
A R K I V  F O R  M A T E M A T I K  B a n d  7 n r  20  

1.67 02 1 Communicated 25 January 1967 by L. G/~RDING and L. CARLESO~r 

Asymptotic behavior of integrals connected with spectral 
functions for hypoelliptic operators 

By JSRA~ FRIBERG 

ABSTRACT 

In  the first part of this paper are considered real polynomials P(~), ~ ER n, complete and non- 
degenerate in the sense that there is a set of (even) multi-indices zd, j = 1, ..., N, such that, for 
[~l >K,  ~e real, 

cP(~) <~ ~ ~] <~ r 

(See V. P. Mihailov, Soviet Math. Dokl. 164 (1965), MR 32: 6047.) 
I t  is then proved by an explicit computation, for every given even multi-index 7, that  there are 

a real number 0 > 0 and an integer r, 0 ~< r < n, depending only on ;~ and {a]}, and such that  

f~ r  exp { - tP(~)} d~ e =Kr(P ) tlr(1 + o(1)) t-O Ilog 

as t-~ + O. A Tauberian argument then leads to an asymptotic estimate of the integral 

e(/~, 
fl) 

where e~ fl' ~) is a derivative of a certain spectral function. Less explicit results for a larger class 
of polynomials were given by N. Nilsson, Ark. ]. Mat. 5 (1965). In  the second part of the paper, 
the explicit computations are extended to the larger class considered by Nilsson but  under the 
restriction n = 2. 

O. Introduction 

1. A p o l y n o m i a l  P(2),  2=(21, ".., ~n)ER'~, is cal led hypoe l l ip t i c  if i t  is s t r i c t ly  
s t ronge r  t h a n  all  i ts  de r iva t i ve s  P ( : ) ( 2 ) =  (~/~21) ~' ... (~/O2n)~nP(2), in  the  sense t h a t  
P( : ) (2)  =o(1)P(~)  as I~1-~ oo, 2 real.  Consider  n o w  a hypoe l l ip t i e  p o l y n o m i a l  P(2)  
wi th  real  coefficients.  The  s ign of P(2) will  a lways  be chosen so t h a t  

P ( 2 ) - + + o o  as ]2] -~o~,  2 real.  (0.1) 

(We h a v e  to  exc lude  the  case, for n = 2 ,  w h e n  (0.1) c a n n o t  be  m a d e  va l id  b y  a 
change  of sign.) Le t  P(D) ,  D =i-~(~/~xl, ..., ~/~Xn) be t he  co r re spond ing  fo rma l ly  self- 
a d j o i n t  d i f fe rent ia l  opera tor .  T h e n  the re  exists  a u n i q u e  se l f -ad jo in t  r ea l i za t ion  A 0 of 
P(D)  i n  L2(Rn). The spec t ra l  r e so lu t ion  of A 0 is g iven  b y  p ro j ec t ion  opera tors  E0(2), 
which  can  be expressed  in  t e rms  of a ke rne l  

%(2, x -  y) = fs(~),< exp  {i < x -  y, 2>} d2, 
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the spectral function for A 0. We shall be concerned with the asymptot ic  behavior of 
the derivatives of %, in part icular  

do~'~)(~,O) = f~(~)~ ~'d$, ~=2f i .  (0.2) 

I t  was proved recently by  N. Nilsson [9] t ha t  if P(~) is a real polynomial  satisfying 
the condition (0.1), then for every  given even multi-index V there are real numbers  
0, c > 0, and an integer r > 0, such tha t  

c 150 (log ~)r ~ fp ~ d~ <<. c~ ~ (log ~)r, for ~ > ~0. (0.3) 

I t  was also shown in [9], t ha t  if n =2 ,  then there is a sharp asymptot ic  estimate 

f ~rd~=c~~ as ~ + o z ,  (0.4) 
P(~)~<a 

with r = 0 or 1. 
Since the proof of (0.3) and (0.4) in [9] is non-constructive,  it remains to find the  

exact  values of the parameters  0 and r for given ~ and P.  Of course it is well known 
tha t  r~O, 0 = (n + ]?])/m when P(~) is elliptic (see L. G~rding [5], G. Bergendal [1]), 
and tha t  r = 0 ,  0 = ~ q , ( 1  +V,)/m, if P is quasi-elliptic of weight q= (q l  . . . .  , q~) (see 
for instance F. Browder  [2]). Or let 

p(~) = ~12m, + ~2px ~2p2 + ~2m=, (0.5) 

with m 1 > Pl, m2 > P2, and pl/ml + p~/m 2 > 1. Then, as was announced in the note [6] 
by  V. N. Gor6akov, for ~ = 0, 

r = 0  if P l # P 2 ,  r = 1 if Pl =P2;  
(0.6) 

0 = max  {(m 1 +P2 - -  PI)/2mlp2, (m2 +Pl -- P2)/2m2pl} �9 

A simple way  to prove (0.6) is to  compare e0(~ , 0), which is the volume of the set 
{~CR2; P(~)~<2}, with the volume of the set {~ER~; max  (~m,, ~2m2, ~V,~,~)~<~}. 
The same idea (which I owe to a personal communicat ion by  L. HSrmander)  can be 
used to show, for example, t h a t  if P (~ )=  ]~12m+(~1 ... ~n) 2", 1/2p<n/2m, and if 
~ = 0 ,  then r=n-1 ,  O=l/2p. 

