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Extension of functions satisfying Lipschitz conditions

By GuNNAR ARONSSON

Introduction

Let F be a compact set in BEuclidean n-space E". Suppose that the function ¢(P)
is defined on F and that it satisfies a Lipschitz condition.! It is known that ¢ can be
extended to R" in such a way that the new function f satisfies the same Lipschitz
condition. An explicit construction was given in [1], where even more general situa-
tions were treated. It is easy to give upper and lower bounds for the solutions. We
shall do this, and also discuss questions of uniqueness. It turns out that all solutions
agree on a set, £ which has a very simple structure (Theorem 2).

In analogy with the treatment in [2] and [3], we shall consider a subclass of solu-
tions (called absolute minimals) which have the additional property of being solu-
tions of a corresponding problem on each subregion of R”— F. The partial differential
equation D7 ;_q, du da; briz; =0 is derived in a purely formal manner and it turns out
that a smooth function satisfies this equation if and only if it is an absolute minimal
(Theorem 8). We shall also give an existence proof for absolute minimals.

In a later paper, the two-dimensional case, and in particular the differential equa-
tion ¢3 ¢, +2 ¢, b, bry +b5 b, =0, will be studied more closely.

Notations and conventions

(24, x4y ..., 2,) are Cartesian coordinates in R".

As a rule, the points will be called 4, B, C, ... .

{2y, Xs, ..., 2,) Will sometimes be written as z.

PQ =the Euclidean distance = (371 (x,(P) —x;(Q))2)V2.
6{(); is the vector with components z,(@,) —z;(Q,).

If the function ¢ is defined on the set E, then

|9(Py) — g(Py)]
E)= A A
ulg, ) N oy o>

P1#+Py

The function ¢ to be extended is given on the compact set F. We write 4 =pu(p, F') and
assume 0<jA<oco. 0G'=the boundary of G; G=GU0G; CG=R"—G. Only real
quantities will be considered.

A solution of the extension problem is an extension f of ¢ to some specified set F'; > F
such that u{f, F)=2. First, we take F,=R".

1 Le. a Hoélder condition with the exponent = 1.
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G. ARONSSON, Functions satisfying Lipschitz conditions

1. The upper and lower functions

Consider now the extension problem which was proposed above. We have
A=ul(p, F)>0. Assume that f(P) is a solution of the problem. This means that

P@) —APQ <f{(P)<¢p(Q)+4iPQ
for all Q€ F and P € R", and consequently

sup (p(@)— APQ)<f(P)< inf (p(Q)+ APQ).

QeF

It is casy to verify that the functions

uw(P) = sup (p(Q) — APQ) (1)
and o(P) ~ inf ((Q) +1PQ) @)

agree with ¢ on F and satisfy Lipschitz conditions with the constant 4 in R". Hence
they are solutions of the extension problem. This method of extension was proposed
in [1] and [4] (footnote on p. 63).

We have thus

Theorem 1. Tke functions u and v, defined by (1) and (2), are solutions of the exten-
ston problem and an arbitrary solution f satisfies the inequalities u <f<wv (tn R").

We call 4 and v the lower and upper functions, respectively. The following asser-
tions follow easily from the fact that « and v are the extreme solutions of the exten-
sion problem.

Corollary. If G is a bounded region such that G and F have no points in common, then
u(P) = sup (u(R)— APR) for all P€G,

RegG

v(P)= inf (v(R)+APR) for all P€G.

RegG

2. Questions of uniqueness

1t is clear from Theorem 1 that all solutions of the extension problem agree at a
point P ¢ F if and only if «(P)=v»(P). In this case there exist @, and @, € F such that

@(@) +2 PQ; — p(Qy) — A FQ,, ie.
MPQ,+PQ,) = (@) - (@) <2 Q,Q, < APQ, + PQ,).

It follows that o
PO, +PQ, = 0,Q,

and Q@) — (@) =4 Q_I—Q2
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= A - =
]
Fig. 1

It is seen from the first relation that P, @, and @, are situated on a straight line, with
P between @, and @,. o
Conversely, if @, and @, are points in F such that |p(Q,) —¢(@s)] =2 @,Qs, then it is
clear that all solutions agree on the straight segment @,@, (which we call a critical
segment). 1t is also clear that the solution on @,@, is a linear function of arc length.
We introduce the notation B = {P|P ¢ F, u(P)=v(P)}, i.e. E is the set of uniqueness.
Consider a point P€ E and let [ be a critical segment through P. Let f be an arbitrary
solution of the extension problem. We assert that f is differentiable at P and that
grad f(P)=41 e, where e is a unit vector along { in the direction of increasing f.
In order to verify this we consider a point  in some neighbourhood of P, and its
projection B on [. See Fig. 1.
We have

C) =2V + & < f(Q) <{(A)+ AV + &,
HO) = dr = [(B) = f(A) + Ar.

