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On the extension of Lipschitz maps 

By STEIN OLOF SCHONBECK 

Introduction 

Let  X and  Y be metric spaces. A map T from X into Y is called a Lipschitz map 
if there is a constant  M, such tha t  d(Tx 1, Tx2) ~ Md(x 1, x2) for all xl, x~ E X, and then 
the norm of T, ]] TI], is defined as the least such constant.  T is called a contraction 
if ]]TII ~<1. I f  D is a subset of X and T:D-> Y a Lipschitz map,  it is na tura l  to ask 
whether  T m a y  be extended to a Lipschitz map T : X - ~  Y so tha t  ]]TI] = HTII. This 
problem has been studied by  several authors.  A short  survey of results in this con- 
nect ion is given in the paper of Danzer,  Gri inbaum and Klee [2]. I n  the present 
note  we are concerned with some aspects of this problem in the case tha t  X and Y 
are real Banach spaces. More precisely, we are interested in those pairs of Banach  
spaces X and Y, for which the extension problem formulated above always has a 
solution. I t  is obvious that ,  in the case of Banach spaces, it is sufficient to consider 
contractions,  for if each contract ion of a subset of X into Y m a y  be extended to a 
contract ion of X into Y, then also each Lipschitz map of a subset of X into Y m a y  
be extended to a Lipschitz map of X into Y, wi thout  increasing the norm. I n  order 
to  abbreviate,  we will say tha t  (X, Y) has EPC (extension proper ty  for contrac- 
tions) if for each subset D c  X and each contract ion T:D-~ Y, there exists a contrac- 
t ion  T : X - >  Y, which extends T. 

The fact  tha t  (X, Y) has EPC m a y  also be formulated as an  intersection p roper ty  
for  cells in X and Y. A cell in a Banach space X is a set of the form Sx(xo; r)= 
{xEX: IIX-xoi] <~r}. The unit cell o / X  is the cell Sx=Sx(O; 1). W h e n  :~ and  ~ are 
families of cells in X and Y respectively, we shall write :~ >-~ if there is a one-to- 
one correspondence between D: and 6 ,  such tha t  corresponding cells have equal radii 
and  the distance between the centers of any  two cells in ~ is less than  or equal tO 
the  distance between the centers of the corresponding cells in :~. If  :~ is a family 
of sets, then ~:~ denotes the intersection of the sets belonging to :~. Then the fol- 
lowing two s ta tements  are equivalent  (see [2]): 

(i) (X, Y) has EPC, 
(ii) whenever D: and ~ are families of cells in X and Y respectively, such tha t  

: ~ N ~  and 7c:~ q=r then ~ - ~ r  

We will also use the following terminology, due to Aronszajn and Pani tchpakdi  
[1] (see also Klee [10]). For  a cardinal number  y >~3, a space X is said to be ~-hyper- 
convex if each collection {S~}, a E A, of mutua l ly  intersecting cells in X with card A 
<7 ,  has a n o n e m p t y  intersection. X is called weakly ~-hyperconvex if this condi- 
t ion holds under  the fur ther  assumption tha t  all the S~ have a common radius. X is 
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called (weakly) hyperconvex if it is (weakly) y-hyperconvex for all 7" I t  was proved 
by  Harmer  [7, Theorem 6.1] t ha t  if 7 is finite, then for finitedimensional spaces 
weak ~-hyperconvexi ty  implies 7-hyperconvexi ty ,  and this result  was extended to 
a rb i t ra ry  Banach spaces by  Lindenstrauss [11, Theorem 4.3]. Harmer  also proved 
that ,  for finitedimensional spaces, 5-hyperconvexi ty  implies tC0-hyperconvexity, and 
this, too, was extended to a rb i t ra ry  Banach spaces by  Lindenstrauss [11, Theorem 
4.1]. 

I t  is well-known (Aronszajn-Pani tchpakdi  [1], Goodner [5], Kel ley [9], Nachbin 
[12]) t ha t  the following properties of a real Banach space are equivalent: 

(a) X is hyperconvex,  
(b) X is a ~)1 space, i.e. for any  Banach space Z containing X as a subspace, there  

is a projection of norm 1 from Z onto X, 
(c) X is isometric to a space C(K), where K is an extremal ly  disconnected compact  

Hausdorff  space. 