2. Given a real polynomial  P ( ~ ) = ~ c ~  ~, satisfying the condition (0.1), set ( P ) =  
{a; c a#0} ,  and let (P)* be the convex hull of (P)O {0}. Then F(P), the Newton  
polyhedron for P ,  is the union U F k (P) of those ( n -  1)-dimensional flat pieces of the  
boundary  of (P)* t ha t  are not  contained in any  coordinate hypcrplane x i =0 ,  1 ~<i ~<n. 
Let  {ccJ}~ be the vertices of F(P) ,  and let v k be a normal  for the face Fk(P), normalized 
so tha t  

t P ( t - ~  .... )=tP(t-~k~)=P~(~)+o(1) as t-*0,  (0.7) 

where P ~ ( ~ ) = ~ c ~  ~, ~EFk(P). Then P is called complete and non-degenerate  
(Mihailov [8]) if 

N 
Z ~J<~CP(~), for ~ E R  n, ]~I big enough. (0.8) 
j -1  
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{If in addit ion v ~ > 0 for all k, t hen  P(~) is a hypoell ipt ic  polynomial ,  of the  class 
called multi-quasielt iptic in our previous papers  [3], [4].) Using (0.1), (0.7), and (0.8), 
we can now show t h a t  if P(~) is real, complete  and  non-degenerate ,  t hen  for every  
even mult i - index ?, 

f~exp{-tP(~)}d~=KT(P)t ~ as t +  + 0 .  (0.9) 

Here 0 = m a x  <v z, ~+e> ,  e = ( 1  . . . .  , 1), and  r = n - 1 - s  where s is the  dimension of a 
face of F(P) defined in a unique way  b y  y. Since 

f ~  exp { - tP (~)} d~ = fe-ta de(ot~.~) (,~, 0), r = 2fl, (O.lO) 

if e(oZ'~)(2, 0) is given b y  (0.2), a simple Tauber ian  a rgumen t  is all t h a t  is needed to  
arr ive f rom (0.10) to an es t imate  like (0.4). This means  t h a t  we have  found a generali- 
zat ion of Gor6akov 's  result  (0.6) to  all real, complete  and  non-degenerate  polynomials .  
I t  is interest ing to notice t h a t  we always get 0 ~< n -  1. 

3. I f  P(~) is an a rb i t r a ry  real polynomial  sat isfying (0.1), t hen  Nflsson's result  can 
be used together  wi th  an Abelian theorem to  derive an a sympto t i c  ex t ima te  f o r  

~ '  exp { -tP(~)}d~ as t-+ +0.  W h e n  n = 2  it  is again possible to  find an a lgor i thm 
for the actual  computa t ion  of 0 and  r, because then  we can use es t imates  for P(~) 
based on expansions of the  zeros of P(~) in Puiseux series. (Cf. Fr iberg [4].) 

1. The e x t r e m a l  case  o f  a c o m p l e t e  and non-degenera te  p o l y n o m i a l  

Consider a polynomial  P(~), ~ E R n, with real coefficients, and  such tha t ,  say,  

P ( ~ ) - ~ + ~  as J ~ ] - ~ ,  ~rea l .  (1.1) 

I f  P ( ~ ) = ~  c ~  ~, denote  by  ( P ) =  {~; c~#O)  the  index set  of P ,  and  let (P)* be the 
convex hull of (P) U {0). As is well known,  it follows f rom (1.1), t h a t  P(~)-+ + ~ a t  
least as fast  as a posit ive power  of [ ~ [, hence t r ivial ly  t h a t  (P)* mus t  contain a full 
neighborhood of the  origin in R~. The newton  po lyhedron  F(P)= U Fk(P) is then  
defined as the  union of those (n -1 ) -d imens iona l  f lat  faces of the  bounda ry  of (P)* 
t h a t  are not  pa r t s  of a coordinate hyperplane.  I t  is possible to choose the  normal  
of each Fk(P) so t h a t  Ok(a)= (v k, ~> = 1 for ~ E F~(P), and so t h a t  

(P)* = {~>~ 0; 0(~) = m a x  0k(:r ~< 1}. (1.2) 
k 

Then  F(P) = {~ >~ 0; 0(~) = 1 }. 

Now let {~J}, 1 ~<j~<N, be the  vert ices of F(P). Then for all ~ e R ~ ,  we can find 
numbers  21, ..., 2n such t h a t  

N 

~ = 0 ( ~ ) ~ t C a  ~, ~ t r  ~r (1.3) 
1 

(In fact ,  ~E0(a)Fk(P)  for a t  least  one value of k.) Since (1.1) implies t h a t  the  com- 
ponents  of each a~ are non-negat ive  even integers, it follows f rom (1.3) t h a t  
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I =l < for  real, ~ arbitrary. (1.4) 
\ 1 =  : ! 

I n  part icular ,  since 0 ( a ) ~  1 for ~ E (P), we have  

P(~) < C(I + ~F(~)) for ~ real, 
N 

eg~) =~  ~=~. (1.5) 
1 

I f  P(~)-~ + ~ ,  and  if not  only P(~)=O(1)Qp(~), bu t  also ~.(~)=O(1)P(~),  when 
i~i ~ co, ~ real, t hen  P is called a complete and non-degenerate real polynomial  
(Mihailov [8]). Le t  F s' J(P) denote  an a rb i t r a ry  s-dimensional  face of F(P) ,  0 ~< 8 ~< n - l ,  
j = 1, 2 . . . . .  and set 

P ~ J ( ~ ) = ~ c ~  ~, o~EF~'J(P), 

where the  c~ are the  coefficients of P(~). Then  a necessary and  sufficient condition 
for a real P to be complete  and  non-degenerate  is tha t ,  for all s, j, 

P~J ($) # 0, for real ~ = (~l . . . . .  ~-) with all ~ ~ 0. (1.6) 

(Mihailov [8], see also Fr iberg [3]). Due to es t imates  like (1.4), where 0(~)<  1 when 
E (P), ~ ~ F(P), if P is complete  and  non-degenerate  then  P~(~) = ~ c ~  ~, ~ E F(P) ,  

is in a na tura l  sense the  principal  pa r t  of P(~). 

L e m m a  1.1. Let Y = (~]1 . . . . .  7 n ) ,  with Y1 even non-negative integers, and suppose that 
the real polynomial P(~) tends to + ~ as I~ I -~ ~ ,  ~ real, so that the integral 

I v ( t ) = f U e x p { - t P ( ~ ) } d ~ ,  t > 0 ,  ~ E R "  

is convergent. Let e = ( l ,  ..., 1), and set O=O(7+e)=maxOk(7+e). Then there are 
constants c, C, and O' >~ O, depending on P and on Y, such that 

ct -o <~ lv(t) <~ Ct -o' /or 0 < t ~ < l .  (1.7) 

I / P  is also complete and non-degenerate, O' can be chosen arbitrarily close to O. 

