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Stochastic groups 

B y  ULF GRENANDER 

Part 4. A particular stochastic group 

This paper is a continuation of "Stochastic groups" by the same author and 
published in the same journal. The reader is referred to the earlier parts of this 
paper  for a full s tatement of the problems and for terminology and notation. 

4.1. After the general discussion of stochastic groups and algebras it may be wise 
to turn to specific groups in the hope of finding information of value for further 
work along the lines discussed previously. Such a group should be non-patho- 
logical and sufficiently simple to be amenable to analysis; on the other hand it 
should possess such properties tha t  are thought typical of stochastic groups in 
a more general context. We should not allow the group to be Abelian, which 
would make Fourier analysis possible, or compact, where an analytical tool is 
available in the irreducible matr ix  valued representations. 

A reasonable choice for our purpose would be a low-dimensional Lie group: 
we will s tudy the well known group G consisting of the matrices 

X ~  , X 2 > 0 .  
X 2 

T h e  composition rule is for 

Y= Y2/ z~ ' 

given by z=xy=(10 Yl +XlY2t, 
X~ y~ / 

and  the multiplication is not commutative.  The unit element e of G corresponds 
to x 1 = 0, x 2 = 1. G is identical with the open upper halfplane of R 2, so that  it 
is no t ' compact .  

The right invariant Haar  measure # of G is absolutely continuous with respect 
to Lebesgue measure m (x) in the halfplane, and the density is with an arbitrarily 
chosen norming constant 

d~(z )  1 
din(x) = x~" 
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In  the upper halfplane x2> 0 a probabili ty distribution is defined; we will 
assume tha t  x~ and x 2 are independent with certain regulari ty assumptions tha t  
will be specified later on. The marginal distribution of ~1 will be denoted by P1 
with the characteristic function T (z). The distribution over G need not be sym- 
metric. Put t ing 

X(n) X ( n - l )  . . .  X (1) ~ ( n ) =  (10 ~(gn)] 

we are going to s tudy the asymptot ic  distributions of ~(1 ~) and ~(2 ~) for large 
values of n. 

4.2. Given a probabili ty measure P on G, what  will be the behaviour of the 
convolutions P~* for large values of n? From what  has been said in Par t  3 it 
is clear tha t  we cannot expect convergence towards a limit distribution, but  
perhaps this can be at tained by  a suitable norming of the distributions. 

However  tha t  may  be, one thing is obvious, namely tha t  the marginal dis- 
tr ibution of ~ )  after n convolutions is asymptotical ly lognormal. Indeed, 

log ~(~) = ~ log x(~ ~), 
1 

which is asymptotical ly normal with mean value n E log x 2 and variance n Var (log x2), 
assuming only tha t  these moments  exist. Hence we can leave ~2 aside and con- 
centrate our a t tent ion on ~1 and the asymptot ic  behavior of its marginal distri- 
bution. More completely, we m a y  wish to find its asymptot ic  conditional distri- 
bution for given ~ .  

I t  will be easier to understand the problem if we star t  by  studying two special 
distributions over G. In  the first one we let ~ take the two values 1 and ~/~, 
say, with the same probability, 1/2. 

I~ow we can write 

~(1 n) ~ x(n)  • ~(n)  ~ ( n - 1 )  ~ ~(n)  ~(n -1)  ~ ( n - 2 )  ~ ~(n)  ~ ( n - 1 )  .~(2) ~(1) 
~2 ~1 ~ ' ( ' 2  -~2 ~1 "~ " ' "  T . ~ 2  ~2 * ' .  ~2 -r , 

which in the present case reduces to 

~i~) = xi~) + 2 - ~  x i~ - l )  + 2 - ~ - ~ - 1  ~(1 ~-~) + . . .  + 2 - ~ - ~ - 1  . . . . . . .  xil),  

where the e, are stochastic variables taking the values 1 and 0 with the prob- 
abilities 1/3. To s tudy the distribution of ~") for large values of n consider the 
infinite series 

y = ~ Y, 2 -S,, 
y~D 

where the Yv are independent stochastic variables with the distribution of $1. 
The s, are s~ = 5 i + 5~ + ... + ~v, so = 0, and the 5~ have the same distribution as e,. 
Assuming tha t  E I~ I I<  oo the above series converges almost certainly, since 

P~O ~ 0  

190 



ARKIV F(}H MATEMATIK. Bd 4 n r  I4 

F r o m  this reasoning i t  is also clear t h a t  the  d is t r ibut ion  of ~(n) converges to 
t h a t  of y as n increases indefini tely.  The character is t ic  funct ion ~ ( z ) o f  the  
l a t t e r  can be found convenient ly  b y  in t roducing the stochast ic  var iables  kl, k~ . . . . .  
so t h a t  

~ = 5 2  . . . . .  ~ ,  1 = 0 ,  ~ , = 1  

etc. 

I t  is well known t h a t  the  k's are  independent  and  have a geometr ic  d is t r ibut ion  

1 P(k=v)=~, v = l , 2  . . . .  

Bu t  we can vr i te  

Y = (Y0 + Yl + "" + Ye,-~) + (Ye, + "'" + yk,+k,-1)" �89 + (y~+e~ + "'" + yk,+~,+e,-1)" i -}- "'" 

so t h a t  

/ Q : I  k , = l  k , = l  2 ( P  

= ~  
; - �89 ~ (~) ; - �89 ~ (~/2) 1 - �89 ~ (z/4) 

ka 

o.o 

so t h a t  - M ~ ( 2 - , z )  
% ( z ) - , = 0  2 - q 0  ( 2 - , z )  

I t  need scarcely be said t ha t  the  convergence of ~(1 ~) is only  dis t r ibut ionwise;  
i t  does no t  converge to any  stochast ic  variables as can be seen from the  fact  
t h a t  the  leading te rms in i ts  expansion are independent  of wha t  happened  be- 
fore n, n - l ,  and  so on. 