Returning  now to our object in this paper,  we note tha t  the following facts are 
previously known (for the proper  references we refer to [2]): 

(1) (X, Y) has EPC for all X if and only if Y is a 01 space, 
(2) (X, Y) has EPC if X and Y are Hi lber t  spaces, 
(3) If  dim X = 2 ,  then  (X, X)  has EPC if and only if X is a Hilber t  space or 

01 space (Grtinbaum [6]). 

In  section 1 we will prove tha t  if Y is strictly convex and dim Y > 1, then  (X, Y) 
has EPC only if X and Y are t t i lber t  spaces (this result  was announced in [13]). 
Section 2 contains a proof of the fact  t ha t  3) above remains t rue if dim X = 2  is 
replaced by  dim X < o~. Finally, we give, in section 3, some results in the case t h a t  
X is a C(K) space; in particular,  we prove tha t  (C(K), C(K)) has EPC only if K is 
ext remal ly  disconnected. 

1. Pairs (X, Y) with Y strictly convex 

In  this section we prove the following theorem: 

Theorem 1.1. I] X and Y are Banach spaces such that Y is strictly convex, dim Y > 1 
and (X, Y) has EPC then X and Y are Hilbert spaces. 

Theorem 1.1 follows from the following two lemmas. 

Lemma 1.2. I] X and Y are Banach spaces such that Y is strictly convex and (X, Y)  
has EPC, then X and Y satis/y the ]ollowing condition: 

(A) I / x x ,  x2EX , Yx, y~E Y and [[Xln = ]]YlH, ]]x2]] = ]]Y2H, ]]Xl x2]] = ]]Yl--Y~]] theu 
[[/~Xl -~ teX2][ ~ [[2Y1 § /or all ,~, te. 

Proo/. Let  xl, x 2 e X  , Yl, Y2 e Y a n d  [[xl[ [ = [[y,][, [[x2[ [ = [[y~[[, [[xl-x~[[ = [[Yl-Y~[[ =d-  
Suppose first tha t  ~t ~> 0, # >~ 0, ~t + #  = 1. Consider the cells S~x = Sx(xl; ted), S2x = Sx(x~; 

2d), S3x=Sx(O; [[~tXl+tex2[[) in X and S~=Sr(Yl ;  ted), S2r=Sr(y2; ~g), S ~ = S r ( 0 ;  
[[~txl +tex2[[) in Y. If  we pu t  :~={S~x, S~, Sax} and ~={S~y, S~, S3r}, we have Y > ~  
and ~ =#r because 2x, +tex2 ez:~. Thus we get ~ =4=r and, since S~ N S~ = {~ty I +teY2} 
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(here we use the  str ict  convexi ty  of Y), we mus t  have  4y, +/~Y2 e 83, i.e. 114y, +~y211 < 
4x 1 +#x~ . The  condition 4 + #  = 1 m a y  now be r emoved  and so we have  p roved  

t h a t  4Xl+#X 2 >~ 4 y , + # y  2 for 4>~0, ~u~>0. I f  we app ly  this result  to x l - x  ~, - x ~  
and Y, -Y2, -Y~ instead of Xl, x2 and  Y,, Y2 we get 114(Xl --X2) --fiX211 ~ I[)t(yl --y~) --#Y~II 
for 4 >~ 0, # ~> 0, which is equivalent  to 114x* + ~ Z  211 ~ 114Y1 + ~Y2 II f o r  2~ >//0, ~ ~ 0 ,  4 +/-~ ~ 0.  
Similarly, replacing Xl, x2 and  Y,, Y2 b y  x ~ - x l ,  - x  1 and Y2-Y , ,  - Y , ,  we get 
114x* +/~x2 II ~> 114Y* +#Y2 I I for 4 >~ 0,/~ ~< 00 4 + # >~ 0. The  inequalities now proved  toge ther  
imply  t ha t  114x, +~ux211 ~> 114y, +juy,~ll for all 4,/~, and  the  proof  is complete.  

L e m m a  1.3. Suppose X and Y are two normed linear spaces such that dim Y > 1. 
I / X  and Y satis/y the condition (A) o] Lemma 1.2, then X and Y are euclidean (i.e. 
prehilbert) spaces. 

