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Contributions to information theory for abstract alphabets

By Arexanpra Ionescu TuLceal

In this paper we give some results centering around B. McMillan’s theorem
in information theory. The paper is presented in the abstract setting developed
by A. Perez in [9] and [10]. In §1 we prove some preliminary results. The
main theorems are given in § 2. They deal with mean convergence of order p
(where 1< p < oo}, domination by a function in L?, as well as convergence al-
most everywhere. § 3 is devoted to various remarks and comments. In particu-
lar, it is shown here that various classical theorems from information theory
for finite alphabets are particular cases of the results proved in this paper.
The appendix contains a short and direct proof of the fact that (essentially,
this follows also from the general theorem 1), in the case of a finite alphabet,
the almost-everywhere convergence holds in McMillan’s theorem.

1. Preliminary results

Let X be a set. Let B be a o-algebra of subsets of X, 4 and g two prob-
abilities on B. We say that 1 is absolutely continuous with respect to g, and
we write 1<p, whenever the relations E €B, g (£) =0 imply A (E)=0; we denote
by di/dg the corresponding Radon-Nikodym density.

Throughout this paper we shall use the following notations:

logt if ¢>1 - logt if t<1
+ = =
log™ ¢ {o it <1 ond log7t {o if 6> 1.
Let (Coicn<o be a sequence of g-algebras on X, such that C,<Cn.q for

each »>1; denote with C, the o-algebra generated by Un-1C,. If A=A, is
a probability on C,., we shall denote with A, the restriction of 4 to C,.

Proposition 1. Let (C,licncoo be @ Sequence of o-algebras on X such that
CocCny1 for each n>1. Let C, be the o-algebra gemerated by UZ., C,, and
A=12w, 0=0x two probabilities on C., such that 1,<p, for each n=1. Then:

(i) For each t>0 we have

! This paper was sponsored by the Office of Ordnance Research under contract No. DA-19-
020-ORD-4912.
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l({x| inf gﬁ(x)q})st. (1)

lgn<o G Q0p

(ii) There is 1<g<oco such that SUPicn<e § (BAn/d0,) do, is finite, if and
only if there are two constants C>0, d>0 verifying the inequality

1({x| sup logdl"(x) >t})<0e'“’ (2)
1<n<os dQn
for every t>0.
(i) Let t>0 and define the sets
At ={x|1é;1£wjz: (a;)<t} (3)
and A ()= {xl % (%)< t},
01 @)
. . [(dA di;a ) di; } .
A, ()= f{-—""1(x),., =t (x) <t;, j=2.
70 {xlm (dgl(x) do@)>t @<y, ]
It is easily seen that for each ¢{>0 we have
A NA, Q) =¢ if jFk 1<j, k<oo; (5)
At)y= ]_91 Ay (t); (6)
A4, {th<to(d4;(t)) for each 1<j< oo, N
Using (5), (6) and (7), we deduce immediately the inequality (1).
(ii) For each {>0 define
B(t)={x| sup d———z"(x)>t}. (8)
1gn<oo dQn
It is clear that (4 (e*) is defined by (3)):
d}*n -t t
z| sup |log=—(z)|>t}=A (e ")UB(e) 9)
i<n<oo d@n

for every t>0. Assume now that there exists 1<g< oo such that

e (2
l<n<poc dQn @
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is finite. In this case Ad,<pw and [(d1,/d0,)Ticn<eo IS a p-semi-martingale®; it
then follows that { (sup;cnceo (d4,/dp,)"dp is finite (see [2], p. 319, p. 317).
For t>0 we have ’

g-1
eV A(B () < f( sup dl”) da

1<n<o dgn

B(et)

di\t dA
< n Rl
J\(lﬁs:lgpwdgn) ono ¢
B(et)

di.\?
< 2) do. 10

B(et)

Using (1), (9) and (10), we deduce immediately (2). Conversely, assume that
there exist two constants >0, §>0 verifying the inequality (2) for every ¢ > 0.
Let 1<g<d+1. Then, for each t>1 we have

g-1
({1 sop_3220) >

<2 ({xl sup 41 (2)

ISn<oo On

log

> log q_ﬂl})

<o/feray,

It follows that {[supicn<es (d4,/d@,)] 'dA is finite, and hence that

su f (dl")qd
1<n<poc dQn en

is finite. Thus the proposition is proved.

