
ARKIV FOR MATEMATIK Band 4 nr 19 

R e a d  14 Sep t ember  1960 

O n  t h e  s t r u c t u r e  o f  p u r e l y  n o n - d e t e r m i n i s t i c  s t o c h a s t i c  

p r o c e s s e s  

BY HARALD CRAMI~R 

Introduction 

1. The purpose of this paper is to give the proofs of some results recently 
communicated in a lecture at  the Fourth Berkeley Symposium on Mathematical 
Statistics and Probability [1]. 

Although these results were expressed in the language of mathematical prob- 
ability, they may equally well be regarded as concerned with the properties of 
certain curves in Hilbert space. In  this first section of the Introduction we shall 
briefly state some results of the paper in Hilbert space language, and then in 
the following sections recur to the "mixed" language which seems convenient 
when probability questions are treated with the methods of Hflbert space geo- 
metry. 

Let  ~ be a complex Hilbert space, and let, for every real T, a set of q ele- 
ments x 1 (v), x 2 (3), ..., xq (3) of ~ be given. As v runs through all real values, 
each element x s (3) describes a "curve" Cs in the space ~. Let Cj (t) denote the 
"arc"  of C~ corresponding to values of v~.<t, and denote by ~ (x, t ) t he  smallest 
subspa, ce of ~ conta in ingthe  arcs C 1 (t),: .... Cq (t). 

As t increases, the ~ (x, t) form a never decreasing family of subspaces, and 
the limiting spaces ~ (x, + ~ )  and ~ ( x , -  ~ )  will exist. I t  will be assumed 
tha t  the following two conditions are satisfied: 

(A) The strong limits xj (t_+0) exist for ] =  1, ..., q and for all real t. 
(B) The space ~ ( x , -  oo) contains only the zero element of ~. 

The projection of an arbitrary element z of ~ (x, + ~ ) on the subspace ~ (x, t) 
will be denoted by Pt z. 

We propose to show that  the xj (t) can be simultaneously and linearly ex- 
pressed in terms of certain mutually orthogonal elements. For this purpose we 
shall use considerations closely related to the theory of spectral multiplicity of 
self-adjoint transformations in a separable Hilbert space (cf. e.g. [7], Chap- 
ter VII).  

I t  will be shown that  it is p3ssible to find a sequence z 1 . . . .  , z~ of elements 
of ~ (x,+ ~ )  such that  we have for every j =  1 . . . . .  q and for all real t 

xj (t) = ~ gj.(t,,,t)az~(,l), (1) 
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where zn (4)= Pa z.. Here N may be a finite integer or equal to ~0, the gj. are 
complex-valued functions of the real variables t, 4, and the integrals are appro- 
priately defined. Two increments A zm (2) and A z. (#) are always orthogonal if 
m r  while for m = n  they are orthogonal if they correspond to disjoint in- 
tervals. 

We shall study the properties of the expansion (1), and in paTtic~lar it will 
be shown that we have for any u < t  

P ,  xj (t) = ~ gj, (t, 4) d zn (4). (2) 
n = l q  oO 

When certain additional conditions are imposed, N is the smallest cardinal num- 
ber such that a representation of the form (1) holds. 

If  the elements of ~ are interpreted as random variables, the set of curves 
C1, ..., Ca will correspond to q simultaneously considered stochastic processes 
with a continuous time parameter. The above results then yield a representa- 
tion of such a set of processes in terms of past and present "innovations", as 
well as an explicit expression for the linear least squares prediction, as will be 
shown in the sequel. 

2. Consider a random variable x defined on a once for all given probability 
space, and satisfying the relations 

E x = O ,  E l x l 2 <  r162 (3) 

The set of all random variables defined on the given probability space and 
satisfying (3) forms a Hilbert space ~, if the inner product and the norm are 
defined in the usual way: 

(z, y) = E (= 9), II II'=EI I '. 

If  two random variables x, y belonging to ~ are such that 

IIx-yll'=El -yl'=0, 

they will be considered as identical, and we shall write 

x = y .  

In  the sequel, any equation between random variables should be interpreted in 
this sense. 

Whenever we are dealing with the convergence of a sequence of random 
variables, it will always he understood that we are concerned with convergence 
in the topology induced by the. norm in ~, which in probabilistic terminology 
corresponds to convergence in quadratic mean. 

A family of complex-valued random variables x (t), wheze t is a real para- 
meter ranging from - o o  to +oo ,  and x(t) E~ for every r will be called a 
one-dimensional stochastic process with continuous time parameter t. Further, if 
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x 1 (t) . . . . .  x a (t) are q random variables, each of which is associated with a pro- 
cess of this type,  the (column) vector 

x (t) = (x~ (t) . . . .  , xa (t)) (4) 

defines a q-dimensional stochastic vector process with continuous time t. 
For  every fixed t, each component  xj (t) of the vector process (4) is a point  

in the Hflbert space ~.  As t increases from - oo to + oo, this point describes 
a c u r v e  C s in ~,  and so we are led to consider the set of curves C 1 .... C a 
mentioned in the preceding section. The subspace ~ (x, t) is, from the present 
point  of view, the subspace spanned by  the random variables x 1 (T) . . . . .  x a (~) 
for all v~<t, and we shall write this 

~ ( x , t ) = |  {Xl(~) . . . . .  xa (~); ~ < t } .  

