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ON Tile DIVISION OF SPACE WITH MINIMUM PARTITIONAL AREA 

BY 

Sir WILLIAM TtIOMSON 
i n  G L A S G O W .  

1. This problem is solved in fo~m, and the solution is interestingly 
seen in the multitude of fihn-enclosed cells obtained by blowing air 
through a tube into the middle of a soap-solution in a large open vessel. 
I have been led to it by endeavours to understand, and to illustrate, 
GREE~'S theory of ))extraneous pressure)) whicil gives, for light traversing 
a crystal, FRESNEL'S wave-surface, with FJ~s~EI,'S supposition (strongly 
supported as it is by STOXES and RAYLEm~I) of velocity of propagation 
dependent, not on the distortion-normal, but on the line of vibration. 
It has been admirably illustrated, and some elements towards its solu- 
tion beautifully realized in a manner convenient for study and instruction, 
b y  PLATEAU, in the first volume of his Statique des Liquides soumis aux 
seules Forces Moldculaires. 

2. The general mathematical solution, as is well known, is that 
every interface between cells must have constant curvature 1 throughout, 
and that where three or more interfaces meet in a curve or straight line 
their tangent-planes through any point of the line of meeting intersect 
at angles such that equal forces in these planes, perpendicular to their 
line of intersection, balance. The minimax problem would allow any 

By }curvature)) of a surface I mean sum of curvatures in mutually perpendicular 
normal sections at any point; not GAUSSes ~curvatura integraD~ which is the product of 
the curvature in the two ~prineipal normal sections~ or sections of greatest and least 
curvature. (See THo:~mo~ and TAIT'S Nat~ral Philosophy, part i. ~ I3o~ 136.) 

A c t a  m a t h e m a t i c a ,  11. I m p r i m ~  le 16 Fe v r i e r  1888. 16 
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number of interfaces to meet in a line; but for a pure minimum it is 
obvious that not more than three can meet in a line, and that therefore, 
in the realization by the soap-film, the equilibrium is necessarily unstable 
if four or more surfaces meet in a line. This theoretical conclusion is 
amply confirmed by observation, as we see at every intersection of films, 
whether interracial in the interior of groups of soap-bubbles, large or 
small, or at the outer bounding-surface of a group, never more than 
three fihns, but, wherever there is intersection, always :h~st three films, 
meeting in a line. The theoretical conclusion as to the angles for stable 
equilibrium (or pure minimum solution of the mathematical problem) 
therefore becomes, simply, that every angle of meeting of fihn-surfaces 
is exactly 120 °. 

3. The rhombic dodecahedron is a polyhedron of plane sides between 
which every angle of meeting is 12o°; and space can be filled with (or 
divided into) equal and similar rhombic dodecahedrons. Hence it might 
seem that the rhombic dodecahedron is the solution of our problem for 
the case of all the cells equal in volume, and every part of the boundary 
of the group either infinitely distant from the place considered, or so 
adjusted as not to interfere with the homogeneousness of the interior 
distribution of cells. Certainly the rhombic dodecahedron is a sohdion 
of the minima~r, or effuilibri,~tm-problem; and certain it is that no other 
plane-sided polyhedron can be a solution. 

4. But it has seemed to me, on purely theoretical consideration, 
that the tetrahedral angles of the rhombie dodecahedron, ~ giving, when 

The rhombic dodecahedron has six tet rahedral angles and eight trihedral angles. 

At each tetrahedral angle the plane faces cut one another successively at I2o% while 
each is perpendicular to the one remoLe from it; and the angle between successive edges 

is cos - 1 ~  or 70 ° 32' . The obtuse angles ( I09 ° 28') of the rhombs meet in tile trihedral 
J 

a.,)g]es o[' the solid figure. The whole figurc may be regarded as composed of six square 

