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Generalized hyperbolicity

By Eric LarssoN

Introduction

Let &= (2, %,,...%,) be coordinates in R* with the scalar product (v,2) = 7, 2,
and the norm |[x|. We define

1 1 1 % <
D=(Ti,7i, ...’.—i), =11 (l—i) and |a|= 3 o,
1 0x, 1t O, v Oxy, a0 \L 0%y k=1

where o =(0y, «,,...«,) is a multiindex with non-negative integer components. As in
Schwartz [1], let £(0) be the Fréchet space of all infinitely differentiable functions
on the open non-empty set O R" topologized by the semi-norms sup,.x | D*¢(2)]|,
where K is compact in O. A complex polynomial P is called hyperbolic with respect to
NeR" if P(D) has a fundamental solution, locally in the dual space £'(R"), with
support in a cone (x, N)>¢|x|, e>0. Let P,, be the principal part of P. Then, ac-
cording to Garding [1], P is hyperbolic with respect to N if and only if there is a
constant C such that P,(N)=0 and P(£+4i7N)=0 when £€ R” and 1< —C. We shall
here investigate hyperbolicity in other suitable distribution spaces.
For fixed d >1 we consider in &(0) the quasi-norms

|, Kla1= sup 1 || 1% | D*gp(a)]

reK

where I>0 and K is compact in O. Set
’ G(d,0) = {g; |@, K|4,1 <oo for every >0 and every compact K< 0}

topologized by the semi-norms |g, K|,,, (cf. Hérmander [1], p. 146). We observe
some simple properties of G(d, 0) and related spaces. For instance, G(d, 0) is a
Fréchet space and it contains non-vanishing functions with compact support exactly

when d>1. Let H be the half space (z, N)>0 and denote by Gy(d, H) the subspace
of all functions in G(d, R") supported by H. We prove that the mapping

P(D): Go(d, H)~ Gy(d, H)

is injective and has a continuous inverse if and only if there is a constant C such that
P,(N)+0 and P((44TN)==0 when £€R" and 7v< —C(1+ |&]"%). This is also the
precise condition for the existence of a fundamental solution of P(D), locally. in the
dual space @'(d, R™), with support in a cone (z, N) >¢|x|, ¢>0. We call such poly-
nomials d-hyperbolic with respect to N. When d = oo, we get formally the hyperbolic
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E. LARSSON, Generalized hyperbolicity

case and generally, the theory of d-hyperbolic polynomials parallels that of hyperbolic
polynomials. For instance, if P is d-hyperbolic with respect to IV, then P is also d-
hyperbolic with respect to every N’ in the open cone I' which is the largest connected
N-component of {&; P, (£)=+0}. The above fundamental solution of P(D) is supported
by the dual cone of I'. Further, if £€ R", then P, (£ +1N) has only real zeros T when
P is d-hyperbolic with respect to N. A special feature of d-hyperbolicity is that
P,(£+7N) has at most a s-fold zero 7 for & non-proportional to N if and only if
P, +@ is d-hyperbolic with respect to N for all Q of order <[ where 1/d +(m —1)/s=1.
The presentation mainly follows Hérmander [1] which we often refer to.

The generalized distribution spaces?!

We use the notations £(0), D* and |«| as in the introduction. For fixed d=>0
we consider in £(0) the quasi-norms

|, Klas = sup 1 || Dop(a)],
reK

where 1>0 and K is compact in 0. They are continuous from below, i.e.
g~ in EO0)=lim|p;, K|s,1> |p, K|a,1»
and they have a countable basis obtained by taking sequences [, 0 and K, /0.
Definition 1. Let G{d, O) be the space

{p;|@, K|q.1<oo for every I>0 and every compact K< O}

with the topology given by the quasi-norms |¢, K| ;. Let further
G(d, 0) =KLCJO Go(d, K)
be the inductive limit of all
Go(d, K) = {p; p€G(d, O), supp p< K},

where K is compact in O and Gy(d, K) is topologized by our quasi-norms |@, K|g,.
If O=R" we omit R" and write G(d) and G,(d) respectively.

Clearly, G(1, O) is the set of all entire analytic functions on C* and G(d,, O) <
G(dy, 0) if and only if d;<d, Thus Gy(d, O) only contains the null function for
d<1. When d>1, we have the following theorem.

Theorem 1. If d >1,there exist functions @ € Gy(d, O) with the support in an arbitrarily
given open set of O such that =0 and { p(z)dx=1. A(d,0) and Gy(d, O) are algebras
under pointwise multiplication.

Proof. The existence part of the theorem is a consequence of the Denjoy—Carleman
theorem. For a direct proof see Lemma 5.7.1, p. 146 in Hormander [1].
~ In the following we only consider d > 1. ,

1 Cf. for instance the spaces in Beurling [1], Gelfand-Shilov [1] and Roumieu [1]. Se also
Gevrey [1].
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We observe that G(d, 0) is a Fréchet space. In fact, the quasi-norms |g, K |, have
a countable basis and every Cauchy sequence {g,};2; in G(d,O) has & limit ¢ in
&(0) which belongs to G(d, O) since

@~ @, K 0,1 < lim |, — @i, Ka,1-

k—c0

The quasi-norms 2 ¢ lo Ky N0 Kjlass
i1

where {c;}/2; is an arbitrary sequence of positive numbers and K; 70, define the
topology of G,(d, 0).

G(d, O) and G,(d, O) have properties analogous to the spaces £(O) and D(0) in
Schwartz [1]. In this connection it is even natural to write E(O)=G (oo, O) and
D(0)=Gy(o0, 0). The dual spaces G'(d, O) and Gy(d, O) are considered under the
weak and strong topology. They are analogous to the Schwartz spaces &'(0) and
D'(0) respectively. For instance, G'(d, O) is the set of all elements in Gy(d, O) which
have compact support in O. Further, a sequence (p,);2; converges to 0 in Gy(d, O)
if and only if U, supp ¢, is contained in a fixed compact set K< O and ¢,~>0in
Gy(d, K). From the general theory of topological spaces we know that a linear form 7'
on (y(d, 0) is continuous precisely when 7' is continuous on Gy(d, K) for every compact
K in O. This implies that a linear form 7' on G,(d, O) is contained in Go(d, O) if and
only if T(p,)—>0 for every sequence (p,);2; which tends to 0 in Gy(d, 0). Another
consequence is

Theorem 2. A linear form T on Gy(d, O) belongs to Gy(d, O) if and only if to every
compact set K < O there are constants I and C >0 that such

| T(@)| <Clp, K|a,1 when p€Gy(d, K).