(x, t) m a y  be regarded as the set of all random variables tha t  can be ob- 
tained by  means of linear operations acting on the components of x (v) for all 

~ t. We evidently have 

whenever t 1 < t~. I t  follows tha t  the limiting spaces ~ (x, + ~ )  and ~ ( x , -  oo) 
exist, and also tha t  the limiting spaces ~ ( x, t + 0 )  exist for all t. 

Following Wiener & Masani [8], we shall say tha t  the space ~ (x, t ) represents  
the ~ s t  and present of the vector process (4), as seen from the point  of view 
of the instant  t. The limiting space ~ ( x , -  oo) will  be called the remote past 
of the process, while the space ~. (x, + oo) will be briefly denoted by  ~ ix), and 
called the space o] the x (t) process. We then have for any  t 

~ ' ( x , -  o o ) c , ~  ix, 0 c ~  (x ,+  ~ ) = ~  (x) ~ .  

In  the particular case of a vector process x (t) satisfying 

(x, - oo)  = ~ (x),  (5) 

i t  will be seen tha t  complete information concerning the process is already 
contained in the remote past.  Accordingly such a process will be called a de- 
terministic process. 

Any  process not  satisfying (5) will be called non.deterministic. I n  the extreme 
case when we have 

(x, - oo) = o,  (6) 

the remote past  does not  contain any  information at  all, and the process is 
said to be purely non.deterministic. 

I t  is known [1] tha t  any  vector process (4) can be represented as the sum 
of a deterministic and a purely non-deterministic component,  which are mutual ly  
orthogonal.  I n  the present paper, we shall mainly  be concerned with the struc- 
ture of the latter component,  and we m a y  then as well assume tha t  the given 
x (t) process itself is purely non-deterministic, i.e. tha t  ~ ( x , -  ~ ) = 0 .  
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Before introducing this assumption we shall, however, in sections 4-5 s tudy  
the properties of the general x(t) process, without  imposing more than the 
mildly restrictive condition (A), relating to the behaviour of the process in its 
points of discontinuity.  

I n  section 6 we shall then, besides condition (A), introduce condition (B) 
which states tha t  the x (t) process is purely non-deterministic. Throughout  the 
rest of the paper, we shall then be concerned with processes satisfying both 
conditions (A) and (B). 

I n  the particular case of a stationary one-dimensional process x (t) satisfying 
(A) and (B), it is known tha t  x (t) can be linearly represented in terms of past  
innovations by  an expression of the form i 

f 
t 

x (t) = _ j  ( t - 2 )  dz  (2). (7) 

where z(2) is a process with orthogonal increment,~, which m a y  be called an 
innovation process of x (t). 

I n  sections 8-9, we shall be concerned with representations of a similar kind, 
bu t  generalized in two directions: the assumption of s tat ionari ty will be dropped, 
and a vector process x (t) will be considered instead of the one-dimensional x (t). 
I t  will be shown that ,  for any  x (t) process satisfying (A) and (B), we have a 
representation of the form (1) indicated in section 1 above. The z, (2)occurring 
in (1) will now be one-dimensional stochastic processes with orthogonal incre- 
ments.  Accordingly we m a y  say that ,  in the general case, we are concerned 
with an innovation process (z1(2) . . . . .  zN(2)) which is multi-dimensional, and 
possibly even infinite-dimensional. 

3. I n  a series of papers, P. Ldvy (of. [4-6], and further references there 
given) has investigated the properties of stochastic processes representable, in 
the  notat ion of the present paper, in the form 

z (t) = f l g  (t, 2) dz  (2), 

where z (2) is a normal (i.e Gaussian or Laplacian) process with independent 
increments. His investigations have been continued in a recent paper by  T. 
Hida  [3], who has also considered the more general representation 

X(t)=nffil ~ fl ~n(t'2) dzn(2) 

derived from considerations of spectral multiplicity, as well as the case when 
the lower limits of the integrals are - o o  instead of zero. 

x Cf. e.g. Doob [2], p. 588, and the references there given. The corresponding represen- 
ta t ion for a one-dimensional s ta t ionary  process wi th  discrete t ime parameter  was first 
found b y  Wold [9], and  was generalized to the vector case b y  Wiener & Masani [8]. 
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In  connection with m y  Berkeley lecture [1], Professor K. I t5  kindly drew m y  
at tent ion to the work of Mr. Hida, which was then in the course of being 
printed. Evident ly  there are interesting points of contact  between Mr. Hida 's  
line of investigation and the one pursued in the present paper. 

D i s c o n t i n u i t i e s  a n d  i n n o v a t i o n s  

4. Consider a stochastic vector process as defined in section 2, 

x ( t)  = ( z l  ( t ) ,  . . . ,  x ,  ( t ) ) ,  

and let us suppose tha t  the following condition is satisfied: 

(A) The limits xj ( t - O )  and xj (t~+ O) exist ]or j = 1 . . . . .  q and ]or all real t. 

We shall then write 

x (t - o )  = ( x l  (t - o )  . . . .  , xr  ( t -  o ) )  

and similarly for x (t +0) .  Any  point t such tha t  a t  least one of the relations 

x (t - o )  = x (t)  = x (t + o )  

is not  satisfied, is a discontinuity point of the x process. The point t is a lelt 
or right discontinuity, or both, according as x (t - 0) # x (t), or x (t) # x (t + 0), 
or both. We shall now prove the following Lemma.  

Lemma 1. For any x (t) process satis/ying (A), we have 

(a) For j =  1, ..., q, the /unctions E Ix j (t)[2 are bounded throughout every /inite 
t-interval. 