pyramids: each with i~;s alternate slant faces perpendicular to one another~ placed on six 
squares forming the sides of a cube. The long diagonal of each rhombio face thus made 
up of ~wo sides of pyramids conterminous in the short diagonal~ is ~i~ times the short 
diagonal 
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space is divided into such figures, twelve plane films meeting in a point 
(as twelve planes from the twelve edges of a cube meeting in the centre 
of the cube) are essentially unstable. That it is so is proved experi- 
mentally by PLATEAU (VO1. i. § 182, fig. 7 I) in his well-known beautiful 
experiment with his cubic skeleton frame dipped in soap-solution and 
taken out. His fig. 71 is reproduced here in fig. I. Instead of twelve 
2lane films stretched inwards from the twelve edges and meeting in the 
centre of the cube, it shows twelve fihns, of which eight are slightly 
curved and four are plane, ~ stretched from the twelwe edges to a small 
central plane quadrilateral film with equal curved edges and four ang!es 
each of lO9 ° 28'. Each of the plane films is an isosceles triangle with 
two equal curved sides meeting at a corner of the central curvilinear 
square in a plane perpendicular to its plane. It is in the plane through 
an edge and the centre of the cube. The angles of this plane curvi- 
linear triangle are respectively lO9 ° 28', at the point of meeting of the 
two curvilinear sides: and each of the two others half of this, or 54 ° 44'. 

5. I find that by blowing gently upon the PLA'rE.sV cube into any 
one of the square apertures through which the little central quadrilateral 
fiIm is seen as a line, this film is caused to contract. If I stop blowing 
before this line contracts to a point, the film springs back to its primi- 
tive size and shape. If I blow still very gently but for a little more 
time, the quadrilateral contracts to a line, and the twelve fihns meeting 
in it immediately draw out a fresh little quadrilateral film similar to ~he 
former, but in a plane perpendicular to its plane and to the direction of 
the blast. Thus, again and again, may the films be transformed so as 
to render the little central eurvilinear square parallel to one or other of 
the three pairs of square apertures of the cubic frame. Thus we see 
that the twelve plane films meeting in the centre of the cube is a con- 
figuration of unstable equilibrium which may be fallen from in three 
different ways. 

6. Suppose now space to be filled with equal and similar ideal 

I see it inadvertently stated by P•ATEAU that all the twelve films are ))]dgSrc 
ment courb~ess. 
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rhombic dodecahedrons. Draw the short diagonal of every rhombic face, 
and fix a real wire (infinitely thin and perfectly stiff) along each. This 
fills space with PLATEAU cubic frames. Fix now, ideally, a very small 
rigid globe at each of the points of space occupied by tetrahedral angles 
of the dodecahedrons, and let the faces of the dodecahedrons be realized 
by soap-films. They will be in stable equilibrium, because of the little 

fixed globes; and the equilibrium would be stable 
Fig. I. without the rigid diagonals which we require only 

to help the imagination in what follows. Let an 
exceedingly small force, like gravity, x act on all 
the fihns everywhere perpendicularly to one set of 
parallel faces of the cubes. If  this force is small 
enough it will not tear away the films from the 
globes; it will only produce a very slight bending 
from the plane rhombic shape of each fihn. Now 
annul the little globes. The fihns will instantly 
jump (each set of t~elve~ which meet in a point) 
into the Pr~TE~.U configuration (fig. ~), with the 
little curve-edged square in the plane perpendicular 
to the determining force, which m a ) - n o w  be an- 

/ nulled, as we no longer require it. The rigid edges 
of the cubes may also be now annulled, as we 
have done with them also; because each is (as we 

see by symmetry) pulled with equal forces in opposite directions, and 
therefore is not required for the equilibrium, and it is clear that the 
equilibrium is stable without them. ~ 

1 To do for every point of meeting of twelve films wbag is done by blowing in the 

experiment of ~. 5. 
2 The corresponding two-dimensional problem is much more easily imagined; and 

may probably be realized by aid of moderately simple appliances. 
Between a level surface of soap-solution and a horizontal plate of glass fixed at a 

eeatimetre or two above it~ imagine vertical film partitions to be placed along the sides of 
the squares indicated in the drawing (fig. 2): these will rest in stable equilibrium if thick 
enough wires are fixed vertically through the corners of the squares. Now draw away 
these wires do~ynwards into the liquid: the equilibrium in the square formation becomes 
unstable, and the films instantly run into the hexagonal formation shown in the diagram; 
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7. We have now space divided into equal and similar tetrakaide- 
cahedral cells by tile soap-film; each hounded by 

