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Asymptotic behavior of integrals connected with spectral
functions for hypoelliptic operators

By Joran FRIBERG

ABSTRACT

In the first part of this paper are considered real polynomials P(£), & €R™, complete and non-
degenerate in the sense that there is a set of (even) multi-indices o, j=1, ..., N, such that, for
&} > K, & real,

cP(E)< D E< OP(£).

(See V. P. Mihailov, Soviet Math. Dokl. 164 (1965), MR 32: 6047.)
It is then proved by an explicit computation, for every given even multi-index y, that there are
a real number 6 >0 and an integer 7, 0 <7 <n, depending only on y and {oc’ }, and such that

f&yexp{ ~tP(&)} dE = K,(P) 1 ®|log [ (1 +0(1))

as t—> 4 0. A Tauberian argument then leads to an asymptotic estimate of the integral

e*P(2,0) = fﬂw £ g,

where e(()ﬁ’ P is a derivative of a certain spectral function. Less explicit results for a larger class

of polynomials were given by N. Nilsson, Ark. f. Mat. § (1965). In the second part of the paper,
the explicit computations are extended to the larger class considered by Nilsson but under the
restriction n =2,

0. Introduction

1. A polynomial P(§), &£=(&,, ..., &) ER™, is called hypoelliptic if it is strictly
stronger than all its derivatives P'® (£)=(9/0&,)™ ... (0/0&,)*P(£), in the sense that
Pl (&) =0(1)P(£) as |&|—>oo, & real. Consider now a hypoelliptic polynomial P(£)
with real coefficients. The sign of P(£) will always be chosen so that

P~ +oo as |&| »oo, E&real (0.1)

(We have to exclude the case, for n =2, when (0.1) cannot be made valid by a
change of sign.) Let P(D), D=1"1(@/ox,, ..., 8/0x,) be the corresponding formally self-
adjoint differential operator. Then there exists a unique self-adjoint realization 4, of
P(D) in L*R"). The spectral resolution of 4,is given by projection operators E(4),
which can be expressed in terms of a kernel

eold, z—y) = f expi{i<z—y, )} dE,

P@&<A
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J. FRIBERG, Asymptotic behavior of integrals

the spectral function for 4,. We shall be concerned with the asymptotic behavior of
the derivatives of e,, in particular

ef"P (2,0) = f &dg, y=24. (0.2)
PE<A

It was proved recently by N. Nilsson [9] that if P(&) is a real polynomial satisfying
the condition (0.1), then for every given even multi-index y there are real numbers
6, ¢>0, and an integer >0, such that

¢ 'A% (log A) < f FdE<ci(logd), for A>,. (0.3)

P

It was also shown in [9], that if » =2, then there is a sharp asymptotic estimate

f gdi=ci(logA){1+o0(l)}, as A—+oo, (0.4)
P&<A

with r=0 or 1.

Since the proof of (0.3) and (0.4) in [9] is non-constructive, it remains to find the
exact values of the parameters 6 and r for given y and P. Of course it is well known
that r=0, 0 =(n+ |y|)/m when P(£) is elliptic (see L. Gérding [5], G. Bergendal [1]),
and that »=0, 6=27q,(1+y,)/m, if P is quasi-elliptic of weight ¢=(gy, ..., ¢,) (see
for instance F. Browder [2]). Or let

P(§) = £m + En g g, (0.5)
with m, > p;, my,> p,, and p,/m, + ps/m,>1. Then, as was announced in the note [6]
by V. N. Gor¢akov, for y =0,

r=0 if p,Fp,, r=1 if p,=p,; } (0.6)

0 = max {(ml +py— p1)[2my Py, (My+ Py — Po)[2ms Dy}

A simple Way to prove (0.6) is to compare ey(4, 0), which is the volume of the set
{E€ER?; P(£)<)}, with the volume of the set {£€R?% max (&I™, &™, &7 &) <4}.
The same 1dea (which I owe to a personal communication by L Hdrmander) can be
used to show, for example, that if P(&)=|&P™+(&; ... &), 1/2p<n/2m, and if
y=0, then r=n—1, 6=1/2p.