(b) The set o t all discontinuity points o I the x process is at most enumerable. 
(c) The Hilbert space ~ (x) is separable. 

I n  order to prove (a), let us suppose tha t  the non-negative function E I xj (t)I s 
were not  bounded in a certain finite interval I .  Then it would be possible to 
find a sequence of points {tn} in I ,  and converging monotonely to a limit t*, 
such tha t  E [ x j  (tn)12-->~. Clearly this is not  compatible with .condition (A), so 
tha t  our hypothesis must  be wrong, and point (a) is proved. 

Point  (b) will be proved if we can show that,  for each j ,  the one-dimensional 
process xj (t) has at  most  an enumerable set of discontinuity points. A discon- 
t inui ty point  of xj (t) is then, of course, a point t such tha t  at  least one of the 
relations 

xj (t - 0) = x~ (t) = xj (t + 0) 

is not  satisfied. Clearly it will be enough to show, e.g., t ha t  the inequality 

cannot be satisfied in more than an enumerable set of points. 
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According to our conventions, (8) is equivalent to the relation 

s ( t ) = E  I xj ( t - 0 ) - x j  (t) 13>0. 

We are going to show first that ,  given any  positive number  h and any  finite 
interval I ,  there is at  most a finite number  of points t in I such that  s ( t)> h. 
This being shown, the desired result follows immediately by  allowing first h to 
tend to zero, and then I to tend the whole real axis. 

Suppose, in fact, tha t  I contains an infinite set of points t with s ( t)> h. 
We can then find an infinite sequence of points {t~} in I ,  converging to a 
limit t*, and such tha t  

s ( t . ) =  E l x j ( t ~ - O ) - x j ( t . ) I 2 >  h (9) 

for all n. Evident ly  we can even find a monotone sequence {tn} having these 
properties. Let  us suppose, e.g., tha t  tn converges decreasingly to t*. (The in- 
creasing case can, of course, be t reated in the same way.) On account  of con- 
dition (A) we can then find a sequence of positive numbers {~,} tending to  
zero, such tha t  

tn - -  ~n > t n + l ,  

c 2 h 2 
E I xj (tn - en) - xj (t~ - 0)12 < 16 K (10) 

for all n, where c and K are constants such tha t  0 < c  < 1 and E I xj (t)Is< K 
throughout  I .  The existence of such a constant  K follows from point  (a) of 
the Lemma, which has already been established. 

Now for any  random variables u and v we have 

E l u  + v l : =  E l u l :  + E l v l :  + E (ue)  + E (av )  

~ E l u I :  + E I ~ I : ~ - 2 V E I ~ I  ~ EI~I:.  

Taking here u = xj (t.  - o) - zj  (t~), 

v = x~ (t.  - ~ )  - z j  ( t .  - o), 

we obtain from (9) and (10) 

E I ~  (tn - ~) ~, (t~) I ~ > / h -  2 V4 C 2 

- K " i6-~1~  = (1 - c )  h (11) 

for all n. On the other hand, the sequences {in-~n} and {t~} both  converge 
decreasingly to t*. Consequently by  condition (A) we have (convergence, as 
usual, in the ~ topology, i.e. in quadratic mean) 

�9 j ( tn-  ~.) ~ .j  ft* + o), 

xj (tn) -~ xj (t* + 0), 
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and thus xj ( t .  - ~ )  - xj (t~) -+ o, 

as n tends to infinity. However, this is incompatible with (11), so tha t  our 
hypothesis must  be wrong, and thus point  (b) of the Lemma is proved. 

The last par t  of the Lemma now follows immediately, if we consider an 
enumerable set (tn) including all discontinuity points of x (t) as well as an every- 
where dense set of continuity points. The set of all finite linear combinations 
of the random variables xj (t~) for j =  1 . . . . .  q and n = 1, 2 . . . . .  with coefficients 
whose real and imaginary parts  are both rational, is then an enumerable set 
dense in ~ (x). 

5. Consider now the family of subspaces ~ (x,t) associated with an x(t) 
process satisfying condition (A) of the preceding section. 

As observed in section 2, ~ (x. t) never decreases as t increases .  I f  ~ (x, t) 
effectively increases when t ranges over some interval t 1 < t ~< t2, so tha t  we have 

(x, tl) ~ ~ (x, t~), 

this means tha t  some new information has entered into the process during tha t  
interval. Accordingly we shall then say tha t  the process has received an inno- 
vation during the interval tl < t ~  t~, and we shall regard this innovation as being 
represented by  the orthogonal complement 

(x, t~) -S) (x, tl). (12) 

In  fact, if this complement reduces to the zero element, the two spaces are 
identical, and no innovation has entered during the interval, while in the op- 
posite case (12) is the set of all differences between an element of ~ (x, t2) and 
its projection on ~ (x, tl). 

If, for a certain value of t, we have 

(x, t - h) ~ ~ (x, t + h) 

for any  h > 0, this means tha t  there is a non-vanishing innovation associated 
with any  interval containing t as an interior point. The set of all points t 
having this proper ty  will be called the innovation spectrum of the x (t) process. 

(x, t) being never decreasing as, t increases, it follows tha t  the limiting spaces 
(x, t-t-0) will exist for every t. Any  point  such tha t  at  least one of the rela- 

tions 
(x, t - o ) = ~  (x, t ) = . ~  (x, t + 0 )  

is not  satisfied, will certainly belong to the innovation spectrum, and will be 
called a discontinuity point of tha t  spectrum. As in section 4, the terms felt 
and right discontinuities will be used in the obvious sense. 