Hence |{(Q)—f(B)| <A(Vr*+6*—r). If Q is restricted to a suitable neighbourhood
of P, then r can be chosen independently of @ and we get

@)~ 1(B)] <zr(1/T(f)2 _ 1) o,

The rest of the proof follows easily, since f is linear on [.

It follows from this that the vector e is uniquely determined by P € E, and if there
are several critical segments through P, then they all constitute parts of one and the
same line through P. Finally, since e =e(P) is unique, it is easily proved (indirectly, by
a selection argument) that e (P) is a continuous function on E. ’

The above considerations are summarized in the following theorem:

Theorem 2. The set of uniqueness E is determined by ¢ and F in the following way:
Let L be the collection of straight segments between points Q,, Q,€ F for which
| 9(Q1) —9(Qs) | =2 @,Q,. Let L be the point set covered by L.

The

n

E=LNOCF.

There exists a continuous vector function e (P), defined on E, with the following property:
of PEE and Q,, Q, are the endpoints of any critical segment passing through P, then

.0,

e(P) =sign (p(Qy) — (@) @0,
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G. ARONSSON, Functions satisfying Lipschitz conditions

Finally, every solution f of the extension problem is differentiable on E and satisfies the
relation
grad f(P) = 1-e (P).

It can oceur that ¥ is empty, as can be seen from the example in the end of the next
section.

So far, we have considered the problem to extend ¢ from an arbitrary compact set F
to the whole space R*. However, one can consider each component @ of B"— F sepa-
rately, and it is then sufficient to know @ on 6G. In the rest of this paper, we shall
assume that @ is given on the boundary 8D of a bounded region D and discuss the extension
(¢nterpolation) of ¢ into D. The results derived so far hold in this case with obvious
modifications. (We have

P)—
ey P —o@]

P,QedD P@
PxQ
u(P)= Sup (@(@)) —APQ), v(P)= Qier})fD (@(@) +APQ)

and the set of uniqueness =L D.)
The following theorem is a consequence of Theorem 2:

Theorem 3. Suppose that the solution is unique in D (i.e. E=D and w=v in D).
Then w€CYD) and |grad u| =2 in D.
This theorem should be compared with the corollary of Theorem 9 in [2].

Lemma 1. Let Q be an arbitrary region in R". Assume that ¢ € C{2) and that
|grad ¢| =M in Q, where M is a constant >0.

Then each point of Q belongs to one and only one trajectory of the vector field grad ¢.
Every such trajectory is a straight line, and it can be continued up to the boundary 0€).

(The trajectories coincide with the characteristics of the differential equation
(grad ¢)2=M2. By a trajectory we mean a smooth curve, such that its tangent is
always parallel to grad ¢.)

Proof. The differential equation (grad ¢)2 =M? is treated by means of characteristic
theory in [5], p. 40, and [6], p. 88. However, the following simple argument leads
directly to the desired result: Consider a point P €Q). According to Peano’s existence
theorem, there is a trajectory y through P. Let @, R be two points on y, such that the
segment QR<Q), and let ¢(Q) <$(R). Then

f grad ¢-ds=f grad ¢ -ds =M - L(yqz),
QR YQR
where L(ygr) = the length of the arc ygz. But
f grad ¢-ds<M - QR.
QR

Hence L(yor) <QR, i.e. yop is a straight line, and the rest of the proof is obvious.
Observe that existence of second-order derivatives is not needed in the proof.
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Theorem 4. (I) If one of the upper and lower functions belongs to CX( D), then they are
identical, w=v, and E=D.

(IT1) In each case below, f is assumed to be a function in CY(D) N C(D) with the proper
boundary values:

A. If |grad f| is constant in D, then f is a solution of the extension problem (but not
necessarily the only one)

B. If |grad f| =4 in D, then E=D and u_v—f

C. If |grad f| is constant in D, and D is a convex region, then E =D and u=v=f.

Proof. (I) Suppose that v € CY(D). It is evident that |grad »| =4 in D, and it follows
from Lemma 1 that the solution is unique in D. (Clearly, the trajectories of grad » are
critical segments.)

(ILA) The relation
w(f, D)=max (u(f, oD), ggg Igrad f(P)I) *)

is easy to verify, and the assertion follows from this and Lemma 1.

