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On the extension of Lipschitz maps

By STEN OLOF SCHONBECK

Introduction

Let X and Y be metric spaces. A map 7" from X into Y is called a Lipschitz map
if there is a constant M, such that d(Tx,, Tx,) < Md(z,, x,) for all 2,, 2,€ X, and then
the norm of 7', ||7||, is defined as the least such constant. 7' is called a contraction
if |T||<1.If Dis a subset of X and T: DY a Lipschitz map, it is natural to ask
whether T' may be extended to a Lipschitz map 7:X— Y so that ||T||=|/7'||. This
problem has been studied by several authors. A short survey of results in this con-
nection is given in the paper of Danzer, Griinbaum and Klee [2]. In the present
note we are concerned with some aspects of this problem in the case that X and ¥
are real Banach spaces. More precisely, we are interested in those pairs of Banach
spaces X and Y, for which the extension problem formulated above always has a
solution. It is obvious that, in the case of Banach spaces, it is sufficient to consider
contractions, for if each contraction of a subset of X into ¥ may be extended to a
contraction of X into ¥, then also each Lipschitz map of a subset of X into ¥ may
be extended to a Lipschitz map of X into ¥, without increasing the norm. In order
to abbreviate, we will say that (X, ¥) has EPC (extension property for contrac-
tions) if for each subset D<= X and each contraction 7': DY, there exists a contrac-
tion 7T': X~ Y, which extends 7.

The fact that (X, Y¥) has EPC may also be formulated as an intersection property
for cells in X and Y. A cell in a Banach space X is a set of the form Sx(zy; 7)=
{x€X:||lx—ay|| <r}. The unit cell of X is the cell Sx=8(0; 1). When F and § are
families of cells in X and Y respectively, we shall write F> (G if there is a one-to-
one correspondence between F and §, such that corresponding cells have equal radii
and the distance between the centers of any two cells in G is less than or equal to
the distance between the centers of the corresponding cells in F. If F is a family
of sets, then 7 F denotes the intersection of the sets belonging to F. Then the fol-
lowing two statements are equivalent (see [2]):

(i) (X, Y) has EPC,
(ii) whenever F and @G are families of cells in X and Y respectively, such that
F>G and nF 4, then n§G+¢.

We will also use the following terminology, due to Aronszajn and Panitchpakdi
[1] (see also Klee [10]). For a cardinal number y >3, a space X is said to be y-hyper-
convex if each collection {S%}, «€ 4, of mutually intersecting cells in X with card 4
<y, has a nonempty intersection. X is called weakly y-hyperconvex if this condi-
tion holds under the further assumption that all the 8% have a common radius. X is
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called (weakly) hyperconvex if it is (weakly) y-hyperconvex for all y. It was proved
by Hanner {7, Theorem 6.1] that if y is finite, then for finitedimensional spaces
weak y-hyperconvexity implies y-hyperconvexity, and this result was extended to
arbitrary Banach spaces by Lindenstrauss [11, Theorem 4.3]. Hanner also proved
that, for finitedimensional spaces, 5-hyperconvexity implies X;-hyperconvexity, and
this, too, was extended to arbitrary Banach spaces by Lindenstrauss [11, Theorem
4.1].

It is well-known (Aronszajn—Panitchpakdi [1], Goodner [5], Kelley [9], Nachbin
[12]) that the following properties of a real Banach space are equivalent:

{(a) X is hyperconvex,

(b) X isa D, space, i.e. for any Banach space Z containing X as a subspace, there
is a projection of norm 1 from Z onto X,

(¢) X is isometric to a space C(K), where K is an extremally disconnected compact
Hausdorff space.

Returning now to our object in this paper, we note that the following facts are
previously known (for the proper references we refer to [2]):

(1) (X, Y) has EPC for all X if and only if Y is a ]); space,

(2) (X, Y) has EPCif X and Y are Hilbert spaces,

(8) If dim X =2, then (X, X) has EPC if and only if X is a Hilbert space or a
D1 space (Grimbaum [6]).