We should also t ake  a look upon the a sympto t i c  d is t r ibut ion  of ~(1 ~) for given 
~(~'). Bu t  this  is immedia te ly  done if we remember  t ha t  ~ ) = 2  - ~ - ~ - 1  . . . . . . .  ~1) 
and  t h a t  with overwhelming probab i l i ty  the  sum e 2 + e3 + "'" +e~ will be large. 
Bu t  ~ n ) =  C means  e~ + e 3 + .-. + e~ = -  log~ C and  i t  is clear t h a t  such a condi- 
t ion influences a rb i t r a r i ly  l i t t le  the  jo in t  d is t r ibut ion  of any  finite number  m of 
terms,  an, e~- l ,  ... e~-m+l if n is sufficiently large. This implies a sympto t i c  in- 
dependence between ~(1 ~) and  ~(f). 

4.3. The other  special d i s t r ibu t lon  will be the  same except  t ha t  we now let  
x 2 t ake  the  two values 1 and  2 wi th  the  probabi l i t ies  1/2. The var iable  log ~ )  
is still  a sympto t i ca l ly  normal  a l though with a large posi t ive (instead of negat ive)  
m e a n  value. 
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I n s t ead  of ~(1 n) we will consider 

~1(~) ~(1 ~) 1 (~) 1 (3, 1 
= ~2~(~)~(~-" �9 .. x(~ 2) = x(~l) + ~ ~(~-~ Xl + ~2-'3--3 ~-~a~ x , '  + "'" ~ x(3)2 x (3)~ �9 .- x~ ~) x/n)" 

1 
But  now x~-- 5 is d i s t r ibu ted  jus t  as x(~ ~) in the  las t  section. Hence  ~(n) converges 

d i s t r ibu t ion  wise, and  i ts  l imi t  d i s t r ibu t ion  is the  one given above.  I n  the  pres- 
en t  case a b i t  more holds :  the  sequence of s tochast ic  var iables  ~/(1), ~(3), ... 
converges ahnos t  cer ta in ly  to  the  s tochast ic  var iable  

l ~(~) 
= x(2) x(3) x(2~) ~1 �9 v ~ l  2 2 " ' "  

I t  follows t h a t  for large n 

~i  ~) ~ ~ - ( ' ) x ( n - ~  ~) . -  �9 x l  3) "~ = ~ V, 

and  since we know how ~(2 n) behaves  the  las t  formula  answers our  quest ion.  Of 
course we could also formula te  i t  in te rms of log I~(ln) I 

log [ ~(~") I - n E log x 3 ~ log I ~(2") I - n E log x 3 ,~ N (0, 1). 

Vn Var (log x3) Vn Var  (log x2) 

Since we have  t aken  the  absolu te  value  [~(1~) I the  above  tel ls  us noth ing  abou t  
the  probabi l i t ies  wi th  which ~n) has  a p o s i t i v e  or nega t ive  sign. However  th is  
sign is the  same as t h a t  of ~(n), and  this  sign is a sympto t i ca l l y  independen t  
of ~(2~); the  probabi l i t ies  can then  be ob ta ined  a t  least  in principle,  f rom ~u (s). 

4.4. Le t  us sum up wha t  we have  found in these special cases. The  second 
group coordinate  ~ )  has  a log-normal  d i s t r ibu t ion  under  bo th  assumptions ,  t ak ing  
large negat ive  values  in the  first  and  large posi t ive  values  in the  second case. 
The first  group coordinate  ~ )  behaves  qui te  different ly.  W h e n  x 2 t akes  the  
values  1 and  2 the  var iable  ~n) is stil l  a s y m p t o t i c a l l y  log-normal  (except  for 
i t s  sign), bu t  when x 3 is 1 or  1/3 the  d i s t r ibu t ion  of ~(1 n) converges (d is t r ibut ion  
wise) wi thout  norming.  One should also no te  t h a t  i ts  l imi t  d i s t r ibu t ion  depends  
comple te ly  upon  ~o(z), the  choice of P1, in cont ras t  to  m a n y  classical l imi t  
theorems where we have  more or  less "un ive r sa l "  l imi t  d i s t r ibu t ions  no t  depending  
upon  a deta i led  knowledge of the  original d is t r ibut ions .  

One could argue agains t  th is  t h a t  i t  is more n a t u r a l  to  norm the  f irst  coor- 

d ina te  in the  same way  as the  second, log [ ~ ( ~ ) [ - r a n  a Vn = un. Then the  normed  

var iab le  u~ will converge to  N (0, 1) in the  second and  to  0 in the  f irst  case, 
a n d  these d is t r ibu t ions  do no t  depend  upon  wha t  P1 is. Here  we touch upon  a 
basic  quest ion in the  formula t ion  of l imi t  theorems.  Say  t h a t  we have  a sequence 
of r andom elements  xl, x~, . . . ,  in same space X.  To no rm the :d i s t r ibu t ions  of x 
we m a p  X upon  some o ther  space Y via  sequence of funct ions y~ = y(x), and  
a l imit  theorem will s ta te  t h a t  the  d i s t r ibu t ion  of yn (xn) converges a s  n t ends  
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to infinity. Suppose now tha t  we can prove for two different {y~ (x)} and {y~' (x)} 
tha t  the two limit theorems hold 

L' :limn_,~ distribution of,, y: (x,~)D,,= D" ] 

L": lim distribution y~ (x)= . 
n-~or 

I f  D '  is non-atomic and D" has at  least one atom, say A, then it is practically 
necessary to consider L' as superior to L". Indeed, the limit theorem L" lumps 
some probabili ty in A, while this probabili ty is resolved by L' ,  so tha t  L '  can 
be said to be more detailed than L". 

Another  possibility would be to consider one limit theorem L '  a t  least as 
good as L "  if D '  is absolutely continuous with respect to D".  This would define 
a partial ordering among all possible L. 

Considerations of this type  are likely to be of consequence for the formula- 
t ion of limit theorems for more general stochastic structures. In  the special case 
under  s tudy just now we must  use a formulation with limit distributions de- 
pending upon Px. This is sad but  not  wholly unexpected if we recall the discus- 
sion of Pa r t  3. There we saw that ,  while for commutat ive groups we could use 
the same analytical apparatus  for any  distribution P over the group, the non- 
commutat ive  stochastic groups would require a more flexible t reatment,  and it 
would not  be surprising to find tha t  the limit distribution depends more strongly 
upon P.  