The reasoning is similar in the other cases. This theorem will be illustrated in
Example 3 below.

The assertion IIB, in combination with Theorem 3, leads to

Theorem 5. Let f be an admissible function. Then | is the only solution of the extension
problem if and only if f€CYD) and |grad f| =4 in D.

Examples. (1) Let D be an arbitrary bounded region in R"™ and let the boundary
function be given by p =4, +>".; A,x, (4, =constants). Itis clear that A= (2,1 42)%,
and it follows from IIB in Theorem 4 that there is a unigue solution, namely
f@yy e ,) = Ay + D01 Az, The critical segments are precisely those which have the
dlrectlon (Al, A,,... A )

(2) Choose @(Q) =P_WQ-, where P, is a fixed point not in D. Clearly, A=1, and the
critical segments are those Whlch are parts of “half-rays” emanating from P,.. The
solution is unique, namely f(P)=PP,.

(3) Consider the case n=2 and write X, =1, By =Y. Let Q be the region obtained
from the xy-plane by deleting the semi-axis y =0, z>0. Define the function f(z, y) as

o 3) Va2 +42, for y=>0
z,y) =
Vx—1)2+42—1, for y <O.

It is easy to verify that f€CY(€), and |grad f| =1. Thus Lemma 1 is applicable. See
Fig. 2, where the straight lines are the trajectories of grad f.

We shall now consider the extension problem on various domains D. In each case
we assume that D<Q and put ¢ =f on dD.

1. If D, is a region in the half-plane y >0, then it follows (as in the previous example)
that 1=1 and that f represents the unique solution. (Case II B in Theorem 4.)

2. Let D, be a convex region. Then the segment between any two points in D, lies
in Q and it is clear that A=1. Here, too, f represents the unique solution, and the
critical segments are the trajectories of grad f. (Case I1C.)
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G. ARONSSON, Functions satisfying Lipschitz conditions

Fig. 2

3. The function f is discontinuous across the positive z-axis and one can find a
region D, (as shown in Fig. 3) for which 1 =u(p,8.D;) > 1. It follows from Theorems 4
and 5 that f is a solution of the extension problem but not the only one. (Case 1L A.)
Clearly, E is empty in this case.

However, it is also clear that if g€CYD,;) and g=¢p—=f on 0D; then
supps |grad g| >1, unless g=f. (Compare Section 5.)

4. Consider again the case n=2 and let D be an open circle. Let A and B be two
diametrically opposite points on 8.D. Put ¢(4) =1, ¢(B) =0 and let ¢ be a linear func-
tion of arc length on each of the two semi-circles AB.

It is then easy to verify that E consists of the straight segment 4B, which is the
only critical segment.

3. The connection between the extension problem and the partial
differential equation

Lo o P _

1,51 0%; 0%; 0x;0x;

Consider, for a moment, a convex region D and a function ¢ ECY(D)NC(D). It is

evident that _
p($, D)= sup |grad $(P)|.
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Therefore, for such regions and such functions, our minimization problem (for
u(¢, D)) is equivalent to a minimization problem for the functional sup |grad 4|.
Because of this, some of the results of this section will have corresponding interpreta.-
tions for the latter problem. This will be treated more generally in the supplement.

It is natural to consider the functional H(¢)=sup, |grad ¢| as a “limit” of the
sequence of functionals

1
Iy(d) = (fn |grad ¢|2Nd:v)ﬁ; N=1,23,....

The Euler equation for the problem I ~(¢) =minimum is

1 n
d HPN-2 { . d d) 2. Ad+ Ii¢1‘7'¢1ilj} =0.
|grad ¢| 2(N~1) lgrad $*- Ag i,iz=1 ¢

Remove the first factor and let N tend to infinity: This leads to the new equation
1 3-1%z bz Pz =0, which is quasi-linear and parabolic. It is the object of this
section to study the connection between the basic extension problem and the above
differential equation.

We introduce the notation A()=>37;_1¢udsdusz. It is an easy matter to

verify that
A($) =} grad {(grad $)?} - grad ¢.

The meaning of the differential eugation A(¢$) =0 is therefore simply that |grad ¢| is
constant along every trajectory of the vector field grad ¢. Thus ¢ is a linear function of arc
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G. ARONSSON, Functions satisfying Lipschitz conditions

length on every such trajectory. It is also clear that every function ¢ € (%, for which
|grad 4| is constant, satisfies A(¢)=0. B

Now let D be a region with smooth boundary and let ¢ € C2 in a neighbourhood of D.
Assume that grad {(grad ¢)?} +0on D. Now |grad ¢| must take its maximum M (in
D) at some point P,€8.D and at such a point, grad {(grad ¢)?} is orthogonal to é.D. If
A($) =0, then it follows that grad ¢ is tangential to 2D at P, and then u(é, 8D)= M,
which means that' u(¢, D) =u(é, D). (Compare the relation (*) in the proof of
Theorem 4.)