In section 1 we will prove that if Y is strictly convex and dim ¥ >1, then (X, Y)
has EPC only if X and Y are Hilbert spaces (this result was announced in [13]).
Section 2 contains a proof of the fact that 3) above remains true if dim X =2 is
replaced by dim X < co. Finally, we give, in section 3, some results in the case that
X is a C(K) space; in particular, we prove that (C(K), C(K)) has EPC only if K is
extremally disconnected.

1. Pairs (X, Y) with Y strictly convex

In this section we prove the following theorem:

Theorem 1.1. If X and Y are Banach spaces such that Y is strictly convex, dim ¥ >1
and (X, Y) has EPC then X and Y are Hilbert spaces.

Theorem 1.1 follows from the following two lemmas.

Lemma 1.2, If X and Y are Banach spaces such that Y is strictly convex and (X, Y}
has EPC, then X and Y satisfy the following condition:

(A) If 2y, 2,€X, yy, 1,€ Y and ||zl =[|mll, ||zl = [wall: 12— 2ell = 92—l then
1A%y +paz, || = |[Ayy +pys|| for all 2, p.

Proof. Let z;, 7, € X, 3, 4, € ¥ and ||z | = [l9a . [|a]| = lp:ll> ll#n — 2]l = lly2 — 92l =d-
Suppose first that 1>0, u >0, A +u=1. Consider the cells Sk =8 x(x;; ud), 8% =8 y(xs;
M), 8% =8x(0; ||Ax;+uz,||) in X and Sy =Sy(ys; pd), 8% ==8y(ys Ad), 8% =5y(0;
lA@, +pa,||) in Y. If we put F={S%, S%, %} and G={S%, 8%, 8%}, we have F>(G
and 7 F +¢, because Az, +uz, EnF. Thus we get 7G +4 and, since 8 N 8% = {Ay, +uy.}
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(here we use the strict convexity of Y), we must have Ay, +uy,€8%, i.e. [|[Ay, +uy,| <
||Az; + pa,||. The condition 1+u=1 may now be removed and so we have proved
that ||Ax, +px,|| = || Ay, +py,|| for >0, u=0. If we apply this result to z, —2,, —,
and y; —y,, —y, instead of @,, x, and y,, y, we get [|A(x, —x5) —us|| = [ Ay, —ys) —uys||
for >0, u >0, which is equivalent to || Az, + x| = || Ay, + py,|| for A>0, 4 <0,1 +u <0.
Similarly, replacing z,, 2, and y,, ¥, by x,—%;, —x, and y,—y;, —y;, we get
(| A2, +py|| = || Ay; +pyel| for A >0, u <0, 1+ >0. The inequalities now proved together
imply that || Az, +pux,|| = ||y, +pys|| for all 2, u, and the proof is complete.

Lemma 1.3. Suppose X and Y are two normed linear spaces such that dim ¥ >1.
If X and Y satisfy the condition (A) of Lemma 1.2, then X and Y are euclidean (i.e.
prehilbert) spaces.

Proof. In the proof we will use the concept of normality defined as follows: Let L
be a real normed linear space. An element 2 €L is said to be normal to an element
yEL if ||z +Ay|| = ||z for all A. If x is normal to y we write xNy. We first prove
that (A) implies:

B) If z),2,€X, y,,4,€Y and |2 =|wull, |zal| =llwell, #N2s, 9Ny, then
|42y + po|| = || Ay + pys|| for all 4, u.

It is sufficient to assume that ||2,| = ||lz.||=|ly1]| =]||#2ll =1. There exist two
sequences (z,) and (x,) in the linear span of #; and x,, such that

lzn || = l|&n | =1, 27 —2;, = ||27 —a3 |2, 0, lim 2, =lim &, ==,.

Then we can find two sequences (y,) and () in the linear span of y, and y,, such
that

lyall = llwnll =1, 9 —yn = |2 — 7 ||yg lim y;, =lim g5 =y,
From (A) it follows that ||Ax, +ux,|| = ||Ayn, +uyr

| for all 4, u, which gives

A7+l —3) |22 — 0|

| = 1 Ayn +pyn —ynf||2n —=n]|]| for all 4, 4,

or ||Az, +ux,|| > ||Ayn +py,| for all 4, 4. Letting » tend to infinity we get ||z, +ua,|| =
|4y, +py.|| for all A, u, which was to be proved.