4.5, Now when we know what  happens in the two special cases it is easy to 
s tudy the case of arbi t rary  distributions -P1 for x 1, P2 for x 2. 

If  Ex~<l  we can reason just as in 4.2. and we see tha t  for large values of 
n the first group coordinate ~(~') is asymptotical ly distributed as 

y= ~ y , ' z  1 ... z~, 
P=O 

where the y,,  z. are independent and the distribution of y~ given by P1 and the 
distribution of z, by  P~. The series converges almost certainly since 

oo 

E<l ,lzl ... z , ) - :Elyl l  Z0<Ezl) < 

On the other hand if E 1 < 1 we have as before the relation 
X 2 

~ P ) - x ( ~ ) x  ( 8 ) -  2 2 . . .  xP) x i l )+  x f ) +  "'" + x ( ' ) x  ~ . . .  x(~ ~ )~  J 

and we find as before tha t  log [~'~1 has asymptot ical ly  a log-normal distribution. 

' t  remains only to investigate the case ~ ( x 2 ) ~  ~ , ~ ( ~ 1 .  Introduce the 

geometric mean value of x,  
---- exp E (log x~), 

193 



U .  G R E N A N D E R ,  Stochastic groups 

and  assume to s t a r t  wi th  t ha t  ~, < 1. According to the s t rong law of large num- 
bers we have a lmost  cer ta inly 

l im 1 - l o g  x~ ~) = l o g  7 < 0 .  
n - ~ r  ~r~ 1 

Hence the  produc ts  gig2 . . .  Z n defined above  will behave  a sympto t i ca l ly  as ~ ,  
decreasing exponent ia l ly .  The series expansion for y will then  have coefficients 
for y~ t ha t  decrease so fast  t h a t  the  series will converge a lmost  cer ta inly.  Hence 
we can conclude t h a t  for y <  1 we ge t the  same l imi t  resul t  for E x~< 1; see 
above.  

I f  if ins tead  the  geometric  mean  y >  1 we know t h a t  the  produc ts  zlz 2 ... z,~ 
behave  a sympto t i ca l ly  as y~ a lmos t  cer tainly.  A sl ight  modif icat ion of the  pre- 
vious reasoning shows t ha t  we get  the  same l imit ing behaviour  as for E 1 /x  2 < 1. 

The case ~ =  1 will be left  open;  i t  is conjectured t h a t  the  a sympto t i c  distr i-  
bu t ion  of log I}~)[ will be a sympto t i ca l ly  the  same as t h a t  of m a x  s~, w h e r e  

l~v<~n 

the  s~ are the  pa r t i a l  sums corresponding to the  independent  s tochast ic  var iables  
log }(1), log }(~) . . . . .  log }(~). 

4.6. I t  is in teres t ing to s tudy  what  happens  if the  var iables  x({ ), x(2 ~) -  1 are 
made  small  together  with 1/n .  I n  the  l imit ing case, when these var iables  are 
made  infinitesimal,  we can even find the  expl ici t  form of the  equi l ibr ium distri-  
bu t ion  when this  exists.  Since 

we have 

Var  [A }~)[ }({) = }] = B 1 + B 2 }~ 

where 
Exl=A1 I E X~ = 1 + A 2 

Var x 1 = B 1 

Var  xe = C~ 

and  x 1 and x~ are assumed independent  as before. Le t t ing  n t end  to  inf in i ty  
while A~ = a,/n, B, = b,/n, i = 1, 2, the  l imit ing f requency funct ion p (t, ~) will 
sa t isfy  

Op 1 ~ 
t 2 0 ~2 (bl + bz ~2) p _  ~ (a 1 + a~ ~) p. 

I n  analogy with  wha t  we saw in the  las t  section we can expect  the  equi l ibr ium 
dis t r ibu t ion  p (}) to  exist  when the  geometr ic  mean of x~ is less than ,  or poss ibly  
equal  to  one. As here x~ = 1 -  e, wi th  ~ small ,  we get  
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geometric mean  of x 2 = e x p E l o g ( 1 - s ) ~ e x p  - E s -  E e  2 ~ e x p  a 2 -  ~ n '  

Therefore equil ibrium can be expected for a 2 < �89 and possibly even for a 2 = �89 
Assuming for convenience tha t  b 1 = b 2 = 1 we should have, if an  equil ibrium 

densi ty p (~) exists, 

1 ~ 
2 ~ 2  (1 + ~2)P(~)-- ( a l + a 2 ~ ) P = O  

and hence 

1 p r  1 a ( l + ~ 2 ) p _ ( a l + a 2 ~ ) p = ~ ( l + ~ 2 )  (al + ( a s -  l ) ~ ) p = C 1 .  

The general solution of this equat ion is then 

P (}) = (1 § }2)~,+1 exp 2a~ arctg } [2 C1 f (1 § u2) -a '  exp ( -- 2a  1 arctg u) du  + Cs]. 

If a 2 ~ �89 the above expression is no t  integrable over ( - ~ ,  ~ )  and  hence no t  
a frequency function.  If  a S < �89 the integral inside the brackets behaves like 
~-2,,+1 so tha t  to get a possible frequency function, we must  pu t  C1= 0. Then 
we obta in  the equil ibrium dis t r ibut ion 

p (~) = C 2 (1 + ~)~,-1 exp 2a  1 arctg $. 

Since p ' ( ~ ) = 0  occurs only for ~:= 

symmetric  a round ~ = 0 if a I = 0. 

al this dis t r ibut ion is unimodal.  I t  is 
1 - a 2 

4.7. For  this part icular  group there is another  na tu ra l  norming tha t  lies close 
at  hand  when studying l imit  distributions.  This is via the n- th  roots which exist 
and are unique in G. ]ndeed, let x be an arbi t rary  element of G and f ind a 
y E G such tha t  y~ = x, n positive integer. In  coordinates this relation is, a t  least 
for y2#  1, 

~-1 1 - y~ 
Xl = Yl + Y~ Yl § Y~ Yl + "'" + y2 Yl = Yl ~1 - Ys 
X -- n 

2 - y2 

so tha t  there is a unique solution 

~l /n -- ;'~2 } 
Yl i ~ S  Xl 

y~ = x12/,, 

1 
If  Y2 = 1 we get instead y, = n  x r  
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Now let  us use the  norming 

,,(~' = (10 ~/(2~)] = (~:('))'/". 