2. Given a real polynomlal PE)=>c, &, satlsfymg the condition (0.1), set (P)=
{a; ¢, 0}, and let (P)* be the convex hull of (P)U {0}. Then F(P), the Newton
polybedron for P, is the union U F*(P) of those (n 1)-dimensional flat pieces of the
boundary of (P)* that are not contained in any coordinate hyperplane z,=0, 1 <i <.
Let {a’}1 be the vertices of F(P), and let +* be a normal for the face F*(P), normalized
so that

tP(EFE, .. ) =tPt " E)=PL(§)+o(l) as t—0, (0.7)

where PR(£)=2 c,£% a€F*(P). Then P is called complete and non-degenerate
(Mihailov [8]) if

N
Z & <OP(§), for &€R", |&| big enough. (0.8)
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(If in addition v*>0 for all k, then P(£) is a hypoelliptic polynomial, of the class
called multi-quasielliptic in our previous papers [3], [4].) Using (0.1), (0.7), and (0.8),
we can now show that if P(&) is real, complete and non-degenerate, then for every
even multi-index v,

j&"exp{—tP(S)}d§=Ky(P)t"’|logt|r(1+o(1)) as t— +0. (0.9)

Here 0 =max ",y +e>, e=(1, ..., 1), and r=n—1 —s where s is the dimension of a
face of F(P) defined in a unique way by 7. Since

f & exp{ —tP(£)} dé = f e defP (2,0), y=2p, (0.10)

if ef"P(2,0) is given by (0.2), a simple Tauberian argument is all that is needed to
arrive from (0.10) to an estimate like (0.4). This means that we have found a generali-
zation of Goréakov’s result (0.6) to all real, complete and non-degenerate polynomials.
It is interesting to notice that we always get 0 <n—1.

3. If P(£) is an arbitrary real polynomial satisfying (0.1), then Nilsson’s result can
be used together with an Abelian theorem to derive an asymptotic extimate for
J & exp {—tP(&)}dE as t— +0. When n =2 it is again possible to find an algorithm
for the actual computation of 6 and r, because then we can use estimates for P(£)
based on expansions of the zeros of P(&) in Puiseux series. (Cf. Friberg [4].)

1. The extremal case of a complete and non-degenerate polynomial
Consider a polynomial P(£), £ € R", with real coefficients, and such that, say,
P)—> +oo as |£] >0, &real 1.1

If P(&)=> c,&*, denote by (P)= {o; ¢, +0} the index set of P, and let (P)* be the
convex hull of (P) U {0}. As is well known, it follows from (1.1), that P(£)—~ + oo at
least as fast as a positive power of ||, hence trivially that (P)* must contain a full

neighborhood of the origin in R%. The newton polyhedron F(P)= U F*P) is then
defined as the union of those (n—1)-dimensional flat faces of the boundary of (P)*
that are not parts of a coordinate hyperplane. It is possible to choose the normal »*
of each F*(P) so that 6*(«) ={*, a) =1 for a € F¥(P), and so that

(P)* = {a> 0; (x) = max 0(a) < 1}. (1.2)

Then F(P)={o=0; 0(x)=1}. -
Now let {a’}, L<j<N, be the vertices of F(P). Then for all «€ R", we can find
numbers 4,, ..., A, such that

N

a=0() 2 20!, Th=1, 1,>0. (1.3)

(In fact, o €6(ec) F¥(P) for at least one value of k.) Since (1.1) implies that the com-
ponents of each o’ are non-negative even integers, it follows from (1.3) that
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N ()
|&] < (Z S“j) , for & real, « arbitrary. (1.4)
=1
In particular, since 0(x) <1 for « €(P), we have
N
P(§) <O(1 +5(&)) for & real, gg(£) =.§ &%. (1.5)

If P(£)—> +oo, and if not only P(£)=0(1)gs(&), but also gx(§)=0(1)}P(£), when
|€] >0, & real, then P is called a complete and non-degenerate real polynomial
(Mihailov [8]). Let F*/(P) denote an arbitrary s-dimensional face of F(P),0<s<n—1,
7=1,2, ..., and set

Py (E) =3 c.8% 2€FI(P),

where the c, are the coefficients of P(£). Then a necessary and sufficient condition
for a real P to be complete and non-degenerate is that, for all s, §,

Py (£)+0, forreal E=(&;, ..., &) withall &+0. (1.6)

(Mihailov [8], see also Friberg [3]). Due to estimates like (1.4), where 0(x) <1 when
x€(P), a¢ F(P), if P is complete and non-degenerate then Po(&)=> c &% a € F(P),
is in a natural sense the principal part of P(£).

Lemma 1.1. Let y=(yy, ..., y,,), with v, even non-negative integers, and suppose that
the real polynomial P(E) tends to + oo as |&| — oo, & real, so that the integral

I,,(t)=f§"’exp{—tP(§)}d§, t>0, EER"

s convergent. Let e=(1, ..., 1), and set 8=0(y+e)=max 0*(y +e). Then there are
constants ¢, O, and 0’ =0, depending on P and on y, such that

IS <CtY for 0<t<L (1.7)
If P is also complete and non-degenerate, 6 can be chosen arbitrarily close to 0.