The set of all discontinuity points constitutes the discontinuous part of the 
innovation spectrum. Let  tl, t2, ..., be the points of this set (it will be shown 
below tha t  the set is at  most  enumerable), and form the vector sum 

(x, t) ~ ~ ~ (x, t~ + 0) - ~ (x, tk - 0) 
tk <~ t 
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and the orthogonal complement ~ (x, t ) = ~  (x, t ) -  (~ (x, t). The set of all points 
t such that  ~ (x, t -  h) # ~ (x, t + h) for any h > 0 constitutes the continuous part 
of the innovation spectrum of x (t). If  the discontinuous part  is not a closed 
set, its limiting points will belong to the innovation spectrum, without neces- 
sarily belonging to any of the two parts here defined. 

When t is a discontinuity point of the innovation spectrum, the number of 
dimensions of the subspace ~ (x, t ) -  ~ (x, t -  0) will be called the le/t multiplic- 
ity of the point t. Similarly the right multiplicity of t is the number of di- 
mensions of ~ (x, t + 0 ) - ~  (x, t). If  t is not a left (right) discontinuity, the left 
(right) multiplicity of t is of course equal t o  zero. We shall now prove the 
following Lemma. 

Lemma 2. For any x (t) process satis/ying (A), we have 

(a) The set o/ discontinuity points o/ the innovation spectrum is at most enu- 
merable. 

(b) I n  a le/t discontinuity point, the le/t multiplicity is at most equal to q. 
(c) I n  a right discontinuity point, the right multiplicity may be any /inite in- 

teger, or equal to ~o" 
(d) A le/t discontinuity o/ the innovation spectrum is always at the same time 

a left discontinuity of the process. On the other hand, a right discontinuity o/ the  
innovation spectrum is not necessarily a discontinuity o/ the process. 

We first observe that  the two subspaces ~ (x, t2) - ~ (x, tl) and ~ (x, u~.) - ~ (x, ul) 
corresponding to disjoint time intervals are always orthogonal. I t  follows that  
the subspaces 

( x , t + 0 ) - ~  (x, t -0 )  

corresponding to different discontinuity points are orthogonal. By Lemma 1, 
the space ~ (x) is separable, and cannot include more than an enumerable set 
of mutually orthogonal subspaces. Hence follows the truth of point (a) of the 
Lemma. 

Point (b) of the Lemma asserts that  the orthogonal complement ~ (x,t) 
- ~ ( x , t - 0 )  has at  most q dimensions. By definition, the space ~ ( x , t ) i s  
spanned by the variables xj (v) with j =  1 . . . . .  q and T<t .  Writing 

x j ( t ) = y j +  Pt_oxj(t) ,  ( j = l  . . . . .  q), (13) 

where Pt-0 denotes the projection on ~ ( ~ , t - 0 ) ,  it will be seen that  every 
element of ~ (x, t) is the sum of an element of ~ (x, t -  0 ) and  a linear combina- 
tion of the variables Yl . . . . .  yq, which belong to ~ (x, t) and are orthogonal to 

(x, t -  0). Consequently the orthogonal complement ~ (x, t) - ~ (x, t -  0) is iden- 
tical with the space spanned by Yl, ..., Yq, and thus has at most q dimensions. 
I t  will also be seen that, choosing the variables Yl . . . . .  yq in an appropriate 
way, we can construct examples of processes having, in a given point, a left 
discontinuity of the innovation spectrum with any given multiplicity not ex- 
ceeding q. Thus (b) is proved. 

We shall now prove (c) by constructing an example of an x (t) process, the 
innovation spectrum of which has, in a given point, a right discontinuity of 
infinite multiplicity. I t  will then be easily fseen how the example may be mod- 
ified in order to produce a discontinuity of any given finite multiplicity. 
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Let z 1, z 2 . . . .  be an infinite or thonormal  sequence of random variables belonging 
to ~. Denoting by  Pl, P2 . . . .  the successive prime numbers (Pl = 2, P2 = 3 . . . .  ), 
we define a process x ( t )=  (x I (t) . . . . .  xq (t)) by taking 

x~(t) . . . . .  x q ( t ) = 0  for all t, 

x l ( t ) = 0  for t~<0, 

x l ( t ) = t z n  for t = p ~ k ,  k = l ,  2 . . . .  

x l ( t ) = t z  1 for t> �89  

For  values of t in the interval 0 < t < � 8 9  which are not of the form p ; k  we 
define x 1 (t) by  linear interpolation: 

x~ (t) = ( t ~ -  t) xl  (h) + ( t -  tl) x~ (t~) 
t~ - -  t 1 

where t 1 = p ; ,  k' and t z =p~,~'~are the nearest values below and above t, for which 
x I (t) has been defined above. Some easy calculation shows tha t  we have for 
a l l  t > 0  

E I ~  (t)I S < t ~. 

This shows tha t  the point  t =  0 is a continuity point  for the vector process x (t). 
Since every other real t is evidently also a continuity point, the x (t) process 
is everywhere continuous, and a f o r t i o r i  satisfies condition (A). 