As n--> ~ we have 
n 

log ~ ' )  = 1 ~ log x~')-->E log x~, 
?~ v = l  

assuming only t h a t  the  mean value on the r ight  side exists.  To deal  wi th  ~(n) we 
separa te  cases and  f irst  assume t h a t  the  geometr ic  mean  value Y = Geom. mean  
x 2 < 1. Then, for large values of n the  first  group coordinate  behaves  as 

~(1 n) ~ (1 - 7) y d i s t r ibu t ion  wise 

where the  stochast ic  var iable  y is the  one in t roduced in 4.5. I n  the  opposi te  
case, y .< 1, we get  ins tead  

lWlr~(1) x1-(2) X(n) 1 
nl n>~ ( r -  ] ) / ~ + ~  + " ' "  + _<,>_,2) xln) ] I_ 2 2 2 "v2 ~v2 �9 

dis t r ibut ion  wise. 
Hence in both  cases the  d is t r ibu t ion  of ~/(~)= (~(~))1/~ converges as n tends  to  

infinity;  the  first  group coordinate  to  a non-degenera te  d is t r ibut ion,  the  second 
one to a constant .  

Part.  5.  S o m e  s tochas t i c  a lgebras  

5.1. We have seen in P a r t  2 t ha t  addi t ive  stochast ic  processes in a s tochast ic  
Banach  algebra  induce mul t ip l ica t ive  s tochast ic  processes in a na tu r a l  way,  and  
also t ha t  the  addi t ive  l imi t  theorems t h a t  m a y  be avai lable  give us corre- 
sponding mul t ip l iea t ive  l imit  theorems.  The der ivat ions  were carried out  in the  
Lx-topology and hold under  cer ta in  condit ions t h a t  are  sat isf ied for several  in- 
terest ing cases, e.g. the  Poisson-l ike si tuat ions.  

On the other  hand  these condit ions were not  fo rmula ted  so as to  suit  o ther  
impor t an t  stochastic a lgebras ,  e.g. those t h a t  correspond to Wiener  processes on 
the real  line. To s tudy  this  we will have to modify  the  earl ier  derivat ions,  using 
now ins tead the  L~-topology. Since a good deal  of wha t  was said in P a r t  2 stil l  
goes through,  we can be qui te  brief here and  refer the  reader  back  to  P a r t  2 
for more detai ls .  Le t  us po in t  out  t h a t  the  space dea l t  wi th  should be an  a lgebra  
and a Banach-space,  bu t  we need not  have Ilxyll<.l[xll I[yll so t h a t  i t  is no t  
necessari ly a Banach  algebra.  

As before we s t a r t  wi th  an  addi t ive ,  t ime-homogeneous,  s tochast ic  process 
y (t), t >/0, and  t r y  to  define a mul t ip l iea t ive  process on the  same stochast ic  
a lgebra  th rough  the  series of integrals  in section 2.4. Consider the  region S , :  
0 < t 1 < t 2 < ..- < tr < t of R r. I n  S ,  we will consider reetangels  wi th  sides paral lel l  
to  the  coordinate  axes, or sums of such rectangles.  To any  such sum a we 
associate a s tochast ic  element  y (a) of the  stochast ic  a lgebra  as we d id  before;  
y (a) is an  addi t ive  stochast ic  set function and y(R), where R is a rectangle  in 
& with  the  sides 11, 12 . . . . .  I , ,  is given b y  y (R)=Ay( I1 )  Ay(I2) ... Ay(Ir), where 
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the order of multiplication is important .  Note  tha t  y (a) is not  a stochastic set 
function with independent increments. 

We will need a bound for E II Y (a)II 2 and it is sufficient for the present purpose 
to assume tha t  

E II Y( )II < c volume of a, (1) 

where C is some constant  and the volume is Lebesgue measure in r-space. If  
this is so, it follows almost  immediately tha t  the stochastic integrals in question 
are uniquely defined. Indeed, the difference between different Riemann sums can 
be expressed through the values of y (a), where the elementary rectangles of a 
together cover a small fraction only of the volume of St, and this shows unique- 
ness. The norm of such an integral is also bounded (again limit of Riemann 
sums) by  

EIIJr(t)ll2= EII f dY(tl) dy(t ) ... dy( tr )  ~< Cr. vo lume  of S r = C  ~ t~ 
r[" 

Xr 

_< ~ (Ct) "2 
Then r:o  (EffJ'(t)ll' �89 < 

so tha t  the series x (t) = ~ Jr  (t), J0 (t) = e, 
r = 0  

converges in the m e a n . f i n  a similar way  we can also modify the derivation of 
the multiplicative limit theorems in Par t  2. 

We now return to condition (1). Although this condition will have to be veri- 
fied from case to case, we can sometimes simplify it a little. Indeed if the norm 
is introduced via an inner product  (x; y), we have for two disjoint rectangels 

i �9 �9 i r  J ]  s t  t � 9  
R ' = A i x A ~ x - . . x A r ' a n d  R = A t  xA~ x--.xAr c S ~  

E ( y ( R ' ) ;  y ( R " ) ) = E ( y ( A ; ) y ( A ~ )  ... y(A~); y ( A ; ' ) y ( A ~ ' ) . . ,  y(A~')). 

At  least for some i we must  have A~ fl A ; ' =  0. I f  we assume tha t  the expected 
value of the y-process exists and is zero the above inner product  will vanish. 
I n  such a case we need only verify condition (1 ) fo r  a = an arbi t rary  rectangle. 

