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Stochastic groups

By ULF GRENANDER

Part 4. A particular stochastic group

This paper is a continuation of ‘‘Stochastic groups” by the same author and
published in the same journal. The reader is referred to the earlier parts of this
paper for a full statement of the problems and for terminology and notation.

4.1. After the general discussion of stochastic groups and algebras it may be wise
to turn to specific groups in the hope of finding information of value for further
work along the lines discussed previously. Such a group should be non-patho-
logical and sufficiently simple to be amenable to analysis; on the other hand it
should possess such properties that are thought typical of stochastic groups in
a more general context. We shouid not allow the group to be Abelian, which
would make Fourier analysis possible, or compact, where an analytical tool is
available in the irreducible matrix valued representations.

A reasonable choice for our purpose would be a low-dimensional Lie group:
we will study the well known group G consisting of the matrices

1 x
x=(0 x:)’ z,> 0.

"The composition rule is for

given by z=xy=(l y1+xly2),

and the multiplication is not commutative. The unit element e of G corresponds
to 2,=0, x,=1. @ is identical with the open upper halfplane of R? so that it
is not' compact. _

The right invariant Haar measure y of @ is absolutely continuous with respect
to Lebesgue measure m(z) in the halfplane, and the density is with an arbitrarily
chosen norming constant

S

pl) 1.
dm(x) =3
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U. GRENANDER, Stochastic groups

In the upper halfplane z,>0 a probability distribution is defined; we will
assume that x, and =z, are independent with certain regularity assumptions that
will be specified later on. The marginal distribution of &, will be denoted by P,
with the characteristic function @ (z). The distribution over G need not be sym-

metric. Putting
w_ (b & (m) (n=1) ®
£ = 0 &) =7 x e

we are going to study the asymptotic distributions of & and &5” for large
values of =.

4.2. Given a probability measure P on G, what will be the behaviour of the
convolutions P™* for large values of »? From what has been said in Part 3 it
is clear that we cannot expeet convergence towards a limit distribution, but
perhaps this can be attained by a suitable norming of the distributions.

However that may be, one thing is obvious, namely that the marginal dis-
tribution of & after » convolutions is asymptotically lognormal. Indeed,

log &V = > log a8,
1

which is asymptotically normal with mean value n E log z, and variance n Var (log x,),
assuming only that these moments exist. Hence we can leave &, aside and con-
centrate our attention on & and the asymptotic behavior of its marginal distri-
bution. More completely, we may wish to find its asymptotic conditional distri-
bution for given £,.

It will be easier to understand the problem if we start by studying two special
distributions over @. In the first one we let &, take the two values 1 and 1/,
say, with the same probability, 1/,.

Now we can write

Egn) — x(ln) + xé"’ .’L‘(ln_l) + qu")z(g"_l) x(ln—2) doeee x(zn) xénvl) .w(22) xgl)’
which in the present case reduces to
5%71.) = 113(1") + 2“11, 17(1"_1) + 2-enven__1 x(ln -2) Jeoeee 4 2‘571—5”_1— .. '—s,xil),
where the &, are stochastic variables taking the values 1 and O with the prob-

abilities 1/,. To study the distribution of & for large values of n consider the
infinite series

where the y, are independent stochastic variables with the distribution of ;.
The s, are 5,=8;+8,+ - +4,, s,=0, and the J, have the same distribution as ¢,.
Assuming that E|& |< oo the above series converges almost certainly, since

2By 2 =BlE] 2 @) <o,

190



ARKIV FOR MATEMATIK, Bd 4 nr 14

From this reasoning it is also clear that the distribution of &M converges to
that of y as n increases indefinitely. The characteristic function ¢, (z) of the
latter can be found conveniently by introducing the stochastic variables ky, k,, ...
so that

61:62=“':(§kl,1:0, 6]61:1
5k,+1 = 6k2+2 = :5k,+k,—1 =0, 5k,+k,: 1
ete.

It is well known that the %’s are independent and have a geometric distribution

ZE,, 'V=1,2,...

But we can vrite

Y=oty + - Fye-1)+ Wt T Y1) FF Grn, T T Yrikk-1) o

so that
y(2)=E exp iyz=E¢" (2) g™ (3) ¢ (2)
* |11 koo A% = 1 , %,
=S lsee] 2L 2 e ()]
_do®  19@/2)  ie@/4)
1-}9() 1-3¢(/2) 1-1p(z/4)
- 227
so that @, () = H 20 L

It need scarcely be said that the convergence of £ is only distributionwise;
it does not converge to any stochastic variables as can be seen from the fact
that the leading terms in its expansion are independent of what happened be-
fore », n—1, and so on.