On the other hand, we obviously have ~ {x, t )=  0 for t <  0, while for every 
t >  0 the space ~ (x, t) will include the infinite orthonormal sequence z 1, z~ . . . . .  
The point  t = 0 will thus be a r ight discontinuity of the innovation spectrum of x (t), 
with an infinite r ight multiplicity. A case with any  given finite multiplicity n 
is obtained if the variables.zn+x, zn+2 . . . .  are replaced by  zero. We have thus 
proved point  (c) of the Lemma. 

We observe that,  by  some further  elaboration of the example given above, 
we may  construct  a process having the same multiplicity properties in each point  
of an everywhere dense set ~of values of t. We can even arrange the example 
so tha t  the mean square derivative o f x  (t) exists for every t .  

The last par t  of the Lemma follows simply from the above proofs of (b) 
and (c). I f  t is a left discontinuity of the innovation spectrum, at  least one of 
the variables yj occurring in (13) must  be different from zero. Suppose, e.g., 
t ha t  Yl # 0. Then 

II ~ (t) - x l  (t - 0)II >~ II ~1 (t) - P~_0 x~ (t)II = II Ul II > 0, 

and so t is a left discontinuity of x 1 (t), and consequently also of x (t). On the 
other hand, the process x (t) constructed in the proof of (c) pro,~ides art example 
of a process having in t =  0 a right discontinuity point of the innovation spec- 
t rum (even of infinite multiplicity), which is nevertheless a continuity point of 
the process. This completes the proof of Lemma 2. 
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Innovation processes 

6. From now on, it will be assumed that  we ar~ dealing with a vector pro- 
cess x (t) satisfying not only condition (A) of section 4, but also the following 
condition: 

(B) x (t) is a purely non.deterministic process, i.e. we have ~ ( x , -  ~ ) =  0. 

In the Hilbert space ~ ( x ) = ~  (x,+ c~) of the process, we shall in general 
denote by P ~  the projection operator whose range is the subspace ~)~. However, 
when ~ is the particular subspace ~.(x, t), we write simply Pt instead of P~(x,t). 

As t increases from - ~  to + ~ ,  the Pt form a never decreasing family of 
projections, with 

P _ ~ = 0 ,  P + ~ = I .  

Pt+o is the projection on ~ ( x , t + O ) ,  and similarly for Pt-o. The difference 
P t , - P t , ,  where t l < t  ~, denotes the prcjection on the orthogonal complement 

(x, t 2 ) - ~  (x, tl). I t  follows, in particular, that  the projections P t , - P t ,  and 
P u , - P ~ ,  will be mutually orthogonal, as soon as the corresponding time inter- 
vals are disjoint. 

Further, the points t of the innovation spectrum are characterized by  the property 

Pt+h -- Pt-h > 0 

for any h > 0, while the discontinuity points of that  spectrum are characterized 
by  the relation 

Pt+o-Pt -o  > O. 

Consider now any element z of the Hilbert space ~ (x), and let us define a 
stochastic process z (it) by  writing for any real it 

z(~)=P~z. (14) 

I t  then follows from the above that  z (it) is a process with orthogonal increments, 
such that  

z ( - ~ ) = O ,  z(+ oo)=z. 

We have E z (it)=0, and if we write 

E I z (it)I = 

Fz (it) will be a never decreasing function of the real variable it, such that  

The points of increase of z(~), i.e. the points it such that  the increment 
z (~ + h ) -  z ( i t -  h) does not reduce to zero for any h > 0, are identical with the 
points of increase of Fz (it), and form a subset of the innovation spectrum of 
the x (t) process. Similarly the left (right) discontinuities of z (it) are identical 
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with the left (right) discontinuities of F~ (2), and form a subset of the set of 
all left (right) discontinuities of the innovation spectrum of x(t). Any incre- 
ment  d z (2) belongs to the subspace d~ ~ (x, 2), and is thus built up by  a cer- 
tain par t  of the elements ~hich enter as innovations into the x (t) process be- 
tween the time points t = ~ and t =/ t  + d 2. 

On account  of these facts, we shall denote the (one-dimensional)z (2)process 
as a partial innovation process associated with the given vector process x (t). 

7. For  any  t ~< + ~ ,  we shall denote by  @ (z, t) the Hilbert  space spanned 
by the random variables z (2) for all 2 ~< t: 

(z, t) = | {z (,~); ,t < t}. 

I t  follows from (14) tha t  z (4) is always an element of ~ (x,Z), and consequently 
(z, t), is a subspace of ~ (x,t): 

S) (z, t) c ~ (x, t)  

Instead of ~ (z, § c~) we shall write briefly ~ (z). Evident ly  ~ (z, t) is the projec- 
t ion of ~ (z) on ~ (x,t). 

I f  no 2 is at  the same time a left and a right discontinuity of z(2), then 
(z,t) is, for every t~< § c~, identical 1 with the set ~* ( z , t ) o f  all random 

variables y representable in the form 

y = g (2) d z (4) (15) 

with an F~-measurable g such tha t  

E [yl== f l J g  (~)I'dF= (,~) < ~.  

On the other hand, if in a certain point  /t < t the left and the right jumps of 
z (2), say u and v respectively, are both different from zero, all random variables 
A u + B v  with constant A and B will belong to  ~ (z , t )  while, with the usual 
definition of the integral (15), the discontinuity at  ,~ will only provide the 
variables A ( u +  v) as elements of ~* (z, t). 

We shall require the following Lemma, which is only a restatement  of familiar 
facts concerning Hilbert  space. 