Proof. If «€(P), then 6(a) =¥, &) <1. Hence
n 3
P<s><A(1+ Zlfil””"), Ee R,
i=1
But then trivially, for 0 <¢<1, and for all £,
r R llv{C _ — vk, pred
L= A1 S"exp{—t|§1| '} dé;=c, i~ hrre,
1

which proves the first of the estimates in (1.7). Next, choose » linearly independent
points 7 €(P)* such that

P§>B3 6|~ B, for éreal, some B>0, (1.8)
1
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and such that y+e=0 16, >i=1, al 1,>0.
1 1

This can be done for some 6’ >0(y +e) when P(§)—> + oo as |£] > oo, and it can be
done with 6'<0(y +e)+¢, for arbitrary ¢>0, if P is complete and non-degenerate.
(It can even be done with 6'=0(y+e) if we know that y +e is an interior point of
O(y +e) F¥(P), for some k.) Now let us introduce as new independent variables
7;,=E%,1<j<n. Let A=(4) be the inverse of the matrix (8I), and set A'=(4%, ..., 2%).
Then &,=#* for £€ R%, and the functional determinant is d(£)/d(n)= det (§,4i/n’)=
det (A)(&; ... &,)/(0y ... ), det (A)=1/det (8}). In view of (1.8), it follows that, for
0<t<1,

L) <2".Ln grre exp{——t(B%nfﬁ"—Bl)} d&j(&, ... &,)

<0, Ln ") exp{ — Bt g m} dnl(gy «.. ) =037, (1.9)
+
which proves the remaining half of (1.7).

Theorem 1.1. Let P(£)=> c, &%, £€ER™, be a real complete and non-degenerate poly-
nomial with P(§)— + oo as |&| — oo, & real. Suppose that, for a given even multi-index
y =0, the point y+e is an interior point of 6 FX(P) for some k, 0 =0(y +e). Set PH(&) =
> ¢, &2, a € F¥(P). Then, as t— +0,

L= [eep(—@pa—r | [oept-ProjaEon]. a0
Proof. Let y-+e€0FP), 6=0(y+e), and let » be the normal of F¥(P), so that
v, yt+ey=0. Let ¢»E=("" &, ...,t "= &), and set

gi& ) =& exp{—tP(E)}; g(§) =& exp{ — PE(&)}.

Here tP(t7&)=P§E&) +0(1)t, >0, as t— +0, for fixed £. It follows that, at least
formally,

£, (t) = f g€, 1) dE~ f g(€) dé = f & exp{ — PE(£)} d&
as t—> +0. Now choose the g/ of (1.8) as points on F¥(P). Then, for 0 <¢<1,
0<g(&,t) <§Vexp{—B§ || + B,} € LN(R™).
1

(C1f. the proof of Lemma 1.1.) Therefore (1.10) will follow from Lebesgue’s theorem
on dominated convergence.

We can also give a direct proof that g(£)€ LY(R"). If P is complete and non-de-
generate, then trivially (1.6) holds for all u, j. But (1.6) can be used to prove that, for
some constants C, ¢ >0,

oor(§) <PF(£)<Cof(£), when EER",
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where gF(£)=> &, summed over all j with o’ € F¥(P). (Cf. the proof of Theorem
4.3, Friberg [3].) We may therefore assume that g(&)=&" exp { —pk(&)}. Obviously
{a; &’ € F*} is a basis for B™. Choose, for 1 <i<n, another basis {a"!, ..., """, €},
where {o"7}17! is subset of {a’; &’ € F¥}, and where ¢ is the ith coordinate vector
0,..,1,..,0). Then y+e=>1"1gla'’+¢, el. But all the «*/, 1<j<n, are in a
hyperplane (g, o> =0. Hence ¢}, ={u,y +e>/{u, e, and we can make ¢}, <0 by choos-
ing the points ¢’ so that y+e and e are on different sides of the hyperplane. To
estimate [ g(&)dé= [ &vexp {—pk(&)}dE, we now divide the domain of integration
into subsets,

D;: {&€R™ 1+3 |8 <|&}, 1<i<n, &>0, and
j

Dyiq: {E€R™ 1+ (&
7

=|&°, for all ¢}.

Since p5(£)=(27|&]))n—1 on D,.;, the convergence of the integral over D, is
obvious. But when ¢ =1, for instancs,

f 9(§)d§<f §V+ed§/(§1~~-§n)<f 160 de/ (&, .- &),
D, D, D,

with d=¢(>7 'ql)+¢, <0 for ¢ small enough. Moreover, on D, we have every
1€, 7> 1, bounded by a power of |&,]|. Consequently the integral over D, converges

as 1 & (log &))" 1dE,.