We should also take a look upon the asymptotic distribution of £ for given
&7, But this is immediately done if we remember that &§¥=2""n"fn-17"""~% kD
and that with overwhelming probability the sum e,+e,+ - +¢, will be large.
But &V =0C means g,+e;+ - +e,= —log, ¢ and it is clear that such a condi-
tion influences arbitrarily little the joint distribution of any finite number m of
terms. €, -1, ... én-ms1 if n is sufficiently large. This implies asymptotic in-
dependence between £{" and &5V.

4.3. The other special distribution will be the same except that we now let
x, take the two values 1 and 2 with the probabilities 1/,. The variable log &”

is still asymptotically normal although with a large positive (instead of negative)
mean value,
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Instead of & we will consider

(n)
m __ & (1) 1 (2)

N (Y L | 5y L1
a2 x$

3) (1)
+ gy P .
PP PP .. a2

]

1 . . . .
But now 0 is distributed just as x%’ in the last section. Hence %™ converges
2

distribution wise, and its limit distribution is the one given above. In the pres-
ent case a bit more holds: the sequence of stochastic variables 7, ®, ...
converges almost certainly to the stochastic variable

=S T a»
g El e@aP . aP !
It follows that for large n

(n)
n) ) (-1 @ _52
& ~x2)x2 )...xz)‘n—éjﬁ"]:
2

and since we know how &5V behaves the last formula answers our question. Of
course we could also formulate it in terms of log |£{” |

log |&|~nE logx, log|&”|—nElogx,
V'n Var (log x,) Vn Var (log z,)

Since we have taken the absolute value |£{”| the above tells us nothing about
the probabilities with which & has a positive or negative sign. However this
sign is the same as that of %™, and this sign is asymptotically independent
of &”; the probabilities can then be obtained at least in principle, from g, (s).

~N(0,1).

4.4. Let us sum up what we have found in these special cases. The second
group coordinate &7 has a log-normal distribution under both assumptions, taking
large negative values in the first and large positive values in the second case.
The first group coordinate &{® behaves quite differently. When wx, takes the
values 1 and 2 the variable &£{® is still asymptotically log-normal (except for
its sign), but when z, is 1 or 1/, the distribution of & converges (distribution
wise) without norming. One should also note that its limit diStribution depends
completely upon @(z), the choice of P,, in contrast to many classical limit
theorems where we have more or less “universal” limit distributions not depending
upon a detailed knowledge of the original distributions.

One could argue against this that it is more natural to norm the first coor-
log |&| —mn

aVn
variable %, will converge to N (0,1) in the second and to O in the first case,
and these distributions do not depend upon what P, is. Here we touch upon a
basic question in the formulation of limit theorems. Say that we have a sequence
of random elements #,, z,, ..., in same space X. To norm the distributions of
we map X upon some other space Y via sequence of functions y,=ys", and
a limit theorem will state that the distribution of y,(x,) converges as n tends

dinate in the same way as the second, #,. Then the normed
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to infinity. Suppose now that we can prove for two different {y, ()} and {y. ()}
that the two limit theorems hold

L' : lim distribution of y, (x,)=2D’

> 00

L”: lim distribution ¥, (x)=D".

n—>»00

If D' is non-atomic and D" has at least one atom, say 4, then it is practically
necessary to consider L' as superior to L’'. Indeed, the limit theorem L' lumps
some probability in A4, while this probability is resolved by L', so that L’ can
be said to be more detailed than L.

Another possibility would be to comsider one limit theorem L' at least as
good as L" if D’ is absolutely continuous with respect to D". This would define
a partial ordering among all possible L.

Considerations of this type are likely to be of consequence for the formula-
tion of limit theorems for more general stochastic structures. In the special case
under study just now we must use a formulation with limit distributions de-
pending upon P;. This is sad but not wholly unexpected if we recall the discus-
sion of Part 3. There we saw that, while for commutative groups we could use
the same analytical apparatus for any distribution P over the group, the non-
commutative stochastic groups would require a more flexible treatment, and it
would not be surprising to find that the limit distribution depends more strongly
upon P.

4.5. Now when we know what happens in the two special cases it is easy to
study the case of arbitrary distributions P, for z,, P, for z,.