Lemma 3. I f  y and z are elements o] ~ (x) such that y 3_ ~ (z), then ~ (y) 3_ ~ (z). 
Since ~(z )  is the space spanned by all z(2)=Paz,  the relation y3_~(z ) i s  

equivalent to y3_P~z for all real 2. By  the same argument,  the assertion of 
Lemma 3 is equivalent to the relation 

P~y 3_ P~z 

1 Cf., e.g., [2], p. 425-428. Th6 integral in (15) should be so defined that, if the upper 
limit t is a discontinuity of z (~), a left jump of z (~t) is included in the value of the inte- 
gral, but not a right jump. 
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for all 2 and ju. Now y = Pa Y + w, where w • ~ (x, 2), and thus in part icular  
w •  Hence for any  2 

P a y = y - w L P a z .  

Suppose now first 2 >/z. Then P ,  Pa = P , ,  and thus 

P a y = P , y + w ' ,  

where w ' •  ~ (x,#). Hence in particular w' lP~,z .  Since we have just proved 
tha t  P ,  y l P ,  z, it follows tha t  P a y  • P ,  z. 

On the other hand, if ~ </z  we have P~ z = Pa z + w",  where w" l ~ (x, t) ,  and 
thus w " •  Hence we obtain as before P~,z..t. Pay, and so Lemma 3 is 
proved. 

Representation of  x (t) 

8. We begin by  proving the following Lemma, assuming as before tha t  we 
are dealing with a given vector process x (t) satisfying conditions (A) and (B). 

Lemma 4. I t  is possible to find a /inite or in/inite sequence zl, z~ . . . .  o/ non- 
vanishing elements o/ ~ (x) such that we have /or every t <~ + 

~(zs, t) l ~ ( z k ,  t) for j C k ,  (16) 

(x, t) = ~  (z~, t) + ~  (z~, t) + . . . .  (17)  

where the second member o/ (17) denotes the vector sum o[ the mutually orthogonal 
spaces involved. 

We first observe tha t  it is sufficient to show tha t  we can find a e~ sequence 
such tha t  (16) and (17) hold for t = + ~ ,  since their val idi ty  for any  finite t 
then easily follows. 

By  Lemma 1, the space, ~ (x) is separable. Neglecting trivial cases, we m a y  
assume that  ~ (x) is infinite-dimensional. Thus a complete or thonormal  system 

* Start ing from the se- in ~ (x) will form an infinite sequence, say z~,z2 . . . . .  
* ... satisfying quence of the zn, we shall now construct an infinite sequence zl, z~, 

(16) and (17) for t =  + o~. Discarding any  z, which reduces to zero, we then 
obtain a finite or enumerable sequence of non-vanishing elements having the 
same properties, and so the Lemm~ will be proved. 

We define the zn sequence by  the relations 

z2 = z~ - P~,  z~, 

z .  = z*  - P~n. -1  z * ,  
. . . . . . .  ( 1 8 )  

where ~ n  denotes the vector sum 
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~ = ~ (z,) + . . -  + ~ (z~). 

Then for any  n > 1 we have z~ A_ ~n-1, and consequently z~A_~ (zj) fo r j  = 1 . . . . .  n - 1. 
By  Lemma 3 it then follows tha t  we have ~ (zj)A_~ (zk) for j r k, so tha t  (16) 
is satisfied. 

We further  have 
z~* = z~ + P ~ - I  z*, 

and since z, E ~ (z=), this shows tha t  z* e ~ (z~) + 0)~_x = ~l~. Now ~ =  is a subset 
of the infinite vector sum ~ (zl)+ ~ (z2)+ . . . .  This sum, which is a subspace of 
~(x) ,  will thus contain the complete orthonormal system z~,z* 2 . . . . .  and will 
consequently be identical with ~(x) ,  so tha t  (17) is also satisfied, and the 
Lemma is proved. 

9. The sequence Zl, z~ . . . .  considered in Lemma 4 is not uniquely determined, 
and we now proceed to show tha t  it can be chosen in a way  which will suit 
our purpose. 

By  Lemma 2, the discontinuities of the innovation spectrum of x ( t ) form an 
at  most  enumerable set. Let  them be denoted by  21.2~ . . . . .  and consider the 
subspaees 

U~ = ~ (x, ~ )  - ~ (x, ~k - o), 

~ = S~ (x, a~ + 0) - S~ (x, h ) ,  

for k = 1, 2 . . . . .  I f  hk and jk are the numbers of dimensions of lI~ and ~k re- 
spectively, then by  Lemma 2 we have 0 ~< hk ~< q, while jk may be any finite 
non-negative integer or ~0. According to the terminology of section 5, hk is the 
left multiplicity of the point  2k, while Jk is the right multiplicity. The number  

N '  = sup (hk +j~) 
k 

will be called the multiplicity of the discontinuous part of the innovation spec- 
t rum. Let  

U k l ~  �9 � 9  ~ U k h k ~  

Y k l ~  �9 �9 �9 ~ V k J  k 

be complete orthonormal systems in H~ and !~k respectively. I f  1~ or ~k re- 
duces to zero, the corresponding system does of course not  occur; however, when 
;t~ is a discontinuity, hk and jk cannot  both be equal to zero, so tha t  at  least 
one of the u and v systems must  contain a non-vanishing number  of terms. 

