r(0)=0;
(2) (singular vector field) there exists a decomposition of Rn into a cartesian product

x=(x+,x−,xI,x0)∈Rn+×Rn−×RnI×Rn0 ,

with n++n−+nI>1, such that η can be written as

η = [J+x++R+(x)]
∂

∂x+

+[J−x−+R−(x)]
∂

∂x−
+[JIxI+RI(x)]

∂

∂xI
+R0(x)

∂

∂x0
,
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and the following conditions hold:
(i) (J+, J−, JI)∈Mat(n+,R)×Mat(n−,R)×Mat(nI,R) are matrices whose eigenval-

ues are all nonzero and have strictly positive real part, strictly negative real part and
zero real part, respectively;

(ii) R∗∈R[[x]]n∗ is a formal germ such that R∗(0)=DR∗(0)=0 (for ∗∈{+,−, I, 0});
moreover,

R+|{x+=0} =R−|{x−=0} =RI|{xI=0} =0,

and
R0|{x−=x0=0} =R0|{x+=x0=0} =R0|{xI=x0=0} =0;

as a consequence, the eigenspaces W+, W−, WI and W0 which correspond to J+, J−, JI

and the zero matrix, respectively, are (formal) invariant manifolds for η;
(iii) the zero set Z={η=0}⊂W0 has normal crossings (i.e. it is given by a finite

union of intersections of coordinate hyperplanes);
(iv) the restricted vector field η0=η|W0 has the form

η0 =µxα
0 U(x)η̃, with xα

0 =
n0∏
i=0

xαi
0,i,

where µ∈R is a real constant, α∈Nn0 is a vector of natural numbers, U∈R[[x]] is a unit
and η̃ is an n0-dimensional (D∩W0)-final model.

In other words, condition (iv) requires that the restriction of η to the manifold W0

is given (up to multiplication by a unit) by a monomial times a vector field η0 which is
a final model on a space of strictly lower dimension.

An analytic vector field χ defined on M is D-strongly elementary at a point p∈M

if there exists a D-adapted formal coordinate system x=(x1, ..., xn) at p such that χ,
written in these coordinates, is a D-final model.

Remark C.1. We cannot replace the words formal coordinate system by analytic
coordinate system in the above definition. It would be too restrictive. For instance, it
would imply that the local center manifolds are necessarily analytic.

A singularly foliated manifold M=(M,Υ,D, L) will be called strongly elementary if
for each point p∈M , the line field L is locally generated by a vector field χp which is
D-strongly elementary.

Conjecture. Let χ be a reduced analytic vector field defined on a real-analytic man-
ifold M without boundary. Then, for each relatively compact set U⊂M , there exists a
finite sequence of weighted blowing-ups

(U, ∅, ∅, Lχ|U ) =:M0
Φ1 −−M1

Φ2 −− ...
Φn −−Mn (42)

such that the resulting singularly foliated manifold Mn is strongly elementary.
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Let us see a few examples of final models in dimensions 1, 2 and 3.

Example C.2. For n=1, the complete list of final models is the following.
� Nonsingular case:

η =(λ+r(x))
∂

∂x
,

where r(0)=0 and λ∈R∗.
� Singular case:

η =(λx+xr(x))
∂

∂x
,

where r(0)=0 and λ∈R∗.
(Note that the former case only occurs if D=∅.)

Example C.3. For n=2 and D=∅, the complete list of final models is the following.
� Nonsingular case:

η =(λ+r(x))
∂

∂x1
,

where r(0)=0 and λ∈R∗.
� Singular case with n+=1 and n−=1:

η =(λ1x1+x1r1(x))
∂

∂x1
+(−λ2x2+x2r2(x))

∂

∂x2
,

where λ1, λ2∈R>0 and ri(0)=0 for i=1, 2.
� Singular case with n±=2:

η =(±λ1x1+R1(x))
∂

∂x1
+(±λ2x2+R2(x))

∂

∂x2
,

where λ1, λ2∈R>0 and Ri(0)=DRi(0)=0 for i=1, 2.
� Singular case with n±=1 and n0=1:

η =(±λ1x1+x1r1(x))
∂

∂x1
+µxα

2 U(x)(λ2+r2(x))
∂

∂x2
,

where λ1∈R>0, λ2∈R∗, µ∈R, α>2, U is a unit and ri(0)=0 for i=1, 2.
� Singular case with n±=n0=0 and nI=2:

η =(λx2+R1(x))
∂

∂x1
+(−λx1+R2(x))

∂

∂x2
,

where λ∈R>0 and Ri(0)=DRi(0)=0 for i=1, 2.

Example C.4. For n=3, D=∅, n0=1 and n+=n−=1, the final model is given by

η =(λ1x1+x1r1(x))
∂

∂x1
+(−λ2x2+x2r2(x))

∂

∂x2
+µxα

3 U(x)(λ3+r3(x))
∂

∂x3
,

where µ∈R, λ1, λ2∈R>0, λ3∈R∗, α>2, U is a unit and ri(0)=0 for i=1, 2, 3.
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Example C.5. For n=3, D=∅, n±=0, n0=1 and nI=2, the final model is given by

η =(λx2+x1r1(x)+x2s1(x))
∂

∂x1
+(−λx1+x1r2(x)+x2s2(x))

∂

∂x2

+µxα
3 U(x)(λ3+r3(x))

∂

∂x3
,

where µ∈R, λ∈R>0, λ3∈R∗, α>2, U is a unit and ri(0)=si(0)=0 for i=1, 2, 3.

Example C.6. For n=3, D=∅, n0=2 and n+=1, the final model is given by

η =(λ1x1+x1r1(x))
∂

∂x1
+µxα

2 xβ
3U(x)

( 3∑
i=2

(fi(x2, x3)+x1ri(x))
∂

∂xi

)
,

where µ∈R, λ1∈R>0, α+β>1, U is a unit and the vector field obtained by restriction
to the center manifold W0={x1=0}, namely

η̃ = f2(x2, x3)
∂

∂x2
+f3(x2, x3)

∂

∂x3
,

has one of the forms given in Example C.3.
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