I) Two small plane quadrilaterals parallel to one another; 
2) Four large plane quadrilaterals in planes perpendicular to the 

diagonals of the small ones; 
3) Eight non-plane hexagons, each with two edges common with the 

small quadrilaterals, and four edges common with the large quadrilaterals. 

provided the square of glass is furnished with vertical walls (for which slips of wood are 

convenient): as shown in plan by the black border of the diagram. These walls are he. 
cessary to maintain the inequality of' pull in different directions which the inequality of 
the sides of the hexagons implies. By inspection of the diagram we see that the pull is 

Fig. 2. 

T/a per unit area on either of the pair of vertical walls which are perpendicular to the 
short sides of the hexagons; and on either of the other pair o f  walls 2 cos 3 0 ° X  T/a; 
where T denotes the pull of the film per unit breadth~ and a the side of' a square in the 

original formation. Henoe the ratio of the pulls per unit of area in the two principal 
directions is as I to I"732. 
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The fihns seen in the PLATEAU cube show one complete small qua- 
drilateral, four halves of four of the large quadrilaterals, and eight 
halves of eight of the hexagons, belonging to six contiguous cells; all 
mathematically correct in every part (supposing the film and the cube- 
frame to be infinitely thin). Thus we see all the elements required for 
an exact construction of the complete tetrakaidecahedron. By making 
a clay model of what we actually see, we have only to complete a 
symmetrical figure by symmetrically completing each half-quadrilateral 
and each half-hexagon, and putting the twelve properly together, with 
the complete small quadrilateral, and another like it as the far side of 
the I4-faced figure. We thus have a correct solid model. 

8. Consider now a cubic portion of space containing a large number 
of such cells, and of course ~ large, but a comparatively small, number 
of partial cells next the boundary. Wherever the boundary is cut by 
film, fix stiff wire; and remove all the film from outside, leaving the 
cubic space divided stably into cells by fihns held out against their 
tension by the wire network thus fixed in the faces of the cube. If 
the cube is chosen with its six faces parallel to the three pairs of qua- 
drilateral films, it is clear that the resultant of the whole pull of film 
on each face will be perpendicular to the face, and that the resultant 
pulls on the two pairs of faces parallel to pairs of the greater quadri- 
laterals are equal to one another and less than the resultant pull on the 
pair of faces parallel to tile smaller quadrilaterals. Let now the last- 
mentioned pair of faces of the cube be allowed to yield to the pull 
inwards, while the other two pairs are dragged outwards ~lgainst the 
pulls on them, st) as to keep the enclosed volume unchanged; and let 
the wirework fixture on the faces be properly altered, shrunk on two 
pairs of faces, and extended on the other pair of faces, of the cube, 
which now becomes a square cage with distance between floor and ceiling 
less than the side of the square. Let the exact configuration of the wire 
everywhere be always so adjusted that the cells throughout the interior 
remain, in their altered configuration, equal and similar to one another. 
We may thus diminish, and if we please annul, the difference of pull 
per unit area on the three pairs of sides of the cage. The respective 
shrinkage-ratio and extension-ratio, to exactly equalize the pulls per unit 
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area on the three principal planes, (and therefore on all planes), are 

2-~,  2~, 2~, as is easily seen from what follows. 

9. While the equal;zation of pulls in the three principal directions 
is thus produced, work is done by the film on the moving wire-work of 
the cage, and the total area of film is diminished by an amount equal 
to W/T, if W denote the whole work done, and 7' the pull of the 
film per unit breadth. The change of shape of the cage being supposed 
to be performed infinitely slowly, so that the film is always in equi- 
librium throughout, the total area is at each instant a minimum, subject 
to .the conditions 

I) That the volume of each cell is the given amount; 
2) That every part of the wire has area edged by it; and 
3) That no portion of area has any free edge. 

