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On the asymptotic distribution of eigenvalues

By Eric LarssonN

Introduction

Let Q be the union of a finite number of open, bounded and connected subsets
of R", A the n-dimensional Laplace operator and p a real-valued function defined
in Q. Consider the eigenvalue problems

Af+2of=0

with f or its normal derivative vanishing at the boundary. It has been shown
by Courant ([1] p. 321) that, when g is a bounded Riemann integrable func-
tion and Q satisfies a regularity condition, the asymptotic distribution of the
eigenvalues is given by

N@AY~ (27) " w, A™* Lg"’z, 1)

where N(1) stands for the number of eigenvalues smaller than A, and w, is the
volume of the n-dimensional unit sphere. The object of this note is to show
that (1) holds also when ¢ has a finite number of singular points y in Q. More
precisely, we assume that ¢ is O(|z—y|™2%) in a neighbourhood of y, where
0<pf<1 when n>2, and 0<f<1/2 when n=1. The method adopted can also
be used to treat cases when ¢ becomes singular on manifolds of dimension < x.

Preliminaries

We shall use the notations

G0~ 7 U= 1los=([ 1P) ",

(Vf: Vg)O = fon%$ IV,fl2 = (Vf’ Vf)O;

where O is an open subset of R", the integrals are taken with ordinary Lebesgué
measure and Vf is the gradient of f, taken in the weak (distributional) sense.
Whenever it is convenient we shall leave out the index O.
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E. LARSSON, On the asymptotic distribution of eigenvalues
Define Fy(0)=(f; [ V] +]f] < =)

and let Fy(0O) be the closure in F,(0) of all continuously differentiable functions
with compact support in O. The elements of Fy(0O) vanish at the boundary of
O at least in a weak sense. With the scalar product (f,g)+ (Vf, Vg) both F,(0)
and F(0) are Hilbert spaces.

An open set O is said to be permitted, if it consists of a finite number of
bounded and connected subsets,

the form (f,g) is compact (i.e. completely continuous) in F,(0) (2)
and |f| is majorized by a constant times |Vf|+|f|, (3)

where 0<¢<2n/(n—2) when n>2, and 0<gq when n =1, 2. These two properties
hold if the boundary of O is sufficiently smooth (see [2] p. 471 and [3] respec-
tively). In particular, they hold when O is the sum of a finite number of rec-
tangles.

A function p>0 is said to be permitted in O if

f 0>0 for every component O’ of O 4)
o

and f Q'"/2< oo, (5)
o
where m =n when n>2, and m is some number > 2 when n=1,2. Let us put

(of, 9) = (of . 9)o = LQ}‘@

Theorem 1. If ¢ is a permitted function in a permitted set O, then
the form (of,q) is compact in F,(0) (6)
and (ef h+|VIP~ P +|VI[® in Fy(0), (7)
t.e. either side is majorized by a constant times the other for all f in Fy(O).
Proof. By Hoélder’s inequality, (3) and (5),
(of, N < lelme | B min—2 < Clelme (| +|VIP), (8)

where C is a constant. Hence (gf, f) is bounded in F,(0). Put g;(x) = min (4, g(x)).
It follows from (2) that (p;f,f) is compact in F,(0), and (8) applied to p— g2
shows that ((o—gi)f,f) tends to zero as A— oo, uniformly on bounded sets in
F,(0). From this (6) follows. :

At the same time (8) proves that, with a suitable constant C,
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(f, h+IVIF<O(fF+|VI) in Fy(0).

To prove the reverse inequality, it suffices to show that there is no sequence
{(f)7° such that

IV/P+IHF=1 and |V} +(ofs f) 0.

It is no restriction to assume that the sequence is weakly convergent to an
element f in F,(0). Now

217" and (of,, f)~>(of. )

since the forms are compact. In particular (of,f)=0, |Vf;/—0 and [f|=1. We
also have

(VI VA + (D~ | VP[P

since the sequence is weakly convergent. Here

| (Vi VHI<|VH] |V

tends to zero and (f;,f) tends to |f[>. Consequently

|fl=1 and |V/[+(of, H=0.