Proo/. I n  the  proof we will use the  concept  of normal i ty  defined as follows: Le t  L 
be a real no rmed  linear space. An element  x EL is said to be normal  to an  e lement  
y E L  if IIx+4yl] >~ Ilxl[ for all 4. I f  x is normal  to y we write xNy.  We first  p rove  
t h a t  (A) implies: 

(B) I f  xI ,  X 2 E X  , y , , y ~ E Y  and  IlXll]=llyill, I[x~ll=lly~ll, x , N x  ~, y,Ny~ then  
l l~xl+,x~l l  ~> 114yl+#y~ll for all 4, ~ 

I t  is sufficient to assume t h a t  IIx, H=Hx~II=Hy, H=IIy2H=I. There  exist  two 
sequences (x~) and  (x~') in the  linear span of x I and  x2, such t h a t  

H x~ H = IIx~'H = 1, xn '--x~ = HXn'-x~ Ilx2 =#0, l im X'n = l i m  x~' = x  r 

Then  we can find two sequences (y~) and  (y~') in the  linear span  of Y, and  y2, such 
t ha t  

Ily'll Ily"H " ' l] " 'lly ' " n = n =1 ,  Yn - Y n =  xn --Xn 3' l im y~ = l i m  y~ =Yl. 

F rom (A) it follows t h a t  H4x~ +#x~'l l /> 114yn +ttyn'll for all ~t, #,  which gives 

* H t *t z ~ �9 H �9 �9 
114~ +~,(xn - x~)/llz~ - x~ll II ~ 114y~ +z ( y~  -y~/ l lx~ - x'nll H for all ~, , ,  

or H4x~ +/tx2H ~> 114y~ +try211 for all 4,/t. Le t t ing  n t end  to infinity we get H4Xl +#x211 >~ 
114y~ +~y~]l for all 4, ~,  which was to be proved. 

We can now show t h a t  normal i ty  is a symmet r i c  relat ion in bo th  X and Y. Suppose 
first  t h a t  xl, x2 E X and x,Nxe. B y  a resul t  of D a y  [3] we know t h a t  there  exist two 
elements  YD y2E Y such t h a t  IlY*II = IIXlll, Hy2H = IIx~ll, y ,Ny2 and y 2 Y Y l  . Hence we 
get, using (B), II,~xi + x211 >~ ll4y, + y211 >~ IlY211 = IIx~H , which means  t h a t  x~Nx,. This 
proves  t ha t  no rmal i ty  is symmet r i c  in X. Now suppose t ha t  y,, y2 E Y, y,  #0 ,  y~ # 0  
and  y,Ny~. Obviously,  there  exist two elements  x,, x ~ E i ,  such tha t  llxill = By, l[, 
I1~11 = Ily~ll, **N.~ and I I x ~ + ~ l l  > IIx, ll for 4 + 0 .  Let  u be an  e lement  in the  linear 
span of y~ and y~ such that Ilull =IlYIII and y~Nu. If u = ~ y ~ + ~ y ~  and if we pu t  
z = ~ x  I +fix2, then  b y  (B), for each v, 

IIx2 + ~l l  = H v~xi + (1 + ~)x~ll >~ I I~y ,  + (1 + ~)y~ll = Ily~+ ~ull >~ Ily~ll ~ Ilx211. 

Hence we get  x2Nz and, since normal i ty  is symmet r i c  in X,  zNxz. Together  wi th  the 
condit ion IIz~+~ll > I1~111 for 4+0, ~Nx~ implies f i=0 .  Thus  we have  u = ~ y  1 and, 
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since Ilull- IlYall, u - 2 [ - y  1. Hence  y2Nya and it follows t h a t  no rmal i ty  is symmet r i c  
in Y. 

We now use the following result  which follows f rom a construct ion of twodimen-  
sional spaces with s y m m e t r y  of normal i ty  given by  D a y  [4, p. 330]: 

Le t  L and  M be twodimensional  no rmed  linear spaces, in bo th  of which no rma l i ty  
is symmetr ic ,  and  let Xl, x 2 eL,  YD Y2 EM be two pairs of e lements  such t ha t  Ilxlll = 

IlYall, IIx~ll=llY,II and  aleX2, ya~y2. Then if II~xl+flx~ll~>llXYa+flY~ll for 2#~>0 
we have  IlXxl+flx, II < II2Yi+flY.II for ~ttt ~<0. 

F r o m  this result  and  wha t  we have  proved  above,  it follows t h a t  if xi, x2EX, 
YI, Y2 E Y and Ilxill =llYall, IIx~ll-IlY~II, XaNX~, y~Ny~, t hen  we have  II~xi+~x~ll = 
libYa +~Y~II for all ~, ~ In particular, we see that  if Z is a twodimensional  subspace 
of ei ther X or Y and if z, z' EZ, I1~11 = I1~'11-1, then  there is an i somet ry  of Z onto 
itself which carries z into z'. However ,  it is well-known tha t  this is possible only  
if the uni t  circle in Z is an ellipse, i.e. if Z is an euclidean space. Hence  all twodimen-  
sional subspaces of X and  Y are euclidean, which means  t ha t  X and Y are euclidean 
spaces. Thus the l emma is proved.  