We can now show that normality is a symmetric relation in both X and Y. Suppose
first that «,, x,€ X and z;N,. By a result of Day [3] we know that there exist two
elements y,, y,€Y such that ||y|| =]z, ||vs]| =ll#:ll. ¥:Ny. and y,Ny,. Hence we

get, using (B), ||Ax, +2,|| > | Ayy + ya|| = ||#s| = ||2.|, which means that z,Nx;. This

proves that normality is symmetric in X. Now suppose that y;, ¥,€ Y, y; +0, ,+0
and y,Ny,. Obviously, there exist two elements z,, 2,€ X, such that ||z, =],

l%s|l = [|well, #, N2, and ||z, + Azy|| > ||, || for 240. Let u be an element in the linear

span of y; and y, such that |lu|=|y,| and y,Nu. If u=ay,+py, and if we put
z =i, + 7, then by (B), for each v,

[lg -+ vzl = ||vows + (1 +9B)zs|| = [|voeyy + (L + 9Byl = [lya+vu]| = ||we]l = [|]l-

Hence we get x,Nz and, since normality is symmetric in X, 2Nx,. Together with the
condition ||, +Ax,|| > ||z, || for A0, 2Nz, implies #=0. Thus we have u—ay, and,
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since ||u| = ||y,||, »= +y,. Hence y,Ny, and it follows that normality is symmetric
in

We now use the following result which follows from a construction of twodimen-
sional spaces with symmetry of normality given by Day [4, p. 330]:

Let L and M be twodimensional normed linear spaces, in both of which normality
is symmetric, and let x,, 2,€L, y,, ¥,€ M be two pairs of elements such that ||z, || =
lvall, ||a]l =lw2l] and a;Na,, y, Ny, Then if ||Az, +ua,| = ||Ay; +uyel| for iu=0
we have ||Ax, +u,|| <|| Ay, +py.|| for Au<0. ,

From this result and what we have proved above, it follows that if x;, 2,€X,
Y1, 42€Y and ||z || =lvalls J1wel| = |%2ll, 2:N%s, 2 Nys, then we have ||Az; +puz,| =
|4y + pys|| for all 4, u. In particular, we see that if Z is a twodimensional subspace

of either X or Y and if z,2'€Z, ||z|| =||z']| =1, then there is an isometry of Z onto
itself which carries z into z’. However, it is well-known that this is possible only
if the unit circle in Z is an ellipse, i.e. if Z is an euclidean space. Hence all twodimen-
sional subspaces of X and Y are euclidean, which means that X and Y are euclidean
spaces. Thus the lemma is proved.

Remark. It may be observed that Lemma 1.2 and therefore also Theorem 1.1, is
still valid under the weaker hypothesis that (X, Y¥) has the following property: If
F and @G are families of cells in X and Y respectively, such that F> (G, #F +¢ and
card F=3, then 7§ ==¢. This is apparent from the proof of Lemma 1.3.

2. Pairs (X, X) with dim X < oo
We first prove two lemmas without any restriction on dim X.

Lemma 2.1. Let X be a Banach space such that (X, X) has EPC. Suppose that e,, e,
are extreme points of Sy and x,, 2, € X are such that ||@,+e;]| = ||z, + 5|, |l2; —esl =

|z —es|. Then it follows that ||z, +pe,|| = ||Azs +ues| for |A] = |pu].

Proof. 1t is clearly sufficient to prove that ||@,+ue| =||2,+pes| for 0<u<1.
Consider the cells S; =8(z; —e;; L +u), S,=8(x, +ey; 1 —p), S3=8(0; ||z, +pe ) and
Si=S8(x,—ey 1 +u), So=S8(x,+ey1—-p), S3=8;. If we put F={8,,S,, Sz} and
G={81, S5, 83} then we have F>G and nF +¢ (for @, +ue, ExF). Since (X, X) has
EPC it follows that #( +¢. Now, since e, is an extreme point of Sy the intersection
81N S5 contains exactly one point, namely x, +pe,. Thus we must have x, -+ ue, €8;=
83, which means that ||z,+uey|| <||@;+ue|. By symmetry we must also have

|2y +peq|| < ||s + e, and hence |2, +ue, || = |4, +pes]|, which completes the proof.