Irrespective of the particular form tha t  we have given to condition (1) it is 
clear tha t  the essential content of any  such condition should be some sort of 
absolute continuity of the set function EII  Y (a)II 2 with respect to Lebesgue volume. 
I t  is of some importance to note tha t  this should hold in the interior of St .  
On and around the boundary,  say t 1 = t, . . . . .  t,, this need not  hold, as is evident 
already from the scalar case when r = 2 and y (t) is the Wiener process on R 1. 
Indeed the stochastic variable 

Yn ~, (n) = [y (t~+l) -- y (tin))�9 2 
t f f i l  

does not  tend to zero as the division is made finner; instead it converges, as 
is well known, to the variance of y( t ) .  Here lies the basic reason why condi- 
tions of type  (1) are needed. 
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I n  this  connection i t  should be poin ted  out  t ha t  our construct ion of the  mul- 
t ip l ica t ive  x-process has proceeded via the  finite products  

(e§ A~y) 

eva lua ted  in the  appropr i a t e  order. We could also have s ta r t ed  with  

f i  exp (A~ y) 

bu t  the  corresponding l imit ing processes would not  be the  same in general  under  
the  condit ions used in this  section. While  this  is only a choice of definit ion one 
should be aware  of the  different  results  of the  two definitions.  

5.2. There is a simple special izat ion of the  mul t ip l ica t ive  processes wi th  values 
in an a lgebra  t h a t  seems to correspond d i rec t ly  to a class of impor t an t  prac t ica l  
problems.  This is when the a lgebra  consists of matr ices  x = {x~; i, j = 1, 2, . . . ,  k}, 
with addi t ion  and  mul t ip l ica t ion  defined in the  usual  way  and wi th  an appro-  
p r i a t e ly  chosen norm.  Fo r  a descr ipt ion and classification of the  inf in i te ly  divi-  
sible dis t r ibut ions  corresponding to  such processes the  reader  should consult  the  
paper  b y  H u n t  referred to  in P a r t  1. 

Two si tuat ions will be studied.  The first  is when the addi t ive  ma t r ix -va lued  
process y (t) is of Poisson type ,  so t ha t  the  infinitesimal p robab i l i t y  s t ructure  is 
defined by  

t y (t) + h A with p robab i l i ty  1 - 2 h + o (h) 
y(t + h) 

y (t) + h A  + B with  proba l i l i ty  2h  + o (h). 

Le t  us fix the  ini t ia l  value as y (0 )=  0. As norm of the  matr ices  we can choose 
e.g. the  o rd inary  norm of the  matr ices  considered as  l inear opera tors  in R k. 
Since 

E II Y (t,) - y (t,-1)II ~< ~ [(t, - t~_i) (ll A I[ + 2 II B II + o (1))] 

these sums are uni formly bounded  and condit ion (2) of 2.4. is satisfied. 
E lemen ta ry  calculat ions give us the  mean  values and  covariances of the  x-pro- 

cess. Pu t t ing  

M (t) = {m,j (t) ; i, j = l ,  2 . . . . .  k} = {E x~ (t) ; i, i = 1, 2 . . . .  , k} 

we get  M (t + h) = E x  ( t - t - h ) = M ( t )  ( I  + h N  + o ( h ) ) ,  

where N = A + ~t B. Hence M '  (t) = M (t) N and  M (t) = exp t N. In t roduce  the  
k z • k ~ ma t r ix  

C (t) = {ctj.,~ (t); i, j, a, fl = 1, 2 . . . . .  k, say in lexicographic order} 

= {coy I x .  (t), x,,~ (t)]} .  

Denot ing the Kronecker  p roduc t  of two matr ices  R and S b y  R • S we have 
C (t) = E x (t) • x (t) and  
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C (t) = {E x,j (t) x ~  (t) - m~j (t) m ~  (t)} 

= E x  (t) • x (t) - M (t) x M (t). 

P u t t i n g  S ( t ) = E x ( t ) •  we get  

S (t § h )= E x( t  + h) •  § h )= E[x ( t )  § x(t)  A y]•  § x(t) A y] § 

§ t e r m s  of sma l l e r  o rde r  t h a n  A y 

where  we have  p u t  A y = y (t + h) - y (t). Then  

S( t  + h ) = S ( t ) §  h E x ( t ) •  N + h E x ( t )  N • 2 4 7  E x ( t )  A y x x ( t )  A y §  ... 

d S  (t) 
so t h a t  d t -- S (t) ( I  • N)  + S (t) ( N  • I )  + 2 S (t) (B • B). 

W e  ge t  the  des i red  r e su l t  

S ( t ) = e x p  t { I •  + N •  + 2 B •  

5.3. N o w  le t  y (t) be  the  Gauss i an  process  of i n d e p e n d e n t  i nc r emen t s  a n d  t a k i n g  
as  va lues  k •  k -ma t r i ces  wi th  m e a n  va lues  zero a n d  covar iances  

E Yij (t) y ~  (t) = t btj. ~ .  

The  n o r m  of m a t r i c e s  wil l  h a v e  t o  be i n t r o d u c e d  t h rough  a n  inner  p r o d u c t ;  if 
U ~ {u~s } a n d  V = {v~} a re  two  k x k m a t r i c e s  we wil l  def ine  

(u, v)  = ~ u,,v,,, I[ uII ~ = ( i ,  u )  

T o  be  ab le  to  verif:~ cond i t i on  (1) of 5.1. we need  in th is  case on ly  s t u d y  y ( R )  
when  R is a r ec t ang le  in S t .  B u t  t hen  

E Ilu(R)[I'= ~ E ~ "'~) " "  ~ "'(~) "'~) Y$~ tz Yi2 ta "" �9 Yt r i t +  1 Y t l J ~  YJ~I~  �9 �9 �9 Y ] r  f r + l  

where  the  sum is e x t e n d e d  over  all va lues  be tween  1 a n d  k of the  i ' s  a n d  j ' s ,  
a n d  where  y~) is t he  (i, ] ) -e lement  of t he  m a t r i x  i n c r e m e n t  of y (t) ove r  t he  vth  
s ide  of l eng th  A, of the  r ec t ang le  R. H e n c e  

= 0 (k u~+l b ~ A 1A~ .. .  A~) = 0 (const  ~ m (R)), 

whe re  b = m a x  Ib~j.~t ,  so t h a t  ou r  cond i t ion  is sa t i s f ied  a n d  the  co r r e spond ing  
m u l t i p l i c a t i v e  p rocess  x(t)  is well  def ined .  