Mainly according to this theorem and Hahn-Banach, 7 € Gy(d, O) exactly when
T = 3.D*u, where u, are measures on O satistying (fz|du.|)""™ = O(|x|™%) for every
compact K < 0. )

Convolutions. To be able to work with convolutions we give some definitions and
theorems, well-known in the Schwartz case. We write

AXB={x",y; x€A4,y€ B}, where 4 and B are sets in R".

Definition 2. Let T€Gy(d) and ¢€G(d) with supp 7' N (K-supp ) compact for
every compact set K. We then define

(Tx*9) () =Ty (plx~-y) = T,(x¥)plx—y)),

where y €((y(d) and y=1 on a neighborhood of supp 7' n (z-supp @). 5
It is immediate that the definition is independent of y. If we write p(x —y) = @.(¥),
we have

(Tx9) (@) = T(x9.) = T(¢s)-
The requirements of the definition are fulfilled, for instance, when T'€Gy(d), ¢ € G(d)

and supp 7, supp ¢ < {z; (z, N)>0} with one of the supports in a cone (x, N)>¢|z|
where £>0.
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Theorem 3. Let T and @ have the properties stated in Definition 2. Then D*(T % @) =
(D* Ty* ¢=T%D* ¢ and supp T x ¢ <supp T +supp ¢. Further, T % ¢ belongs to
Gd) and T ¢,—~>T % ¢ in G(d) when ¢, —~¢ in G(d) and U, (supp 7' N [K —supp ¢,])
18 bounded for every bounded K.

Proof. We consider first D*(T % ¢)=(D*T)* ¢ =T % D*¢ where D*T, defined
by D*T(¢) = (— 1)“T(D*¢), belongs to G'(d). Set Dy =,l i It is enough to prove

I3 8xk
that Di(T % ¢) = T % Dygp.
Let e be the unit vector along the x-axis.

. 1. .
DA% 9) @) = m T (e — )
h->0 @h
Now 1/ih [@rne — (;91] tends to (D), in G(d) for the mean value theorem implies

[(szrhe (pr] (Dk(P)I,K‘ <‘h|| D (P)z’K |dl

when 0+ |h| <1 and K’ =K —{te; |¢| <1}. Since supp 7 N supp [@s1n,— @] is com-
pact when |A| <1, this gives
DT %) =T % Dyp.

In order to prove that T x ¢ €G(d), take an arbitrary compact set K and choose y in
G,(d) so that y=1 in a neighborhood of supp T N [K —supp ¢]. We write supp y = K.
From Theorem 2 we then obtain constants [, and C, such that

|(T%(p)(x)| = |T(X(;’z)| <Oo|x¢x, KO‘d.ln
when x € K. This implies
| D*(T % @) (&) = | T((D*9) )| < Co | (D P) 2> Kila.ta
< Oollal lallmld |l-|°¢l Ia"hzld X(D“(P);: Ko'd,lu
<Ol | @y Kolar

for all x€ K where I’ =2-1¢~¢ min (I, [;). Hence T * ¢ € G(d). The same estimate gives
also that 7% @, ~T % ¢ in G(d) when ¢,—¢ in G(d) and U, [supp 7' N (K —supp ¢,)]
is bounded for every compact K. Finally it remains to localize the support of 7' ¢.
(T'* @) (z)=0 only if supp T meets supp ¢,, i.e. only if there is y € supp 7' such
that x —y €supp @, which means that x €supp 7T -+ supp ¢. The proof is complete.

The following three theorems are easy generalizations of theorems for D’ (cf.
Hérmander [1], pp. 14-17). We omit the proofs.

Theorem 4. Let T and ¢ have the properties in Definition 2 above and let yp€G(d).
Then

(Tx@)y*xyp=Tx(pxy)=(Txy) %

Theorem 5. Let V be a linear mapping from Gy(d) to G(d) which commautes with trans-
lations and is continuous in the sense that Vo, —0 in G(d) if (p;);21 tends to 0 in Go(d)
Then there is one and only one T €Gy(d) such that Vo =T % ¢ when ¢ EGy(d).
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Let now 7T, and T, belong to Gj(d) with supp T, N (K —supp 7)) compact for
every compact K. Then, according to Theorem 3,

Go(d)2p =T % (Ty%@)EG(A)
satisfies the requirements of Theorem 5. Hence, there is a unique distribution 7' in
Gy(d) such that
Ti%(Tyxg)=Txp.

We use this for the definition of the convolution 7'y % T,.

Definition 3. The convolution T of two distributions 7'; and 7, in Gg(d) with
supp 7', N (K —supp T',) compact for every compact K is defined by

T\ % (Tyxq)=Tx¢
and denoted by 7', % T,.
If T3€G'(d), we can define (7', % T,) % Ty and T, % (T, % T5). We obtain
(D% Ty) Ty =T %(TyxTy).

Finally we note that our results give

Theorem 6. Let 7', and T, have the properties in Definition 3. Then Ty % Ty=T,% T,
and supp T, % Ty <supp Ty +supp Ts.

Clearly, D*T = (D*§)+ T where ¢ is the Dirac measure. Together with the associa-
tivity and the commutativity of the convolution this implies

D*(Ty%Ty) = (DT )% Ty=T,%D*T,.
Fourier—Laplace transforms. We are also interested in the Fourier—Laplace trans-
form of the elements in Gy(d) and &'(d). For { € C" we write { =& +i#, where & and
7 € R", and

()= J-e_”c(p(w)dx,

where x{ =>"%_; 2, {,. Further, we use the notation

loh = f |g(&)| M de.

We have the following characterization (cf. Hérmander [1], p. 21 and p. 147).

Theorem 7. Let @ be an entire analytic function and K a closed convex set in E*.
Define S(n)=sup,x (%, n). Then, O is the Fourier—Laplace transform of a function
in Gy(d) with support in K if and only if to every real number A there is a constant C;
such that

|D(2)| <Ci exp (S(n) —1|&] V). (7.1)
15
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Further, @ is the Fourier—Laglace transform of an element in G'(d) with support in
K if and only if for some constant A, there is to every € >0 a constant C, such that

| D) <C. exp (S(n) +&|n] +20]&]1). (7.2)
Proof. Let g €Gy(d, K). It is clear that ¢ is entire analytic. Obviously,

ZP(L) = fe‘”g Dp(x)dx

implies |l ¢(0) | < 0] sup L |a] %] Dg(z)]

— 0S| @[, K],
5o that IZ1*]9(0)| <O|@, K |41 (nd)* 525,
where C is the measure of K. Hence

19| <C|@, K| (nd B| |25,
Let k be the largest integer < |Z|"%(nel)"'*. Then,

[$(0)] <C|g, K|g e e5®.