If Ex,<1 we can reason just as in 4.2. and we see that for large values of
n the first group coordinate &™ is asymptotically distributed as

where the y,, 2, are independent and the distribution of y, given by P; and the
distribution of z, by P,. The series converges almost certainly since

VZOE(Iy,,]zl e z)=E|y, Ivgo(Ezl)"< oo,

. 1 .
On the other hand if £ — <1 we have as before the relation
x
2
EM=aPa® ... 2 | 2L + L 2P+ +_,__~,_1 z™
g 2Pl V.. aP

and we find as before that log |£{™| has asymptotically a log-normal distribution.

It remains only to investigate the case E (z,)>1, ¥ (xl)>l. Introduce the

2
geometric mean value of z,

y =exp F (log z,),
193
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and assume to start with that y <1. According to the strong law of large num-
bers we have almost certainly

) _

lim - Z log x3

n—so00 T

=logy <0.

Hence the products 2,2, ... 2, defined above will behave asymptotically as 3",
decreasing exponentially. The series expansion for y will then have coefficients
for y, that decrease so fast that the series will converge almost certainly. Hence
we can conclude that for y <1 we get the same hmit result for E x,<1; see
above.

I if instead the geometric mean y>1 we know that the products 2z, ... 2,
behave asymptotically as 9" almost certainly. A slight modification of the pre-
vious reasoning shows that we get the same limiting behaviour as for £ 1/x, < 1.

The case y=1 will be left open; it is conjectured that the asymptotic distri-

bution of log |&| will be asymptotically the same as that of max s,, where
1gvgn

the s, are the partial sums corresponding to the independent stochastic variables
log &, log &9, ..., log &5V.

4.6. It is intoresting to study what happens if the variables z{’, z3>—1 are
made small together with 1/n. In the limiting case, when these variables are
made infinitesimal, we can even find the explicit form of the equilibrium distri-
bution when this exists. Since

E(er) — x(") + x(V) (v) A E(lv) — x(lv) + (xg') — 1) E(lv)

we have E[AEP|EP == A, + A, &
Var [A £0| £ = &]= B, + B, £

where Ex,=A,
EX,=1+A4,
Var x,= B,
Var z,=C,

and z; and ¥, are assumed independent as before. Letting n tend to infinity
while A,=a;/n, B,=>b/n, i=1,2, the limiting frequency function p (¢, &) will
satisfy

op _

18 7
A (0y+ 3, &) p.

by+ 5,8 p— Py

In analogy with what we saw in the last section we can expect the equilibrium
distribution p(£) to exist when the geometric mean of x, is less than, or possibly
equal to one. As here z,=1~—¢, with ¢ small, we get
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. | R 1\ 1
geometric mean of z,=exp E log (1 —¢)~exp —Eg~5Eg ~explay~ ) .

Therefore equilibrium can be expected for a,< } and possibly even for a,=1}.
Assuming for convenience that b, =b,=1 we should have, if an equilibrium
density p (&) exists,

1 ¢° 2 N
55*52(1+§2)P(§)—8—§(a1 Fa,&)p=0
and hence
1 9 , 1 o e
2o TP (@tap=5 1+ p' —(a (@~ 1)) p=0Cy.

The general solution of this equation is then

£
p(&)=(1+E)™* exp 2a, arctg £ [2 Olf (1+u%) % exp (—2a, arctg u) du + Cy].
&

If a,>} the above expression is not integrable over (— co, co) and hence not
a frequency function. If @,<} the integral inside the brackets behaves like
£7%%71 50 that to get a possible frequency function, we must put C;=0. Then
we obtain the equilibrium distribution

p(£)=0C, (1 + &) " exp 2a, arctg &.

this distribution is unimodal. It is

Since p'(£}=0 occurs only for &= 1 ala
%
symmetric around &=0 if a,=0.

4.7. For this particular group there is another natural norming that lies close
at hand when studying limit distributions. This is via the n-th roots which exist
and are unique in G. Indeed, let z be an arbitrary element of G and find a
¥ €G such that y" ==, n positive integer. In coordinates this relation is, at least
for y,*1,

2 n-1 1- y;
Ty=htYh Tyt Ty N=hy ¥s

_.n
Ty =Y2

so that there is a unique solution

1/n
y =1—x2 r
1 l_xz 1
_ lin
Yy =72

If y,=1 we get instead y, =% x,.
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Now let us use the norming

n l n(ln) n n
17( ) — (0 ,7<2n> — (5( ))1/ .