Lemma, 2.2, Let X be a Banach space such that (X, X) has EPC. If Y is a twodimen-
stonal subspace of X containing an extreme point e of Sy, there exists y€Y such that
lyl| =1 and ||Ay+ue|| =||\Ay —pe|| for all A, u. If Y' is another twodimensional sub-
space of X containing an extreme point e’ of Sy and if y' €Y' is such that ||y'|| =1 and
|Ay" +pe'|| =2y’ —pe’|| for all A, u, then the linear map T of Y onto Y' defined by
Te=e', Ty=y' is an isometry.

Proof. It is easily seen that for each n—=1,2, ..., we can find y,€Y with ||y,| =1
such that ||y, +ne| = ||y, —ne||. Applying Lemma 2.1 with e; =e¢, e;= —e, 2, =2,=
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i we get [(yfn) el — gl — el for 21> ] ox 1+ el = i — el for
n|A] = |u|. If y is a limitpoint of the sequence (y,), it follows that |y|[=1 and
|Ay + pe|| = || Ay —pe]| for all 2, u. Thus the first statement of the lemma is proved.

To prove the second statement, we observe that 1 =||e|| <1/2(||Ay +e| + |2y —e|) =
Ay +¢| for all A. Thus for each n=1, 2, ..., there is a number ¢,>0 such that

|(y/n)+e| =||e.y’ +¢'||- Then we also have ||(y/n) —e| =| ey’ —¢'||. An application
of Lemma 2.1 gives ||A(y/n) +pue| = ||Ae.y’ +pe’|| for |A| = |u|. Putting =0 we get
g,=1/n. Thus for each n we have ||A(y/n)+ue|=||A(y'[n)+ue'|| for |A]=|u| or
|4y +pe|| = ||Ay" +upe’|| for n|A| = |u|. Hence it follows that ||Ay -+ puell = ||Ay" +ue’||
for all A, u, which means that 7' is an isometry.

Lemma 2.3. Let X be a Banach space such that (X, X) has EPC, dim X <co and X
18 not strictly convex. Then Sy ts a polyhedron. Moreover, there ts a number a>0,
such that if e is an extreme point of Sy, if x€X and if the segment [e, x] between e and
x is a maximal line segment on the boundary of S, then |le —z| =a.

Proof. Since X is not strictly convex, it is clear that the boundary of §; must
contain a proper line segment, one endpoint of which is an extreme point of Sx.
In other words, there exists an extreme point e of Sy and a point z, with ||z,| =1,
such that xy+ +e and ||de+uxy|| =4+ u for 10, u=>0. Let Y be the twodimensional
subspace of X determined by e and x,, and let y be an element of Y such that
|Ay +pel|| = || Ay —pe]| for all 4, u (Lemma 2.2). Then we may write x,=ae+py. If
we put 2 —oe — By, then ||zg|| =1 and ||Ae +uzq|| =4+ for =0, u=0. Geometrically
this means that the two line segments [e, z,] and [e, xy] belong to the boundary of
Sy. The points z, and z, determine two closed arcs of the unit circle in ¥ with end-
points z, and z;. One of these arcs, which we shall call I', does not contain e. Let d
be the distance from e to I". Then d>0.

Now, if e, and e, are two arbitrary extreme points of Sy, e, = +e,, and if Z is the
twodimensional subspace of X determined by e, and e,, there is by Lemma 2.2 an
isometry of Z onto Y, which carries e; into e. From the construction of I' it is obvious
that this isometry carries e, into a point belonging to I". Hence we have |e, —e,| >d.
Since this holds for every pair of extreme points of Sy and since dim X <<co, it
follows that there are only a finite number of extreme points of Sy, which means
that Sy is a polyhedron.