Remark. I t  m a y  be observed t h a t  L e m m a  1.2 and therefore also Theorem 1.1, is 
still val id under  the weaker  hypothesis  t h a t  (X, Y) has the  following proper ty :  I f  

and  ~ are families of cells in X and Y respectively,  such t ha t  :~ ~ ~, ~ 9 : # 4  and  
card ~ = 3 ,  then zt~ # 4 .  This is apparen t  f rom the proof of L e m m a  1.3. 

2. Pairs (X,  X )  with dim X < 

We first prove  two l emmas  wi thout  any  restr ict ion on dim X. 

L e m m a  2.1. Let X be a Banach space such that (X, X) has EPC. Suppose that e 1, ee 
are extreme points o/ S z and Xa, x2EX are such that Hal+elf[ : ]]x2+e2H, Hxl-elH = 

Hxe-e211. Then it follows that H,~xi+fleall = II~x2+fle211 /or ])'1 >~ ]fl]" 

Proof. I t  is clearly sufficient to prove  t h a t  llXa+fleall =llx2+fle~ll for 0~<~<1 .  
Consider the  cells S 1 = S(X 1 --  el; 1 +/t~), S 2 = S(X 1 + el; 1 - - f l ) ,  S 3 = S(0 ;  Ilxi + f i e  1H) and 
S;=S(x,z-%; l +fl), S2=S(xe+e2;1-#) ,  S~=S 3. I f  we pu t  ~={Sa, S2, S3} and 

={Si, S~, S~} then  we have  ~ 7 ~  and ~z~#  4 (for X a + f l e l E T t ~  ). Since (X, X) has  
E1)C it follows t h a t  ~ # 4 .  Now, since e 2 is an  ex t reme point  of S x the  intersect ion 
S~ f3 S~ contains exac t ly  one point ,  n ame ly  x 2 +fie 2. Thus  we mus t  have  x 2 + # e  2 E S~ = 
$3, which means  t ha t  ]]x2+fle211 <]]Xl+flelH. B y  s y m m e t r y  we mus t  also have  

IIx~ +~e~ll ~< II/~ +fle~ll and hence fix 1 + f i e  a[[ = fiX 2 +fle2[ [, which completes  the  proof. 

L e m m a  2.2. Let X be a Banach space such that (X, X) has EPC. I f  Y is a twodimen- 
sional subspace o/ X containing an extreme point e of Sx, there exists y E Y such that 
]]y]] = 1  and ]]~y+#e H = H2y-tte]] for all ~, #. I~ Y' is another twodimensional sub- 
space of X containing an extreme point e' o / S x  and i / y ' e  Y' is such that IlY' II = 1 and 
]],~y' +fie' H = ll2y'-/~e' H /or all ,~, fl, then the linear map T of Y onto Y' defined by 
Te= e', Ty = y' is an isometry. 

Proof. I t  is easily seen t h a t  for each n = l ,  2, ..., we can find y~e Y with  ]]y~]] = 1  
such t h a t  Hy~+ne H = ]]y~-ne H. Applying L e m m a  2.1 with c a - e ,  % = - e ,  Xa=X2= 
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y,,In we get II~(Ydn)+ffell = I lX(Y. /n) - f fe l l  for I~1/> Iffl or IlXY~+ffell = I I~Y: - f fe l l  for 
nl;~l >~ Iff l" I f  y is a l imitpoint  of the sequence (y~), i t  follows that I lY l l -1  and 
Ilay+ffell  = IlXY-ffell for all X, #. Thus the first s ta tement  of the lemma is proved.  

To prove the second statement ,  we observe tha t  1 = lie II <~ 1/2(llXY + ell + IlXY- ell) = 
It~Y+ell for all ~. Thus for each n = l ,  2 .. . . .  there is a number  Sn>~O such tha t  

II(y/n) +ell  = II~=Y'+e'll.  Then we also have II(y/n)-ell = I I ~ Y ' - e ' l l .  A n  application 
of Lemma 2.1 gives I I~(Y/n)+~el l -  II~=y' +~e'll  for I~1 ~> I~1" Put t ing  ff = 0  we get 

s ~ = l / n .  Thus for each n we have II~(Y/n)+~ell=ll~(Y'/n)+#e'll for I~1/> I~1 or 

IlXY+ffell = IlXY'+ffe'll for nlXl  >~ Iffl" Hence it follows tha t  IlXY+ffell = IlXY' +ffe'll  
for all X, if, which means tha t  T is an isometry. 

