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On linear dependence in closed sets

By IneEMAR WIK

1. Kronecker’s theorem can be formulated as follows: A necessary and sufficient
condition for A,—A;, 43— 4, ..., 4 — 4, to be linearly independent (mod 27) is

k k
inf sup| > @, |=> |a,|.
a, 730 1 T

Throughout the paper n represents integers and ¢ arbitrary real numbers.
For an arbitrary closed set on (0,27) we define the following indices of linear

independence:
(@) Po(E)=infsup|[e™du(a)]
uel* nz0 5

b) P%(E)=inf e g
(b) Pc(E) ;erofgopléfe p(z)]
(¢) Py(B)=infsup|[e™dp ()]
pel> 0 &
(d) P%(E)=inf sup|[ e du@)],
pel’> ¢t ' p
where I'° is the class of functions u which are constant outside E and satisfy
[ldul=1.
E

An immediate consequence of the definitions is:

*

0<Pe< {P°<P:,<1.
Py

In Kronecker’s theorem the condition n>>0 can be changed to >0, — oo <
<M< oo or —oo << oo,

If E consists of a finite number of linearly independent points we thus have
Po=Pt=Py=Ph=1. We shall prove that this property holds for all sets K
for which P%(E)=1 (Theorem 1) and that P} (¥)>0 implies P¢(Z)>0 (Theo-
rem 2).

A set E is called a Kronecker set if Py(E)=1 and a weak Kromecker set if
Pq(E)>0.
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1. WIK, On linear dependence in closed sets

An example of a vperfect Kronecker set of the Cantor type was given in
Rudin [4]. Theorem 2 provides a positive answer to the question, raised by
Kahane-Salem in [3], concerning the equivalence of Carleson-sets and Helson-sets.
Both notions are equivalent to weak Kronecker sets.

The following theorem by Carleson [1] is fundamental for the proof of Theo-
rem 2:

Theorem A. A necessary and sufficient condition that Py (E)>0 is that for each
0> 0 every continuous function ¢ (x) has a representaticn

(p(x)=§a,e‘”, z€E,

o 1
where Slal<—+48
) Py

2. To prove Theorem 1 below we use
Lemma 1. If P%(E)=1 we have for all €@’
lim ”e"’d[u(x)|=l.
|¢j—>00 E

Proof. Suppose that the lemma is false. Then there exists a function u €I
so that for ¢=1;, we have

f P du(x)= el
E

u cannot be a step function. In that case the lemma follows immediately from
Kronecker’s theorem. Without loss of generality we put g,=0 and we have
du=e"dp(x), dp(x)=0. _

Choose £€E, a point of continuity of u, so that e +1 and form

dp,=e " dp(x)+dd(x—§&). [8(x)=0 for <0, =1 for >0].
There is no 7 satisfying | [ ™ du,|=2.
E
Thus lim lfe”’dyl ()|=2 and lim Ue’“ du(z)|=1 which is a contradiction that
ftlroo & 1> 2

proves Lemma 1.

Lemma 2. If PY(E)=1 we have for all u€I®

lim | [ dp(x)|=1.
inl—>oc

Proof. The same as for Lemma 1 if ¢ is changed to n.

Cor. 1. If Ph(E)=1 we have for all u€l®

lim [|e ~1{|du|=0.

t>00 E
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Proof. Choose an arbitrary ¢>0. By Lemma 1 there is a sequence {{}i° so
that
|feitvx+l¢dy— 1 <ﬁ, Y=,
5 6
Put duy =" " duy=dus+idu; .
2 2
Then we have J’(ldﬂ!_dﬂé)<% a'ndfld,ué'l<%'
E E

By the triangle inequality we obtain for v >y,

2
f_>|l_feztvzuq;dlulzll_feut,, W%, | >
6 E E

|1t dul |- [l (du| —dpm) =[] dp

h 1 P 2 82 82
whence 15" —cos (t,—1,) x| ‘u|<6+6+73—2

and by Schwarz’s inequality

sm £, — v',) x

[dlu|<2‘/f sin? —-vf;—v")x]dlu]

f|ei“"*t”°m"1”dﬂl<g for v >,

Jleete 1] dul=2

and Cor. 1 is shown.

Cor. 2. If Py(E)=1 we have for all u€l
tim [|e"—1]]du|=0.

nsoo E

Proof. The same as for Cor. 1 if ¢ is changed to # and Lemma 2 is used
instead of Lemma 1.

Cor. 3. Py (EB)=1 tmplies Pc(E)=

Proof. Suppose that Pc(E)<1. Then there exists a function w€I'° with
Ue””’d u@)|<r<1,n>0. According to Lemma 2 we choose n, so that
E

147
ing,z I
|[édu@|>-3
and by Cor. 2 there exists n, with the properties: n, +#7,>0 and
: I-
[lem=1|dul<=5".
E 2
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The triangle inequality gives
r> | J‘ei(n,+n,)zd‘u (.T) l > ”’ein.zdlu (x) | _J‘ | ei(n,+n.)z_ein.z| |d/4 (x) I > - I 7.
E E E “

This contradiction proves Cor. 3.