Theorem 1.2. Let P(&) be as in Theorem 1.1, but suppose that y =0 is an even multi-
index such that y+e is contained in OF°-7(P), 6 =0(y +e), for some s, j, with s chosen
as small as possible, 0<s<n—1. Then

Lty =t"0]log t|* "*[K,(P)+o(l)], as t—+0, (1.11)

where the constant K (P) depends only on F(P), P (&), and y. Also, for some con-
stants Ay, 4,>0,

APIT(O)< K, (P)<AY'T(H), 6=0(y te). (1.12)
Proof. Let y+e€0F/(P),0=0(y +e), and let » be a normal of F*, such that

<y, oy =11or « € F*-’, and consequently (v, y +¢>=0. If s <n —1, then v is not uniquely
determined, but varies over an affine manifold of dimension r=n—1—s. Let

v(t) =11, (t) = f&y exp{ —tP(t™" &)} dE.
Obviously, in order to prove (1.11) it is enough to show that
(—tgt) v(t)~>K,(P)+0 as t—>+0, r=n—1-s. (1.13)

The case r =0 was discussed in Theorem 1.1. Suppose now r=1. Then, since tP{t—7§) =
So®@e £ we have
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—t' ()= f {51 — <, ) "%, & exp{ —tP(E 7 E)} dE. (1.14)

Let F’ be one of the (n —1)-dimensional faces of F(P), passing through F*:7. Then
the normal »* of F’ is such that (v, ap =1 for € F’, and (v, p +e>={v,y +e>=6.
Therefore a change of coordinates $—*&—¢-7'¢ transforms the integral in (1.14) into

ng{Z’ (1=, &) e, &+ o(1)}exp{ — tP(t ™ &)} dE, (1.15)

where o(1) stands for terms containing powers of ¢, while > contains the terms with
&, ay=1, (v, &> <1, i.e. with € F’, ¢ F*/. But for such « it is easy to check that
y+e+a is an interior point of O(y+e+a) F’. Thus, in view of Theorem 1.1, the
integral .

f&V{Z’ (1—<v, ) e, & exp{ —tP(t™" &)} dE (1.16)

depends continuously on ¢ in the interval [0, 1].

In order to show that the value of the integral for ¢=0 is independent of the ¢,
with o ¢ F*-/, let us choose # linearly independent points g, ..., "€ F’, with 2, ...,
fr€ F&i, and such that yte=0332,8" with > 4,=1, 4, ..., 1,>0. We will get
a=>%u;p" with > u;=1, u;>0, and u, >0, when « € F’, a ¢ F*-/. It follows that, for
such «,

1=, a>=$ui(1—<% BO) = pa (L=<, D), (1.17)

Also, we may always assume that (v, f1> <1, so that 1 —(», 1>+ 0. Now, as in the
proof of Lemma 1.1, let us introduce new independent variables 7,=£&, 1<i<n.
Since (for £€R%) d(&)/d(n)=(&; ... £)/{det (B, ... )Ny ... 0}, we find that the limit
of the integral in (1.16) as ¢ +0 can be written as a sum of 2" terms of the type

A’fn" S wennyexp{ —Seantdy, A=(0,2, ..., 1), (1.18)
+

where 4’ =(1—{», f1)/det (8, ..., B*), and where the set of coefficients {c,} is identi-
cal with the set {c,; x€ F’} of coefficients for P;(£) except possibly for a change of

sign in some of them. Now let =(1, ..., 7,) =", 7),n' €R} ', and set A'=
(Ags - An), € =(1, ..., 1)E R"™1. Then the integral in (1.18) is equal to

Ln (" { = @/om)} exp{ —  cun} dn
- Lnfl(n')"”'exp{ =3 cun"|n-o} dy'. (1.19)

The method we have used above to take care of the terms in the sum in (1.15)
corresponding to points o € F’, can of course also be used on the terms derived from
points on the other (n —1)-dimensional face, call it F”, of F(P) passing through F°:/.
Thus it remains only to consider the terms in (1.14) of the type
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ff”(l — (v, o)) " e £ exp{ —tP(E 7€)} dE, (1.20)

with </, &) <1, {¥", «> <1, hence also (v, &) <1. After a substitution ¢+£—¢,
(1.20) takes the form

(11—, ad) cat"“ff”*“ exp{ —tP(£)} d&=Ct** I, ,(t).