But by (4), the last relation implies that f=0, which is a contradiction. The
proof is complete.
When ¢ is permitted in a permitted set O, we can use

(£, 9) = (Vf, Vg) + (ef. 9)

as a scalar product in F(0)=F,(0) or F,(0). Then, there is a compact, self-
adjoint and linear transformation G defined in F(0) such that

(of, 9) = (61, 9))
for all f and ¢ in F(O).
From a theorem of Hilbert we have that

(a) F(O) has an orthonormal basis, consisting of eigenfunctions of G;

(b) every eigenvalue y of G is positive and every u =+ 0 has finite multiplicity;
the eigenvalues are enumerable and 0 is the only possible limit point.

If Gp=up, it follows that
(e: 9) = u(Vp, Vg) + uleg, 9) when g€F(0),
and from this by Green’s formula that
Ag +lop =0 9)
with A=Q1-p/u, (10)
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E. LARSSON, On the asymptotic distribution of eigenvalues

where A is the Laplace operator, taken in the weak sense. Further, if F(0)=
F(O), it follows that the normal derivative of ¢ vanishes at the boundary and,
if F(O)=Fy0), that ¢ itself vanishes at the boundary. We shall in the following
always interpret (9) in terms of the operator @, and A and u shall be connected
by (10).

Our aim is to prove the asymptotic formula (1), using the well-known Weyl-
Courant principle.

Weyl-Courant’s principle

Let Q be a permitted set and o a permitted function in Q, and let (Q;)jZ
be a division of Q into permitted open subsets (their closures cover the closure
of Q). It is clear that ¢ is permitted in €; unless (4) fails to hold in ;. Let
(Q;)j-0 be the sets for which this does not happen, and let the function ¢>0
satisfy (5) in Q. Put

H-3 0 F(Q),

j

where F(Q,)=F,(Q;) or F,(Q,), and introduce the notations

= 3 (1) (V1. V)= 2V, Vha,

i=0

8

Z Jf, g)ﬂ,'

=0

Qf’ __?:') @f’ g)Q]-: Gf’

j
As a scalar product in the Hilbert space H we use
((£,9)) = (Vf, Vg) + (ef, 9) + (o}, 9)-

It is clear that (gf, /) <((f,f)) is compact in H, and hence

(of. 9)=((Gf,9)), (f,Gf,g€H)

defines a compact, self-adjoint and linear transformation G from H to H such
that 1>G'>0. An eigenfunction ¢ of G with the eigenvalue

u=(1+a)7"
satisfies Ap+(lo—0o)p=0

in every Q;, and its normal derivative vanishes at the boundary if F(Q,)=F,(Q;).
Otherwise @ € Fo(Q);) vanishes itself at the boundary. If f=0 except in one Q,
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Gf has the same property. Hence @ is the direct sum of its restrictions G; to
Q;,0<j<s. By the spectral theorem, F(Q,) has an orthonormal basis consisting
of eigenfunctions of G;, 0<j<s, and since these are also eigenfunctions of ¢ and
constitute an orthonormal basis of H, we have, prowded every eigenvalue is counted
with its multiplicity.

Theorem 2. The eigenvalues of G are the union of the eigenvalues of the G;.

Now let (¢;)° be a complete orthonormal set of eigenfunctions of G and
(41" the corresponding eigenvalues, ordered so that w,;>p,>.... Then, if

;= (1 +2’i)_1’
we have A, <A, <.... Let

NA)=N(4,0,0,H)= z 1
be the number of eigenvalues below 2. We have

Theorem‘?). N (A, 0,0, H) is a non-decreasing functibn of ¢ and H and a non-
tncreasing function of o.

Proof. 1t suffices to prove that A;(0, 0, H) has the reverse properties. The
minimum-maximum principle gives

#s= 0, 0, H) = int sup (of, N/ ((F: D),

where L runs through all subspaces of H of codimension < §j. Since

M]=(1+A]_)—1
we get lJzz'j(Q’ g, H)=S‘I1‘P }?—E (lVflz_I—(Gf: f))/(@f: f)

Hence, it is clear that 1; is a non-increasing function of ¢ and a non-decreasing
function of ¢. Next, let H > H be of the same type as H. Since cod L<jin
H, there is a subspace M’ < H’ of dimension <j such that f€H and f 1 M’
implies f€L. Hence,

lj(@; o, H) =S}:rp “(M’)’

where a(M')=inf (|V{[?+ (of,))/(cf,f) When f€H and fL M'.
Replacing H by H’, we get a new function

o (M) <a(M').
Since sup o (M')= (0, 0, H'),
py
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E. LARSSON, On the asymptotic distribution of eigenvalues
A;(0, 0, H) = A;(0, 0, H').
This completes the proof.
We conclude this scction by proving two lemmas, which will be used later.
Lemma 1. If 9>1 is a permitted function in a permitted set O, then