As n—>o0 we have
log 75" = 1 S log 28— E log z,,

n =1

assuming only that the mean value on the right side exists. To deal with 5" we
separate cases and first assume that the geometric mean value y = Geom. mean
2, < 1. Then, for large values of n the first group coordinate behaves as

,7<1"> ~ (1 —y)y distribution wise

where the stochastic variable y is the one introduced in 4.5. In the opposite
case, y <1, we get instead

xi

n‘l"’~(y—1)[

P

Xy 13(")
+:v(21’ x‘22’+ o PP ... x(g")]
distribution wise.

Hence in both cases the distribution of %™ = (£§™)"" converges as » tends to
infinity; the first group coordinate to a mnon-degenerate distribution, the second
one to a constant.

Part. 5. Some stochastic algebras

5.1. We have seen in Part 2 that additive stochastic processes in a stochastic
Banach algebra induce multiplicative stochastic processes in a natural way, and
also that the additive limit theorems that may be available give us corre-
sponding multiplicative limit theorems. The derivations were carried out in the
L,-topology and hold under certain conditions that are satisfied for several in-
teresting cases, e.g. the Poisson-like situations.

On the other hand these conditions were not formulated so as to suit other
important stochastic algebras, e.g. those that correspond to Wiener processes on
the real line. To study this we will have to modify the earlier derivations, using
now instead the L,-topology. Since a good deal of what was said in Part 2 still
goes through, we can be quite brief here and refer the reader back to Part 2
for more details. Let us point out that the space dealt with should be an algebra
and a Banach-space, but we need not have |[zy| <||z||||¥]| so that it is not
necessarily a Banach algebra.

As before we start with an additive, time-homogeneous, stochastic process
y(t), t>0, and try to define a multiplicative process on the same stochastic
algebra through the series of integrals in section 2.4. Consider the region §,:
0<t,<ty<--<t,<t of R'. In 8, we will consider rectangels with sides parallell
to the coordinate axes, or sums of such rectangles. To any such sum ¢ we
associate a stochastic element y(g) of the stochastic algebra as we did before;
y(c) is an additive stochastic set function and y(R), where R is a rectangle in
S, with the sides I,, I, ..., I,, is given by y (R)=Ay (I,) Ay(I,) ... Ay(I,), where
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the order of multiplication is important. Note that y(c) is not a stochastic set
funetion with independent increments.
We will need a bound for ||y (s)||* and it is sufficient for the present purpose
to assume that
E|ly(o)|P<C - volume of o, (1)

where C is some constant and the volume is Lebesgue measure in r-space. If
this is so, it follows almost immediately that the stochastic integrals in question
are uniquely defined. Indeed, the difference between different Riemann sums can
be expressed through the values of y(g), where the elementary rectangles of ¢
together cover a small fraction only of the volume of S,, and this shows unique-
ness. The norm of such an integral is also bounded (again limit of Riemann
sums) by

2 r
< C" - volume of 8, = Cr

0 <5 [av)dye) . av

Then Swinop<s <,
so that the series z(t) = 2‘]’ ), Jy(t)=e,

converges in the mean.—In a similar way we can also modify the derivation of
the multiplicative limit theorems in Part 2.

We now return to condition (1). Although this condition will have to be veri-
fied from case to case, we can sometimes simplify it a little. Indeed if the norm

1s introduced via an inner product (z;y), we have for two disjoint rectangels
=A;xAsx -+ xArand R =A{ XAy x---xA; <8,

E(y(R); y(R")=Ey(A)y(A3) ... y(A)); y(A)y(AY) ... y(A)).

At least for some i we must have A{ nA;’=0. If we assume that the expected
value of the y-process exists and is zero the above inner product will vanish.
In such a case we need only verify condition (1) for ¢ = an arbitrary rectangle.

Irrespective of the particular form that we have given to condition (1) it is
clear that the essential content of any such condition should be some sort of
absolute continuity of the set function E ||y (¢)||* with respect to Lebesgue volume.
It is of some importance to note that this should hold in the nferior of §,.
On and around the boundary, say ¢, =f,=--- =#,, this need not hold, as is evident
already from the scalar case When r—2 and y(t) is the Wiener process on R'.
Indeed the stochastic variable

= 3 [y 69—y ()7

does not tend to zero as the division is made finner; instead it converges, as
is well known, to the variance of y(f). Here lies the basic reason why condi-
tions of type (1) are needed.
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In this connection it should be pointed out that our construction of the mul-
tiplicative x-process has proceeded via the finite products

ﬁe+Ay

p=1

evaluated in the appropriate order. We could also have started with
I1exp (A,3)

but the corresponding limiting processes would not be the same in general under
the conditions used in this section. While this is only a choice of definition one
should be aware of the different results of the two definitions.