We can now use Lemma 1.1 to obtain the estimate
L, () <O % a=0(y+eto)te—0O(y+e)—1,

for arbitrary e>0. But it is easy to check that O(y +e-+a)<O(y+e)+1, when
& a> <1, ', a> <1. It follows that a can be made negative, hence that the terms
of type (1. 20) do not influence the asymptotlc behavior of ().

Consider now the case when r>11in (1.13). Let v be a normal to F$7, with (1, 0> =
1 for «€(P) if and only if o€ F*7. Set »=9! in (1.14), and split the 1ntegral into a
sum of terms like

(1=, o)) eutt™ f &% exp{ —tP(t " £)} dE. (1.21)

Obviously «€ F*:/ if we demand that 1 —(», «) =0. Suppose that « € F*"*”, where
F is an s’-dimensional face of F(P), passing through F*7, with s'>s, s’ chosen as
small as possible. It is easy to check that y+e- o is an interior point of 6(y+ e+
o) F*'+ 7, Let v' be a normal to F*:¥, with <»', > =1. Then (1.21) is equal to

(1= ¢ a) café"“‘ exp{ —tP(t™"' &)} dt.

We can now proceed by induction to show that the term (1.21) is of relevance to the
asymptotlc behavior of 1,(t) if and only if «€ F*" i for some F'+7 through F* 7 with
s’ =s+1. Therefore, let us choose a nested sequence of faces of increasing dimen-
sion Fsic F*lic | < Fstrir= Frlir with corresponding normals »1, ..., %", ",
Finally, let us choose n linearly independent points f, ..., 8" with g+, ..., "€ F*-/,
BreFsthy | BLe F*~1ir. Then the same kind of argument that led to (1 19) will
show us that the total contribution to K ,(P) due to any set of r points o’ < Feivi
«"€ F*~17 on the chosen seugence of faces is equal to a sum of 2" terms of the type

A‘IJ‘R'L‘;’(WZ)e exp{—> et |me..on—0} ANy - A0/ (s - 1) (1.22)
Here A= Ul (1= GF, B)/det (B, ..., B, (1.23)

and A=(0, ..., 0, A1, ..., 4,) is determined by the expansion y+e="60(y +e) StaAbs
>2;=1, 4;>0. Obviously, in (1.22) only the constant 4 is dependent on the choice
of the sequence F*~/< Fs™"'c ... This means that we have in fact proved (1.11),
with K, given by a sum of 2" terms like (1.22), although with new constants A, equal
to a sum of constants of the type (1.23).
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It remains only to derive the estimate (1.12). But if 7, =£F, 1 <i<n, then
2 ) =m0 = F;jca £ =P%'(&).
Further, it can be proved that
Py (&) =co%’ (&)= célfﬂi for £€R", some ¢>0

(see Friberg [3], the proof of Theorem 4.3). It follows that
K, (P)<AT] J‘nfie‘l exp{ —cn;} di,
r+1
— AT] {c#T(1,0)) < AL T0).
T+1
The second half of (1.12) follows in the same way from a trivial upper estimate of
PE(&).
Remark. Let P(£) be an arbitrary real polynomial with P(£)—oo as |&] =00, £
real. Let {a’}{ be the vertices of F(P), and set gz(£)=>1 &~. (The «f are even, non-

negative multi-indices.) Then gz(£) is a complete and non-degenerate real polynomial,
and P(£) <C(1 +gg(&)) for £ real, so that

L P)= f&” exp{ —tP(£)} d& > O, L, (cyt; 0p)

for 0 <¢<1. This means that in this general case Theorem 1.2 gives at least a lower
bound for the singularity of I,(; P) as t—> +0.

2. The two-dimensional case

Let P(&), £ € R2, be a real polynomial in two variables, and write P(§) in the form

P&)=p, (fl)ﬁ(fz ~¢i(&1)), degp(§)=m=>0. 2.1)

Then there is a constant 4, such that all the zeros ¢,(&;) can be represented by Puiseux
expansions of the type

¢(§1)=%:cj v, 00>0,>..., for &=4,, (2.2)

where either the sum is finite or §,—~ — co as j— co. Suppose, as in the preceding para-
graph, that