I f  z denotes any  of the ukh or v~, it will be seen tha t  we have P ~ z = z  for 
;t > 2k, and Pa z = 0 for 2 < Xk. I t  follows tha t  the space ~ (z) will then be one- 
dimensional, and consist of all constant  multiples of z. I f  y is any  variable in 

(x) such tha t  y • z, it then follows from Lemma 3 tha t  ~ (y)_L ~ (z). 
Suppose now tha t  one of the or thonormal  variables from which we started 

our proof of Lemma 4, say z*, is identical with one of the ukh or vkj. By  
means of the remark just made, it then follows from the relations (18 ) tha t  zn 
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is orthogonal to z I . . . . .  Zn_l, and thus also orthogonal to ~J~n-1 ,  Consequently 
by (18) we obta in  zn =z*. 

Choosing the orthonormal system z~, z* 2 . . . . .  so tha t  all the variables u~h and  
vkj (k=  1,2 . . . . .  h = l  . . . . .  hk, j = l  . . . . .  jk) occur in it, we thus see tha t  the same 
variables will also occur in  the sequence z 1, z 2 . . . .  constructed according to (18), 
and  satisfying the conditions of Lemma 4. Besides the ukh and  vkj, there ma y  
be other elements in  the z~ sequence. Let wl, w2,.. ,  be those elements, if any,  
which are different from all the ukh and  vkj. We are going to show that ,  if 

w(2)=P~w 

s the part ial  innovat ion  process corresponding to any  of the w~, then w (~)has 
no discontinuities.  

I n  fact, by a remark made in section 6, any  discont inui ty  of w (2)would  be 
a discont inui ty  of the innovat ion  spectrum of x (t), i.e. equal to one of the 2k- 
The corresponding jump of w(2), say w*, would then be an element of the 
space ~ ( x ,  2 ~ + 0 ) - ~ ( x ,  2 k - 0 ) .  At  the same time, w* would belong to the 
space ~ (w), and  by Lemma 4 would thus be orthogonal to all the u~h and  vks. 
However, the la t ter  variables form a complete or thonormal  system in ~ (x, 2k + 0) 
- ~  (x, 2 k - 0 )  so tha t  we mus t  have w * = 0 ,  and  it  follows tha t  w(A) has no 
discontinuities. 

Let now the sequence of non-vanishing elements z 1, z~, ... considered in Lemma 
4 be chosen in all possible ways tha t  are consistent with the requirement  t ha t  
all the ukh and  v~ should occur in  it. Let, in  each case, M denote the cardinal 
number  of the corresponding sequence wl, w2 . . . . .  formed by  those elements which 
are different from all the uka and  v~j. The numbers  M will then  have a non-  
negative lower bound: 

N "  = i n f  M, 

which we shall call the mult ip l ic i ty  o/ the continuous part  of the innovat ion  
spectrum. Fina l ly  

iV = max (N',  N")  (19) 

will be called the spectral mul t ip l ic i ty  of the x (t) process. As soon as x (t) is 
not  identically zero, N will be a finite positive integer, or equal to }10" 

I t  follows from the definition of the mult ipl ic i ty  37" of the continuous par t  
tha t  it  is possible to find a sequence zl, z2, ... satisfying the above requirements,  
and such tha t  the corresponding set wl, w~ . . . .  will have precisely the cardinal 
number  N" .  We shall then say tha t  these wn form a m i n i m a l  w sequence. 1 

I n  the sequel, Wl, w2, ... will denote the elements of a fixed minimal  w se- 
quence. We now propose to construct, by  means of this given w sequence, a 
part icular sequence Zl, z~ . . . .  satisfying the conditions of Lemma 4, which will 
then be used for the proof of our representation theorem for x (t). 

1 By an adaptation of the proofs of theorem 7.5 and 7.6 of Stone [7] to the ease con- 
sidered here, it can be shown that a minimal w sequence can be chosen in such a way that 
the set of all points of increase of w I (~t)= P~ w 1 is identical with the continuous part of the 
innovation spectrum of x(t), and includes the corresponding set of any w n (;t) with n>  1 as 
a subset. As this property is not indispensable for the proof of the representation theorem 
given below, we shall restrict ourselves here to this remark. 
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We first observe that ,  owing to the way in which the wj have been chosen, 
we have by  Lemma 4 for every t <  + 

(x, 0 %5 ~ ( ~ ,  t) +~ .  ~ (~kj, t) + ~ ~ (~ ,  t), (20) 

where the sums denote vector addition, and all the ~ spaces appearing in the 
second member  are mutual ly  orthogonal. 

For  any  discontinuity point  ~ we now arrange the corresponding variables 
uka and v~ into a single sequence 

8kl~ 8k 2, *..~ 

where the number  of terms will be hk+jk .  The new sequence z 1, z 2, ... which 
we have in view is then defined by taking 

Zn=Wn+~Skn  , (21) 
k 

where the w~ are the elements of our fixed minimal w sequence. The summa- 
t ion is extended over all discontinuity points 2k, and we take skn= 0 whenever 
n > h~ § and w. = 0 whenever n > N" .  The number  of non-vanishing terms in 
the z~ sequence defined in this way  will evidently be equal to the spectral 
multiplicity iV of the x (t) process as defined by  (19). 

According to a remark made above, any  space ~ (sk~) is one-dimensional, and 
consists of all constant multiples of the variable sk~. Hence it easily follows 
tha t  we have for t~< + oo 

k 

and further according to (20) 

(x, t) = @ (~,, 0 + @ (z~, t) + . . . .  