Let (C,)icn<w be a sequence of g-algebras on X such that C,< C,.1 for each
n>1, C, the ¢-algebra generated by Ux.1C,, and A=A24,, =g« two prob-
abilities on C,,. We may now give the following consequences of proposition 1:

Corollary 1. Suppose that 1,<g, for each n>1. Then:

(i) sup (—log'jg") €ELP (X, Cus A) for each 1<p< oo

Ign<oo n

(ii) lim inf 1 log i1 (x)=0 A-almost everywhere.
n—soo N d On )

(i) Using (1) ((i), proposition 1), we can write

(et (-tow e o) o) =2 ([t it _Gmir<erf) <

1 Relative to the sequence (Cn Nign<oo of 0-algebras.
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for each ¢t>0. From (11) follows immediately that the function

su [—lo '%]
1<n<poo & dg,,

belongs to L? (X, Cu, A) for each 1<p< oo,
(ii) From (i) follows in particular that

o dA,
’Llﬂ ; log d@ﬂ(z)—O
A-almost everywhere. Therefore,

lim mf

n—>o0

1 +d_}‘L' >
in nlog don (x)=0

A-almost everywhere, and hence (ii) is proved.

Corollary 2. Suppose that A.—<gw. Then for each 1<p< oo the following
assertions are equivalent:

(8) SUPicn<wo § | log (d4,/dp,) [P d A, is finite;

(b) SUPicn<o § [log* (d2,/d0,)]P A4y is finile;
(c) log (dAw/dow)€L? (X, Cw, A);

(d) log* (dAw/dow)€L? (X, Cw, A);

(e) limy, o, || log (@ 4,/dgn) —10g (d A /d0w) ||, =0-

Let us remark that
+ @ 100

(x) (12)
~log~ 22= () (13)
n—ro0 Qn de

A-almost everywhere ( i ;“ dloo

ﬂ_( )30 A-almost everywhere) On the other hand, (d). 3 2 ) "
n/ 1<n<oo
i ; . dic + @

a p-semi-martingale, provided that dow -log dom —2dp is finite; equivalently

d g
[10g+ dln] is a A-semi-martingale, provided that f log* ——lﬁdl is finite.
d0ni1<ncoo d 0w
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Using (i), corollary 1, the relations (12) and (13), and a classical result on
semi-martingales of non-negative functions, (see [2], p. 325), we can easily
establish the equivalence of (a), (b), (¢), (d) and (e).

2. Main theorems

Let Y be a set, C a o-algebra of subsets of Y, and X=Tlnez X.(*), where
X,=Y for all n€Z. For each n€Z, denote by pr, the projection of X onto
X,, and by B, the g-algebra {pr;' (E)|E€C}. For each part I< Z, denote by B,
the o-algebra generated by UnerB,. If I={n}, then By =B,; for I=2, we
shall write B instead of Bz. Denote with 7 the mapping (#,)nez=>(®ns1)nez of
X onto X. The mapping t is B-measurable and 7 (B,)=B,_1 for each n€Z.
Let now A be a probability on B. For each part I<Z, we shall denote with
A; the restriction of A to B, If I={n}, we shall write i, instead of Ain). The
probability A is stationary if for every E€B, A (v ' (E))=4 (E).

Let (I(s))ser be a family of disjoint parts of Z; for each s€T, let v, be
a probability on Bi:. In what follows we shall denote with ®,crvis the
(probability on By,er1s) direct product of the ;).

A probability ¥ on B has the property (4) if v is stationary and y= ®nez ¥,
We shall say that a system {u, v} of probabilities defined on B has the prop-
erty (B) if po...n-1<%@...n-1, for each n>1. A system {u, v} of probalities
defined on B has the property (PE) if {u, v} has the property (B) and if

.1 due,..n-1
lim - log —"—+— =h
n—g?o n 8 d'v(o...n—l) (x) (x)

exists, is finite, and k(v (z))=h (¥) u-almost everywhere. We say that {u, »}
has the property (M E,), where 1<q< oo, if {u, v} has the property (B) and
if there exist two functions A€L%(X, B, u), G* €L (X, B, u) such that:

(@) A is invariant under v (hO7 =h);