Proo/. I f  ~ E (P), then  0k(a) = <v k, ~> ~< 1. Hence 

P(~) < A  1 + , ~ E R  n. 

But  then  trivially,  for 0 < t ~< 1, and  for all k, 

which proves  the first  of the es t imates  in (1.7). Next ,  choose n l inearly independent  
points  flJ E (P)* such t h a t  

P(~)>~B~I~'I--B: for ~ real, some B > 0 ,  (1.8) 
1 
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and  such t h a t  r + e = 0 ' ~ 2 q f l  j, ~ ; t  s = l ,  all 2 j > 0 .  
1 1 

This can be done for some 0 '~>0(7+e ) when P(~)-+ + ~ as [~I-~ ~ ,  and it  can be 
done with  0' ~<0(7 + e ) +  e, for a rb i t r a ry  e >0 ,  if P is complete  and non-degenerate .  
( I t  can even be done with  O'=O(7+e ) if we know t h a t  7 + e  is an interior  point  of 
O(7+e)Fk(P), for some k.) Now let  us introduce as new independent  var iables  
~ = ~ ,  1 ~< j ~< n. Le t  A = (I~) be the  inverse of the  ma t r ix  (fl~), and set  I ~= (t~, ...,/~).i 
Then ~, =qa* for ~E R~, and the functional  de t e rminan t  is d(~)/d(q)= det  (~i~/*?~)= 
det  (A) (~  ... ~n)/(q~ ... ,?~), det  ( A ) = l / d e t  (fl~). I n  view of (1.8), it follows tha t ,  for 
0 < t ~ < l ,  

which proves  the  remaining half of (1.7). 

Theorem 1.1. Let P(~)=~ c ~  ~, ~ER n, be a real complete and non-degenerate poly- 
nomial with P(~)-> + oo as I~[ --> 0% ~ real. Suppose that,/or a given even multi-index 
7 >~0, the point 7 + e is an interior point o/OFk(P)/or some k, 0 = 0 ( 7 + e ) .  Set P~($)=  

ca ~ ,  o~ E Fk(P). Then, as t--> + O, 

(1.10) 

Proo/. Let  ~+eEOF~(P), 0 = 0 ( v + e ) ,  and let  v be the normal  of Fk(P), so t h a t  
rn @, 7 + e} =0.  Le t  t-v~ = (t -~I ~1, ..., t ~ ) ,  and  set  

g(~, t) = ~ '  exp  { - tP(t-~)}; g(~) = ~ exp { - P~ (~)}. 

Here  tP(t-,~)=P~(~)+O(1)t ~, 6 >0 ,  as t--> +0 ,  for fixed ~. I t  follows tha t ,  a t  least 
formally,  

t~ = f g($, t) d~-~ f g($) d~ = f ~" cxp { - P~(~)} d~ 

as t-> §  Now choose the  fls of (1.8) as points  on Fk(P). Then,  for 0 < t ~ l ,  

0 ~< g(~, t) ~< ~ '  exp { - B ~ I~r + B~} E L~(R'~). 
1 

(Cf. the  proof  of L e m m a  1.1.) Therefore (1.10) will follow f rom Lebesgue 's  theorem 
on domina ted  convergence. 

We can also give a direct  proof t h a t  g(~)E LI(Rn). I f  P is complete and non-de- 
generate,  then  tr ivial ly (1.6) holds for all/~, j. Bu t  (1.6) can be used to prove  tha t ,  for 
some constants  C, c > 0, 

c ~  (~) ~< P~ (~) ~< C ~  (~), when ~ E R n, 
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where Q~(~)=~ ~J, summed over all j with ~JE Fk(P). (Cf. the  proof of Theorem 
4.3, Friberg [3].) We m a y  therefore assume tha t  g($)=~7 exp { - ~ ( ~ ) } .  Obviously 
{~J; ~JEF  k} is a basis for R ". Choose, for 1 <~i<<.n, another  basis {~'1, ..., d ""-~, e~}, 
where {~'~}~ ~ is subset of {~;  ~r and where e ~ is the i th  coordinate vector  
(0, 1, 0). Then  y + e = ~  -~ ~ ~'~ ~ eL :r ~ j  in a ..., ..., qj~ +q~ But  all the  1 ~<n, are 
hyperplane (#,  ~) =0 .  Hence q~ = ( # , 7 + e > / ( p ,  e~>, and we can make q~ < 0  by  choos- 
ing the points a ~' ~ so tha t  ~ § e and e ~ are on different sides of the hyperplane.  To 
estimate ~ g(~)d~=~ ~ exp { -e~(~)}dL  w e  n o w  divide the domain of integrat ion 
into subsets, 

D~: {~eRn; 1+~[~ '~[~<[~,[~},  
1 

D~+~: {~eR~; 1+5[$~"~[~>[~,[ ~, 
i 

Since 0~(~) ~> ( ~  [ ~ [ ) / n -  1 on D~+~, 
obvious. Bu t  when i = 1, for instance, 

l <~ i <~ n, s > O, and  

for all i}. 

the convergence of the integral o v e r  Dn+l is 

f f. f 

(~ n 1 i " with = e(~l qj) +q~ < 0 for e small enough. Moreover, on D 1 we have every 
f~Jl, J > 1, bounded  by  a power of I~1 I" Consequently the  integral over D 1 converges 
as ~1 ~ l ( log~l)~-ld~l .  