Lemma 2.3. Let X be a Banach space such that (X, X )  has EPC,  dim X < oo and X 
is not strictly convex. Then S x  is a polyhedron. Moreover, there is a number a > 0 ,  
such that i / e  is an extreme point o / S x ,  i / x  E X and i / t he  segment [e, x] between e and 
x is a maximal line segment on the boundary o / S x ,  then Ile-xl l  =a .  

Proo/. Since X is not  strictly convex, it is clear tha t  the boundary  of S x  must  
contain a proper  line segment, one endpoint  of which is an extreme point  of Sx .  
I n  other  words, there exists an extreme point  e of S x  and a point  x o with IIx011 = 1, 
such tha t  x 0 ~ _+ e and ]]~e + fix o II - '~ + # for 2 >~ 0,/x ~> 0. Let  Y be the twodimensional 
subspace of X determined by  e and x0, and let y be an element of Y such tha t  
l i l y + r e  H = H~y-ffe]l for all ~ , #  (Lemma 2.2). Then we m a y  write Xo=~e+fly .  I f  
we pu t  x0 = ~e- f ly ,  then ]]x0]] = 1 and I[~e +#x0]] = 2  +ff  for ~t ~>0, ff >~0. Geometrically 
this means tha t  the two line segments [e, x0] and [e, x0] belong to the boundary  of 
St .  The points x 0 and x0 determine two closed arcs of the uni t  circle in Y with end- 
points x 0 and Xo. One of these arcs, which we shall call F, does not  contain e. Let  d 
be the distance from e to F. Then d > 0 .  

Now, if e I and e z are two arbi t rary  extreme points of Sx,  el # +_ e2, and if Z is the 
twodimensional  subspace of X determined by  e I and e2, there is by  Lemma 2.2 an 
isometry of Z onto Y, which carries e 1 into e. F rom the construct ion of F it is obvious 
tha t  this isometry carries e 2 into a point  belonging to F. Hence we have lie1-e2[ [ >~d. 
Since this holds for every pair of extreme points of S x  and since dim X < ~ ,  it 
follows tha t  there are only a finite number  of extreme points of Sx,  which means 
tha t  S x  is a polyhedron.  

I n  order to prove the second s ta tement  of the lemma, let el, e2 be extreme points 
of S x  and xl, x 2 points w i t h  HXlH = ]]x2] ] = 1, such tha t  [e, xl] and [e 2, x2] are maximal  
line segments belonging to the boundary  of Sx. We then have to prove tha t  lie 1 - x l ]  ] - 
]]e2-x2H. Let  Yl and  Y2 be the two-dimensional subspaces of X, determined by  
e 1, x 1 and e2, xz respectively. According to Lemma 2.2, we m a y  take yl E Yl SO tha t  
[]Yl[[ =1 ,  [[Jtyl+ffei[ [ = ][~tyl--ffel] ] for all X,# and so tha t  Yl and x I lie in the same 
halfplane in ]71 determined by  the line th rough  0 and e x. We take ysE Y2 in the 
corresponding way. If  T is the isometry of Y1 onto Y2 for which Te~ =%, T y l = y  2, 
then it is obvious tha t  T x  1 = x  2. Thus [[e I -Xl]  ] = ne2--x2n and  the proof is complete. 

Theorem 2.4. Let X be a / in i te -d imensio~l  Banach space such that (X,  X )  has 
EPC.  Then X is either a Hilbert space or a 01 space (i.e. the unit  cell o] X is either a 
euclidean cell or a parallelotope). 