The  in f in i t e s ima l  covar i anees  of the  x(t)  process  a re  eas i ly  ca l cu l a t ed  as  

l ira 1 a 40 ]~ cond i t iona l  Coy  [xtj (t + h) - x~j (t) ; x ~  (t + h) - x ~  (t)] = 

k 

l . ~ t = l  
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The q~j.~(x) are quadra t ic  forms in the  x-components  and  the m a t r i x  q can be 
wr i t t en  as [x (t) • x (t)] B. The Fokke r -P lanck  equat ion  is then  

a p  1 a 2 
a-i = ~ E a x,, a x ~  [q'" ~p (x) v] 

to which appropr ia te  ini t ial  values should be prescribed,  let  us say  x ( 0 ) =  I .  
F o r  the  case of non-vanishing mean values 

E Yij (t) = t a~j, A = {a~}, 
the  above  modifies to 

a p  1 a ~ 
a t 2 y" a x,s o x ~  [q~j' ~p (x) p] - ~. [z,j (x) p] 

with L =  {l~j(x)} and  L =  x(t)A, so t ha t  the  ~tjT(z) are l inear forms in the  xij. 
To find the  expected values of the  x-process a pa r t i a l  in tegra t ion  gives us 

~ t E  xi~ (t) = ~t m~j (t) = E l~j (x) 

so t h a t  a m  (t) 
a t  

- -  = m (t) A,  m (t) = exp t A.  

Fo r  the  second order  moments  c~j.~Z (t) we get  

a 

a 
so t ha t  ~ c (t) = c (t) B + c (t) [A • I + I x A] 

and  c(t) = e x p  t {B + A • + I• 

I t  will be c~onvenient to  drop  the  double subscripts  and  use var iables  denoted  
~a, ~t = 1, 2 . . . .  s, and  a corresponding equat ion 

ap 1 a ~ Z 0__ [l~(~)p]. 

We are sometimes in teres ted  in the  behavior  of the  dens i ty  P = p ( ~ I  t ) f o r  large 
values of t, and  especial ly we would like to  ge t  condit ions ensuring t h a t  the  
d is t r ibut ion  contrac ts  to  a s ingular  one (concentrated on some l inear  subspace 
of Rs), converges to a l imi t  d is t r ibut ion  or  spreads  ou t  more and  more  th in ly  
over  a n y  finite p a r t  of R s. A cri terion useful for this  purpose  is the  quadra t i c  
integral  
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I (t)= f t)d = 11 11 
R* 

Knowledge of how I (t) behaves gives us some partial info~anation on the overall 
behavior of p. 

But  we have 
1 ~I(t) 1 
2 et (p',p)=-~(Qp, p)-(Lp, p). 

Here prime denotes differentiation with respect to time and Q and L are the 
two differential operators on the right hand side of the Fokker-Planck equation. 
Through partial integration 

OP ~ (q~,p) d~= (QP, p)= - ~  ~ 

= - ~  f ~P ~ f ~P ~q~'d~- qz _~ffa~p d ~ f 82q~ d} 
-zJP  7. - �9 

R~ Rs P~ 

:But any qa~ is a quadratic form in the ~'s so that  its second order derivatives 
are constant. The quadratic differential operator P is non-negative. We also get 

(Lp, p )=: -~ f l ap~d~  1~. ~la 2 
Rs I~s 

where the first derivatives of lz(s are constant. This implies that  

~ i ( t ) <  [1 W ~2q~ ~ l ~ ]  

so that  if (~ is negative then I(t) decreases to zero as t tends to infinity. The 
decrease is at  least exponential. For any set S c R 8 of finite volume we then have 

Pt (S) = f p (~, t) d ~ <~ (vol. S f p2 (~, t) d ~)1/~ -->0. 
S S 

so t h a t  the distribution tends to leave the finite part  of the space. 
The condition obtained is sufficient but  not necessary. To obtain sharper 

conditions we would have to study the extremal properties of the operator P.  
We know tha t  the solution of ~he particular Fokker-Planck equation studied 

in this section appears as a limit distribution in certain applications of practical 
interest. I t  is therefore a task of considerable importance to find methods enabling 
us to handle the solutions numerically. Straightforward numerical solution of the 
equation is of course possible but not very practical because of the great number 
of parameters appearing in the equation. Indeed we have s parameters for the 

infinitesimal mean Values' and ~ parameters for the infinitesimal covariances. 

In  all we have 
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N=s 
[r 2 3] 

so thut  for 2 x 2  matr ices  N = 14 and for the  phys ica l ly  i m p o r t a n t  3 • 3 matr ice~ 
N takes  the  formidable  value of 54 parameters .  This makes  i t  a lmost  necessary 
to use an ana ly t ica l  approach,  say of represent ing the solut ion in te rms of t abu-  
la ted  t ranscendenta l  functions or by  using series expansions or in tegra l  repre- 
sentat ions.  

5.4. Fo r  a g iven ini t ial  d i s t r ibu t ion  of x(t) for t =  0 the  p robab i l i t y  mass i s  
spread out  according to the  Fokke r -P lanck  equat ion as t increases. Somet imes 
the  mass  will be res t r ic ted  for all t to a proper  subset  of the  entire space, some- 
t imes  i t  will fill out  the  whole space, and  as we shall  see the  l a t t e r  happens  
in the  more general  s i tuat ions.  

To fix ideas let  us consider the  two-dimensional  problem so t h a t  we deal  wi th  
the  d is t r ibut ions  of vectors in the  plane when stochast ic  2 • 2 matr ices  M opera te  
on these vectors.  F i rs t ,  if we assume t h a t  the  mean  values of M vanish,  we 
have Ax=x(t+h)-x(t)~,,Mx(t) for small  values of h and  the  condi t ional  dis- 
t r ibu t ion  of A x E R 2 is described by  the infini tesimal  covariances 

qij (x) = C o v  [(Mx (t))~, (Mx (t))j] 

eva lua ted  for a given x(t)=x. If  the  ma t r ix  Q(x)= {qij(x); i, j =  1, 2} is non- 
s ingular  a t  x, diffusion takes  place in all direct ions from the  po in t  x. I f  we 
require t ha t  the  p robab i l i ty  mass  should be res t r ic ted  to  a subset  of R 2, the  
mat r ix  Q (x) mus t  become singular  for cer tain values of x, say  in a set S. Since 
M has four elements i t  can be represented  as 

M ~ A ~  
V=I 

where the  A~ are f ixed matr ices,  the  ~ are uncorre la ted  s tochast ic  var iab les  
wi th  var iance one and  r ~< 4. Then 

qtj (x) - (A, x)~ (A~x)j 
Vffil 

so t ha t  for a - c o l u m n  vector  z 

z* Q z = ~ (A, x, z) 2. 