1. dpe.n-n|_
= ol LLLLL k. 4 g =1
) nlog iv0. .mn G* for all n>1;
.11 dpe... a1 l
1 = log ——+—"—h|l =0.
(‘}’) niglo n i d"l’(o...n—l) ¢

Let now {u, v} be a system of probabilities on B such that (see [10]):
(C) u is stationary;
(D) pe...-1.0<p...-2 -1,B o}
(B) po=<ve. |
If v has the property (4), then, using (C), (D), (E), we deduce:
1Z={.,-1,0,1,..}.
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He .. —1.0y<U.., —2, -1n®; (14)
,u(,n_.,_1_o)<,u(,n,,__1)®vo for all n> 1; (15)
the system {u, v} has the property (B). (16)
Let now
)
fa 3o ny for 1<n< oo
d"’(o...n'l)
dy, duc ... -1,0
o PP S e A R PV PR T 17
¢ dv, e ducx,.,-®v un
_pe.. 10
oo =7 .
du... 1,9,
1 ln—l .
We then have ~log f,== 2 log g0t (18)
n NE—0

for all n>1.

Theorem 1. Let {u,v} be a system of probabilities on B satisfying (C), (D)
and (E). Suppose that v has the property (4). Then:

(i) The sequence [(1/n)log fulicn< converges in L'(X, B, u) if and only if
SUPogk<w | 10g* gud p is fimite; if b is the Limit of the sequence [(1/n) Iog folicn<so
in I} (X, B, u), then h>0, p-almost everywhere.

(i) If 1<g<oco and supock<w | (log* g,)?dp is finite, then the system {u, v}
has the properties (M E;) and (PE).

(iil) If, in particular, there exists 1 < p< oo such that suPoci<e § 95 & Y-k, ..-1,®V,
is finite, then the system {u, v} has the properties (P E) and (M E,) for all 1 <g< oo,
In this case, there exist a function Q*, dominating the sequence [(1/n)1og fulicn <oo»
and two constants C,>0, 8,>0, verifying the inequality

p({z]|G* (z)>1}) <O, et (19)
for each t>0.

(i) Assume that supoci<. § log* godu is finite. Using corollary 2, we deduce
that log g € L' (X, B, p), log g, € L' (X, B, u) for each k>0, and that

Jlim [ log g — log ges I, =0.

The argument of B. McMillan (see [8]; see also A. Perez [10]) shows then that
the sequence [(1/n)log f,licn<w converges in L* (X, B, u); if & is the limit func-
tion, then (use (ii), corollary 1) k(x)>0 u-almost everywhere. Conversely, as-
sume that the sequence [(1/n)logf,licn<wo converges in L'(X, B, ). By (i),
corollary 1

@' = sup (—log g,) €L (X, B, u) for each 1<g< oo, (20)
0<k<eo
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Using (18), we obtain for each n>1

n-1 ) tl 1 n-1
=S log” geort<| -1 -3 For,
‘n kzo Og 907 [7& Og fﬂ +‘)’2/ ;{i‘oG O'l'k
1 n-1 . 1 ,
whence =2 ) log"gedu<||~logfll +|&|, <M, (21)
N k=0 n 1

where M is a constant independent of n. But [log* g,du<jlog® grs1dyu for
each k>0, since the sequence (10g* g)ocn<w 18 2 pi-semi-martingale (see for in-
stance the proof of corollary 2). We deduce then from (21) that { log* g, du<M
for each k>0, and hence that suppcr<. §log® g, du is finite.

(i) Assume that 1<g< oo and that supocie § (log* gi)?dp is finite. Since
the sequence (log”* giJock<ew 18 & -semi-martingale, we have then (see [2], p. 317):

G'= sup log* g, €L%(X, B, ). 22)
Ogk<oo

From (20) and (22) we get

G= sup |logg,|<&'+6&". (23)
O0<k<

Now GEL(X, B, u), since G'€L%(X, B, si) and ' € L*(X, B, u). On the other
hand, limg, log gx{x) =log g, (#) p-almost everywhere. Hence we can apply a
generalized ergodic theorem (see {1} and [7]) and deduce the existence of a
function h€L%(X, B, u), invariant under 7, such that

n-1
fim L > log gi (78 (&) = h () (24)
n->00 T g

p-almost everywhere. Therefore the system {u, v} has the property (PE). To
complete the proof of (ii), we have to show that the system {u, v} has also
the property (M E,). By the “dominated ergodic theorem”, we have