Because k> |¢|Y¥(nel)"V? -1, we obtain

|p(D)] <Celg, K|q1exp (S(n) —A|L]), (7.3)
where A =(nel) /%, This proves the necessity of (7.1). In particular we observe that

loh<C'|o, K|a,1 (7.4)

where 1=(nel) ¢ ~1 and ¢’ only depends on the measure of K.
We turn to the sufficiency of (7.2). Suppose that the entire function @ satisfies
thig inequality. Consider the linear form

T(g)= (Qn)‘"fq)(ﬂf) (&) dé (7.5)

on Gy(d). Because of (7.2), (7.4) and Theorem 2, T belongs to Go(d). Set K, =K +
{z; |z| <&} and consider z, ¢ K,. We can choose a >0 and v € R" such that |v| =1 and
K. is contained in (z—u,, v) < —~2a. Let g €G,(d, O) where O = {z; |z —z,| <a}. Ac-
cording to (7.3), (7.2) and the analyticity, we can shift the integration of (7.5) into
the complex domain which gives

T(p)= (Qﬂ)‘"fq)(«f + ) ¢(— & —1in) dE,
where 7 is arbitrarily fixed in R". Thus,
| T(@)] < Cs.c exp (S() + (@+ &) |] = (20, n))fe“"" .
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In particular, for >4, and % =vt we obtain
|T(@)| <Ce >0 when &-+oco.

Hence supp T< K, for every £>0 which implies‘supp T< K. It is also easily seen
that T',(e7**)=®(Z) so (7.2) is sufficient.

For the proof of the necessity of (7.2), assume that T €Gy(d) with supp T< K.
Take y in Gy(d, 0) so that y=1 on K., and supp p< K.. According to Theorem 2 we
have

| Te(e )| = | Tolp(a) )| <C|e (), Kila,,

for some ! and C. This gives (7.2). Since > ¥_ (—2()*/k! tends to e **¢ in G(d, B™), it is
also clear that 7', (e"**%) is entire analytic.

Finally we have to prove that (7.1) is sufficient. The sufficiency of (7.2) implies
that every entire function ®, which satisfies (7.1), is the Fourier-Laplace transform
of a T in G'(d, R") with support in K. From (7.5) it follows that 7' is the infinitely
differentiable function

(2n)‘"f¢>(§) et dE.
According to the assumption, |T'|;< oo for every A. Further,
| D*T'(x)| < (2n)*"f|§°=| |7(&)| d& < (270) ™| T |1 sup (| &|" exp (— 1| €[*%)

<@m)" (%)‘”“'W'd |T]s = 22)" 0 o] |7,
when ! =d%(Ae)~%. This implies
|7, K|, <@n)"|T|s (7.6)
for an arbitary compact set K. The proof is complete.

Remark. If we define the singular support of 7'€Gy(d, O) as the set of points in O
having no neighborhood where 7' is in G(d), it is possible to prove a result analogous
to the last theorem for the singular support.

We observe that (7.6) and (7.4) give

lp, Ko, <@nr)"|p|s and |@p|i<C|@, K|,

when ¢ €G(d, K). Thus, the semi-norms |p, K|,,, and |¢|; define the same topology
on Gy(d, K) and by that the same inductive limit on Gy(d, O) (cf. Beurling [1]). Write
finally |@|1,=|p@ls for fixed y in G(d, O) when p€G(d, O). It is immediate that

the semi-norms

{lplrv; pEGy(, 0), >0}
are equivalent to the semi-norms
{lo, K|4,;; 1>0 and K compact in O}.

Hence we can define the topology of the Fréchet space G(d, O) by the semi-norms
|2,y

2:1 17
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The necessity of d-hyperbolicity

As in the introduction, let H be the half space (x, N) >0 and Gy(d, H) the set of
those functions in G(d) which have the support in H. Set inf, | —t N| = |7]y when
n€R"

Theorem 8. Assume that the mapping ¢ —P(D)g in Go(d, H) is injective and that its
inverse 1s continuous. Then there is a constant C >0 such that

P(£) =P(E+in)+0if (n, N)< —C(L+|n|y+]&]").

Proof. We use the semi-norms |g|;, of @(d). The continuity of P(D)p—¢ in

G,(d, H) means that to every A>0 and y€G(d) there are constants C, 1,>0 and
1o € Go(d) such that

||, <C|P(D)p|4, y, when (pEG()(T,I?).
Let y €Gy(d) with w(N)=1. Then
lp()] = lpWyp )] <|plo.y
which together with the continuity implies
l@)] <C|P(D)p| 0.4,

for some constants C and 4,>0 and a fixed y,€Gy(d). Take xeG(d,R-) so that
%(t)=0 for t<2-%N, N) and y(t)=1 for >2-1(N, N). We can then apply the in-
equality to ¢(z) =¢'* ") y((z, N)) and get

1<C|P(D) €42 y((x, N))| 2. po
=C|yy(x) P(D) €2 y((w, N))| 1, (8.1)
When P({) =0, we have

ole) PD) 491 (e, N) = 5, L P70 €0 pyfe) D7 2, )
y+0 )Y

Here the support of g,(x) =y,(x) D¥ y{{#, N)) is contained in a bounded set B of
{z; 2%(N, N)<(z, N)<2-1 (N, N)} when y=+0. According to (7.1), there is thus to
every 1>0 a constant ¢ >0 so that

|6,(0)| <C exp (S(y) —A[&[")
for ¥ =0 where S(r)=sup,es (¢, 5). This gives for «€ E"

f e 1 g,(2) ¢ F-Dd| =™ g (a—2)| <Cexp (1, N)+S(—n) —A|ac—E[ )
<Cexp ((n, N)+8(—n) + 4[|V —A[ V)
Hence (8.1) implies that there is a polynomial  such that
1<Q([¢]) exp (g, N)+8(—n) +220]£[V%). (8.2)
18
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In order to estimate S(—#) we write x=sN +y where (y, N)=0. Then 2-2<s<21
and |y| <D for some fixed D if x€ B. When (1, N) <0, we obtain

S(—~n)=sup(z, —n)< sup s(N, —n)+ sup(y, =)< —2 *(y, N)+ Dinf|y —iN|.
ze¢B lvl<D i

273gsg2t
From (8.2) it hence follows that
0<(n, N)+O(L+ [n] w-+|£[")

for some constant C'>0 when P({)=0 and (, N) <0. Consequently, P({) 0 when
(n, N)< —C(1+ |n] y+|&|") and the proof is complete.
We let m be the order of P and denote the principal part by P,,.