10.  Consider now the figure of the cell (still of course a tetra- 
kaidecahedron) when the pulls in the three principal directions are equa- 
lized, as described in § 8. It must be perfectly isotropic in respect to 
these three directions. Hence the pair of small quadrilaterals must have 
become enlarged to equality with the two pairs of large ones, which 
must have become smaller in the deformational process described in § 8. 
Of each hexagon three edges coincide with edges of quadrilateral faces 
of one cell; and each of the three others coincides with edges of three 
of the quadrilaterals of one of the contiguous cells. Hence the 36 edges 
of the isotropic tetrakaidecahedron are equal and similar plane arcs; 
each of course symmetrical about its middle point. Every angle of 
meeting of edges is essentially Io9 ° 28' (to make trihedral angles between 
tangent planes of the films meeting at 12o°). Symmetry shows that the 
quadrilaterals are still plane figures; and therefore, as each angle of each 
of them is lO9 ° 28', the change of direction from end to end o2 each 
arc-edge is 19 ° 28'. Hence each would be simply a circular arc of 19 ° 28', 
if its curvature were equal throughout; and it seems from the complete 
mathematical investigation of §§ 16, 17, 18 below, that it is nearly so, 
but not exactly so even to a first approximation. 

Of the three films which meet in each edge, in three adjacent cells, 
one is quadrilateral and two are hexagonal. 
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1 1. By symmetry we see that there are three straight lines in 
each (non-plane) hexagonal fihn, being its three long diagonals; and that 
these three lines, and therefore the six angular points of the hexagon, 
are all in one plane. The arcs composing its edges are not in this plane, 
but in planes making, as we shall see (§ 12), angles of 54 ° 44' with it. 
For three edges of each hexagon, the planes of the arcs bisect the angle 
of IO9 ° 28' between the planes of the six corners of contiguous hexagons; 
and for the other three edges are inclined on the outside of its plane 
of corners, at angles equal to the supplements of the angles of 125 ° I6' 
between its plane of corners and the planes of contiguous quadrilaterals. 

12.  The planes of corners of the eight hexagons constitute the 
faces of an octahedron which we see, by symmetry, must be a regular 
octahedron (eight equilateral triangles in planes inclined IO9 ° 28' at every 
common edge). Hence these planes, and the planes of the six quadri- 
laterals, constitute a plane-faced tetrakaidecahedron obtained by truncating 
the six corners 1 of a regular octahedron each to such a depth as to 
reduce its eight original (equilateral triangular) faces to equilateral equi- 
angular hexagons. An orthogonal projection of this figure is shown in 
fig. 3. It  is to be remarked that space can be filled with such figures. 
For brevity we shall call it a plane-faced isotropic tetrakaidecahedron. 

Fig. 3. Fig. 4. 

13. Given a model of the plane-faced isotropic tetrakaidecahedron, 
it is easy to construct approximately a model of the minimal tetrakaide- 
cahedron, thus: - -  Place on each of the six square faces a thin plane 
disk having the proper curved arcs of I9 ° 28' for its edges. Draw the 

t This figure (but with probably indefinite extents of the truncation) is given in 

books on mineralogy as representing a natural crystal of red oxide of copper. 
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three long diagonals of each hexagonal face. Fill up by little pieces of 
wood, properly cut, the three sectors of 6o ° from the centre to the 
overhanging edges of the adjacent quadrilaterals. Hollow out symmetri- 
cally the other three sectors, and the t.hing is done. The result is shown 
in orthogonal projection, so far as the edges are concerned, in fig. 4; 
and as the orthogonal projections are equal and similar on three planes 
at right angles to one another, this diagram suffices to allow a perspec- 
tive drawing from any point of view to be made by Mescriptive geo- 
metry)). 

14.  No shading could show satisfactorily the delicate curvature of 
the hexagonal faces, though it may be fairly well seen on the solid 
model made as described in § 12. But it is shown beautifully, and il- 
lustrated in great perfection, by making a skeleton model of 36 wire 
ares for the 36 edges of the complete figure, and dipping it in soap so- 
lution to fill the faces with fitm, which is easily done for all the faces 
but one. The curvature of the hexagonal fihn on the two sides of the 
plane of its six long diagonals is beautifully shown by reflected l ight  
I have made these 36 ares by cutting two circles, 6 inches diameter, of 
stiff wire, each into I8 parts of 2o ° (near enough to I9 ° 28'). It is easy 
to put them together in proper positions and solder the corners, by aid 
of simple devices for holding tile ends of the three ares together in proper 
positions during the soldering. The eireula.r curvature of the arcs is not 
mathematically correct, but the error due to it is, no doubt, hardly per- 
eeptible to the eye. 