n-1

G'= sup 1 > Gor*eLlY(X, B, p). (25)
1<n<oo.n k=0

Using (24), (25) and the obvious fact that G* dominates the sequence

[(1/n) log foli<n<w> We deduce that

=0. (26)

a

lim

Nn—>»00

1
;2: lOg‘fn —h

Hence the system {u, »} has the property (M E,), and thus (ii) is proved.
{iii) From the hypothesis and from (ii), proposition 1, we deduce that the
function G defined in (23) satisfies the inequality

p({z|@@)>t})<Ce*? 27)
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for each t>0, C>0 and 6>0 being suitable constants. It follows that
GEL'(X, B, u) for every 1<gq< oo; hence supock<w | (log* gx)?du is finite for
each 1<g< oo, and so, by (ii) above, the system {u, »} has the properties (P E)
and (M E,) for each 1<g< co. The inequality (19) follows from (27) and the
“maximal ergodic theorem” (see [3], p. 676) applied to the functions @, G* de-
fined by (23) and (25), respectively. In fact, it is clear that the inequality (19)
is satisfied for suitable C,>0, §,>0, when 0<t<1. For t>1, the inequality
(19) can be proved, for instance,(!) using the following relations:

* 2 2 1\
e @=0<> [ cap<iohu([zlow>1)"
{z| G(z)>t/2}

Hence the theorem is completely proved.

Theorem 2. Let v be a probability on B having the property (A), and A, u
two probabilities on B such that A<pu. Assume that the system {u, v} has the
property (PE). Then:

(i) The system {A, v} has the property (PE) and we have

1 dAe -1
lim = Jog ——5-7=2
n—soo N di’(o, .on-1 n—o0

. 1 d,u(o,..nol) >
xX)= m — 10g — x —h x /() 28
() i lgl(o...nl)() () ( )

A-almost everywhere.
(i) If 1<g< oo and if the sequence

1 dlo . n—l))q)
“log™ @O, ..
(("" °8 dve, . n-1/ J1gn<=

is A-uniformly integrable, then

. 1 ’“»o Ln-1 |I
lim ||~ log ——>—=—h,| =0.
n gd"’(o. .om-1) la

n—o00

(iii) In particular, if there exist constants 1 <p< oo, a>1, such that

»
((M) dve,..n-n=0(a") when n—>oo
J d Yo, ..n-1)

then the system {A, v} has the property (M E,) for every 1 <q< co, and 0<h (x)
<loga/(p—1) A-almost everywhere.

(i) Let us remark first that for »>1 we have

! This simple argument was shown to the author by C. Ionescu Tulcea; it replaces the initial
argument of the author.
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dle, .. a1 2)— dig, .5y @) due, . noy @) (29)

d Yo, .,n-1) d#(o. Lon-1 di’(o, ..n-1)

Vo.. n-n-almost everywhere, and hence also Ao, ., n-1-almost everywhere. It
follows that

1 log 4o oo (x) = L log dho..n-p

1 d,uo Lon-1
+—log ———"——=(x 30
n dV(D...n—l) n od,u(o,.,n_n(x) " gd (%) (30)

(
Yo, .,n-1

A-almost everywhere (obviously, (dAg. .. n_1/dve,. »n-n)(@)+0 A-almost every-
where). Since the system {u, »} has the property (PE) and since 1<y, there
exists a function A>0 (use (ii), corollary 1) and finite i-almost everywhere,
such that % (7 (z))=h (z) and

lim H log dfhe. . n-p (x)=h(x) (31)
dv

n—so0 N 0, .,n-1)

A-almost everywhere. Hence to prove (i), it will be enough (in view of (30)
and (31)) to show that lim,_ . (1/2)log (d A, ..n-1/4 e, ..n-v) () =0 A-almost
everywhere. But the sequence (dAo, ., 1,/d o, ., n-n)1<n<o 18 a p-martingale,
and since Ag,1...,<pe.1...), we deduce that

lim dl(o... n--1) x) =d1(0.1. ) (m)*o
n—>00 d,u(o...n--l) d,u(o. 1...)
A-almost everywhere. It follows that
lim * log dlo..n-n (x)=0

n—eo N dpe,..nn

A-almost everywhere, Hence (i) is proved.
(i) follows immediately from (i) and corollary 1. In faet, it is enough to
remark that

sup (—%log‘ M)GL‘Z (X, B, A) for each 1<g< oo. (32)