N2, 0,0, F,(0))<SN((L+v) A+v, 0,0, F1(0)),

where v=_

Glm/2
with C depending only on m and O.
Proof. By Holder’s inequality, (3) and (5),

(0f, H<Calme (VI + P

Hence, since 9o>1 in O,
(IVF| -+ (af, D)/ (of H< (1 +0) |VI[/(ef. f) +o.
Consequently, with L running through all subspaces of F,(0) of codimension < 7,
3¢, o, F1(0)) =sup inf (| W[+ (of. )/ (e}, )

< SlLIP[inf (L+2) [V/[/(ef, ) +v) = (1 +2) 4;(0, 0, F1(0)) +o.
Thus, 4,(g, 0, F,(0)) < A implies ,(o, ¢, F;(0)) < (1 +v) A+ v and the lemma follows.

Lemma 2. If Gp=pup and u=(1-+2) *, then the support of @ cannot be contained
in the set where Ag—o<0.

Proof. Go=pp gives (op, @) =ul(p, ¢)), ie.
Vo [* = (2o = o) 9, ),

and hence we have the lemma.

The asymptotic formula

The case, where  is a n-dimensional rectangle, p a constant and H =Fy(Q)
or F,(Q), is classical. Since (V/, Vg) is invariant under translations and orthogo-
nal transformations, we can assume that

Q=(x;0<x,<ay 1<k<n)
Then the eigenfunctions are
I1 sin mlyz,a,?, if H=F,(Q),
i=1
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n

and IT cos mlyz;a; Y, if H=F;(Q),

i=1

where 7,=1,2,3, ... in the first and 0,1,2,3,... in the second case. Thus, the
eigenvalues are

i 9_11_21 /a)?
which gives N(4,0,0,H)= (znynwnf (A0)"% + 01y,
Q ,

where w, is the volume of the n-dimensional unit sphere, (w, =2). This estimate
will be used later. We shall also need

Lemma 3. If a;<a and a;<b when l+1, then
N, 0,0, F1(Q)) <2" 711 + 5" 1 (Ap)" V) (1 +a(dp)?).

Proof. The number of non-negative integral solutions of

M=

(L/a)t < 2?0l

Il

j=1

3

is majorized by (1 +7 " a;(0A)?)
j=1

so that the lemma follows.
Now, to simplify the notations, write

N(g, 0, H)=lim sup A "> N(4, 0,0, H), (A—>o0),
N(o,0,H)=lim inf 2" "2 N(4,0,0,H), (1—c0)

and N(p,0, H)=N =N when the limits are equal. Also, put

M(p, Q) =(27z)_"w,,f o™,
, o
When - Q=)

is a sum of rectangles, and ¢ and § are constants in these rectangles such that
0<p and 0<g=>p, Theorem 2 and Theorem 3 give

2'N(, 0 0, Fy(Q;))<SN(@2,0,0, Fy(Q))<N(4,0,0, F (Q)) < 2N(@4,8,0, F,(Q)),
where 2’ denotes that we only sum over such § that p>0 in Q,;. Hence,
M(_g, Q)< N(o,0, Fy(Q)) <N(o, 0, F,(Q)) < M(g, Q).
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E. LARSSON, On the asymptotic distribution of eigenvalues

If o is bounded and Jordan measurable, the first and the last term can be made
arbitrarily close by choosing a fine subdivision of ), and hence

N(g, 0, F)=M(p, 2), (11)
where F=FyQ) or F (Q).

This is the asymptotic formula in this very regular case. We shall see that
the same formula holds also when p has moderate singularities, more precisely, if
(@) Q is a finite sum of rectangles,
() 620, fq0>0 and p is bounded except for a finite number of singular
points y in Q, where
o(@)=0(|z—y[™*") (12)
with 0<f<1 when n>2, and 0<f <} when n=1,
and
(c) o is Jordan measurable.
For convenience, the norm |z| is defined as max,|z;. We have made the
first assumption, since we are interested only in the singularities of the function

¢ and not in the complications that arise from the boundary. For generaliza-

tion to more general regions we refer to [1]. The third condition implies that

o"? is Riemann integrable.