In order to prove the second statement of the lemma, let e;, e, be extreme points
of Sy and #,, &, points with ||z, || =||#,|| =1, such that [e, x,] and [e,, #,] are maximal
line segments belonging to the boundary of Sy. We then have to prove that ||e; —2, || =
lea—||. Let Y, and Y, be the two-dimensional subspaces of X, determined by
ey, ¥, and ey, , respectively. According to Lemma 2.2, we may take y, € Y, so that
llg:ll =1, ||Ayy+peq|| =||Ay, —ue,|| for all A, p and so that y, and =, lie in the same
halfplane in Y, determined by the line through 0 and ¢, We take y,€ Y, in the
corresponding way. If 7' is the isometry of ¥, onto Y, for which T'e, =e,, Ty, =¥,,
then it is obvious that T, =, Thus |le, —a,|| = ||e5— ;|| and the proof is complete.

Theorem 2.4, Let X be o finite-dimensional Banach space such that (X, X) has
EPC. Then X is either a Hilbert space or a P, space (i.e. the unit cell of X is etther @
euclidean cell or a parallelotope).

Proof. As we mentioned in the introduction, this theorem was proved by Griin-
baum [6] in the case dim X =2. Thus we may assume that dim X >3. If X is strictly
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convex, it follows from Theorem 1.1 that X is a Hilbert space. It remains to prove
that if X is not strictly convex then X is a D, space. In this case we know from
Lemma 2.3 that Sy is a polyhedron. Let F be a twodimensional face of §;. Then F
is the convex hull of a certain set {e,, ..., ¢,,}, m >3, of extreme points of Sy. Let
be the number, whose existence was proved in Lemma 2.3. If ¢, ¢; determine a side
fes, e;] of F and if ¢, ¢[e;, ¢;] then [e,, «] is a maximal line segment on the boundary
of Sy for each x€[e; ¢;]. Consequently, |le,—x| =a for x€[e; ¢;]. We now prove
that every two disjoint sides of F are parallel. Suppose that e, e, and e, e, deter-
mine two disjoint sides of F. Without loss of generality, we may assume that ¢,
and e, lie on different sides of the line joining e, and e;. We know that ||e,—z| =a

for all x€[e, ¢;]. From this it follows that |le; —z|| =a for all z€[e, +e;—ey, €,]. Since
we also have |e;—z| =a for all x€[e,, ¢,], and since e,-+-e;—ey and e; lie on the
same side of the line joining e, and e,, it follows that [e,+e5—ey, €] and [e;, e,] are
parallel. Thus [e;, e,] and [e;, ¢,] are parallel.

The property of F just proved implies that the boundary of F is either a triangle
with vertices e, €,, €5 or a parallelogram with vertices e, e,, €5, €,. In the first case

pub &, —e;, Ty =€y +e3— €, T3 =2e, —e,. Then ||, — || = ||, — 25| = || —2,]| =20 and
|2, —ea]] = || —esl]l = ||2s —e2]] =a. In the second case, assume that [e;, e,] is a side
of F and put x, = 2e,, 2, = 2e,, ¥, —2e,. Then we have ||z, — || = ||ay — 25| = |25 — 2, || =
2a and ||z, —(e; +eg)|| =||xa— (e, +e5)|| =[xz — (e +¢5)|| =@. In any case this shows

that X contains three cells S;=8(z; a), 1=1, 2, 3, such that ||z, —x,|| =2a for ¢+j
and N} S;+¢. Since (X, X) has EPC, it follows that X is weakly 4-hyperconvex.
Hanner [7, p. 75] has proved that if dim X =» <cc and X is weakly 4-hyperconvex,
then the unit cell of X is affinely equivalent to the convex hull of some of the ver-
tices of an n-dimensional cube. As is easily seen, this implies that for any pair of
extreme points e, e, of Sy with e, & +e,, we have |le;+e,| =||e; —e,|| =2. Hence,
since the four cells S(+e; 1), ¢ =1, 2, have a nonempty intersection and (X, X) has
EPC it follows first that P is weakly 5-hyperconvex and from this that X is 5-hyper-
convex. But this implies that X is X,-hyperconvex and therefore X is hyperconvex,
because dim X < oo, This completes the proof of Theorem 2.4,

Remark. From the proofs we have given it is evident that Theorem 2.4 remains
true, if the hypothesis that (X, X) has EPC is replaced by the following weaker
hypothesis: If F and G are families of cells in X such that F>§, nF=+¢ and card.
F<4, then 7§ +¢.