Theorem 1.2. Let P(~) be as in Theorem 1.1, but suppose that ~, >~0 is an even multi- 
index such that T + e is contained in OF ~' J(P), 0 = 0(~ + e), /or some s, ~, with s chosen 
as small as possible, O<~s<~n 1. Then 

Iv(t  ) = t - o ] l o g t l  n 1-S[KT(P)+o(1)], as t ~ + 0 ,  (1.11) 

where the constant K r ( P  ) depends only on F(P),  P~J(~), and y. A l so , / o r  some con- 
stant,s A1, A 2 > O, 

A ~ ~< K v (P) ~< A~ ~ F(0), 0 = 0(~ § e). (1.12) 

Proo/. Let  T+eEOFS'J(P),  0=0(9r and let v be a normal  of F ~'j, such tha t  
(v, zr = 1 for ~ E F s' J, and consequently (v, ~ + e} = 0. I f  s < n - 1, then v is not  uniquely 
determined, but  varies over an affine manifold of dimension r = n -  1 - s .  Let  

v(t) = t~ (t) = f ~Y exp { - tP(t ~ ) }  de. 

Obviously, in order to prove (1.11) it is enough to show tha t  

- t ~ t  v ( t ) ~ K : , ( P ) # O  as t ~ + O ,  r = n - l - s .  (1.13) 

The case r =O was discussed in Theorem 1.1. Suppose now r = 1. Then, since tP ( t -~ )  = 
tl-<~'~>c~ ~, we have 
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- tv' (t) = f u { ~  (1 - <v, a>) ta-<"">c~ ~} exp { - tP(t-*~)} d~. (1.14) 

Let  F '  be one of the (n -1 ) -d imens iona l  faces of F(P), passing th rough  F ~'r Then 
the normal  v' of F '  is such tha t  @', a > = l  for a ~ F ' ,  and @', y + e > = @ ,  y + e > = 0 .  
Therefore a change of coordinates t - " ~ t - / ~  t ransforms the integral in (1.14) into 

f~{~ ' (1 - @, ~z>) c ~  ~ + o(1)} exp { - tP(t-~'~)} d$, (1.15) 

where o(1) stands for terms containing powers of t, while ~ '  contains the terms with 
@', a > = l ,  <v, a > < l ,  i.e. with a~F', a(~FS'k But  for such a it is easy to check tha t  
y+e+ot is an interior point  of O(y+e+a)F'. Thus, in view of Theorem 1.1, the 
integral 

f ~r {~, _ { _ tP(t-~' ~)} d~ (1.16) (1 <v, ~>) C:~ ~} exp  

depends continuously on t in the interval  [0, 1 ]. 
I n  order to show tha t  the value of the integral for t = 0  is independent  of the c~ 

with ~ r F s' J, let us choose n linearly independent  points fll . . . . .  fi~ E F ' ,  with fi2, ..., 
-- n i fi~EF ~,j, and such tha t  y+e-O~22~fl with ~ 2 ~ = 1 ,  22 . . . .  , ~ > 0 .  We will get 

= ~ / A f l  ~ with ~ #~ = 1, #~ ~> 0, a n d / ~  > 0, when a C F ' ,  zr (~ F ~' J. I t  follows that ,  for 
such ~, 

1 - <v, ~ >  = ~ / ~ ( 1  - <v, fl*>) =kq(1  - <v, i l l> ) ,  ( 1 . 1 7 )  
1 

Also, we m a y  always assume tha t  @, t71} < 1, so tha t  1 -  @,/71} 4= 0. Now, as in the 
proof of Lemma 1.1, let us introduce new independent  variables ~ i = ~  ~, 1 ~<i ~<n. 
Since (for ~ e R+) g(~)/d(~) = (~1 ... ~ ) / {de t  (ill, ... fl~)~ ... ~ } ,  we find tha t  the limit 
of the integral in (1.16) as t-~ + 0  can be writ ten as a sum of 2 n terms of the type  

A'fR.+Vo~-e{y' ' ,  #1c,~ }exp{-~c~'}d~,  2=(0,22,...,2,J, (1.18) 

where  A ' =  (t -<~,, f l l>)/det  (ill, -.-, f in) ,  a n d  where  t he  set  of coefficients  {c~} is i den t i -  
cal with the set {%; a E F '}  of coefficients for P~ (~) except possibly for a change of 
sign in some of them. Now let ~=(91  . . . .  , ~ n ) = ( ~ l , ~ t ) ,  ~'~--"~n+ 1, and set 2 ' =  
(~2 ... . .  2n), e' =(1,  ..., 1 ) e R  ~-1. Then the integral in (1.18) is equal to 

fR~ (n')~ _ (~/@1)} exp { - Z c; ~"} an1 an' 

fR,  1 d '  = (~')a'-e'exp{-Sc'~'l~,=o} ~. 
+ 

(1.19) 

The method  we have used above to take care of the terms in the sum in (1.15) 
corresponding to points ~ E F', can of course also be used on the terms derived from 
points on the other ( n -  1)-dimensional face, call it F rr, of F(P) passing th rough  F s' J. 
Thus it remains only to consider the terms in (1.14) of the type  
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f~ ' (1 - <v, ~>) t~-<~'~>c~ exp{  - t P ( t - ~ ) }  d~, (1.20) 

wi th  @', zr  @", ~ } < 1 ,  hence also @, g } < l .  Af te r  a subs t i t u t ion  t - ~ - + ~ ,  
(1.20) t akes  the  form 

- @, :r c~t~ exp { - tP(~)} d~ = Ct~247 (t). (1 
J 

We can now use L e m m a  1.1 to ob ta in  the  e s t ima te  

to+l i~+~(t ) < C1 t-a, a = O ( 7 § 2 4 7 2 4 7  

for a r b i t r a r y  s > 0 .  B u t  i t  is easy  to  check t h a t  0 ( 7 § 2 4 7 2 4 7  when  
@',  ~> < l ,  @", ~> < 1. I t  follows t h a t  a can be made  negat ive ,  hence t h a t  the  t e rms  
of t y p e  (1.20) do no t  influence the  a sympto t i c  behav ior  of Iv(t ) . 