P(g)—> +oo as |E| >oo, §&real (2.3)
It follows that the coefficients ¢; in the expansion (2.2) of a zero for P(§) cannot all
be real. Let ¢ be a fixed zero, and suppose that ¢; is the first non-real coefficient in
(2.2), J=J(¢). Then, if
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k-1
v= Ppe—b— 2080, 1<k<, (24)

each such v, will be called a real truncated factor of length k for P(). Let ¢'=
S i€l be a second zero of P(E), with vy ,=vsx, but with vy 1F 04z if
k+1<J. Then ¢, ¢’ will be called conjugate at level k. When ¢’ varies over all zeros
conjugate to ¢ at level k, we will set ¢, =cy;, 6, =0y, i =1,2, .... We shall also use the
notations d, ;=max (J, 6,a) and ¢, ;=¢;, € —Cg, OF ck, depending on whether
O; > Ok, =0y, OF < 0

Lemma 2.1. Suppose P(§) is a real polynomial (2.1), satisfying the condition (2.3).
Let vy s =&,— 257" ¢,£, =1, be a given real truncated factor for P(&), and set

Mys(&,0) =& TT T1 (|w |+§"’“ ([v] + &) (2.5)

k<$ Ck,i3=0
Then there are constants A, B, B’ >0 such that
B <P(&)[Mys (&5, v55) < B, (2.6)

when & varies over a cerfain region Vo, defined by conditions of the type

() £>A>0, (i) |vge]<esle, } @.7)
(iii) |vgs — o 3| = 6835 for all i with ¢y real. '
Similarly, if Mo (&) =EPTT(| &+ &%),
then B<PEIME<B

when & varies over a region V, defined by the conditions
(i) &= A >0, (i) |& —co&%| =&l for all i with co; real.
Proof. Let ¢’ be an arbitrary zero, and let v =vg,.
Then 52—¢'(§1)=”+S§Cj§f""§6;§}-
Hence if ¢, ¢’ are conjugate at level k<s, then
E—¢'(&)=(v— Ck,if?k’i) + o(1) £fé
for some i, ag &~ +oo. If §, ¢ are conjugate at level >s, then instead
— () = (v = ) +o(1) &
for some i, as & — + oo. But obviously, for some B;>0,
|0 — i, i &85 = By (o] + £1%9),
|v— e &3] > By (|v] + &),
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when v=uv,, and &, satisfy conditions (i)-(iii) of the lemma (with ¢ small enough),
ie. when €V, ;. Since P(&)=p(£)[1(&:—¢'(&)) >0 for & big enough, it is now easy
to complete the proof of the lemma.

Lemma 2.2. Let P(£), £€R?, be a real polynomial satisfying (2.3), and define
My (&1, v) as in Lemma 2.1. Let v=(y,,v,) be a given even multi-index, and set
Yo =(y1T8Y2, 0), when $(£,) =coél + ... . Then, as t— +0, the singularity of

I,.4(t P) :L . & exp{ —tP(€)} d&

1

with A big enough, is of the same order of magnitude as the highest singularity of anyone
of the integrals

Las M= | Eexp =0y, 00} diydo

J&i>A

for arbitrary ¢, s =1, or of

fm(t;Mo)=f AS”eXp{—#Mo(S)}dE-

(A corresponding statement may be proved for

L.alt; P)=f £ exp{ —tP(£)} &)

&1<—4
Proof. Let Vy , be the set (2.7), for arbitrary ¢ and s. In view of the definition (2.4),
Vg,s 7 Cs; i = Vg, 5 +15
for some ¢’ with ¢, ¢’ conjugate at level s. It follows that the union of the mutually
disjoint sets V, , for arbitrary ¢, s, and of V,, is the entire set {£; &, > 4}. Hence,

Lt P) =2 & exp{ —tP(£)} dE + fv & exp{ —tP(&)} dé. (2.8)

@, V¢' s
But for given ¢, there are c,, ¢, >0 such that

s§—

1 Va
¢, Ele<E =& (’ud,_s + 3 ciSff) <c &6, E€V,,.
0
Together with the lower estimate in (2.6), (2.8) therefore shows that
I';/,A(t; P) < 4523 C;Iy‘A(Bt; ng,s) + IV‘A(Bt; MO)

On the other hand, the upper estimate in (2.6) is obviously valid not only in V,,
but for all § with &, > A. This means that

I, a(t; P)>max (maxc, L 4 (Bt M,,), 1,.4(B't; My)),
[ %]

and the proof of the lemma is complete.
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Although M, and all the M, ; are not necessarily polynomials, at least they tend to
infinity as |&| —>o0,&, > 4, and it is easy to check that the results of section 1 are still
valid if we give the natural meaning to F(M,), ete. Consequently each I, , (t; M)
or I, 4(t; M) has a singularity of order ¢¢|log ¢|” as ¢~ +0, with r=0 or 1, and
with 6 defined by y and F(M,) or by y, and F(M,), respectively. But then, due to
Lemma 2.2, I, 4(t; P) must have a singularity of the same type, with