3. Pairs (X, Y) with X = C(K)

In this section we give some results concerning pairs of Banach spaces X and ¥,
such that (X, ¥) has EPC and X is a O(K) space, i.e. the space of real continuous
functions on a compact Hausdorff space K. We first prove a simple lemma.

Lemma 3.1. If T 4s a topological space, there exists a dense subset V<T and a
mapping u: V> AT), where A(T) is the family of closed subsets of T, such that

(3) v du(v) for each vEV,

(1) If vy, v, €V, v, =v,, we have either v, Eu(vy) or vy €u(vy).

Proof. Let Q denote the set of all pairs (U, v), where U< T and » is a mapping
of U into A(T) satisfying (i) and (ii). Clearly Q is not empty. We order Q by a rela-
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tion <where (U,, »,) < (U,, ¥;) means that U, < U, and »,(u,) =»,(u,) for u, €U;. It is
clear that each linearly ordered subset of {2 has an upper bound in £, and so by
Zorn’s lemma there exists a maximal element (V, u) in Q. We assert that V is dense
in T'. Indeed, if this were not the case, we could take a point p€7 with p ¢V, and
then (V',u')€Q, where V'=V U{p} and u'(v)=p(v) for v€V, u'(p)=V. Since
(V,w)<(V’, u') this would contradict the maximality of (V, ). Hence V is dense
in 7' and the lemma is proved.

Definition 3.2. If T is a topological space we denote by d(T') the least cardinal number
d, such that T contains a dense subset with d elements.

Lemma 3.3. Let K be a compact Hausdorff space and {r,}, a€A, a family of non-
negative numbers with card A<d(K). Then there exists a family of cells S(xy;r,),
a€4, in O(K), such that ||z, —xs|| =r,+7s for o+p and Naca S5 1) +¢-

Proof. According to Lemma 3.1 there exists a family {k,}, «€4, of elements of
K and a family {F,}, €4, of closed subsets of K, such that &, ¢ F, and for o+
we have k,€F, or ky€F,. Since K is completely regular, there is, for each x€4,
a continuous realvalued function z, on K, such that z,(k,) =7,, (k)= —r, for kEF,
and |w,(k)| <r, for k€K. Thus we have [x,| =supiex|2,(k)| =7, and from the
properties of {k,} and {F,} it follows that ||, — x| =r,+7, for a=p. Consequently,
the family of cells {S(x,; r,)}, €A, in C(K) has the required properties.

Definition 3.4. Let X be a Banach space. By dim X we understand the least cardinal
number y such that X is the closed linear hull of a subset with y elements.

Theorem 3.5. Let K be a compact Hausdorff space and Y a Banach space such that
d(K)=dim Y. If (C(K), Y) has EPC then Y is a D, space.

Proof. If dim Y <oo, it suffices to show that Y is 5-hyperconvex. Except in the
trivial case dim Y =1, we have d(K)>2. Then it is easy to see that, for any r,;>0,
t=1, ..., 4, C(K) contains four cells S(z;; r,), such that ||z, —,|| =r;+7r; for 1 4j and
N1 S(x;; r;) £¢. Since (C(K), Y) has EPC it follows that ¥ is 5-hyperconvex.

Now assume that dim Y is infinite. Since d(K)=>dim ¥ and (C(K), Y) has EPC
it follows, with the aid of Lemma 3.3, that any collection {S,}, «€4, of mutually
intersecting cells in ¥ with card 4 =dim Y has a nonempty intersection. Aronszajn
and Panitchpakdi (Theorem 1 of section 2 in {1]) have proved the following result:
If a metric space E is y-hyperconvex and at the same time y-separable, then £ is
hyperconvex (E is y-separable means that E contains a dense subset of cardinality
<9). Using this result we may now conclude that Y is hyperconvex, i.e. Y is a P,
space. Hence Theorem 3.5 is proved.