However, if A(¢) =+ 0, then grad ¢ is not tangential to 9D and we may have

u(f, 9D) <p(t, D).
This suggests the next theorem.

Theorem 6. Assume that f€EC? in a neighbourhood of the point Py and that A(f):+0
at Py. If D is a sphere with center at P, and with sufficiently small radius, then
u(f, D)>u(f, oD).

Proof. The proof is almost clear from above. Let us complete it by means of a
variational technique.

Let D be a sphere with center at P, such that A(f)= 0 on D. Assume, for example,
that A(f)<0 on D. Put M =maxp |grad f| and E ={P|P€D, |grad f(P)|=M}.
Then E<éD. If PEE, then grad {(grad f)?}, evaluated at P, is parallel to the outer
normal n(P) of 8.D. It follows, since A(f) <0, that grad f-n <0 at all points of E.

Therefore, there exists a function g(x), of the form h(|x —zp,|), such that

(1) g(x) €C' in an open set containing D.

(2) g(z) =0 on éD.

(3) grad g(z)-grad f(z) <C <O on E.

Now it follows by a standard argument that maxp |grad (f+4g)| <maxp |grad f|
if the parameter 4 is positive and small enough. This technique is quite analogous to a
method used in approximation theory, compare [7], p. 14, Satz 17.

The reasoning which preceded Theorem 6, also indicated a result in the converse
direction. However, the following theorem is more general:

Theorem 7. Let D be an arbitrary bounded region and assume that f€C¥D)N C(D),
f=@ on oD and A(f)=01n D. Then u(f, D) =u(p, 0D), i.. f is a solution of the extension
problem.

Proof. Since u(f, Dy =max (u(p, dD), supp |grad f|), it is sufficient to prove that
sup, |grad f| <u(p, 0D). Choose a point Py€ D such that |grad f(Py)| —k,>0. The
functions 8f/0x, are in C, and hence there is a unique trajectory y through P,. Now y
cannot terminate inside D, because |grad f| =k, on y. However, { is a linear function
of arc length on y, and f is bounded. Therefore, y must have finite length S. Conse-
quently, y must approach 2D in both directions from P, and have two definite limit
points @ and R on 9D. It follows that ¢(R) —g(Q) = koS > ko QR. Hence u(p, D) >k,
and the rest of the proof is evident.

Remark. Suppose that g€ CY(D)NC(D) and g=¢ on 8D. Then it follows from the
proof that sup, [grad g| >supp |grad f|.
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The concept of absolutely minimizing funetions (absolute minimals, a.s. minimals),
was introduced in [2] for a class of minimization problems for functions of one
variable. It can be carried over to the present case in the following way: Let £ be
an arbitrary region in R". The function f is said to be an absolute minimal in Q if
u(f, D)=u(f, 9D)<oo for every bounded region D such that D<=€. We have then
the following theorem:

Theorem 8. If f € C*Q), then | is an absolute minimal in Q if and only if A(f) =0 in Q.

Proof. One half of the theorem follows from Theorem 6 and the other half follows
from Theorem 7 and the fact that f satisfies a Lipschitz condition on every compact
subset of Q.

Theorem 9. Let D be a bounded region, and let f € C2(D) N C(D). Assume that A(f) =0
m D and

n
f(xb Loy oeny xn)<A0+ ZA,,% onBD.
v=1
Then the same inequality holds in D.

Proof. If the propos1t10n were not true, then there Would be a subregion D, < D,
such that f(x)=L(x)=A4,+> A4,x,0on 8D,, and f(x)>L(x) in D;. Consider then the
extension problem on Dl, with p(x) =f(x) = L(z). It follows from Theorem 7 that fis
a solution and it follows from Example 1, Section 2, that L(z) is the only solution.
This gives a contradiction and the proof is complete. Naturally, the inequality sign
may be reversed in the theorem.

It is clear that the theorem remains valid for any function in C(D) which is abso-
lutely minimizing in D.

Example. Let Q be the region obtained from the xy-plane by deleting the negative
z-axis and let ¢ be an arbitrary continuous determination of arctg y/x in . The
trajectories of grad ¢ are then circles with center at the origin, and |grad ¢| is con-
stant on each such circle. Therefore, A(¢)=0. Let D be a bounded subdomain of Q
such that D=Q and consider the extension problem on D with the boundary function
¢. One solution is given by ¢ itself, according to Theorem 7. Since the trajectories of
grad ¢ are circles, it follows that the set of uniqueness ¥ is empty.