Proo/. As we ment ioned in the introduction,  this theorem was proved by  Griin- 
baum [6] in the case dim X = 2. Thus we m a y  assume tha t  dim X >~ 3. If  X is strictly 
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convex,  i t  follows f rom Theorem 1.1 t h a t  X is a H i lbe r t  space. I t  r ema ins  to  p rove  
t h a t  if X is no t  s t r i c t ly  convex t hen  X is a ~)x space. I n  this  case we know f rom 
L e m m a  2.3 t h a t  Sx  is a po lyhedron .  Le t  F be a twodimens iona l  face of Sx. Then  F 
is the  convex hull  of a cer ta in  s e t  {e I . . . . .  era} , m ~> 3, of ex t r eme  poin ts  of Sx. Let  a 
be the  number ,  whose exis tence was p roved  in L e m m a  2.3. I f  et, er de te rmine  a side 
[e~, ej] of F and  if % ~ [e~, ej] t hen  [ek, x] is a m a x i m a l  line segment  on the  b o u n d a r y  
of Sx  for each xe[e~, e,]. Consequent ly ,  Ile -xll = a  for xe[e , ,  e,]. W e  now prove  

t h a t  eve ry  two d is jo in t  sides of F are  paral lel .  Suppose t h a t  el, e 2 and  % e 4 deter-  
mine two d is jo in t  sides of iv. W i t h o u t  loss of general i ty ,  we m a y  assume t h a t  e 1 
and  e 4 lie on different  sides of the  line joining e z and  e a. W e  know t h a t  I l e i -x l [  = a  

for al l  x E [% %]. F r o m  this  i t  follows t h a t  lies - xll = a for al l  x E [e~. + e s -  % %1- Since 
we also have  I lea-xl l  = a  for  all  xE[q,  ez], and  since % + e a - e  a a n d  e I lie on the  
same side of the  line joining e 3 a n d  %, i t  follows t h a t  [ e2+e3-ea ,  %] a n d  [el, %] are  
paral lel .  Thus  [el, %] and  [%, ed] are  paral lel .  

The  p r o p e r t y  of F ju s t  p roved  implies  t h a t  the  b o u n d a r y  of Y is e i ther  a t r iangle  
wi th  ver t ices  % % e a or a pa ra l l e logram wi th  ver t ices  el, % % % I n  the  first  case 
p u t  x 1 - e l ,  x~=e2§ D x a = 2 e  2 - e  a. Then  IIx~-x~ll : IIx~-x~ll = IIx~-xall = 2 a  and  

Ilxl-e~ll = IIx -e ll : IIx~-e~ll-a. I n  the  second case, assume t h a t  [el, %] is a side 

of F and  p u t  x 1 = 2 q ,  x 2 =2%, x a =2e  3. Then  we have  IlXl-x~ll = Ilx~-x~ll : IIx~ -Xlll = 

2a and IIxl-(el+e )ll =llx -(el+e )ll =llx -(e +e )ll = a  In any case this shows 
t h a t  X conta ins  three  cells S,=S(x,;  a), i - l ,  2, 3, such t h a t  Ilx,-x, II = 2 a  for i # ]  
and  n ~ - i  S~ 4 r  Since (X, X) has  EPC,  i t  follows t ha t  X is weak ly  4-hyperconvex .  
H a n n e r  [7, p. 75] has  p roved  t h a t  if d im X = n  < ~ a n d  X is weak ly  4-hyperconvex ,  
t hen  the  uni t  cell of X is aff inely equ iva len t  to  the  convex hull  of some of the  ver- 
t ices of an  n-d imens iona l  cube. As is easi ly seen, this  implies  t h a t  for  any  pa i r  of 
ex t r eme  poin ts  % % of Sx  with  e 1 # _ % we have  ]1 e 1 + e 2 II = II - e~ll = 2. Hence,  
since the  four  cells S(d__e 5 1), i = 1, 2, have  a n o n e m p t y  in tersec t ion  a n d  (X, X) has  
EPC it  follows f irst  t h a t  P is weak ly  5 -hyperconvex  and  f rom this  t h a t  X is 5-hyper-  
convex. Bu t  this  implies  t h a t  X is ~r and  therefore  X is hyperconvex ,  
because d im X < c~. This comple tes  the  proof  of Theorem 2.4. 

Remark. F r o m  the  p roofs  we have  given i t  is ev iden t  t h a t  Theorem 2.4 remains  
t rue,  if the  hypothes i s  t h a t  (X, X) has EPC is rep laced  b y  the  following weaker  
hypothes is :  I f  J and  ~ are  families of cells in X such t h a t  D:N~, 7~D:#r and  ca rd  
J~<4, then  7e~ # r  

3. Pairs (X, Y) with X = C ( K )  

I n  th is  section we give some resul ts  concerning pairs  of Banaeh  spaces X and  Y, 
such t h a t  (X, Y) has  EPC a n d  X is a C(K) space, i.e. the  space of real  cont inuous  
funct ions  on a compac t  Hausdor f f  space K.  W e  first  p rove  a s imple lemma.  