It is well-known that there are no separable infinite-dimensional P, spaces. Thus
we get

Corollary 3.6. If K is an infinite compact Hausdorff space and Y a separable Banach
space such that (C(K), Y) has EPC, then Y is a finitedimensional P, space.

The result of Aronszajn-Panitchpakdi used in the proof of Theorem 3.5 may be
improved in the case of C(K) spaces.

Lemma 3.7. Let v be a cardinal number and K a compact Hausdorff space containing
a dense subset of cardinality <y. If C(K) is y-hyperconwvex then it is hyperconvex (and
hence K is extremally disconnected).
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Proof. If y <R, there is nothing to prove, and so we may assume that y>N,.
Let {S,}={S(x,; 7,)}, «€4, be a collection of mutually intersecting cells in C(K).
We have to prove that M4 S, +¢. Let D be a dense subset of K with card D <y
and put f(k) =sup,eq(x (k) —71,), g(k) =inf, 4 (x, (k) +7,). Then f(k) <g(k) for k€K and
Nuea Se={x€C(K): f(k)<ax(k)<g(k) for k€EK}. To each k€D and each natural num-
ber n we choose a=a(k, n)€A so that x (k) +r,<g(k)+(1/n) and g=p(k, n)€EA so
that xg(k) —rz>f(k)—(1/n). The cells 8,4 , and Sgu, . for k€D and n=1, 2, ...,
are mutually intersecting -and-form a-family of -cardinality—-<¢2 (card D) R,<y.
Since C(K) is y-hyperconvex it follows that there exists x€C(K), such that
€S, m N Spe, ny for k€D, n=1, 2, ... This means that f(k) — (1/n) <wx(k) <g(k) +(1/n)
for k€D, n=1, 2, ..., from which follows that f(k) <z(k)<g(k) for k€ D. Since f is
lower semicontinuous and g is upper semicontinuous and D is dense in K, this
implies that (k) <z(k)<g(k) for all k€K, ie. € Nyex S, and hence MN,eq S. =6,
which was to be proved.

We can now prove an improved version of Theorem 3.5 for the case that Y is a
C(K) space.

Theorem 3.8. Let K, and K, be compact Hausdorff spaces such that d(K,) > d(K,).
Then (C(K,), C(K,)) has EPC if and only if K, ts extremally disconnected.

Proof. The if part is clear. Assume then that (C(K,), C(K,)) has EPC. Let y be
the least cardinal number such that y >d(K,). Then, using Lemma 3.3, we see that
C(K,) is p-hyperconvex, and since d(K,) <y it follows from Lemma 3.7 that C(K,)
is hyperconvex and hence that K, is extremally disconnected.

Corollary 3.9. If K is a compact Hausdorff space, then (C(K), C(K)) has EPC if
and only +f K is extremally disconnected.

Remarks. 1. To justify the statement that Lemma 3.7 and Theorem 3.8 are im-
provements of the earlier results, it should be noted that there are compact Haus-
dortf spaces for which d(K)<dim C(K). It is easy to verify that the Stone—Cech
compactification of a countable discrete space has this property. Less trivial examples
may also be given. As a matter of fact, it is not difficult to prove that for any compact
Hausdorff space we have dim C(K)=>5(K), where b(K) is the least cardinal number
b, such that the topology of K has a base with b elements. It is well-known that there
are K for which d(K)<b(K). (See, for instance, Example M on p. 164 of Kelley [8].)

2. If K is totally disconnected, it is easy to show that dim C(K)=card ¥, where
H is the family of all open and closed subsets of K. This fact may be used to show
that the conclusion of Lemma 3.3 still holds for K, if the hypothesis card 4 <d(K)
is weakened to card A <dim O(K). This means that, if K is totally disconnected,
Theorem 3.5 remains true, when the hypothesis d(K)>dim Y is replaced by dim
C(K)>dim Y. Similarly, if K, is totally disconnected, we may replace d(K,)>d(K,)
by dim C(K,)>d(K,) in Theorem 3.8. We do not know whether these improvements
are actually valid for all compact spaces.
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