5.2. There is a simple specialization of the multiplicative processes with values
in an algebra that seems to correspond directly to a class of important practical
problems. This is when the algebra consists of matrices x= {z;; 4,7=1, 2, ..., k},
with addition and maultiplication defined in the usual way and with an appro-
priately chosen norm. For a description and classification of the infinitely divi-
sible distributions corresponding to such processes the reader should consult the
paper by Hunt referred to in Part 1.

Two situations will be studied. The first is when the additive matrix-valued
process y (t) is of Poisson type, so that the infinitesimal probability structure is
defined by

y (t) + h A with probability 1 —Ah+o(h

Yarm= v (¢)+ A4 + B with probalility Ak +o (k

)
).

Let us fix the initial value as y(0)=0. As norm of the matrices we can choose
e.g. the ordinary norm of the matrices considered as linear operators in E*.

Sinee
2E|yt) -yt 0 <ZUt—t-0) ([4]1+ 2] Bl +o )]
these sums are uniformly bounded and condition (2) of 2.4. is satisfied.

Elementary calculations give us the mean values and covarijances of the z-pro-
cess. Putting

M(t):{mﬂ(t)’ 1:77-21) 2: k} {Exli t)’ ’ 1 2 k}
we get Mt+h)y=Ex(t+h)=M () (I+hN+o(h),

where N=A4+1B. Hence M (H)=M(t) N and M(é)— expiN. Introduce the
k% xk* matrix

C(t)={cirap(t); 8,7, 0, =1, 2, ..., k, say in lexicographic order}
= {cov [z (t), .5 (1)1}

Denoting the Kronecker product of two matrices B and § by RxS we have
C@t)y=Ex(t)xxz(t) and
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O (8) = {E x;; (t) xop () — myy (2) m0p ()}
=Ex@)<x({t)— M (t)x M (t).
Putting S(t)=Ex(t)xz () we get
St+hy=Ex@t+h)xz{t+h)=Ex®)+x @) Ay]x[z@)+ ) Ayl+

+ terms of smaller order than Ay
where we have put Ay=y(+%)~y (). Then

S{E+ry=8@)+hExt)xz() N+ hEx (@) Nxzt)+Ex{t) Ayxa(t) Ay+ -

so that é%=S(t)(I><N)+S(t)(N><I)+}»S(t)(BxB).

We get the desired result

S@)=expt{IxN+NxI+ABxB}.

5.3. Now let y(t) be the Gaussian process of independent increments and taking
as values kxk-matrices with mean values zero and covariances

Eyi; (8) Yup (£) =t bij up.

The norm of matrices will have to be introduced through an inner product; if
U ={u;} and V={v,} are two kxk matrices we will define

(U, V) = Z uij?)”, ” U”2= (U, U)

To be able to verify condition (1) of 5.1. we need in this case only study y (B)
when R is a rectangle in S,. But then

2 __ 1 2 1 2
Elly B =2 By yl, . o Yy e 90

where the sum is extended over all values between 1 and k of the ¢’s and §’s,
and where %{7 is the (i, j)-element of the matrix increment of y(t) over the vth
side of length A, of the rectangle R. Hence

Elly(R) =2 By ol By o3 . ByDe D0 =
=0k A A, ... A;)=0 (const” m (R)),

where b=max |by,.5|, so that our condition is satisfied and the corresponding
multiplicative process z({f) is well defined.
The infinitesimal covariances of the x(t) process are easily calculated as

1
lim 5 conditional Cov [y (1) = 2y (8); s (¢ +H) = 2ep ()] =
&0

P
= ;1 241 () Zaa () bij 28 = Qi ap ().
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The gij,.5(x) are quadratic forms in the z-components and the matrix ¢ can be
written as [x(¢)xx(t)] B. The Fokker-Planck equation is then

op 1 o

3t 3 2 By 07ep [¢11.25 (%) P]

to which appropriate initial values should be prescribed, let us say z(0)=
For the case of non-vanishing mean values

Ey;t)=tay;, A= {aii},
the above modifies to
op 1
T _2Zax o7g (7.8 (%) P] — Z poy [k () P]

with L={l;(x)} and L=x() 4, so that the I{’ are linear forms in the =;.
To find the expected values of the z-process a partial integration gives us

8 2
aExu' (t) =5 t)=EL;(z)
so that 3—1;1'—~t(t)=m(t)A, m () =exptA.