Theorem 9. P,(N)+0 if there exists a constant O such that P(&E+in)=+0 when
(7, N)< —C(+ |n] x+ |E[9).

Proof. Assume that N =(1,0,...0) and P,(N)=0. Since P, %0, there are con-
stants (e;);-3 so that P, (1, s, ... x,) ==0. We consider the polynomial

QA uy=P(A, Aucty ... Apcey) =V§OZ"R,,(M),

where R, (u)=P,(1, ucxs,...ua,) £0 according to the choice of («,);.5. Because of
the assumption, the zeros A(u) of Q(A, u) satisty

Im Au) = — O+ | A(p)| + | Re Au))| %) 9.1)

for a suitable constant O'>0 when [u|<1. As R, (u)*0, we further know that the
zeros can be developed into a Puiseux series around y =0. We obtain

Q. )= Fn() [ (1= 1,0,

where every A,(u) for some positive integer p is an analytic function of y''? when
0<|u| <é, without any essential singularity at u''* =0, i.e.

)= 3 ap
=Ny

where N, is a whole number.

We have assumed R, (0)=0. Because of (9.1) at least one R,(0)=0. Hence, if
#—0 so that E,(u)+0, at least one quotient R, (u)/R,(u) tends to infinity. Conse-
quently, |A,(u)| = oo for some j, when u—0, ie. N, =N is a negative integer.
Thus ,,(4) behaves asymptotically as @ y(u"?)¥ when u—>0, which is a contradiction
to (9.1) since d>1. The theorem is proved.

Remark. If P,(N) =0, we can construct functions 0 +¢ € @,(d, H) such that P(D)p =0

(cf. Hérmander [1], p. 121). Hence P,(N)==0 is properly a direct consequence of the
injectiveness of the considered mapping.
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If P(£+1%)+0 when (, N)< —CO(1+ || y+|&|"%), we obtain, in the special case
n=1tN, TER, that P(§ +i7N)=+0 when £€ R" and ¢(N, N) < —C(1 + | £]Y?). According
to the last theorem, such polynomials also satisfy P,(N)=+0. We make the following
definition.

Definition 4. A polynomial P is called d-hyperbolic with respect to N if there is a
constant C such that P,,(N)+0and P(£ +itN)+0when£€R"and7< —O(1 + |&]|"9).
We consider 1 <d < oo with the convention that |£|V* =1 so that d = oo is formally
the Garding case. According to Lemmas 1 below, d =1 is the Cauchy-Kovalevsky
case. The following theorem is now immediate.

Theorem 10. P ¢s d-hyperbolic with respect to N if P(D)p — @ 15 a continuous mapping
in Go(d, H).

We also have

Theorem 11. P is d-hyperbolic with respect to N tf the mapping ¢ —~P(D)gp is bijective

n Go(d, H), i.e. if the equation P(D)p =y has a unique solution ¢ €Gy(d, H) for every
YEG,(d, H).

Proof. Since G,(d, H) is a closed subspace of the Fréchet space G(d), Gy(d, H) is

itself a Fréchet space. The mapping ¢ —P(D)p is continuous in Gy(d, H). According
to Banach’s theorem the inverse is then continuous too. The application of Theorem
10 completes the proof. ~

Algebraic properties of d-hyperbolic polynomials

The following theorems, which give some algebraic properties of our polynomials,
are easy generalizations of the corresponding theorems for co-hyperbolic polynomials
(cf. Hormander [1], p. 132). We need the following lemma.

Lemmal. If P,(N)+0, there is a constant O such that |v| <C(1 + |C|) when 1€C,[EC
and P({+1N)=0.

Proof. It is no restriction to assume P,,(N)=1. Then P({+7 N)=1"+ Sma P (C
where the order of P,<m—v». Hence, there is a constant C such that |P,({)| <
(C2-Y(1+|¢|)™", which gives

m—1
<zl 202”""< |z|™ if |z]>0Q+]|Z)).

p=

m—1
3P0

This proves the lemma.
For the sake of completeness we also prove the converse of Lemma 1.

Lemma 2. P,(N)=*0 if P is of order m and |v| <C(I+|{|) for some constant C
when 1€C, L €C™ and P({ +TN)=0. :

Proof. Assume that P, (N)=0. Then

PE+N)= 5 P07,

20
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where g <m and the order of P, =m —v for at least one » =y, since the order of P is m.
First we prove that P,({) is a constant. The polynomials P, cannot have a common
zero since this violates our assumption. If P, depends on £, it has a zero {,. Let { tend
to {, so that P,({)=+0. Then at least one quotient

P, ()
Py TTH

tends to infinity and by that also at least one zero 7({) of P({+t N). This is again a
contradiction to the assumption so that P,({) is a constant. Now we know that P,
is the sum of all possible (u—wy)-products of the roots of P({+7 N)=0. We have
assumed that the roots satisfy |v| <C(1 + |{|) for a suitable constant C. With another
constant C we thus get

[P ()] < CA+ L]y

which contradicts that the order of P, is m —»,. The proof is complete.

Let P be d-hyperbolic with respect to N. Then P, (N)=+0, and P({+¢TN)=0
implies Ret> —C(1+ |&|Y*+ |Im7|'?) for a suitable fixed C'>0 when £€R"
According to Lemma 1, there isanother O such that |t| <C(1 + |&|) when P(£ +izN) =0.
Hence, if P is d-hyperbolic with respect to N, we have a constant C such that
P,(N)+0 and P,(&+iTN)+0 when £€R" and Re v< —C(1 + [&]|"9).

Theorem 12. P is d-hyperbolic with respect to — N if P is d-hyperbolic with respect to N.