Consider now the  case when r >  1 in (1.13). Le t  yl be a no rma l  to F ~'j, wi th  @1, a> = 
1 for ~E(P)  if and  only if a E F  s'j. Set  v = v  1 in (1.14), and  spl i t  the  in tegra l  in to  a 
sum of t e rms  like 

_ <yl ,  ~>)  Ca t I <v~, ~>f~r+~ exp { -- tP(t yl~)} d~. (1.21) (1 

Obvious ly  zr E F s' J if we d e m a n d  t h a t  1 - @1, a} # 0. Suppose  t h a t  ~ E F ~'' J', where 
F is an  s ' -d imens iona l  face of F(P),  passing th rough  F ~' J, wi th  s'  > s, s '  chosen as 
smal l  as possible.  I t  is easy  to  check t h a t  7 + e  + ~ is an  in ter ior  po in t  of 0(7 + e  § 
~ ) F  ~' ' j ' .  Le t  v' be a no rma l  to  F ~' ' j ' ,  wi th  @',  ~} =1 .  Then  (1.21) is equal  to  

(1 - @1, ~}) c~f~r+~ exp { tP(t-~'~)} ds i 

We can now proceed b y  induct ion  to  show t h a t  the  t e rm  (1.21) is of re levance  to  t he  
a sympto t i c  behavior  of Iv(t ) if and  only  if a E F ~'' j' for some F s'' j' t h rough  F ~' J wi th  
s ' = s + l .  Therefore,  le t  us choose a nes ted  sequence of faces of increas ing d imen-  
sion F s' Jc F~+I.J '~ ... ~ F s+r.s, = F n-l.j, with  corresponding normals  vl, .-., v~, v~+l. 
F ina l ly ,  le t  us choose n l inear ly  i ndependen t  poin ts  ill, ..., fin wi th  fl~+l, ..-, fl~e F ~' ~, 
f l~eF z+~'~' ..., f l leF~-~'~ ' .  Then the  same k ind  of a rgumen t  t h a t  led  to  (1.19) will 
show us t h a t  the  t o t a l  con t r ibu t ion  to  Kv(P  ) due to  any  set of r poin ts  ~ ' ~  F s+~'y, ..., 
9~r~ F n-l'tr on the  chosen seuqence of faces is equal  to  a sum of 2 ~ t e rms  of the  t y p e  

f R  i # A ~_ ( ~ ) ~  I,,= .... ,r=0}d~l . . .  d ~ ] r / ( ~ l  . . .  fir). (1.22) 

Here  A = l~I (1 - <vk~ fl*>)/det (ill, . . . ,  fin), (1.23) 
i=1 

and  2 = (0, ..., 0, ,~r+l . . . . .  ~n) is de t e rmined  b y  the  expans ion  7 + e = 0( 7 + e) ~7+12,fl,, 
~, = 1, 24 >0 .  Obviously ,  in (1.22) only the  cons tan t  A is dependen t  on the  choice 

of the  sequence FS'J~ F~+I'J'~ .... This means  t h a t  we have  in fact  p roved  (1.11), 
wi th  K v given b y  a sum of 2 n t e rms  like (1.22), a l though wi th  new cons tan ts  A,  equal  
to  a sum of cons tants  of the  t y p e  (1.23). 
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I t  remains  only to derive the es t imate  (1.12). Bu t  if ~, = ~Z~, 1 ~< i ~< n, then  

F~, 

Fur ther ,  it can be p roved  t h a t  

n 
P)~(~)>~co)S(~)=c~ ~ for ~ 6 R  ~, some c > 0  

r + l  

(see Friberg [3], the proof  of Theorem 4.3) .  I t  follows t h a t  

= A H {c-~'~ <A~ 
r + l  

The second half of (1.12) follows in the  same way  f rom a t r ivial  upper  es t imate  of 

Remark. Let  P($) be an  a rb i t r a ry  real polynomial  with P(~)-+ ~ as ]~1--> co, 
real. Le t  {aJ}~ be the vertices of F(P), and set  e F ( ~ ) = ~ v  ~x. (The a s are even, non- 
negat ive  multi-indices.) Then  @F(~) is a complete  and  non-degenerate  real polynomial ,  
and P (~ )<C(1  +@y(~)) for ~ real, so t h a t  

I r (t; P)  = f ~ r  exp { - tP(~)} d~ >~ C l I  ~, (c2t; ~F) 

for 0 < t  ~ 1. This means  t ha t  in this general  case Theorem 1.2 gives a t  least  a lower 
bound for the  singulari ty of Iv(t; P) as t-+ +0 .  

2 .  T h e  t w o - d i m e n s i o n a l  c a s e  

Let  P(~), ~ 6 R  2, be a real polynomial  in two variables,  and write P(~) in the  form 

ms 
P(~) = P l  (~)  M (~2 - r (~)),  deg Pl (~1) = m ~> 0. (2.1) 

/=1 

Then there  is a constant  A 1 such t h a t  all the  zeros r can be represented by  Puiseux 
expansions of the  type  

r  = ~ C.i~ 61i' (~0 > (~1 > ' ' ' '  for ~1 >~ A], (2.2) 
0 

where ei ther  the  sum is finite o r ~ / +  - c~ as ?'-+ cr Suppose, as in the  preceding para-  
graph,  t ha t  

p(~)-+ + c r  as ]$] - + ~ ,  ~real .  (2.3) 

I t  follows tha t  t h e  coefficients c~ in the  expansion (2.2) of a zero for P(~) cannot  all 
be real. Le t  ~b be a fixed zero, and suppose t ha t  cj is the  first  non-real  coefficient in 
(2.2), J=J(r Then,  if 
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k - 1  

vo=~2; v~.~=~-- ~ c~ i ,  l <~]c<~J, (2.4) 
0 

each such we., will be called a real truncated /actor of length k for P(~). Le t  r  
~ c~ '~  be a second zero of P(~), with vr162 bu t  with vr162 if 
k §  1 ~<J. Then r qV will be called conjugate at level k. When q~' varies over all zeros 
conjugate to r a t  level k, we will set c~ =%~, (~ =~,~, i = 1,2, .... We shall also use the 
notat ions &,.~=max (($~, 6,~), and %,~=c~, c ~ - % ,  or -c~, depending on whether  
&.~ > &., = ~., o r  < 5. .  