Lemma 3. From a sel of rational numbers with denominator m, it is sufficient to
remove m — 1 to get an integer as the sum of the others.

. N
Proof. Enumerate the numbers {——'} and from the sums
mj,
k P [» 47
ey, 4= k=12,...,m.
% m T m

At least two of the «:s are identical, e.g. ax, and ay, Thus

These P, are removed and the others are enumerated again from 1 to N — (k, — k,).
We obtain a similar sum:

k', P;
2 =M,
ky+l m

Analogously we can continue until tho number of terms is less than m —1. The
sum of the others is then an integer, which was to be proved.

Theorem 1. If P} (E)=1, then E is a Kronecker set.

Proof: Suppose that P (E)=1 and Py(E)<1. Then there exists a function
1 €T’ satisfying

|[ €™ du(z)| <Py, all m, P, <1. (1)
E

By Lemma 1 there is a sequence {f;}{° with the properties:
”eu,xdlu(x)l_)l
E

and t— 8] —>a, ft]1=mn.

1-P 8w
P - 1 = :
ut ) 3 and m [l— l]+l

For j=j, we have
1-|[ e e dpu(x)| <o (2)
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p is continuous on E® and discontinuous on ES. E=E°U E° and [|du|=a.
E

a+0 for otherwise the theorem follows directly from Kronecker’s theorem.
Before proving the theorem we make the following statement: To each number
P and each y there exist an integer Ny and a constant ys with the properties

z’;leilvﬂzﬂrpﬂ_ iﬁ1‘+iy)| ld/'l’l <26
E

and “e’”ﬂ”i"’ﬁ—1||d/¢|<(5.
ES

To show this we divide E° into disjoint subsets E,, U E,=E°, restricted by the
condition

ad ad
Q—m!if|dy|<;n—! .
We construct new functions u, of bounded variation on E by choosing

dp,=e " "|du(@)| on E
du,=|d u(x)| otherwise.

[ldpm|=1 and thus by Lemma 1 there exists a sequence f; and a constant g,
E

so that
J'ei‘yc””‘"v du,—~>1 (3)
E

and & — [E]—>a, [t%] = nk.

However, «, is a rational number with denominator less than m. For suppose
that the contrary is true. Then there are two integers ¢, and g, satisfying

1
¢1 &, + ot — gz = b, where |h|<771
For k>k, we have according to (3) and the definition of u,
i(n% +a )2+ d
[ [esrmin _1|au|< S
E-E, a1

and thus, if g1} +q2=1%,

$> J‘ Iet(a.n','c+q,a,)z+tq,¢,__ 1 ' |d‘u[ - J‘ Ieil’,’cxﬂq,rpv &he eiu.rl I d.“l
E-E, £,
Whence fe"7°’+‘“‘””’—8'“’|ldu|<a+2nh+a;a, <46,
E
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This gives
Uein,z eiu d,u (x) —Jle‘(lil'c”i)“”“””d/t (x) I <43.
E E

For j=j, we have by (2)

|[ e du|>1-586> P,
E

contrary to (1), and we have proved that all «, are rational numbers with de-

nominator m!.
2

We put sl=:—i'. If k>k, we have by (3) for all »

2
_i8r—i v 4 i &
”‘e ifz z.,ei(nk+a,)z+t%ld”|+ J' otz w,ld#|_1|<(2_“!:_l) .
E, E-E,

Applying Schwarz’s inequality as in the proof of Cor. 1 we get:

J‘ Iei(n’,'c+a,)z+i% _ emszl | du I <;%

E,

and f |e“"7c+°‘v)’“"’v —1||dp | <;—},.
EZE,

Since all «, are rational numbers with denominator m! we have by Lemma 3
S &, =N, where the summation runs over all y except at most m!. The sets E,
corresponding to these indices are removed and we get a new set E°.

By the triangle inequality
J’ | (AT T, _ BTty | Id,u (z) l - Zr f Ieuza,mm’,’guz'i% — etﬂﬁivl |d/4] <
EC v E,

2m! g

<=2 3< >3
ws > d for k>k,

Put >'n} =Ny, and 3 @, = g@s.

Now we conclude that

f|ei‘”+”kl”+"”ﬂ——e'ﬂ”"’| |dul<é+ad<24.
EC i

The triangle inequality also gives
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€
J'lei(N+Nkl)I+i¢p -1 | Idlul < Z 51 <9.
S
E

Put N+ N =Nz and our statement is proved.