~(zjt)• t) for j r k, (22) 

so tha t  the zn defined by  (21) satisfy the conditions of Lemma 4. 
We observe tha t  it follows from (21) tha t  no zn(2) can have a left and a 

right discontinuity in the same point  A. In  fact, any  discontinuity of z~ (~)will 
be either a left discontinuity with a jump ukh, or a r ight discontinuity with a 
jump vkj. By  a remark made in section 6, the space ~ (z~, t )wil l  then be iden- 
tical with the set of all random variables y representable in the form (15). 

I n  our given q-dimensional (column) vector process 

x (t) = (x 1 (t) . . . . .  x~ (t)) 

every component  xj (t) is a random variable belonging to ~ (x, t). I t  then follows 
from (15) and (22) tha t  we have for all real $ 
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x,(t)= ~ f l  gj.(t,2)dz~(2 ). (23) 

If  the multiplicity N is infinite, the series in the second member will converge 
in the usual sense, so tha t  we have 

yt Igjn(t,2)l~dF~. ( 2)< ~. (24) 
n = l  r 

Introducing the q • N order matrix function 

6 (t, 4) = {gj~ (t, 2)} ,  (25) 

( j =  1 . . . . .  q; n = 1 . . . . .  N), and the N-dimensional (column) vector process 

z (4) = (zl (2), . . . ,  z,, (2)),  (26) 

it is seen tha t  (23) m a y  be written 

x (t) = (t, 4) d z (4). (27) 

The vector process z (2) defined by  (26) has orthogonal increments, in the 
sense tha t  two increments A zj (2) and A zk (#) are always orthogonal if j ~ k, while 
for j = k they  are orthogonal if the corresponding time intervals are disjoint. 

I f  we denote by  ~ (z, t) the Hilbert  space spanned by the variables z 1 (2) . . . . .  ZN (2) 
for all 2 ~< t: 

(z, t) = | {z, (2) . . . . .  ZN (2); 2 < t}, 

it follows from (22) tha t  we have for every t-~< + oo 

(x, t) = ~ (z, t). (28) 

According to the representation formula (27) and the property expressed by (28), 
it seems appropriate to call z (2) a total innovation process associated with the 
given x(t). While z(2) is not  uniquely determined, its dimensionality N is 
uniquely determined by (19) as the spectral multiplicity of x (t). I t  is also seen 
tha t  N is the smallest cardinal number  for which there exists a representation 
of the form (27), with the properties specified by (22)-(28). 

Summing up our results, we now have the following representation theorem. 

Theorem 1. A n y  stochastic vector process x (t) satis/ying conditions (A) and (B) 
can be represented in the /orm (27), where G (t, 2) and z (2) are de/ined by (25) 
and (26). N is the spectral multiplicity o/ the x (t) process. I /  N is in/inite, the 
expansions (23) /ormally obtained /or the components xj (t) are convergent in quad- 
ratic mean, as shown by (24). z x . . . . .  zN are random variabl~es in ~ (x) satis/ying 
(22), and such that no zj (2)=Paz~ has a le/t and a right discontinuity in the same 
point ]t. The vector process z (2) has orthogonal increments and satis/ies (28). 

No representation with these properties holds /or any smaller value o/ N .  

264 



ARKIV FOR MATEMATIK.  B d  4 n r  19  

If  x (t) = (x 1 (t) . . . . .  xq (t)) is a vector process satisfying (A) and (B), each compo- 
nent  xj (t), regarded as a one-dimensional process, has a certain spectral multi- 
plicity N~, and thus by  Theorem 1 m a y  be represented in the following form 

xj (t) = ~ gj~ (t, ;t) d zj~ (2). 
Tt=l CO 

I t  can then be shown (although the proof is slightly more involved than  may  
possibly be expected) tha t  the spectral multiplicity N of x (t) satisfies the in- 
equality 

q 

N~< ~ Nj. (29) 
j= l  

Consider, in particular, the case of a stationary vector process x (t), i.e. a pro- 
cess such tha t  every second order covariance moment  of the components is a 
function of the corresponding time difference: 

E (xj (t) xk (u)) = Rjk (t - u). 

This process will satisfy (A) and (B) if and only if (a) the functions R l l  (t) . . . . .  Rqq (t) 
are continuous at  t=O, and (b) each component xj ( t ) i s  a purely non-deter- 
ministic s tat ionary process. When these conditions are satisfied, each xj (t) has 
a representation of the form (7), and accordingly the spectral multiplicity of 
xj (t) is equal to one. I t  then follows from (29) tha t  we have in this case N < q. 

On the other hand, the process x (t) constructed in connection with the proof 
of Lemma 2, point  (c), evidently provides an example of a vector process satis- 
fying (A) and (B), ~nd having an  infinite spectral multiplicity N.  As already 
observed, this example m a y  be easily modified so as to yield a process with 
any  given finite multiplicity. 

If, in the relation (27), all components of the vectors on both sides are pro- 
jected on the space H (x, u), where u < t, we finally obtain the following theorem, 
denoting by P~x  (t) the vector with the components Puxj (t), for j - - 1  . . . . .  q. 

Theorem 2. The best linear (least squares) prediction o/ x (t) in terms o/ all 
variables xj (3) with j = 1 . . . . .  q and ~ <~ u is given by the expression 

P x(t)= fy G 

The square o/ the corresponding error o I prediction lot any component xj (t) is 

E ] x j ( t ) -  Puxj( t)12= n=l ~ f~u Igj~ (t'2)]2 dFz" (2)" 
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