I f  this  quadra t ic  form vanishes i t  means  t ha t  no p robab i l i ty  mass  diffuses in 
the direct ion of the  vector  z. 

On the  other  hand  S is the  set where the  de t e rminan t  of Q vanishes 

and 
S = {x I de t  Q (x) = O} 

(A'X)l (A 'x ) I  (A~x)I(A"~)~I (A,x)l 2 
0 = de t  Q (x) = , Z  (A~ x)~ (A, x)l (Agx)~ (A~ x)2 =~ (A,x)2 (A~ x)2 
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so t ha t  
(A~ x)l (A,  x) 1 
(A, x)2 (A,  x)2 = 0 for all  v and  #, 

which is a set of homogeneous equat ions  of the  second order  in  x 1 and x~. S can 
be the  isolated poin t  x =  0, one or two s t ra igh t  lines or the  ent ire  plane.  

Le t  us s t a r t  with r= 1. Then S = R  2 and the  quadra t ic  form vanishes if 
(A x, z) = 0. This means t h a t  diffusion can only t ake  place in a direct ion paral le l l  
to  A x, which leads us to  consider the  different ial  equat ion  

d x = A x  or d x  2 (Ax)2 
d x 1 (A x)l 

which is dicussed in all  e l ementa ry  t ex t  books on differential  equations.  I t s  solu- 
t ions form a one-paramete r  fami ly  of curves C~ which can consist of s t ra ight  
lines, ellipses, spirals and  var ious  types  of hyperbolas  and parabolas .  If  the  ini t ial  
d i s t r ibu t ion  is concent ra ted  to a C~ the  mass never  leaves this  curve bu t  can 
only diffuse along it.  A ease of ex t reme degeneracy occurs if A is s ingular  and  
if x is any  vector  annihi la t ing  A, Ax=O.  Then if the  ini t ial  d is t r ibut ion  is con- 
cen t ra ted  to  x i t  s tays  there  indefini tely.  

I f  r = 2  we get  for S 

de tQ=l (A lX) l  (A2X)l 2 0 
(Alx)2 (A2x)2 = I 

which implies Alx=] tA~x .  This is possible for a non t r iv ia l  vector  x only if 
de t  ( A I - A A 2 ) = 0  so t h a t  only  two values  of 2 are possible. Excluding the case 
AI=] tA  2, which corresponds to r = l ,  we se~ t h a t  ( A 1 - 2 A 2 ) x  has solutions 
x = :r where u E R 2 and  :r is an  a rb i t r a ry  scalar.  We only have to invest igate  
when such s t ra ight  lines can be singular  in the  manner  in tended.  I f  only diffu- 
sion in the  d i rec t ion-u  a t  a poin t  x= ~ should be possible we mus t  have  

0 = (A 1 x, n)  2 -~ (A  s x ,  n )  2 = ~2 (A 1 u, n)  2 -}- (Z 2 (A 2 u, n) 2, 

where n is a vector  perpendicular  to  u, so t h a t  

A l u = / ~ l u  }. 

A2 u= /~2 u 

This means  t ha t  A 1 and  A 2 should have one or two r ight  eigen vectors in com- 
mon,  and  we thus  get  one or two singular  s t ra ight  lines. 

I t  is now easy  to  see t ha t  for r = 3 or 4 we get  s imilar  answers .  Singular  
lines occur only if the  A ,  matr ices  have  eigenveetors in common;  otherwise the  
p robab i l i ty  mass  will fill ou t  the  ent ire  plane.  

Suppose t h a t  E = R  2 is a region whose finite pa r t  is bounded  by  singular  
curves and  t h a t  the  ini t ial  d i s t r ibu t ion  assigns the  p robab i l i ty  one to E .  Then 
no mass will ever l e a v e  E, P~ (E)----1. The bounda ry  can have  m a n y  different  
shapes as we have seen, b u t  let  us assume for concreteness t ha t  i t  consists of 
two semi-infinite rays  L 1 and  L~ extending  from the  origin. The other  possi- 
bili t ies are d~alt  wi th  a lmost  immedia te ly .  To prove the s t a t emen t  i r i s  covenient  
to  in t roduce  polar  coordinates,  ~ and  0. We get  
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A 0 = (M (cos 0, sin 0) ; ( - sin 0, cos 0)) 

A 0 = P (M (cos 0, sin 0) ; (cos 0, sin 0)) 

and the infinitesimal covariances K~j (0, 0) can be vri t ten 

Kll (0, 0) = kl (0) 

K12 (0, 0) = 0 ks (0) 

K22 (0, 0) = 0 3 k3 (0) 

where k~ (0), i = 1, 2, 3, are second order tr igonometric polynomials. The Fokker-  
Planck equation becomes 

~ a S 1 ~2 
1 ~ [ h  (0)p] + [ok2(O)p]+~_~e~[e2k3(O)p]. (0, t) 

The singular rays L 1 and L e correspond to two angles 01 and 03 which are roots 
to the equation ks (0 )=0 ,  i =  1, 2. In t roducing 

0~ ~o 

P t ( E ) =  f fop(O,e;t)dOdo 
0, 0 

we get after a few reductions 

Pt  (E) = 0 

as stated. Here we have made use of the fact  tha t / c  1 (0) has  second order zeroes 
as 01 and 02 and k 2 (0) has first order zeroes. 

The discussion of the present section can be carried out  with simple modi- 
fications also when the mean value of M does not  vanish. Actual ly  this tends 
to make the existence of singular lines more scarce. 