Proof. The homogeneity of the principal part P, gives that P, (—N)=(—1)"P,(N)
#+0. All the roots of P(£+itN)=0 satisfy Re 7> —C(1+ [£|?) for some fixed C
when £ € R". We know that the coefficients of 7™ and v™ ! are "P,(N) = O respectively
a linear function of £. Denoting the zeros of P(§+1tN) by t;, 221 7, is thus a linear
function of £ This implies that >/, Re 7, is a linear function of £ € R* bounded from
below by —C(1+ |&|"%). But then J[*; Re 7, must be a constant ! since d >1. This
gives

Re 7y =l——jZkRe 7 <I+C(1+|&M%).

Consequently, P(£+itN)+0 when £€R™ and 7>1+C(1 + |&|"'?). The proof is com-
plete.
The theorem can also be written in the following form.

Corollary. If P is d-hyperbolic with respect to N, there is a constant C >0 such that
|Re 7| <C(1 + |&|Y'?) when £€ R" and P(é+1tN)=0.

Theorem 13. If P is d-hyperbolic with respect to N, then P, is oo-hyperbolic with
respect to N.

Proof. Let ¢>0. According to the corollary of Theorem 12 we have a constant
C>0 such that o|Re 7| <C(1 + |0&|"%) when £€ R" and P(of +i0tN)==0. Further,

P, (&+itN)= lim ¢""P(c& + ioTN).

g=»+ 00
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Since P, (N)=+0, the zeros t of ¢~ ™ P(c& +101N) depend continuously on ¢! in a
neighborhood of ¢—1=0. Hence |Re 7| =0 if P,,(&+4TN)=0 and £€ B". The proof is
complete.

Theorem 13 and the definition of d-hyperbolicity give immediately

Theorem 14. 4 homogeneous polynomial P is d-hyperbolic with respect to N if and
only if P(N)= 0 and the zeros T of P(& +1tN) are real when £€ R™

As in the special case of oco-hyperbolicity, we make the following definition.

Definition 5. If P is d-hyperbolic with respect to N, we define I'(P, N) =I'(P,, N) as
the set of all real vectors § such that P, (& +7N) has only negative zeros 7.
Then the following theorem is well known.

Theorem 15. I'(P, N) is the N-component of the open set {§; P,(9)+0}.
Proof. We refer to the proof of Lemma 5.5.1, p. 133, in Hérmander [1].

Next theorem will make it possible to prove that P is d-hyperbolic with respect to
every ¢ €I'(P, N) if it is d-hyperbolic with respect to N.

Theorem 16. Let P be d-hyperbolic with respect to N and let § €U(P, N). Then there is
a constant C such that P(£ +itN +io®) + 0 when £€ R*, Re g <0 and < ~ O(1 + | £|"%).

Proof. We consider first the case Re ¢ =0. The corollary of Theorem 12 gives a con-
stant C such that |t| <C(1+|&]"? +|o|"?) when T € R, £€ R” and P(§ + TN +ic)=0.
Further, since P, ()40, we have according to Lemma 1 a fixed D >0 so that

|o| <D+ |&| +|7|) when P(§+itN +ic®)=0.

Hence, with a suitable >0, |v]<C(1+ [£]"+|7]|"%) when T€R, {€R" and
P(§+iTN +1i09) =0. Because d>1, this gives the existence of still another constant
Cy >0 such that P(&+4TN +iod) =0 implies |7| <Cy(1+ |&|Y?) when 7€ Rand £€ R™.
This completes the proof in the special case Re ¢ =0.

For the general proof we study P(&-+4tN +i0d) as a polynomial in ¢ when §
is an arbitrary vector in R" and 7 varies in 7<X —Cy(1+|&[Y%). Here C, is the
constant obtained above. The zeros ¢ of this polynomial vary continuously with =
since the coefficient ¢"P,(#) of ¢™ is unequal to zero. As P(§+4TN +1i0?9) has no
zeros when £€R", Res=0 and 7< —Cy(1+ |&|"?), it follows that the number of
zeros o with negative real part is constant when 7 < — Co(1 +|&|"%). It is thus enough to
prove that there are no zeros ¢ when Re ¢ <0 and 7 is large negative. We set o =uz.
Then the equation P(£+4tN +409)=0 can be written ¢~ "t~ "P(& +eit(N +ud)) =0.
When 7->—o0, this equation converges to P, (N +ud)=0 which has only negative
roots. Since P,(#)==0 is the coefficient of y™ in our equation, the roots y depend
continuously on 7-1, Hence, all zeros ¢ of P(£+4zN +i0¥) must have a positive
real part when £€ R™ and 1< —Cy(1 + |£|Y'¢). The proof of the theorem is complete.

Theorem 17. P is d-hyperbolic with respect to every $€U(P, N) if P is d-hyperbolic
with respect to N, '
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Proof. Let 9 €’(P, N) and consider real ¢ and 7 such that v=¢ ¢. According to
Theorem 16, P is d-hyperbolic with respect to & +& N for every &>0. Since I'(P, N)
is open, ¥ —e N €I'(P, N) for small |¢|. Hence, for small ¢>0, P is d-hyperbolic with
respect to ( —e N)+e N=9.

Theorem 18. The cone I'(P, N) is convex.

Proof. See the proof of Theorem 5.5.6, p. 134, in Hérmander [1].

We now need the following definitions.

Definitions. Let P,, be a homogeneous polynomial of order m. We set
VP (&)= 2 PR

and V= {§; £€R" and V*P,(£)=0}.
Euler’s theorem for homogeneous polynomials gives that

Voo Vio...0oV,,=4¢.
Further, V, > {0} when k<m. We set
s=inf (j, V,={0})
and call P,, s-singular or singular of order s.

Theorem 19. Let P, be a homogeneous polynomial of order m which is s-singular and
hyperbolic with respect to N. Let further Q be a polynomial of order L <m. Then P, +@ is
d-hyperbolic with respect to N where 1/d +(m —1)[s =1 with the convention that d = oo
when 1/d <0.

Proof. We define | P,()] = (2| P(L)]|»)V? and prove first that
| Pr(é +iN)| <C|P,(&+iNN)| (19.1)

for some constant C' when &€ R". Since I'(P,, N) is open, the Theorems 17 and 14
imply P,(£+iN +140)+0 for all £ in B" when || is smaller than a suitable constant
£>0. This gives

[Pl +iN +30)| <2m| Pp(&+3D)|

when £€ R™ and || <é, so by the Cauchy integral formula we have a constant €' such
that

| PR (& +iN)| <C|Pn(¢+iD)]

when £€ R" (cf. Lemma 4.1.1, p. 99, in Hérmander [1]). This proves the above in-
equality.