For the second order moments ci,.5(f) we get

0
Py (&) =E qij,ap (x) + El; (x) 20p + E 15 (2) 735

so that E%c(t)=c(t)B+c(t) [AxI+IxA]

and c(t)=expt{B+AxI+IxA}.

It will be convenient to drop the double subscripts and use variables denoted
&1, A=1,2, ... s, and a corresponding equation

D

.15 l0ae (6) 71— 3 o [ (€) 9]

,uaf af i E

We are sometimes interested in the behavior of the density p=p(§,t) for large
values of ¢, and especially we would like to get conditions ensuring that the
distribution contracts to a singular one (concentrated on some linear subspace
of R®), converges to a limit distribution or spreads out more and more thinly
over any finite part of R°. A criterion useful for this purpose is the quadratic
integral
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1®=[p& nds=]p|"
Rs

Knowledge of how I(f) behaves gives us some partial information on the overall
behavior of p.
But we have
aI(t)

1 byl -
3 g — PP =5@Qp p)—(Lp,p).

Here prime denotes differentiation with respect to time and @ and L are the
two differential operators on the right hand side of the Fokker-Planck equation.
Through partial integration

__~xop o -
(Qp: p) < aéﬁ a"&” (qup)ds
- op 9p ., 0P 0 ;. _p. 1 JZ@
qu‘“asxas,,“ zfpaeaas,‘dg* P+32 ) P58 05, %%
R Rs Rs

But any g¢i, is a quadratic form in the &s so that its second order derivatives
are constant. The quadratic differential operator P is non-negative. We also get

oh

5
dé,
3§zp d

- P gg-1
(Lp, p)= - Zflapa&d&_zzf
R Rs

where the first derivatives of I;(£) are constant. This implies that

oIt _[lg &g _ %] _
ot g[zza&agﬂ Zagl Ie)=o1

so that if 0 is negative then I(f) decreases to zero as ¢t tends to infinity. The
decrease is at least exponential. For any set S < R® of finite volume we then have

P (8)= fp(E, t)d5<(vol.SJ'p2(5, t)d{-‘)l/*—ﬂ)_
s S

so that the distribution tends to leave the finite part of the space.

The condition obtained is sufficient but not mecessary. To obtain sharper
conditions we would have to study the extremal properties of the operator P.

We know that the solution of the particular Fokker-Planck equation studied
in this section appears as a limit distribution in certain applications of practical
interest. It is therefore a task of considerable importance to find methods enabling
us to handle the solutions numerically. Straightforward numerical solution of the
equation is of course possible but not very practical because of the great number
of parameters appearing in the equation. Indeed we have s parameters for the
s(s+1)

2

infinitesimal mean values and parameters for the infinitesimal covariances.

In all we have
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s 81 L[, 3

N—s[2+2]—r [2 -I—2]
so that for 2x2 matrices N =14 and for the physically important 3 X3 matrices
N takes the formidable value of 54 parameters. This makes it almost necessary
to use an analytical approach, say of representing the solution in terms of tabu-

lated transcendental functions or by using series expansions or integral repre-
sentations.

5.4. For a given initial distribution of z(f) for t=0 the probability mass is.
spread out according to the Fokker-Planck equation as ¢ increases. Sometimes
the mass will be restricted for all ¢ to a proper subset of the entire space, some-
times it will fill out the whole space, and as we shall see the latter happens.
in the more general situations.

To fix ideas let us consider the two-dimensional problem so that we deal with
the distributions of vectors in the plane when stochastic 2x2 matrices M operate
on these vectors. First, if we assume that the mean values of M vanish, we
have Ax=z({t+h)—z ()~ Mz (t) for small values of » and the conditional dis-
tribution of Az € R? is described by the infinitesimal covariances

g (x) = Cov [(Mz (t));, (M (t));]

evaluated for a given z(t)=x. If the matrix @(z)={g;(®); ¢,j=1,2} is non-
singular at =z, diffusion takes place in all directions from the point z. If we
require that the probability mass should be restricted to a subset of R? the
matrix @ (x) must become singular for certain values of x, say in a set S. Since
M has four elements it can be represented as

M =,,21§” Av

where the A4, are fixed matrices, the &, are uncorrelated stochastic variables
with variance one and r<4. Then

¢y (@) =2 (4,2); (4,);

A3
AN~

so that for a.column vector z

=2 (4,x, 2).
y=1

If this quadratic form vanishes it means that no probability mass diffuses in
the direction of the vector z.