5.5. I n  certain applications tha t  will be discussed in a later par t  of this pub- 
lication one is interested especially in the distribution of angles, say in 0. I n  
this case the mean values p lay  a par t  tha t  we do not  want  to neglect and 
therefore we introduce 

11 (e, 0) = k4 (0) / 
J 12 (0, 0) = 01c5 (0) 

where k4(O ) and ks(O ) are tr igonometric polynomials of the first order. If  we 
write down the Fokker-Planck ecbuation in 0 and 0 with the above coefficients 
and integrate 0 P by  parts  over the range of 0 we get 

Op(O;t) 1 c ~2 
t 2 ~ [kl (0) p ] -  [k, (0) p]. 

Another  simpler way  of obtaining this equation is to  note tha t  0 (t) is also a 
Markow process, since A x = M x is a homogeneous function, and then 0 ( t )mus t  
satisfy the appropriate Fokker-Planck equation in 0 only. 
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To avoid  the  exstence of singular  lines let  us assume tha t  the  coefficient k 1 (0) 
is posit ive.  We have a simple version of the  Sturm-Liouvi l le  problem before us 
and  we know t h a t  p(O; t) converges to some function,  say  p(0):  when t tends 
to infinity.  We have 

1 
2 ~ 0 (kl p) - k4 p = constant  = a 

wi th  the  solutions 

I J. i" - J ~  l o '  ) 

0 

where the  constants  a and  b should be de termined so t ha t  p (0) is periodic and 
so t ha t  p(O) is a f requency function.  This is possible since p (0)=  b/k 1 (0) and  

where 

1 
p (2~) = ~ [b + 2 a  I1] cI* 

~l(u)  

u 

2~ 2 f k , (v)  

11 f e- ~) kl(')av = du>O 
0 

2~ 

= 2 f k4 (u) , 12 
d 
0 

To get  p ( 0 ) = p ( 2 ~ )  we should have 

b=(b+2al i )e  I", 

1 - e I' 
so t h a t  a = 2 / ~  b. 

Choosing b posit ive this  determines  a so t ha t  p(O)> 0 for all  0 since 

b >  
b + 2 a I 1 -  ~ O. 

2~ 

We can now determine  b so t ha t  fp(O)dO=l.  
0 

I t  is in teres t ing to s t u d y  the behavior  of 0 (t) for large values of t. S tar t ing  
with  a given value 00 for t = 0 the  angle changes cont inuously  and  we will no 
longer . identify values of 0 t h a t  are congruent  mod 2 ~.  F o r  a given t the  value 
of 0 is the  t o t a l  number  of ro ta t ions  a round  the origin of the  x-process. We 
still  have the  same form of the  Fokker -P lanck-equa t ion  bu t  now we let  0 t ake  
all  real  values.  We  have 

+ ~  
f D  
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where Pl is the frequency function of 0 on ( -  c~, c~.). Bu t  since ki (0) is periodic 
2:~ this is the same as 

2~ 

oot E 0 (t) = f p (0, t) k~ (0) a O, 
0 

and as t tends to infinity we get 

lira :-]tEO(t)= f p(O) ki(O) dO=--2~a. 
0 

This means t ha t  lim E 0 (t) = _ 2 h a .  
t-~:r t 

We now need a bound for the  variance V (t) of 0 (t). Since 

V ( t +  A t ) =  V ( t ) + V a r  ( A 0 ) + C o v  (0, A0)  

and since the infinitesimal variances and means of the 0-process are bounded we 

I'l see t ha t  ~ -  is hounded. Hence 

lira Var  0 It) = lira V (t) 
t - ~  t - ~  ~ = 0, 

which shows tha t  the  stochastic variables O(t)/t tends to the l i m i t - 2 g a  in 
the mean as t ime increases indefinitely. This is related to a result  of S. Lloyd 
concerning another  angular  process. 

5.6. For  a more detailed s tudy  of the par t icular  Fokker -Planek .equat ion  studied 
it  is convenient to change variables and we will discuss this briefly for s = 2. 

Start ing from the equat ion in polar  coordinates (~, 0) 

O p 1 0 ~ 0 2 1 ~2 
0 t 2 0 0 2 [2, (0) v] + ~ [e k, (0) p] + ~ ~ [e 2 k8 (0) p] 

we note the homogeneous way in which the variable ~ appears.  I t  is obvious 
tha t  the coefficieLts will become simpler in terms of the coordinates (u, 0), 
u = l o g  ~. indeed,  we then get 

Op 1 0 a 02 1 0 ~ 
0 t 2 ~ 2  [kl (0) p] + 0--6~u [k, (0) p] + ~ ~ 2  [k8 (0) p]. 

Le t  us now introduce v=v(u, O) so t ha t  the t e rm with the mixed  derivat ive 
vanishes. Since d v = v~ d u + v~ d 0 we get 

E d v dO= [v'~ k, (O) + v'o ks (O)] d t = O. 
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This first order partial differential equation has the solution 

8 

v=u-f k2 (~~ d~  

0 

and the new coordinate v is a one-valued function of u and 0; to see this it is 
enough to note tha t  

2~ 

f k2(q~)d___ 0 ~ ~,- 
0 

since k 2 (~0 + ~) = - k 2 (~) and k a (~0 + g) = k 3 (~). 

2 
E (d0) 2 

kl  (0) ~3 (0) --  k2 (0) _ D(O)dt 
- k3(0) at= k-~ 

the new equation becomes 

a p  1 D(0)  O2p+ I ~2 
a t 2 k3 (0) ~ u  2 2 ~ [k3 (0) p]. 

Finally we can make the coefficient of the last term constant by  introducing a 
new angle q0 by  

e 

~(0)=f dO 

a 2 
and  get ~ p 1 D [ 0 ( ~ 0 ) ] ~ p / _ l  p 

Dt 2 ka [0 (q0)] a u  2 D~2 

which is of a fairly simple form. 
In  a special case the solutions can be expressed as integrals, of Mathieu func- 

tions but  otherwise the author  does not  know of any  way of representing the 
solutions in terms of s tandard transcendental  functions. Of course xvhen the 

OZp 
coefficient of ~ u  ~ is constant  the solutions will be composed of normal frequency 

functions. 

Tryckt  den 5 augustl  1960 
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