15.  But the true form of the curved edges of the quadrilateral 
plane fihns, and of the non-plane surfaces of the hexagonal fihns, may 
be shown with mathemat, ical exactness by taking, instead of PI~ATE:tU'S 
skeleton cube, a skeleton square cage with four parallel edges each 4 
eent.imetres long: and the other eight, constituting the edges of two squares, 
each ~)')- times as long, or 5"66 eenthn. Dipped in so'tp-solution and taken 
out it always unambiguously gives the central quadrilateral in the plane 
perpendicular to the four short edges. It shows with mathematical ac- 
curacy (if we suppose the wire edges infinitely thin) a complete quadri- 
lateral, four half-quadriIaterals, and four half-hexagons of tile minimal 

Acta ~nathemat{ca. l l .  Imprime le I1 Fgvrier 1888. 17 
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tetrakaidecahedron. 
and 6. 

Sir William Thomson. 

The two principal views are represented in figs. 5 

Fig. 5. 

/ 
Fig. (5. 

16.  The mathematical problem of calculating the forms of the 
plane arc-edges, ,~nd of the curved surface of the hexagonal faces, is 
easily carried out to any degree of approximation that may be desired; 

Fig. 7- 

N 

E 

f 

B 
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though it would be very laborious, and not worth the trouble, to do 
so further than a first approximation, as given in § 17 below. But first 
let us state the rigorous mathematical  problem; which by symmetry 
becomes narrowed to the consideration of a 60 °. sector BCB' of our non- 
plane hexagon, bounded by straight lines C B ,  CB' and a slightly curved 
edge BEB' ,  in a plane, Q, through BB', inclined to the plane BCB'  at 
an angle of t an -~ /2 ,  or 54 ° 44'. The plane of the curved edge I call 
Q, because it is the plane of the contiguous quadrilateral.  The mathe- 
matical problem to be solved is to find the surface of zero curvature edged 
by BCB' and cutting at 120 ° the plane Q all along the intersectional curve 
(fig. 7). It is obvious that  this problem is determinate and has only 
one solution. Taking CA for axis of x; and z perpendicular to the plane 
BCB': and regarding z as a function of x ,  y, to be determined for finding 
the form of the surface, we have, as the analytical expression of the 
conditions 

(i) dx" ! -4- dy~ ] - -  2 
dz dz d~z 
da: dy d,v dy 

d'z ( d~2~ 
+ ~  ~ + ~ /  = o; 

and 

(2) 
d~ ~ ~l~' ~- ~ - ( . / 7  

dz - -  2 

when z = (a - -  x) V'2. 

1 7. The required surface deviates so little from the plane BCB'  
that  we get a good approxilnation to its shape by neglecting dz~/dx ~, 
dz /dx .dz /dy ,  and dz2/dy ', in (1) and (2), which thus become 

(3) V ~z = o, 

and 

(4) dz 2 ~ =  "094734, when x = a vj 2 , 

V ~ denoting (d/dx) 2 + (d/dy) ~. The general solution of (3), in polar co- 
ordinates ( r ,  9,) for the plane (x, y), is 

(5) ~ (A cos m 9 + B sin .mg~)r', 
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where A ,  B, and m are arbi t rary  constants• The symmetry of our 
problem requires B -  o, and m----- 3 . (2 i  + I), where i is any integer. 
We shall not take more than two terms. It seems not probable that 
advantage could be gained by taking more than two, unless we also 
fall back on the rigorous equations (~) and (2), keeping clz2/dx 2 &e. in 
the account, which would require each coefficient A to be not rigorously 
constant but  a function of r. At all events we satisfy ourselves with 
the approximation yielded by two terms, and assume 