6 =max (6(y +e; M,), max8(ys+e; Mys)),
é,8

and with »=0 or 1.
Now suppose, for given ¢, s, that 0=0(y,+e; M), and let ¥, =1 on Vy;, =0
outside V, ;. Then we can find » =, ; such that

t"f & exp{ —tP(&)} d&
Vs
= fl¢.s (t77&,, 87" ) E8(1 +o(1)) exp{ — Py,s (§1,0) (1 +o(1))} dé,

where P, is made up of the constant terms in the expansion of tP(t™"&, ¢ v+
3 P exp
s7le;(t771&,)%) in powers of t. Assuming for simplicity that » =0, we can now use

Lebesgue’s theorem on dominated convergence to show that
t f & expl —tP(E)} dE ~ | 1 (61, 0) Epexp{ — Pyo(fy )} dEydv  (29)
V¢_ s

as t—>+0. Here 23,(&, vy,) is the characteristic function for the set Vg, defined
as the limit, as t— +0, of the set given by the conditions

() &> Ae, (i) %17 oy, <P,
(ifi) |10~ 7av,  — g 3] = e& for c,; real.
Let for instance v,fv; =4, for some j. We may assume without restriction that d,;=0s,
the exponent determined by the expansion (2.2) of ¢. Then it is easy to check that
V3., is given by the conditions
(i) & >0, (ii) |v— ey &= & if ¢ is real, g =0 (2.10)

(We have to assume here that ¢ <min dy;.) Further,

0 = (ys + 1 +38)/my,s, (2.11)
where, as is easy to check,
mys=m+ 2 > it 20 (2.12)
k<8 Cg 40 i

In other words, (2.11) means that 8 =60(y,;+e; My ;) in this case. If instead »,/v, =
8s_1, then V3, is given by

() £>0, (i) |ogs| <efd, (2.13)
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and 0=(ps+1+8;_1)/mys 1, again equal to O(ys+e; My ). Finally, if »,fv;>0,_,,
then Vj; reduces to the half-line & >0, v=0. Hence this case does not contribute a
relevant term to the asymptotic behavior of I, ,(t; P).

Let now ¢, s be given such that 6 satisfies (2.11), and denote by ¢, the zeros of
P(£) for which

'U¢i, s+1 (51) = Vg¢,s (El) - csig'ﬂ; Cs; real, 681’ = 63- (214)

Then O(yy, +e¢; My, s11) =0(ys+e; M,;), and while V; is given by (2.7), Vg, ;41 18
given by the conditions

() £=A4>0, (i) |vgs—cg &l <efl, (ili) ...
so that Vg, ;.1 has to be the set
(1) El > 0: (11) quﬁ,s - csi&isil < 85?8i~

(Cf. (2.13).) In other words, V3, and all the sets Vgi.sﬂ together cover the entire set
{&£€ R%; £, >0}, without overlapping. We are therefore led to introduce the new set

Wyt & >4, |v¢,sl < gk, lv,,,,s ~csi§‘}“'| = e£5% for all ¢ with ¢, real, d;+0d;,
(2.15)

which contains V,, and all the V,, ;. defined by (2.14). Recalling (2.9), it is then
easy to see that, as {— +0,

£ f & exp{ —tP(£)} d& ~ L 0554) exp{ — Py (&, v)} d&, dv, (2.16)
Wq’:,s 1>

s=1
where Py (&,v)= llim Amos P(ATYEL A Bu+ 3 ¢, (A 1E)%). (2.17)
—>0 0
Similarly, let my=m + 2, do; (2.18)

and suppose that 6=(y;+dg;ys+1+0d0) me=<»,y+e> for some j. Then we may
introduce the set

Wo: &>A, |&—co&loi|>=e&  for co real, o;+ oy,

and prove that
t"JW &exp{ —tP(£)}dé —~ L 05" exp{ — Pi(&)} d¢, (2.19)

with P’ defined as in section 1.
We have been able to show so far that the leading term of the singularity of the
integral

I, 4(t; P)= L 9 g exp{ —tP(£)} dE

1
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may be referred to the behavior of the integrand in one or more ‘“domains of slow
growth” for P, the sets W, ; and W,. The same arguments will work if we study the
integral of £&” exp { —tP(£)} over the set {&; < —A}. Then we have to start, of course,
not with (2.1), but with a factorization

Ma

P&)=p, (&) H =&

In this way we are able to determine all the contributions to the leading term of
L,(t; P) from domains of slow growth for P(£) corresponding to real truncated factors
52 S c & or &—2%57¢,(—&)% with §,>0. The contributions due to the re-
maining domains of slow growth, which are parallell to or converging towards the
&,-axis, can be determined in the same way, simply by interchanging the roles of
£, and &,.