Returning to the proof of the theorem we assume that g is continuous except
at the points As. As—A, are linearly independent since P*(E)=1. There are by
Kronecker’s theorem an integer M and a constant v so that

J‘Ie‘iM’+iV’—e‘“’]|dy]<6.
ES

According to the preceeding statement there exist an integer N, and a constant
@u Wwith the properties

J'|eiNMI+i(pM_eiM1‘—iw| Id/"|< 26
EC

and f|eiNM’+i"’M—l||d[L¢|<6.
&S

By the triangle inequality

J' [ ar=d0ztiontiy _y||dy|<26
EC

ety | | <25,
ES

There also exist an integer N, and a constant ¢, so that

I J(‘JleiNaqura_eiaxlIdﬂl <26
E
. {8)
| J1emme-tlidul <o
ES
(4) and (5) imply
f | €/ Vet Nag= Mz +iggtiong iy _ e ||du|<179.
E

Put N,+Ny—M=N' and @, +pu+yp=¢'.
For j=j, we have by (1) and (2)

1_P1_6<ljeinjreiurd’u (x)__"'ei(nj+N’)r+lxp'dy<76
E E
whence 80>1—P;, which is a contradiction.
Thus we have proved that P§(E)=1 implies Py (E)=1 but by Cor. 3 this
implies Pc(E)=1 and E is a Kronecker set which was to be proved.

Theorem 2. If P%(E)>0, then E is a weak Kronecker set.
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Proof: Carleson has shown in [1] that P% (E) > 0 implies Py (E)> 0. It is therefore
sufficient to prove that Pg(#)>0 implies P, (£)>0. We give an indirect proof

and assume that Py (E)=0 while Pg(E)>0.
Choose 0 < &< Py. Since Po=0 there exists a function u€I'® satisfying

uei”d‘u ()| <€—§£, nz=0.
By the Radon-Nikodym theorem we obtain
[[e™ap@]|=|[e"du@|=|[" s (@) duta)],
E E E

where |f,(z)]=1 and f, is measurable (u).

Then we can approximate f,(z) with a continuous function ¢ (z), |@(z)|<

in the sense that

[lo@-fo@lldu@]|<].

E

Since Py>0, @ (x) can be represented

o0 o0 1
@ (x)=> a,e"*, where D |a,|<5 +e.
- —o0 PH

Choose N so that > ]a,,|<i~. By the triangle inequality we obtain for n> N
I»|>N

I e—lnzdﬂ(w)|< |EJ‘elnr (/0 (x)_(p(x))d‘u(x)l-‘i- Iéfe‘ﬂr(p(x)d,u(x)l<

E

ing vz & E
<= +|fe Zae d,u:c)|+2]a|<4+2+4

ie. |[e™*du@)|<e  |n|>N.
E

”e‘”d 4 (x)| assumes its greatest value, which is called Py, 1> P> Py,
E

when n=mn,, |n,|<N.
Hence we have
{<P0+s,[n|<3N

inz 2INT
) CaltE T LVIC R I

E

We form the functions «; (z) and o, ().
xr

o (2) = j(l + ") du (), ay(x f — ¥ d ().

0
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Choose 8 =}(P,—¢) and suppose that

“doc1|=f|1+e2””||d,u(x)|<l+(§
E E

and J'ldocz[=“l—ezm"”dy(x)]<l+6
E E

This gives
[( 1427 | +]1— |- 2)d u<26.
E

2|1+e2iN1‘|II_CZiN.tIIdlu(I)I
whence f |1+e2iNI|'+|1—62iNII 9 <29
and fll—-e“”’”dlu(x)|<2(1+V§)6<56.
E
But by (6)

£> |Ef N gy ()| > |Ef e d ()| — |Ef ™ (1 — e ) d u(x)| > P, — 5.

This is a contradiction and thus

Py—¢
do,|>21+—2—.
mex [ldel>1+75
Suppose that the maximum is assumed by «,.
(_!docl (x)
The function wE)=——"
[lday (@)
2
then belongs to I'° and by (8)
|[ e du, (@) <2e, |n|>3N (6")
£
|| €"*du, ()| assumes its greatest value, which is called P, for n=n,, (7')
E
n <3N, P<-Tote
P,—¢
1+—

In the same way as (8) and (9) were formed from (6) and (7) we now form
(8') and (9') and obtain a new function u,(x) €[’ with the property
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[<Py, |n|<3% N,=P,for n=n,

inz
Iél‘e d iy (2)] l<22'8a n>32-N

P +2¢

P, —-2¢
141”28

where P,<

From u,(x) we construet ug(z) ete.

We get functions u,(z) €T’ satisfying

Pp_1+2°71-
Ue’“d,u,,(x) | < Py, where Py < #—% .
E Py 1—2"¢
1+——
5
However, the sequence given by a,=1, a;= L";— tends to zero. Further
1 k—1
* 5
d
we have Py<1 and P Lz >0, 0<z<1, whence P, <a,+ 7, (¢), where 7 (¢)—>0
1+ :

when &£—0.

P
We choose %, such that a, <§; and ¢, such that 7y, (g) < P—; and 2% gy < —31{ .

3
If we start with e=¢, we obtain a function u, satisfying

2P,
sup | [ &% d s, (@) <=5 7.
L 4

This contradicts our assumption and the theorem is proved.
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