Now, let Q, be such a sum of rectangular neighbourhoods of the y that Q— €,
is also a sum of rectangles. Then we have by Theorem 2 and Theorem 3

‘ZV(}\': Q; O: FO(Q - QO)) <N(A> Q: 0, FO(Q)) <N(l: Q’ O: Fl (Q)) <N(ly 93 0; FI(QO))

+N(Z" Q: 01 FI(Q—’QO))
and hence

Mo, 2~Q0) < N(p, 0, Fo(Q)) < N(g, 0, Fy () < N, 0, F1(Qo)) + M(@, @~ Ly)-
Here we see that in order that
N(o, 0, F(Q))=M(e, Q)
with F'=F, or F,, it is sufficient to prove that
N(0,0, F,(Q))—>0
as the diameter of Q, tends to zero. Hence, if

D, stands for the cube |z| <t
we have, putting
E(x) = ||,
that it suffices to show that
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N, 0, F,(D,))>0 when r—0. (13)
Consider N()=N(@, &0, F, (D)),
where D=D,, When £>1 in D and o> 0 satisfies (5), we have according to
Lemma 1
N, E0,F(D)<N((1+v)A+v, & 0, F (D)),
where v="C|0|m2
with C depending on m and D and hence on r.
We put o(z) =|=z| 2#+®
(B<pte<l when n=>2, B<f+e<} when n=1)
inside a cube D’ with its centre at the origin and
o(x)=0
outside, and choose D’ so small that v<<1. Then
N4, &0, F, (D)< N, ¢ 0, F (D)),
where ’=24+1. Consider D,=D. By Theorem 2 and Theorem 3
N@R, &0, Fi(D)SN@A,E0,F,(D—D)+ N, & a, Fy (D). (14)
Now determine s=s(4) so that D,< D’ and
AE—06<0in D,
This is possible, if e.g. A=2i+1=5% (15)
and A is sufficiently large.
Then, by Lemma 2, the second term on the right side of (14) vanishes, and
we get
N@A)<SN@A, &0, F,(D—D,).

Now it is easy to estimate the right side.
We choose p numbers such that

rT=7q>7r;> ... 1,=38.

A more precise choise will be made later. Put D,=D,. Then by Theorem 2

and Theorem 3,
p-1 _
N(ﬂ-)< Z N(ll:f, 0, Fl(Dj_DH—l))- ,(16)

=0
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E. LARSSON, On the asymptotic distribution of eigenvalues
Now D;—Dy., is obviously a sum of a fixed number of rectangular regions of

diameter < r,, having one side equal to (r,—7.;). Further, £<r;2fin D,— D,,,.
Hence, by (15), (16), Lemma 3 and Theorem 3, there is a constant C such that

p-1
NASCZ 1+ Ly fo D A0 DR (1 + 17l (1)~ 1y41) AY)
150

and hence

p-1
KRNSO S () D407 L0 () A=),
)
By virtue of (15) we may write
p-1
APEN@QYSC Y (sm P+ T e V) (st + b= 1)
P )

provided we increase the constant.
We now choose the numbers 7, so that

2<r,/ra<4 forallj. (17)
It is easy to see that this is always possible if s<r/2. Then we have
s=r,<27%r
and hence 8 p—>0 as s—>0. (18)

Further, (17) gives, with still another O,
ATMENQA) < 0‘:_2: (s Ve 4y DAPy (&t g B — 1y ).
Since 1— >0, we obtain the following majorant for the right side
O(S(n—l)e+r(n—l)(l—ﬂ)) (s’p+ f't—ﬂ dt),
and hence by (18) ’

lim sup A™*2 N(A) < C’r("_l)“_ﬂ’f tPdt = O™t P),
0

which tends to zero with r and the proof is finished.

Remark. Using the Weyl-Courant principle and the fact that £ is homogeneous
of order —28, it is easy to see that

. 1}(5’ 0! FI(DT)) = 1,2(/3—1) j'1(5) 0: Fl (Dl))'
This gives :
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N(Aw 53 07 Fl (Dr)) = N(7.2(1——ﬁ) }b, E: 0’ Fl (Dl))'
Hence (13) is a consequence of
N(éa 09 FI(DI)) < ©o,

and this follows if we put r=1 in the proof above.
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