We are now ready to collect our results as follows:

Theorem 2.1. Let P(£), £€ R2, be a real polynomial satisfying (2.3), and let y be an
even multi-index. Then

= ff” exp{ —tP(&)} dé=t"%|logt| (K, (P) +o(l)), as t—>+0,

where O and r, r=0 or 1, can be explicitly computed by the methods of Lemma 2,2. and
where

APT(0) < K, (P)< AIT'T(0), (2.20)
for some constants A, A,>0 depending only on P.

Most of the details of the proof have already been given, at least for the case
r=0, and the case r=1 does not offer any additional difficulties. It remains only to
recall that K, (P) has been found to be a sum of integrals determined by limits such
as (2.16) and (2.19), from which the estimate (2.20) easily follows.

Remark. If my and my ; are given by (2.18) and (2.12), respectively, then it follows
that

s My — Z Z 5k 1 5k,i)-

This means that m,; is a decreasing function of s, for fixed ¢. However, my is
always positive, because it is never smaller than the exponent of the highest power of
& in My (&, 0), and M, (&, 0)>co as & —co. Now, let qS vary over all truncated
factors for P(£) of all the four types &—>5 1e,(+&)%, & — > te;( &)Y, with
0<s<J(¢). Then

6= Igax O(ys+e; My,),

with an appropriate definition of y, and M, ;. Butif 6(y, +e; M, ;) is given by (2.11),
for instance, then, at least for big values of 7

max O(ys+es My ) =0(ys+e; My, 1)
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This means that, for big values of p,

O(y +e; P)= max O(ye T e My, 1)

Under all circumstances we have the estimate

O(y +e; P)< mgx (ys + 1+ 8p)/ms, 1095

which follows from (2.11), because 8,>9, for all s. This (non-sharp) estimate could
also have been obtained directly from a lower estimate for P(£}, of the type that was
discussed in the paper [4] on principal parts of hypoeiliptic polynomials. If we extend
the definition of a principal part given in [4] to the case of a real polynomial satisfy-
ing (2.1), we get the obvious result that § and r depend only on the principal part of
P(g).

3. Examples
1 »
Let PE)=|EP™+ (&, ... £)P, ;9<;%.

Then F(P) has exactly n faces of dimension n—1, all passing through the point
(2p, ..., 2p). Using the results of section 1 it is easy to check that, for instance,

I, ()= Jexp{ —tP(&)} d£=1~1) (211)) (ﬁ - %)nlt*(”zm [logt|* *(1+0(1))

as t— +0, which confirms the example given in the introduction.
As a second example, consider the real polynomial P= [P,;|2, where

P& =E-&+ifis.

(The polynomial P;, which is hypoelliptic but not multi-quasielliptic, has been studied
in other connections by Pini [10] and Friberg [4].) Let us first use the factorization

Pi8)= (&~ &~ (i3) &P+ ..) (L~ wf®+...) (L~ 0?67+ ..,

for §1>A Wlth @®=1, w=1. Here the only real truncated factors are v,=§&,, and
V41 =&, — 3, with

Myr (5, v)=|v—(3) &P |v— (0 — 1) &7

Hence we find, using the results of section 2, that 6(y +e; P)={ys+e,v), with
Yo—(y1T4/3 75 0), and »=(1/8, 1/6) if 3y, +4y,<5, »=(3/20, 1/10) if 3y, +4y,>5,
i.e. for all large y. The degenerate case r=1 would appear, with 6=1/2, for 3y, +
4y, =5, but there is no solution to this equation because y,, y, must be non-negative
integers. Therefore r =0 for all y. Finally, the coefficient K, (P) is, in the case 3y, +
4y,>b for instance,

Ky(P)=L OH‘“/S“exP{—%?’s((E %)+ (1/9) &)} dé.
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In order to check the result we may use instead the factorization, for £,> 4,

P(&)= (&~ + ) (& +iE+ )
X (E - E G L) (E T -G &),
with vy=§&,, vs1=& — &%, vy 1 =& + &%, and for instance
Myq(Eg v)=|v— (i — 1) E4|* (v + 28842 (v + (1/16) £1).

For &,< —A, the corresponding factorization shows that v,=§, is the only real
truncated factor. The values for 6 and r computed by use of the new factorizations
are easily seen to be the same as the values we already know. However, the formula
for K., (P) will not be the same, since it is now given by the sum of two integrals over
the half-plane &,>>0, instead of by one integral over the half-plane & >0.
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