On the other hand § is the set where the determinant of @ vanishes

8= {z|det @ (z) =0}
and
(A,,x)l (A” zh 2

Z 1(Aoz)y (Auz) (Auz)s| _
(Avx)z (Aux)z

0=det Q= 5 A x)z (4,2), (A,2),(A,2),

y<p
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4,2), (A, ),

so that
(4,2)y (A,7),

=0 for all » and g,

which is a set of homogeneous equations of the second order in z; and z,. S can
be the isolated point =0, one or two straight lines or the entire plane.

Let us start with r=1. Then S=R® and the quadratic form vanishes if
(Ax,2z)=0. This means that diffusion can only take place in a direction parallell
to Az, which leads us to consider the differential equation

dz, (Az)
dr=Ax or —2= 2
dx, (Az)

which is dicussed in all elementary text books on differential equations. Its solu-
tions form a one-parameter family of curves C, which can consist of straight
lines, ellipses, spirals and various types of hyperbolas and parabolas. If the initial
distribution is concentrated to a C, the mass never leaves this curve but can
only diffuse along it. A case of extreme degeneracy occurs if A is singular and
if z is any vector annihilating 4, Az =0. Then if the initial distribution is con-
centrated to x it stays there indefinitely.

If r=2 we get for S
2

(4,2), (4p2),

d —
ot (4,2), (4,7),

which implies A,x=21A4,2. This is possible for a non trivial vector « only if
det (4, —14,)=0 so that only two values of 1 are possible. Excluding the case
A; =214, which corresponds to r=1, we se> that (4,—24,)z has solutions
x=ou where u € R® and « is an arbitrary scalar. We only have to investigate
when such straight lines can be singular in the manner intended. If only diffu-
sion in the directiorr » at a point =g, should be possible we must have

0= (4,2, n)?+ (4,2, n)?=o? (4, u, n)2 + o® (A, u, n)?,
where 7 is a vector perpendicular to %, so that

Aju=pu
Ayu=pyu

This means that 4, and 4, should have one or two right eigen vectors in com-
mon, and we thus get one or two singular straight lines.

It is now easy to see that for r=3 or 4 we get similar answers. Singular
lines occur only if the 4, matrices have eigenvectors in common; otherwise the
probability mass will fill out the entire plane.

Suppose that E<R? is a region whose finite part is bounded by singular
curves and that the initial distribution assigns the probability one to E. Then
no mass will ever leave E, P,(E)=1. The boundary can have many different
shapes as we have seen, but let us assume for concreteness that it consists of
two semi-infinite rays L, and L, extending from the origin. The other possi-
bilities are dealt with almost immediately. To prove the statement it is covenient
to introduce polar coordinates, o and 6. We get
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= (M (cos 0, sin 0); (—sin 6, cos 0))
Ap=p (M (cos 0, sin 8); (cos 0, sin §))

and the infinitesimal covariances K,;(0, o) can be vritten
K1, (0, 0) =k, (6)
K, (0, 0)=0k,(0)
K (0,0)= 02 ks (0)

where k; (), t=1, 2,3, are second order trigonometric polynomials. The Fokker-
Planck equation becomes

2

k, LT
5050 [o ()p]+2692[9 3 (0) pl.

p(6,0;t)= 2Uc @) pl+ 75—

230

The singular rays L, and L, correspond to two angles 6; and 6, which are roots
to the equation .k; (9)=0, ¢=1, 2. Introducing

0, o
P,(B)= [ [op(6.0;0)d0dp
6, 0
we get after a few reductions

apt(E)—

as stated. Here we have made use of the fact that k, (6) has second order zeroes
as 6, and §, and k,(0) has first order zeroes.

The discussion of the present section can be carried out with simple modi-
fications also when the mean value of M does not vanish. Actually this tends
to make the existence of singular lines more scarce.

5.5. In certain applications that will be discussed in a later part of this pub-
lication one is interested especially in the distribution of angles, say in 0. In
this case the mean values play a part that we do not want to neglect and
therefore we introduce

1 (0, 0) =k (0) :

Iy (0, 0)=0k;(0)

where k,(6) and %;(0) are trigonometric polynomials of the first order. If we
write down the Fokker-Planck eguation in p and § with the above coefficients
and integrate pp by parts over the range of p we get

op(0;t) 1 &
O Lt 0) sl — oo lhe () ).