Lemma 2.I. Suppose P($) is a real polynomial (2.1), satis/ying the condition (2.3). 
Let - s-1 Vr - ~ 2 -  ~o c~J, s >~ l, be a given real truncated/actor/or P(~), and set 

k < s  Ck, i=~O 
(2.5)  

Then there are constants A, B, B' > 0  such that 

B <~ P(~)/Mr (~i, vr < B',  (2.6) 

when ~ varies over a certain region Vr de/ined by conditions o/ the type 

(i) ~ I ~ A > O ,  ( i i ) [ v r  

(iii) [v~ .~ -c~ ' l>~e~  ~ /or all i with c~i real. ! (2.7) 

Similarly, i/ Mo(~) = ~? l~ (1~2] § ~o,), 

then B <~ P(~)/Mo(~ ) < B', 

when ~ varies over a region V0, defined by the conditions 

(i) ~ ~> A > 0, (ii) 1~2 - c0~~ ~>~0~ /or all i with Co~ real. 

Proo/. Let  r  be an arb i t rary  zero, and let v =vr 

8--1 C~ s * 
Then ~ - ~'(~1) = v + Z c j ~  - ~ cj ~J. 

0 0 

Hence if r q~' are conjugate a t  level k <s,  then  

~2 - -  r  = (V - -  Ck, i~11 k'i) § 0 ( 1 )  ~1 k'i 

for some i, a s  ~1 --> + cx:~. If q~, ~' are conjugate at  level >~s, then  instead 

~2 - r = ( v -  c~, ~. ')  + o(1) ~s~ 

for some i, as ~1-~ + r162 But  obviously, for some BI>O, 

I v - -  Cs~nl ) B i  (Iv I + ~'~1"), 
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when v =vr and ~1 satisfy conditions (i)-(iii) of the lemma (with s small enough), 
i.e. when ~E Vr Since P(~:) =P(~:t)[-I (~-r >0 for ~:1 big enough, it is now easy 
to complete the proof of the lemma. 

Lemma 2.2. Let P(~), ~ER 2, be a real polynomial satis]ying (2.3), and de[ine 
Mr v) as in Lemma 2.1. Let 7 =(71, 72) be a given even multi-index, and set 
7r = (71 +(~072, 0), when r ~ + .... Then, as t ~  +0, the singularity o[ 

Ir.A (t; P) = f~>A ~ exp { - tP($)} d~ 

with A big enough, is o/the same order o/magnitude as the highest singularity o/anyone 
o] the integrals 

f .  

]v,A (t; Me,s) = A $~r exp { - tMr (~1, V)} d~ldv 

]or arbitrary r s ~ ], or o/ 

IT.A (t; M0) = t "  ~r exp { -- tM o (~)} d~. 
d~ t>A 

(A corresponding statement may be proved for 

I~.A(t; P) = ( ~r exp { - tP(~)} d~.) 
J ~  l < - A  

Proo[. Let Vr be the set (2.7), for arbitrary ~b and s. In view of the definition (2.4), 

Vr s - -  Csi ~1 s~ = Vr s +1, 

for some r with r r conjugate at level s. I t  follows that  the union of the mutually 
disjoint sets Vr for arbitrary r s, and of V0, is the entire set {~; ~1 >A}. Hence, 

I , .A(t;P)= Z fvr ~ e x p { - t P ( ~ ) } d ~ +  fro ~' exp { -  tP(~)} d~. (2.8) 

But  for given r there are cr, c~ > 0 such that  

/ s - 1  \y2  

Together with the lower estimate in (2.6), (2.8) therefore shows that  

/r.A(t; P) <~ ~ c;Ir, A(Bt; M+.:) + /r.A(Bt; M0). 
r 

On the other hand, the upper estimate in (2.6) is obviously valid not only in Vr 
but for all ~: with ~1 >A. This means that  

I,.~(t; P) >~ max (max crIr, A (B't; Mr Ir.A(B't; Mo)), 
r  

and the proof of the lemma is complete. 
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Although M o and all the  Mt.s are not  necessarily polynomials ,  a t  least  they  tend  t~  
infinity as I~l -> r162 ~1 > A, and  it is easy to check tha t  the results of section 1 are still 
val id if we give the  na tura l  meaning to F(Mo), etc. Consequently each Ir ,a  (t; Mo) 
or Ir.~(t; Mr has a s ingulari ty of order t-Ollog t[ ~ as t ~  +0 ,  with r = 0  or 1, and  
with 0 defined b y  y and  F(Mo) or by  yr and F(Mr respectively.  Bu t  then,  due to. 
L e m m a  2.2, It. ~ (t; P)  mus t  have  a singulari ty of the same type ,  wi th  

0 = m a x  (0(y + e; Mo), m a x  0(y~ + e; M~.~)), 
r  

and with r = 0 or 1. 
Now suppose, for given r s, t h a t  0 = 0 ( ? r  M~.~), and let X~.~=I on Vr =~) 

outside Vr Then we can find v =v~.~ such t h a t  

tof, exp { -- tP(~)} d~ 

= ~qh.s (t V'~l , t-VZV) ~1~(1 + o(1)) exp { - Pr ($1, v) (1 + o(1))} d~, 
J 

where Pr is made  up of the  cons tant  t e rms  in the expansion of tP(t-~'~l, t ~ v +  
~so-lcj(t-~l)~s ) in powers of t. Assuming for simplici ty t h a t  r = 0 ,  we can now use 
Lebesgue 's  theorem on domina ted  convergence to show t h a t  

as t-+ +0 .  Here  Z~,s(~, vr is the  characterist ic  funct ion for the  set  V~.s def ined 
as the limit, as t-~ +0 ,  of the  set given by  the  conditions 

(i) ~1 > Ate', (ii) t ~ - ~ - ~ '  I vr ] < e ~  ~-~, 

(iii) [t~,~,'-~v~.8- c ~ "  I >~s~ ~ for c,, real. 