L e m m a  3.1. I /  T is a topological space, there exists a dense subset V c  T and a 
mapping #: V-+.,4( T), where .,4( T) is the/amily o/ closed subsets o/ T, such that 

(i) v r /or each v E V, 
(ii) I / v l ,  v2E V, v I #v  2, we have either vlE#(v2) or v~Ett(vj). 

Proo/. Le t  s denote  the  set  of al l  pai rs  (U, v), where U =  T and  v is a ma pp ing  
of U into  A(T)  sa t is fying (i) and  (ii). Clear ly  s is not  empty .  W e  order  ~ b y  a rela- 
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tion ~<where (U1, vl)<~(U2, v2) means tha t  U1c  U~ and vl(ul)= vz(Ul) for u 1 E U 1. I t  is 
clear tha t  each linearly ordered subset of ~ has an upper  bound in ~,  and so by  
Zorn's lemma there exists a maximal element (V,/x) in ~ .  We assert tha t  V is dense 
in T. Indeed, if this were not the case, we could take a point p E T with p eV, and 
then ( V ' , # ' ) E ~ ,  where V ' = V U { p }  and /z'(v)=/u(v) for vEV,  # ' ( p ) = V .  Since 
(V, #) <(V',/x')  this would contradict the maximal i ty  of (V, ju). Hence V is dense 
in T and the lemma is proved. 

Definition 3.2. I / T  is a topological space we denote by d( T) the least cardinal number 
d, such that T contains a dense subset with d elements. 

Lemma 3.3. Let K be a compact Hausdor/[ space and {r~}, .eA, a/ami ly  o/non- 
negative numbers with card A <d(K). Then there exists a /amily o/ cells S(x,; r~), 
o~EA, in C(K), such that IIx -xpll =r~+rB /or :r and f]~eA S(xa; r~) 4r  

Pro@ According to Lemma 3.1 there exists a family {k~}, aeA, of elements of 
K and a family {F~}, ~EA, of closed subsets of K, such tha t  k~ eF~ and for a # f l  
we have k~EFp or k z E F  ~. Since K is completely regular, there is, for each ~EA, 
a continuous realvalued function x~ on K, such tha t  x~(k~) = r:, x~(k) = - r~  for k E F~ 
and Ix (k)l for k e g .  Thus we have x~ =supk~x x~(k)] =r a and from the 
properties of {k~} and {F~} it follows tha t  x ~ - x p  =r~ + r z  for a 4/3. Consequently, 
the family of ceils {S(x~; r~)}, ~EA, in C(K) has the required properties. 

])efinition 3.4. Let X be a Banach space. By dim X we understand the least cardinal 
number 7 such that X is the closed linear hull o/ a subset with 7 elements. 

Theorem 3.5. Let K be a compact Hausdor/] space and Y a Banach space such that 
d(K) >1 dim Y. I / (C(K) ,  Y) has EPC then Y is a ~1 space. 

Pro@ If  dim Y < o~, it suffices to show that  Y is 5-hyperconvex. Except  in the 
trivial case dim Y =  1, we have d(K)>~2. Then it is easy to see that,  for any  r, >0,  
i = 1  ..... 4, C(K) contains four cells S(x 5 r~), such that  Hx~-xjll =r,+r  s for i=#j and 
f] ~=1 S(x,; r~) =4=r Since (C(K), Y) has EPC it follows that  Y is 5-hyperconvex. 

Now assume that  dim Y is infinite. Since d(K)~>dim Y and (C(K), Y) has EPC 
it follows, with the aid of Lemma 3.3, tha t  any  collection {S~}, a EA, of mutual ly 
intersecting cells in Y with card A = dim Y has a nonempty  intersection. Aronszajn 
and Panitchpakdi (Theorem 1 of section 2 in [1]) have proved the following result: 
I f  a metric space E is 7-hyperconvex and at  the same t ime y-separable, then E is 
hyperconvex (E is 7-separable means that  E contains a dense subset of cardinality 
<7).  Using this result we may  now conclude that  Y is hyperconvex, i.e. Y is a ~)1 
space. Hence Theorem 3.5 is proved. 

I t  is well-known tha t  there are no separable infinite-dimensional ~1 spaces. Thus 
we get 

Corollary 3.6. I / K  is an in]inite compact Hausdor// space and Y a separable Banach 
space such that (C(K), Y) has EPC, then Y is a ]initedimensional ~1 space. 

The result of Aronszajn-Panitchpakdi used in the proof of Theorem 3.5 may  be 
improved in the case of C(K) spaces. 