Another simpler way of obtaining this equation is to note that 6(t) is also a
Markow process, since Ax= M« is a homogeneous function, and then 0 () must
satisfy the appropriate Fokker-Planck equation in 6 only.
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To avoid the exstence of singular lines let us assume that the coefficient k, (f)
is positive. We have a simple version of the Sturm-Liouville problem before us
and we know that p(6;¢) converges to some function, say p(f), when ¢ tends
to infinity. We have

(e

0
26 (ky p) — kyp = constant =a

with the solutions
Lfc(v)

1 J"L eka(u)du
Tt X

= 0 Y

p(0) 5 0) b+2a!e e R

where the constants ¢ and & should be determined so that p(6) is periodic and
so that p(f) is a frequency function. This is possible since p(0)=b/k, (0) and

p(2m)= 1( )[b+2a I]eh

where

27 k‘(v)
"'2.[ T P
I, = 0 du>0

0

_ q (%
12—26[ , (%)du.

To get p(0)=p(2x) we should have
b=(b+2al,)e"

1—-e"
so that -
& 21, e"

Choosing b positive this determines a so that p(6)>0 for all 0 since

b+2az,=gb,:>0.

2n
We can now determine b so that f p@)do=1.

0

It is interesting to study the behavior of 6 (t) for large values of ¢. Starting
with a given value 6, for {=0 the angle changes continuously and we will no
longer identify values of f that are congruent mod 2z. For a given ¢ the value
of 0 is the total number of rotations around the origin of the z-process. We
still have the same form of the Fokker-Planck-equation but now we let § take
all real values. We have

o0

+
—EG fpl 8, 1) k, (9) 46,
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where p, is the frequency function of 6 on (— oo, c0). But since k,(0) is periodic

27 this is the same as
2n

%Ee(t)= fp(e, t) ky (6) 40,

]

and as ¢ tends to infinity we get

o
lim — Eﬂ(t)— fp(ﬂ) k,(0)d0= —2ma.
t—»w F
This means that lim ﬂt—)= —2na

T->00
We now need a bound for the variance V () of 6(t). Since
Vit+At)=V (t)+ Var (AG)+Cov (6, AG)

and since the infinitesimal variances and means of the 0-process are bounded we

see that is bounded. Hence

At

lim Va re()—l ~—(t—)~—0

t2
t—>00 t—>o0

which shows that the stochastic variables 6(t)/t tends to the limit —2ma in
the mean as time increases indefinitely. This is related to a result of S. Lloyd
concerning another angular process.

5.6. For a more detailed study of the particular Fokker-Planck-equation studied
it is convenient to change variables and we will discuss this briefly for s=2.
Starting from the equation in polar coordinates (g, 6)

Q@
S
[

o
52l O P14 5o

2
=5 aoa [k, (0) P1+ 5 392[92’03(0)10]

we note the homogeneous way in which the variable o appears. It is obvious
that the coefficier.ts will become simpler in terms of the coordinates (u,0),
w=log p. Indeed, we then get

op 1 ¢ o 10
ot 2602[k (o)p]+603 [kz(e)p]'i'"z'auz[ka(e)p]-

Let us now introduce v=wv(u,0) so that the term with the mixed derivative
vanishes. Since dv=v,du+v,d0 we get

Edvd0=[vyk,(0)+vsky(0)]dt=0.
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This first order partial differential equation has the solution
k()
V=Y — 2004
(f ks (p) 4

and the new coordinate v is a one-valued function of # and 6; to see this it is
enough to note that

()
2 \P
dp=0
f k()7
0

gince kyptm)= —ky(p) and ky(p+a)=1ky(p).
. k, (6) ["72 (0)]2 2
S E@dv)’=Edu?-2-2"Fdbdu+|-2-| EdO
nce (dv) (du) , (0) “ 5 0) (40)

ky (0) Ky (0) — K3 (6) D ()

= dt= dt
ks (0) ks ()

the new equation becomes

op_1D@O)&p 10

3t " 24y (0) 202 2 202 KO P

Finally we can make the coefficient of the last term constant by introducing a
new angle ¢ by

and get — =

which is of a fairly simple form.
In a special case the solutions can be expressed as integrals. of Mathieu func-
tions but otherwise the author does not know of any way of representing the

solutions in terms of standard transcendental functions. Of course when the
2

. . *p . . .
coefficient of 5_71,—1; is constant the solutions will be composed of normal frequency

functions.

Tryckt den 5 augusti 1960

Uppsala 1960. Almqvist & Wiksells Boktryckeri AB
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