We write Q=3'_oQ, where @, is homogeneous of order j. |P,(£)]|? contains
V°P,,(£) which is of order 2(m —s) and elliptic since P,, is s-singular. Hence,

|Q46)[2<O| P (&) |21+ |€|2) ™, &€R™, (19.2)

for a fixed C'>0. Applying (19.1), (19.2) and the Taylor formula we obtain the exist-
ence of two constants C and ¢’ such that
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|QAE+iN)|2<C| P& +iN)|2 (1 + | +iN|2yite ™

SC|P(E+iN)|2 |E+aNPore™

when £ € R". The homogeneity implies

|7] 77| Q)& +ixN)| = | Q& +iN)| <C|P(E+iN)| [E+iN |+

=C|r| 7| Py(rE+iEN)| € N | Fo ™,

Hence, | Q& +ixN)| <C|t| | Pl +izN)| |E+ixN )T

when £€ R* and 0+ 7€ R. This gives

IP(£+iTN)-Pm(§+iTN)I< ilQ;(E-ﬂirN)]
j=o
<C|e|* | Pal+ich)| 3 |E+izN o,
j=0

If {v] = D +| &%) where 1/d+ (m—1)/s =1 and D is a sufficiently large constant,
we have

1
-8 g j+s~m<_~ R
Clz|™%|& +iTN| IESY

Hence P, (& +itN) | <| P+ iwN)| <2| Py (& +iTN)|

for all such 7 in R. Since P, (¢ +¢tN)=0 for 7 € R, the proof is complete.
To be able to prove the converse of this theorem we need the following result. We
let {x] stand for the integral part of .

Theorem 20. Let P be d-hyperbolic with respect to N and set for fixed & and & in R"
deg, P(z&+#) =1 and deg, P, (tE+ N)=g.

Then l<g+ [’r_n_;_g] .

Proof. We counsider P(t&+8+oN) and give an estimate of deg, P(1&+3+oN)
from above for every fixed & in R". We study the zeros ¢ as functions of 7. If we set
o =wT, the equation P(7€ +9+06N)=0 can be written

T "PrE+ 9 +wtN) =P, (£ + N} +Q(r 1, ) =0,

where @(z7?, w) is a polynomial in -1 and o which vanishes for 7-1=0. The polyno-
mial P, (§+wN)=w"P, (0w £+ N) has, according to the assumption, a (m —g)-fold
zero  =0. Since P,,(N)=+0, the zeros w of P, (& +w N)+@(r1,w) are bounded when
t1->0, and m—g of them converge to zero. The Puiseux series expansion of these
(m —g) zeros around 7-! =0 can thus be written

(-]
olt)= 2 et .
<1
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Let ¢, be the first non-vanishing coefficient. The corresponding zeros ¢=tw of
P(t& +0 +0N) then behave asymptotically as c,7¥ ™* when 7-!—0. In particular,
the argument of ¢ tends to arg ¢, +((p —7)/p) v when arg v =vx and 7= - 0. Since P is
d-hyperbolic with respect to N, we also have |Im | <C(1+ |[#]|"*+ |7[V¢|&]|"?) for
a fixed ¢ when 7€ R. A suitable choice of ¥ then gives the condition

?f’fg
p

ISR

Hence, m —g zeros of P(té +9 +oN) are O(|t|"?) when |7| —>oco. For the rest of the
zeros we have O(|t|) when |t| >co. The connection between the coefficients and
the zeros of our polynomial then implics that the coefficients satisfy O(|z|?* ™" ~7/%)
when |7| —>co. Hence,
deg, P(zé+ 9 +oN)<g+ [de—g] .
The theorem is proved.
For fixed m and [ we define d; by

1 m-1

,__+_, _=1
d s

with the convention that d;==cc when m>=1+s.

Corollary. Let P, be a homogeneous polynomial of order m. If L>m —s and P, +@ s
d-hyperbolic with respect to N for all Q of order <I, then P,(£+7 N) cannot have more
than s coinciding zeros T for any & in R" non-proportional to N.

Proof. Assume that the corollary is not true. Then there is ¢ > s such that P&, +1N)
has a t-fold zero 7 =0 for some £, 0 in R" non-proportional to N. This andl=>m —s
gives deg, P, (1 &+ N) =deg, TP, (£, + 71! N)=m --t<l. Applying Theorem 20 with
g=m—t and d=d,, we obtain

deg, (P (1€, + N) + Q(z&, + N)) < [z _ (t;s)s(m;’)] <I-1

for every @ of order <lI. Since deg, P,,(t&,+ N) <l, this implies that deg, @(v&,+N) <
I—1 for all Q of order <I which is a contradiction. The corollary is proved.
We can now give a theorem in the opposite direction to Theorem 19.

Theorem 21. Let P,, be a homogeneous polynomial of order m such that P, +@ is d-
hyperbolic with respect to some N for every Q of order <l. Assume further that there is at
least one such Q so that P,,+Q is not d,_,-hyperbolic with respect to N. Then P, must be
s-singular.

Proof. P,,+@Q is not d,_;-hyperbolic for every @ of order <l. Then, Theorem 19

implies that P, is at least s-singular. But because of d,<cc, i.e. I>m —s, and the
corollary of Theorem 20, P,, can at most be s-singular, so the proof is complete.
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Fundamental solutions and the sufficiency of d-hyperbolicity

We shall now prove that d-hyperbolicity with respect to N is necessary and suffi-
cient for the existence of a fundamental solution in Go(d) if we require the support to
be contained in a cone (z, N)>e|x|, £>0. As above, let H ={z; (z, N) > 0}.

Theorem 22. Assume that a differential operator P(D) has a fundamental solution
E in Go(d) with the support in a cone (x, N) =¢|x|, ¢ >0. If then y € Go(d) and supp py< H,
the equasion P(D)p =y has a unique solution @ with the sume properties. When p€G(d),
the solution @€ G(d).