Le t  for instance ?22/?) 1 = ~s j ,  for some j. We m a y  assume wi thout  restr ict ion t h a t  (~s = ~s, 
the  exponent  de te rmined  by  the  expansion (2.2) of r Then  it is easy  to check t h a t  
V~,s is given by  the  conditions 

(i) ~1>0 ,  (ii) I v - c s ~ ' l > ~  s' if c~, is real, 5~,=(~8. (2.10) 

(We have  to assume here t h a t  s < m i n  (~.) Fur ther ,  

0 = (y,~ + 1 +(~s)/mr 
where, as is easy to check, 

(2.11) 

mr ~ ~ 5k.~+~(~s,v (2.12) 
k < s  ck ,  i #  0 i 

I n  other  words, (2.11) means  t h a t  0 =0(yr  Mr in this case. I f  instead ~2/721 = 

(5~_1, then  V~.s is given by  

(i) ~I > 0, (ii) ]Vr < s ~ ' - ' ,  (2.13) 
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and O=(~r162 s 1, again equal to O(~r162 Finally, if %/v1>~_1, 
then V~,~ reduces to the half-line ~1 >0, v=O. Hence this case does not contribute a 
relevant term to the asymptotic behavior of Ir,A(t; P). 

Let now r s be given such that  0 satisfies (2.11), and denote by r the zeros of 
P(~) for which 

vr162 , cs~real, ds~=(~s. (2.14) 

Then 0(7r247 Mr162 Me, s), and while Vr is given by (2.7), Vr is 
given by the conditions 

(i) ~I~>A>0, (ii)Ivr (iii) ... 

so that  V~.~+I has to be the set 

(i) ~1>0 ,  ( i i ) ] v ~ . ~ - % ~ " l < s ~  ~. 

(Cf. (2.13).) In other words, V~.~ and all the sets V~.s+l together cover the entire set 
{~ E R2; ~1 > 0}, without overlapping. We are therefore led to introduce the new set 

Wr ~ > A ;  ]vr [vr for all i with c~ real, ~s~#~, 
(2.15) 

which contains Vr and all the Vr defined by (2.14). Recalling (2.9), it is then 
easy to see that,  as t-+ +0, 

S - 1  

where P~.~ (~, v) = lira ~m~.~ p(~-I ~,  ~-~v + ~ c~ (~-1~)~0. (2.17) 
~.-->0 0 

Similarly, let m 0 = m + ~ do~ (2.18) 

and suppose that  O=(7i+5or247162162 for some ?'. Then we may 
introduce the set 

w0: ~ > ~, [ ~ -  cot ~0,[ ~> ~0, for c0~ real, ~0~* ~0r 

and prove that  

t~176 f~>o~erexp{-P~(~)}d~ e, (2.19) 

with P~F defined as in section 1. 
We have been able to show so far that  the leading term of the singularity of the 

integral 

P) = ti~>~ ~ e x p  { - tP(~)} d~ Ir,~(t; 
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may  be referred to  the behavior  of the integrand in one or more "domains  of slow 
growth"  for P ,  the sets W~.~ and W0. The same arguments  will work if we s tudy  the  
integral of ~v exp { - tP(~)}  over the set {~ < - A } .  Then we have to start ,  of course, 
not  with (2.1), bu t  with a factorizat ion 

m~ 

P(}) = p, (}~) 1-I (}z - Vi ( - el)). 
i = l  

I n  this way  we are able to  determine all the contributions to the leading term of 
I v (t; P)  f rom domains of slow growth for P(~) corresponding to  real t runca ted  factors 
~ 2 - ~  ~cj~; or ~ - ~ - l c j ( - ~ j ) o ;  with (~o>0. The contributions due to the re- 
maining domains of slow growth,  which are parallell to  or converging towards the  
~-axis ,  can be determined in the same way, simply by  interchanging the roles of  
~1 and ~2. 

We are now ready to collect our results as follows: 

Theorem 2.1. Let P(}), ~ C R 2, be a real polynomial satis/ying (2.3), and let T be an. 
even multi-index. Then 

, , ( t )  = d~=t-~ as t-+ + 0 ,  

where 0 and r, r = 0  or 1, can be explicitly computed by the methods o/Lemma 2,2. and: 
where 

A ~ F(0) ~< K~ (e) ~< A ~ F(0), (2.20} 

/or some constants A,  A 1 > 0  depending only on P. 

Most of the details of the proof have already been given, at  least for the case 
r =0 ,  and the case r = 1 does not  offer any  additional difficulties. I t  remains only t o  
recall tha t  Kv (P) has been found to be a sum of integrals determined by  limits such 
as (2.16) and (2.19), f rom which the  estimate (2.20) easily follows. 

Remark. If  m 0 and mr are given by  (2.18) and (2.12), respectively, then it follows. 
t ha t  

k - 1  i 

This means tha t  mr is a decreasing funct ion of s, for fixed r However,  mr ia 
always positive, because it is never smaller than  the exponent  of the highest power of  
}1 in M,,s(},, 0), and Mr (}1, 0)-~ oc as }1-~ oo. Now, let r va ry  over all t runca ted  

~ 2 - - ~ 0  C)(-~I  ) ~, }1-- ~ - 1 C j  ( +__ }2) ~j, wi th  factors for P(}) of all the four types  s-1 o. 
O<~s<~J(r Then 

0 = max 0(7 r + e; Me.s), 
q~,s 

with an appropriate  definition of 7r and Mr But  if 0(7 r § e; Me, s) is given by  (2.11)~ 
for instance, then, at  least for big values of 7, 

max  0()~r + e; Me.s) = 0(7r § e; Me. j(r 
8 
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This means that,  for big values of 7, 

0(7 + e; P) = max 0(7 ~ + e; Ms, ~(r 
r 

Under all circumstances we have the estimate 

0(7 + e; P) ~< max (7r + 1 + (~0)/mr162 
r 

which follows from (2.11), because ~o~>8~ for all s. This (non-sharp) estimate could 
also have been obtained directly from a lower estimate for P(~), of the type tha t  was 
discussed in the paper  [4] on principal parts  of hypoelliptic polynomials. I f  we extend 
the definition of a principal part  given in [4] to the case of a real polynomial satisfy- 
ing (2.1), we get the obvious result tha t  0 and r depend only on the principal par t  of 
P(~). 