1€n<o0 dv(o...n—l)

(ili) By hypothesis there are constants l<p<oo, a1, M >0 such that
§@io...n-1/3v0, .. n-p) 'dAo . .n-y<Ma" for each n>1. It follows that for
each n>1 and t>0

).({xlilog‘“ ... (z)>t}) <Mare "®DE, (33)

dW(o. L n-1)

It is then easily seen that for ¢>loga/(p—1) we have
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| 1 + d}»m on-D )
— RS et t
A ({1’| 121:&0 (n log d’lf(o, Ln-1 =)= )
< >A ({xl K log* ——m—dz(o"'"ﬂ(x) >t}) <Ma/(® P —a).
n=1 n dV(O...n-l)
We deduce that

sup (% log* %»J"—D) €L (X, B, A) for each 1<g< co. (34)

1gn<w d"’(o...n—l)

From (32) and (34) follows

dl(o, Lon-1)
n d"’(o..:n—l)

€L°(X, B, A) for each 1<g< oc. (35)

1<n<oe

Hence, by (ii) above, the system {1, »} has the property (M E,) for every
1<g< oo. To complete the proof of (iii), we have to show that & (x)<loga/(p—1)
A-almost everywhere. Let 7> loga/(p—1) and define

d;-(o, Ton-1)

dvo, .. n-n

E, (T)={:v|7%/log+ (x)>T} for n>1,
and B, (T)={z|k(x)>T}; let gz, (), @z, @ be the characteristic functions of
the sets E, (T) and E, (T'), respectively. Since

1
lim - log*
ng?o n g d?’(o,..n-l)
A-almost everywhere (see corollary 1), it fellows that ¢z (r) (*) <lim infpe0 @z (1) (%)
A-almost everywhere. From (33) we deduce that lim,_,. A (&, (T')) =0, and hence,
applying Fatou’s theorem, that A (E, (T'))=0. Since T >loga/(p—1) was arbi-

trary, we conclude that A ({z|h (z) >loga/(p—1)})=0. This completes the proof
of the theorem.

3. Remarks

(1) Concerning corollary 2, see s!so [91. (2) Concerring (i}, thecrem 1, s2e
also [10]. (3) The condition

f (M)p dve,..n-n=0(a")

di’(o. Lon=1)

when n—o0 (1<p< oo, a>1) of (iii), theorem 2, was suggested by the reading
of [6]. 4) Let ¥, C, X and 7 be the objects introduced in the beginning of
§ 2, and assume that: Y is a finite set (=alphabet), C is the set of all sub-
sets of ¥. Let a be the number of elements (=letters) of Y. Define the prob-
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ability » on B as follows: v=Q,.zv,, where v,[pr.' ({y})]=1/a for each y€Y
and n€Z.

(I) Let u be a stationary probability on B. It is clear that the system
{u, v} satisties (C), (D), (E) and also that ¥ has the property (d4). Let us also
remark that g, (¢)<a, p_rx .. _1,®v,-almost everywhere, for each k>0 (obviously,
the g¢,’s are defined by (17)). From (iii), theorem 1, it then follows that the
system {u, »} has the properties (P E) and (M E,) for all 1<g< co. These re-
sults contain in particular those given in [5] for discrete stationary sources.

({I) Let A be an almost periodic probability on B in the sense of [5]. There
exists then a stationary probability y on B, such that A<y (see [5]). Let us
remark now that (dido, .. ._,/dve,. n-1) () <a™, v, ., n_1,-almost everywhere, for
each n>1. As we saw in (), the system {u, v} has the property (PE); from
(i) and (iii), theorem 2, it then follows that the system {A, »} has the prop-
erties (PE) and (M E,) for all 1<g< oo, and that 0<hk(z)<loga A-almost
everywhere (since ||%||. <(loga?)/(p—1)=(p/(p—1))loga for each 1<p< oo).
These results contain in particular those given in [5] for discrete almost peri-
odic sources.