Lemma 3.7. Let 7 be a cardinal number and K a compact Hausdor// space containing 
a dense subset o/cardinality <7. I] C(K) is 7-hyperconvex then it is hyperconvex (and 
hence K is extremaUy disconnected). 
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Proo/. I f  ~ <~r there is nothing to prove, and so we m a y  assume tha t  7 > ~r 
Let  {S~)={S(x~; r~)}, ~EA, be a collection of mutual ly  intersecting cells in C(K). 
We have to prove tha t  N ~A S~ # r  Let  D be a dense subset of K with card D < 7  
and p u t / ( k )  = sup~ ~A (x~(k) -- r~), g(k) = inf~ ~A (x~(k) + r~). Then/ (k)  <~ g(k) for k E K and 
N ~A S~ = {x E C(K) :/(k) ~< x(k) <~ g(k) for k E K}. To each k E D and each natura l  num- 
ber n we choose ~ = ~(k, n) EA so tha t  x~(k) + r~ < g(k) + (l/n) and fi =fl(k, n) E A so 
tha t  x,~(k)-rp>/(k)-(1/n) .  The cells S:(k,~) and S~(k,~) for kED and n - l ,  2, ..., 
are mutua l ly  intersecting a n d - f o r m  a family o f c a v d i n u l i t y  ~ 2  ~ (card D) ~r 
Since C(K) is 7-hyperconvex it follows tha t  there exists xEC(K), such tha t  
x E S~(k, ~) N SZ(k, ~) for k E D, n = l, 2 .. . . .  This means that / (k)  - (1/n) < x(k) < g(k) + (1/n) 
for kED, n - l ,  2 ..... from which follows that/(k)<~x(k)<~g(k) for kED. Since / is 
lower semicontinuous and g is upper  semicontinuous and D is dense in K, this 
implies tha t  /(k)<~x(k)<~g(k) for all kEK, i.e. X E N ~ K S ~  and hence N ~ A S , # r  
which was to be proved. 

We can now prove an improved version of Theorem 3.5 for the case tha t  Y is a 
C(K) space. 

Theorem 3.8. Let K 1 and K 2 be compact Hausdor// spaces such that d(K1) >~ d(K2). 
Then (C(K1) , C(K2)) has EPC i /and only i / K  s is extremally disconnected. 

Proo/. The if par t  is clear. Assume then tha t  (C(K1), C(K2)) has EPC. Let  ~ be 
the least cardinal number  such tha t  7 >d(K1)" Then, using Lemma 3.3, we see tha t  
C(K2) is 7-hyperconvex,  and since d(K2)<7 it follows from Lemma 3.7 tha t  C(K2) 
is hyperconvex and  hence tha t  K s is extremally disconnected. 

Corollary 3.9. I /  K is a compact Hausdor// space, then (C(K), C(K)) has EPC i/ 
and only i / K  is extremally disconnected. 

Remarks. 1. To justify the s ta tement  tha t  Lemma 3.7 and Theorem 3.8 are im- 
provements  of the earlier results, it should be noted tha t  there are compact  Haus-  
dorff spaces for which d(K) < d i m  C(K). I t  is easy to verify tha t  the Stone-~ech 
compactif ication of a countable discrete space has this property.  Less trivial examples 
m a y  also be given. As a mat te r  of fact,  it is not  difficult to  prove tha t  for any  compact  
Hausdorff  space we have dim C ( K ) -  b(K), where b(K) is the least cardinal number  
b, such tha t  the topology of K has a base with b elements. I t  is well-known tha t  there 
are K for which d(K)<b(K). (See, for instance, Example  M on p. 164 of Kelley [8].) 

2. I f  K is total ly  disconnected, it is easy to show tha t  dim C(K)= card :H, where 
:H is the family of all open and closed subsets of K. This fact  m a y  be used to show 
tha t  the conclusion of Lemma 3.3 still holds for K, if the hypothesis  card A <~d(K) 
is weakened to card A ~<dim C(K). This means that ,  if K is total ly  disconnected, 
Theorem 3.5 remains true, when the hypothesis  d(K)~>dim Y is replaced by  dim 
C(K) >~dim Y. Similarly, if K 1 is total ly  disconnected, we m a y  replace d(K1)>~d(K~) 
by  dim C(K1)>~d(K2) in Theorem 3.8. We do not  know whether  these improvements  
are actual ly  valid for all compact  spaces. 
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