Let  

3.  E x a m p l e s  

1 n 
P(~) = ,~,l~l TM + ( ~  . . .  _.Z~)2P0 - < 

p m 

Then F(P) has exactly n faces of dimension n -  1, all passing through the point 
(2p, ..., 2p). Using the results of section 1 it is easy to check that ,  for instance, 

as t-~ + 0, which confirms the example given in the introduction. 
As a second example, consider the real polynomial P = [P1 [3 where 

P1 (~) = ~ - ~ + i ~  ~3. 

(The polynomial P1, which is hypoelliptic but not multi-quasielliptic, has been studied 
in other connections by Pini [10] and Friberg [4].) Let  us first use the factorization 

P1($) = (~3 - ~14is - (i/3) ~/~ + . . . )  (~2 - to~/~ + . . . )  (~  - ~o~/~ + . . . ) ,  

for ~ I>A,  with ~oa=l, ~o# 1. Here the only real t runcated factors are v0=~2, and 
vr = $2 - ~/~, with 

M~,I  (~1, v) = Iv - (~/3)  ~ l  3 Iv - ( ~  - 1)  ~ i ~  I ~. 

Hence we find, using the results of section 2, tha t  O(7+e;P)=(7r with 
7r247 73, 0), and v=(1/8,  1/6) if 371+472<5, v=(3/20, 1/10) if 371+473>5,  
i.e. for all large 7. The degenerate case r = l  would appear, with 0=1/2,  for 371+ 
472 =5,  but there is no solution to this equation because y,, 73 must  be non-negative 
integers. Therefore r = 0  for all 7" Finally, the coefficient Kv(P ) is, in the case 371 + 
472 > 5 for instance, 

= ( ~,+4/3r~ exp { - 3~  s/3 (($3 - ~/3)~ + (1/9) ~/3)} d~. Kr  (P) 
J~ 1>0 
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I n  order  to  check the  resul t  we m a y  use ins tead  the  fac tor iza t ion,  for ~2 > A ,  

i ~3/~ + P1 (~) = (~1 - ~2 . . . )  (~1 + i ~ / 4  + . . .  ) 

• (~1 - ~/4 + (i/4) ~1/4 + . . . )  ( ~  + ~/~ _ (i/4) ~1/4 + . . . ) ,  

wi th  v 0 = ~1, V~.l = ~1 - ~e 3~4, v~,l = ~l + ~3/4, and  for ins tance  

Mr (~2, v) = Iv - (i - 1) ~ / ~  I' (v § 2 ~ / 4 )  2 (v 2 + (1 /16)  ~1/2). 

F o r  ~2 < - A ,  the  corresponding fac tor iza t ion  shows t h a t  v0=~ 1 is the  only  real  
t r u n c a t e d  factor .  The values  for 0 and  r compu ted  b y  use of the  new fac tor iza t ions  
are  easi ly  seen to  be the  same as the  values  we a l r eady  know. However ,  the  formula  
for K v (P) will no t  be the  same, since i t  is now given by  the  sum of two integrals  over  
the  hal f -plane ~2 > 0, ins tead  of b y  one in tegra l  over  the  hal f -plane ~ > 0. 

A C K N O W L E D G E M E N T S  

The author deeply appreciates the hospitality enjoyed by him at the University of Minnesota 

during the year 1965-1966. 
This research was supported by the Air Force Office of Scientific Research under Grant No. 

AF-AFDSR 883-65 to the University of Minnesota. 

Department o/Mathematics, University o] Lund, Lund, Sweden 

(Present address of J. F. is: Dept. of Math., Univ. of Lund, Sweden.) 

R E F E R E N C E S  

1. BERGENDAL, G., Convergence ans summability of eigenfunction expansions connected with 
elliptic differential operators. Medd. Lunds Univ. Mat. Sere. 15, Lund 1959. 

2. BlCOWDER, F., The asymptotic distribution of eigenfunctions and eigenvalues for semi- 
elliptic differential operators. Proe. Nat. Acad. Sci., U.S.A., 43, 270-3 (1957). 

3. F~IBERG, J., Multi-quasielliptic polynomials. To appear in Ann. Seuola Norm. Sup. Pisa, 1967. 
4. FRIBE~G, J., Principal parts and canonical factorizations of hypoelliptic polynomials in two 

variables. Rend. Sem. Mat. Univ. Padova, 37, 112-32 (1967). 
5. G)~RDI~C, L., On the asymptotic properties of the spectral function belonging to a self- 

adjoint semi-bounded extension of an elliptic differential operator. Kungl. Fysiogr. SSllsk. 
Lund F6rh. 24, 1-18 (1954). 

6. GORSAKOV, V. N., Asymptotic behavior of spectral functions for hypoelliptic operators of a 
certain class. Soviet Math. Dokl. 4, 1328-31 (1963). 

7. G~uw V. V., Connections between local and global properties for solutions of hypoelliptic 
equations with constant coefficients. Mat. Sborn. 66 (1965). 

8. MIHAILOV, V. P., The behavior of certain classes of polynomials at infinity. Soviet Math. Dokl. 
164, 1256-9 (1965). 

9. NILsso~, ~. ,  Asymptotic estimates for spectral functions connected with hypoelliptic differen- 
tial operators. Ark. ]. Mat. 5, 527-40 (1965). 

10. PINI, B., Osservazioni sulla ipoellitticith. Boll. Un. Mat. Ital. (3) 18, 420-32 (1963). 

298 

Tryckt den 6 oktober 1967 

Uppsala 1967. Almqvist & Wiksells Boktryckeri AB 