Proof. Supp E< {x; (x, N) >¢|x| } for some & >0. Let y belong to Gy(d) or G(d) with
the support in H. Then, according to the section on convolutions (p. 3), Exy exists
in Gy(d) respectively G(d) with its support in H. Further, E %y solves the equation
P(D)p=v. This proves the existence. If P(D)p=0 with ¢ € Go(d) and supp p< H,
@ =% P(D)E=P(D)px* E=0. The proof is complete. This gives the uniqueness.

Theorem 23. Let P(D) be a differential operator with a fundamental solution E in
Go(d) such that the support is contained in a cone (x, N)>¢|x|,e>0. Then P is d-
hyperbolic with respect to N.

Proof. The theorem is an immediate consequence of the Theorems 11 (p. 10)
and 22.

Theorem 24, Let P be d-hyperbolic with respect to N. Then the operator P(D) has one
and only one fundamental solution E in Go(d) with support in the closed half space H.
More precisely, the support of E is contained in the convex cone

I'*(P, N) = {=; (x,9) >0 for every 9€L'(P, N)}
but in no smaller convex cone with vertex at 0.

Proof. The uniqueness follows from Theorem 22 when the existence is proved.
Let 3€I'(P, N). Then P is d-hyperbolic with respect to 9. If we write

P(& +iv9) =i"P, (ﬁ)lﬁl(r — 74 (&, ),

we thus have a constant C($) >0 such that
Re 7,(€, 9) = — C(9) (1 + |&]"'?) when £€ R™,
Specializing 7 to #(1+ |£|Y?) with ¢t < —2 C(8) we get
|P(&+i79)| = | Pu(®)] |27 ¢ (1 + || V9).

For such 7 we let o(&, t) be the surface ’

(&; + Ty, & +iTdy, ... &, +iT8,) in O™
Hence, |PQ)] = |Pu®)| |27 ¢] ™1+ |£] %) when {Eo(d, t).
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We define £ on Gy(d) by
) — -n (ﬁ(é-)
B -en [, B

where we use the notations g(x) =g(—x) and #(¢)=E(p). Theorem 7 (7.3) gives to
every compact set K in B" a constant C such that :

|#Q)] <Clog, K|a,1 exp (t(1+ |§]19) 8'(9) —A|&[")

when supp p <K and (€o(d,t). Here A=(mel)™"? and §'(J)=inf,cx (,F) since
£<0. Our estimates of ¢({) and P({) imply the convergence of the integral and, for
fixed t and &, the inequality

IE(‘P)I <0|‘P> Kld,h

where the constant C only depends on K and A>t S'(#). Hence, E belongs to G'(d).
Because of the estimates and the analyticity of ¢({) and 1/P({) in the considered
regions of ", we also have that the integral is independent of ¢ and < —2 C()
when @ €I'(P, N). Further,

_ PO ¢ )
R I O IR CL =)
sy P ) Rn
Consequently, P(D)E =4.
Now it only remains to localize the support of E. If supp p< {z; (,9) >0}, we
have §'() >0. The estimates of P({) and ¢({) then give for 1>0

B < Clp, Klalel e[ exp (-2l ] >0
a(d, t)

when 9€L(P, N) and t——co. Hence, E(p)=0 when supp ¢< {x; (z,9)>0}, ie.
supp E< {z; (v, 9)>0} when §€I(P, N). This proves that supp E<T*(P,N). Let
finally K be a closed convex cone with vertex at 0 and containing the support of the
constructed fundamental solution. According to Theorem 23, all proper planes (x,0) =0
of support of K must then be non-characteristic, i.e. P,(6)+0. The open convex set

K* = {9; (z,9)>0, for every =0 in K},

containing N, is thus contained in {&; P,(9#)=0}, which gives that K*<T'(P, N).
Hence K oT*(P, N) and the proof is complete.

(The rest of this paper from here on has been added to proof as a parily rewritten
M8, presented to the academy on 16 August 1966. Edifor.)

If P is d-hyperbolic with respect to N, we can, according to the Theorems 24 and
22, solve P(D)p =f uniquely in Gy(d, H) for every f€Gy(d, H). Theorem 10 states the
reverse implication, so d-hyperbolicity with respect to N is both necessary and
sufficient for the unique solvability of P(D)p=f in Gy(d, H).

We can now go a step further and consider the following Cauchy problem where
P is of order m and D, denotes derivation along N:
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P(D)p=f
Diyp=g; for (x,N)=0 and 0<j<m,

when f and {g,}/*5! €G(d).
In order to solve this problem we first prove the following theorem (cf Hormander
(1], p. 149). Choosing N =(1, 0, ... 0) we write

D22 ),

1 0%, 1 0%y t o

a’nd C = (Cl’ 52, e Cn) = (El + i”]l: Ez + 7:7]2; e §n + in") = (é‘l! C’) = (51 +,’:771’ 5, +’:7]I)'

Hence, P(D)=P(Dy, D') and P({)=P({;, {’). Further, we set T(p)=(T, ¢) when
T€G,(d) and p€G,(d).

Theorem 25. Let P be of order m and d-hyperbolic with respect to N=(1,0, ... 0).
Then, when 0 <k <m and x, € R, there is a unique H,(x,) €Q'(d, R"') such that

DiH,(x,)€G'(d, R"™") for every integer j =0,
P(D,, D')H,(z,) =0, DiH,(0) =0 when k+j<m,
and DYH(0)=08 where & is the Dirac measure.

Further, (Hk(xl) @)€G(d, R) when ¢p€G(d, R" '), and (xl, supp H(a})) < supp E
N {x; z, =23} for 23>0 where E is the fundamental solution in Theorem 24.

Proof. We write P()=P(, Z (r7q,(L)

and define el O Z “¢;(').