APPENDIX

Let (X, B, P) be a probability space. A measurable measure-preserving trans-
formation of (X, B, P) is a mapping 7 of X into X such that v"'(E)€B and
P (z7' (E))=P (E) for every E€B. For any set E€B and c-algebra C<B, we
denote with P (E|C) the conditional probability of E relative to C. For any
finite o¢-algebra A< B, we denote with 7 (4) the (uniquely determined) parti-
tion of the space X such that the g-algebra generated by m (A4) coincides with
A, and with C(A4) the number of elements of xn (A4). If (C,), is a family of
o-algebras contained in B, we denote with V,(, the ¢-algebra generated by
UlCi’

Let A<B be a finite g-algebra, C< B an arbitrary c-algebra. The informa-
tion of 4 and the conditional information of A relative to C are defined by
the equations (we write 0log0=0, —log0= + o and we denote with ¢, the
characteristic function of the set (4):

I (A) (@)= — AGZ"(A)% (x) log P (4)

for every xz€X, and
I{A|C) (@)= — 2, 1@ 10 P(4]O) (@)

for almost every z€X, respectively.

Lemma. Lt AcB be a finite o-algebra, (Cpocn<o @ Sequence of c-algebras
such that C,=C,.1<B for each n=>0. For every t>0 we have

Pz} sup 1(A|C,)@)>8)<C(A)e.

I<n<oo
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The proof is straightforward and similar to that of (i), proposition 1(1). It
will be enough to show that for each 4 €x(4) and t>0

(%) P({.?(:I0 sup I(A4|C,) (@)>t}nd)<e™.

LN<0

Fix now A€n(A4) and define the sets

F (t)={xiosup I{A|Ch@>tin4

Foty={z|P(4|Cy) (x)<e !}
Fot)={z| inf PA|C)(x)=e", P(4A|Ck) (x)<e '}, k=1

0<ji<k -1

for every t>0. It is easily seen that for each £>0 we have:

(@) Fo()NF,t)=¢ if nEm, 0<n, m< oo;
(B) F,(t)eC, for every n=>0;
(y) P(F,t)nA)<e ' P(F,(t)) for every n>0;

® FO=U F.0)n4.

From («), (y) and (d) the inequality () follows immediately; hence the lemma
is proved.

Remarks. (1) Let u be a strictly decreasing (not necessarily convex or concave)

-1
mapping of [0, 1] onto [, + o] (6>0) and let v=wu. The above lemma holds
for every t>4 (and the method of proof is the same) if we replace everywhere
—log by » and e™* by v(f). (2) Let 4B be a finite g-algebra, and (C,)ocn <o
a sequence of g-algebras such that C,cCn,1<B for each n>0. Then: (2a)
SUPo<n<oo £ (A4]C,) belongs to L (X, B, P) for every 1 < g < oo; (2b)limu,o0 I (A|C,) (%)
exists and is finite P-almost everywhere. The assertion (2a) is a consequence
of the above lemma, and (2b) follows from the fact that for every A4 €x(A4),
(P(A|Cu)o<n<o is a martingale. (3) Let 7 be a measurable measure-preserving
transformation of (X, B, P), A< B a finite ¢g-algebra, and (C,)ocn<o the sequence
of g-algebras defined as follows: Cy={X, ¢}, Cx=Vio17v ' A for k>1. It is clear
that C,<C,,1<B for each 2>0. Let us remark now that for every n>1

n-1
IViZ ' Ay =1 (Aot '+ 3 I(A|ViLi v Aor" "
k=1

(see [4]). Since the sequence (I(A), I (A|t'A),.,I(A|Viit"'A4),.) satisfies
(2a) and (2b) (see remark (2) above), we can apply a generalized ergodic theo-
rem (see [1] and [7]) and deduce the existence of a function k, belonging to
L*(X, B, P) for every 1<g< oo, invariant under 7, such that

! The lemma can in fact be deduced from (i), proposition 1; however, the proof given below
is direct and shorter.
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n-1
321;”1( ‘\=/01”‘;4)/n—h“q=0 for every 1<g¢< oo,

n-1
and lim I( V0 77! A) (x)/n="h (x) P-almost everywhere.
N=>00 i=

In this way we obtain the classical form of McMillan’s theorem in information
theory (see [4], [5], [6], [8]), as well as the assertion that almost everywhere
convergence holds in McMillan’s theorem. See also [1] and the remarks made
in [4]. (4) The results contained in this appendix were presented on February 9,
1960, in a seminar on information theory held at Yale University under the
direction of Professor S. Kakutani.
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