(6) z ---- Ar 8 cos 39, + A'r~ cos 99' 

with two coefficients A ,  A' to be determined so as to satisfy (4)for  two 
points of the curved edge, which, for simplicity, we shall take as its 
middle, E ( 9 , = o ) ;  and end, B(9, = 3o°). Now remark that, as z is small, 
even at E ,  where it is greatest, we have, in (4), x - - a  or r - - a s e c g , .  
Thus, and substituting for dz/dx its expression in polar ( r ,  9,) coordinates, 
which is 

d z  _ _  d Z  c o s  g, _ _  dz 
(7) dz dr r-~9 sin 9,' 

we find, from (4) with (6), 

(s) 

(9) 

whence 

(by case 9, = o) 

(and by case 9, = 3 °0 ) 

A +  3a6A ' = ' o 3 1 5 7 8 a  -2, 

3 A - - 6 4 a ~ A ' = . o 3 1 5 7 8 . ~ . a - 2 ;  
9 

A' -= - -  I . 9 × . o 3 1 5 7 8 . a _ S = _ _ 9 × . 0 0 0 1 7 3 5 . a  -s 
2 9 x 

= _ _  . o o i 5 6 i  a -s • 21 

A ~ -  2 3 - -  × ' ° 3 1 5 7 8 . a - ~ =  2 ° 9 X ' o o o I 7 3 5  .a-~ 

= . o 3 6 2 6 . a - 2 ;  

and for required equation of the surface we have (taking a -  i for 
brevity) 
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(1o) 
I z - = ' 0 3 6 2 6 . r  3 c o s 3 ~ - ' o o I 5 6 I r  9cos9~ 
[ --~ "o3626.r3(cos3~a-- .o43.rCcos99).  

1S. To find the equation of the curved edge BEB', take, as in (4), 

Z 
( I I )  X = I - - - - = =  I - ~  

~/2 
Z 

where $ denotes ~ .  

Substituting in this, for z, its value by (IO), with for r its approximate 
value sec t ,  we find 

(i2) -----~-~I (.03626 sec: ~ ~ cos 3~ - -  ' oo i56I  sec°ff cos 9~) 

as the equation of the orthogonal projection of the edge, on the plane 
BCB', with 

(I3) A N = y = t a n ~ ;  and N P =  ~. 

The diagram was drawn to represent this projection roughly, as a cir- 
cular arc, the projection on BCB' of the circular arc of zo ° in the plane 
Q, which, before making the mathematical investigation, I had taken as 
the form of the arc-edges of the plane quadrilaterals. This would give 
1/35 of CA, for the sagitta, AE; which we now see is somewhat too 
great. The equation (i2), with y = o, gives for the sagitta 

(I4) A E  = "0245 × CA, 

or, say, I /4t  of CA. The curvature of the projection at any point is 
to be found by expressing sec3~ cos39~ and sec99~ cos99~ in terms of 
y----tan 9 and taking d2/dy ~ of the result. 

By taking ~/3/e instead of ~/i/2 in (I : ) ,  we have tile equation of 
the arc itself in the plane Q. 

19.  To judge of the accuracy of our approximation, let us find 
the greatest inclination of the surface to the plane BCB'. For the tangent 
of the inclination at (r ,  ~) we have 

(is) dr' -~- ~ ]  = " I 0 8 8  .~ '~ ( I  ~ 2 X "I29 . r 6 cos6~ -~- "I29~r1~) ~. 
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The greatest  values of this will  be found at the curved bound ing  edge, 

for which r ~ - s e c g .  Thus  we find 

('dz s i dz  '~,. "0948, and therefore incl inat ion ----- 5°25 ' at 

\,<lr ~ -t- ~ 7 ~ ]  = "I894, )) )) )) ---: I o °44  ' at 

Hence we see tha t  the inaccuracy due to neglect ing the square of 

the tangent  of the inclination in the matl)ematical  work  cannot  be large. 

The exact  value of the inclination at E is tan-l(--~/_;-) - I 2 o  °, or 5 ° I6', 

which is less by 9' than its value by (I6). 