4. The existence of ahsolutely minimizing functions

The object of this section is to carry out an existence proof for a.s. minimals. The
first part of-the proof is analogous to.the corresponding part of the proof of Theorem
2.1 in [3] and it will therefore be brief.

Consider then a fized extension problem, on the region D with boundary values g.
Let f be a solution of this problem and consider the extension problem on a subregion
D’'< D, with boundary values f. Let ' and v’ be the lower and upper functions on D’.

Definition. f is said to have the property 4 in D,if f>u' on D', for every choice of
D'< D. Further, f has the property B on D, if f<v' on D', for every D'< D.
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Let G be the class of those solutions of the extension problem on D which have the
property 4 on D. G is not empty, since the upper function belongs to G.
We introduce the function

My, ..., 2,) = inf g(x,, ..., z,)
geG

and assert that it is an a.s. minimal. Evidently, b is a minimizing function (i.e. a solu-
tion of the extension problem). Further, & has the properties 4 and B in D. Since the
verification of this is analogous to the corresponding arguments in [3], it will be omit-
ted.

To complete the proof, consider a subregion D;< D and put m=u(h,dD,),
M =u(h, D,). Assume that M >m. Then there must be two points 4, B€D,, such
that the chord A B< D, and such that A(4) —k(B)>m-AB.11f S denotes arc length
on the chord A B, measured from B, there must be a point P where dh/ds exists and
dhjds>m. Choose a number M, such that m <M, <(dh/ds),.

Now at least one of these two statements is true:

{h(Q) <h(P)+ M, PQ for every Q€4D,,
Q) >hP)—M, PQ for every Q€2D,.

In the opposite case there would be @,, @, €0.D; such that
(@) > h(P)+ M, PQ;
and 1@y <h(P)- M, PQ,,

which gives h(@,) —h(Q,) > M,(PQ, + PQ,) >m @,Q,. This contradicts the definition
of m.

Suppose then, for example, that A(Q) <h(P)+M, PQ for every Q€0D,. Put (@)=
MP)y+M, PQ. Then y(P)=kP) and yp>h on oD,. Since (dh/ds),>M,, there is a
subregion D,< D, such that ¢ <k in D, and ¢ =~ on &D,. The function ¢ is the only
solution of the extension problem on D, with the boundary values y =%, as can be
seen from Example 2 in Section 2. But then the relation p<h contradicts the fact
that k has the property B. Hence the assumption M >m leads to a contradiction and
h is therefore absolutely minimizing on D.

Theorem 10. For a given ewtensién problem (D, ), there is a solution which is ab-
solutely minimizing in D.

5. Supplement

It should be mentioned that some of the preceding ideas can be carried over in a nat-
ural way to the following problem: minimize the functional H(¢) =suppep |grad ¢(P)|
over those functions which take on given values ¢ at @D and which are suffi-
ciently wellbehaved in D. It is convenient to consider only those functions ¢ which
satisfy a Lipschitz condition in some neighbourhood of every point P € D (the constant
in this condition may depend on ¢ and P). Such functions are differentiable a.e. in D,
and H(¢) is well-defined (see [8]).

1 Compare the relation (*) in the proof of Theorem 4.
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Now the following distance is defined for points in D: d(P, @) =inf,cr L(y), where I
is the class of polygonal arcs which connect P and @ and which lie in D. L(y)=the
length of y. (d(P, Q)=the distance, measured within D.) After excluding some
pathological types of regions, d(P, @) can be properly defined for P, Q€ D.

Now, the method of the upper and lower functions can be carried over if the
Euclidean distance PQ is replaced by d(P, Q) in the formulas. It turns out that there
is an admissible ¢ with H(¢) < oo if and only if ¢ satisfies on 8D a Lipschitz condition
with respect to the distance within D (i.e. d(P, @)), and in that case, the (best) constant
in this Lipschitz condition is equal to miny H(¢).

It is also easy to obtain this theorem: An admissible function f represents a unique
solution of the minimization problem if and only if f€CY(D) and |grad f| is constant
in D. (Compare the corollary of Theorem 9 in [2].) One half of the theorem follows
from Lemma 1, and the other half follows from Theorem 3, when applied to convex
subregions of D. (For convex regions, the functionals u(¢) and H(4) are identical).

Compare Example 3 in Section 2, the proof of Theorem 6 and the remark to
Theorem 7.
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