Let ' be a simple, positively oriented curve which for fixed ¢’ surrounds the zeros
£y of P(Ly,¢"). We consider

Hk (24, Cl) = (zni)—lfreigmpm;1—k(§1, CI)/P(Cp & df;-

Then DiH, (%, ()= (2ni)_1fre”"‘(Cl)’pm—l-k(Cl, &)/ Py, ) dly
is an entire function of (' =({,, ... {,) for every z, € R and every integer j >0. Accord-
ing to Lemma 1 and the Theorems 8 and 12, respectively,
|21l <€ +]|'|) and
|| SCQ+ '] [ ]2+ 8]V

for a constant C when P({,;,{')=0. In order to estimate DiH,(z,, ') we can then
choose I' as the rectangle defined by

[a] =OU+]81); | =CL+ ] + &[4
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where O is a suitable constant. Since |p,,_;_({;, {’)| is majorized by a constant times
(L+|&'[y"*7*, and both |¢;| and the length of I' by a constant times (1+[{’[),
we get B

[ D{Hy(y, &')| SO+ ||y exp (Clay |1+ '] + |€]7)

and sup j 14| DI Hy(xy, £')| <exp C(L+ |2y |) (A1 + || + |11
i

for some constants C. Hence, because of Theorem 7, H,(z,, {’) is the Fourier-Laplace
transform of an element H(x,) €G’(d, B*1) given by

(Hy(x,), 9) =(2ﬂ)7"+1J‘Hk(W1, &) p(—&)dé
when ¢ €Gy(d, B*'). We define (D] Hy(,), p) = D} (Hy (2,), ¢). Our estimates imply

Dite), )= @m) ™ [ DB (e €09~

and (H(z,), ¢)€G(d, B). Hence DjHz)€G (d, R*™") and [D{H(x,)]" ({') =
D{H,(x,, ). Further,

P(D,, &) By (2, &) = (2ni)'1frei§"‘pm—1-k (&) dl,=0

since the integrand is analytic. This means that P(D,, D")H(x,) =0.
For the proof of D} H,(0)=4 and Dj H,(0) =0 when k =j <m, we use that

DAL, 8) = 2 [ Lpmers(60 )/ PG D)
The integrand is ~ i

UPmasll1 EVNP(Ly, &) =L - LT il 81, §) =P8y, ENIP(EL §)-

The degree of {; in the numerator of the second term is majorized by j—k—1+k=
j—1, hence by m —2 when j <m. Since the degree of {; in the denominator P({;, {')
is m, we get

DiB,0,) =(2m')—1f Gk de, for 0<j<m,
¥
where y is a positively oriented cirecle surrounding the origin; Consequently, D} H,(0) =
& and D{H,(0)=0 when k==j <m. '

Finally we localize the support of H,(z3). Let ¢ €Gy(d, B*™*) with (27, supp @) N
supp E = ¢ and takey € Gy(d, R) satisfying supp p<=[—1, 1]and fyp@)dz=1. We set

Aoy, B, oo B) =Xy, &) =L p(e~ My ~ 1)) P().

Then, £.()=4#.(C1, &)=~ P(el;) (L) and supp X, N Supp E =¢ when ¢ >0 is small
enough. Hence, for such ¢
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0=E(pm-1-x(—Dy,— D"} %)
=(275)~"J‘( e p 1 (8, ) P(— ) §(— )/ P(Lr, £ A
a(N,t)

where o(IV, t) is the surface
(EHit(L+ | & [0+ |19, &, ... &,) with t< —C() <0

(see the definition of E in Theorem 24). From Theorem 7 we know that to every
A>0 there is a constant C; such that

|t p( — e£y)| < Ca exp (—my2 + || — 4] e£a[)-

Integrating first with respect to &, for fixed &', this estimate and the analyticity of
the integrand implies that the integration path

(€ +at(L+ | &Y+ E]7), & -on £a), < —CO(N) <0,

can be deformed to a positively oriented circle I' surrounding the zeros £, of P({,,£’)
when 0 <g<a?. Then, letting e > +0 we get

0=(2n)" ff artp, 1 (8, &) P(— &)/ Py, &) AL dE
B Ir
=i (Hy(2?),9) for a}>0.
Hence, (23, supp Hy(23))<supp E N {x; 2; =27} when 27 >0. Since this is trivial for
x=0, the proof of the existence is complete. The uniqueness is proved in the

following theorem.
We can now turn to our general Cauchy problem.

Theorem 26. Let P be of order m and d-hyperbolic with respect to N =(1,0, ... 0).
Then the Cauchy problem

{ P(Dy, D') p(ay, 2') = f(zy, ')
i()v(()? x’):gj(x,)a 0<7.<m7
has a unique solution @ € G(d, R") when f€ G(d, R") and {g;}]o' € G(d, R ™).

Proof. Because of Theorem 24, P(D)=P(D,, D’) has a unique fundamental solu-
tion K, with the support in {x; x,>0}. Let E, be the corresponding fundamental
solution supported by {; z, <0} and write f=f; +f, where supp f,< {z; 2, > —1},
supp fo< {x; 2, <1} and f,, f,€G(d, R"). Set (B, * f,) (v, @) +(Hy % o) (1, &) =0(21,2")-
We apply Theorem 25 and the notations there. Writing

(mmwhﬂmm%wwww
we then have that
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m-1 )
Pp(xy, ') = ,20 fHk(xp y') (g (' — y)— Div(0, %" — y')) dy' +v(x,, &)

belongs to G{(d, R") and solves the given problem.
In order to prove the uniqueness let

P(D,, D') L{z,) =0
DIL0)=0, 0<j<m,

where  DjL(z;) €Go(d, B"") and (L(z,), p)€G(d, R) for ¢€Gy(d, R" ™).

Then, { P(D;, D) L{z,) % p=0

DiLO)xp=0, 0<j<m,

when ¢ €Gy(d, R*™?). Since P,(N) +0, this implies that D]L(0)* ¢ —0 for every inte-
ger j=>0. Hence, L(x,)*@=g,+g, where supp g, < {x; 2,>0}, supp ¢,< {z; », <0}
and g,, 9,€G(d, R"). Then, g,=g,%6=¢,%P(D)E,=P(D)g;% E,=0,i=1, 2. Conse-
quently, L(z,) =0. The proof is complete.

According to Theorem 26 and the remark on p. 9, we know that a solution of the
above Cauchy problem is unique if and only if the plane (¥, N) =0 carrying the data
is non-characteristic, i.e. P,(N)+0. The following theorem shows that it is in this
case rather natural to restrict oneself to the function spaces G(d) where d>1 is
rational. However, some of the theorems can be refined when we have more precise
estimates of the zeros 1 of P(& +i7N).

Theorem 27. Let P, (N) =0 and let {t(&)}iL1 be the zeros of P(&+41N) when £€R™.
Define

7t(r) = sup max Re ;(&).
1El=r 1<jigm

Then the function 7 is piece-wise algebraic and there are rational and real constanis,
k<1 and C respectively, such that

a(r)y =Cr™(1 +o(1)) when r ~>oco.

Proof. We refer to the proof of Theorem 4.3, p. 114 in Gorin [1].

Institute of Mathematics, Lund, Sweden
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