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Weighted mean square approximation in plane regions,
and generators of an algebra of analytic functions

By Lars Ince HEDBERG

1. Introduction

If D is a region in the complex plane, and a(z) is a continuous, positive function
in D, we denote by H2a; D) the set of all analytic functions, A(z), in D, which
have the property that

14l [ herleate) 2 < =,

where d4 denotes plane Lebesgue measure.

D is called a Carathéodory region if it is simply connected, bounded, and its
boundary, @D, coincides with the boundary of the infinite component, D, of the
complement of the closure of D.

In 1934 Marku$evi¢ and Farrell proved independently that for any Carathéodory
region, D, the polynomials are complete in H2(1; D). It is well known that this pro-
perty need not hold for non-Carathéodory regions. (See e.g. [3]). The result has
been generalized to spaces with weight functions other than the identity by various,
notably Soviet, mathematicians. A survey of this theory is given in Mergeljan’s
paper [3]. Most of the results, however, deal with non-Carathéodory regions, and
because of this the weight function a(z) is required to tend to zero, when z ap-
proaches the boundary.

For Carathéodory regions much more can be said, and the first part of this paper
is devoted to this problem. The result is stated in Theorem 1.

In the second part we shall study the related problem of finding generators of
the algebra, 4, of all analytic functions, g(w) = >¢° g,w", in the unit disc, such that
the norm, ||g||=28|g.|, is finite. By a generator of 4 we mean a function, ¢, in
the algebra A4, such that the polynomials (with constant term) P(¢) are dense in 4.
For a function to be a generator of 4 it is obviously necessary that it is univalent
in the closed unit disc, but whether this condition is also sufficient is an open prob-
lem. D.J. Newman proved [5] that a univalent function which maps the unit disc
onto a region with rectifiable boundary is a generator of 4, and a simpler proof of
this was given by H.S. Shapiro [7]. See also [6]. As a corollary to Theorem 1 we
get another sufficient condition which we state as Theorem 2, and then we show
by means of examples (Theorems 3 and 4) that our result neither includes, nor is
included in Newman’s.

I wish to acknowledge my great indebtedness to Professor Lennart Carleson, who
has contributed important ideas to this work.
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L. 1. HEDBERG, Weighted mean square approximation in plane regions

2. Polynomial approximation

If D is a simply connected region, we denote by f(z) a function which maps D
conformally onto the unit disc, and we denote the inverse function to f(z) by g(w).
We denote by d(2) the distance from z to 9D. Then we have the following theorem.

Theorem 1: Let D be a Carathéodory region and a(z) a continuous, positive function
i D. Then the polynomials are complete in H*a; D) if the weight, a(z), satisfies the
following two conditions:

1\8
4 =
(a) fDa(z) (log 6(z)) d4 < oo
(b) the polynomials are complete in H*(a(p(w)); |w|<1).

Remark: Little seems to be known about when condition (b) holds, except the
easily proved fact that it holds when a(p(w)) depends only on |w|, i.e. when a(2) is
constant on every level curve |f(z)|=K. (See [3]).

As for condition (a) it would be an interesting task to try to replace it by the
clearly necessary condition [, a(z)d4 < oo.

We need the following lemma, which it of course well known, but since there
seems to be no convenient reference, we include its proof.

Lemma: For every bounded, simply connected region, D, there is a constant K such
that the mapping function f(z) satisfies

1-|f@) | < K {8},

for all z in D.

Proof: The proof is a simple application of the Beurling-Nevanlinna estimates of
harmonic measures.

Let the diameter of D be d, and choose a positive number ¢ <d/6. Let z, be a
point on a level curve |f(z)|=1—% and let o(z,) be the disc with radius p and centre
Zy- Then, if w(z) is the harmonic measure of 2D N a(z,) with respect to D at the point 2,

2 . 0 6(20)
= — —_—,
(1)(20) arcsin 0 6 (ZO)

by the Beurling-Nevanlinna theorem ([4] p. 104 ff.). It follows that
4 ¥
1—w(zy) < %; {0(zp) 12

When D is mapped onto |w|<1,3D N o(z,) corresponds to a set, S,,, on |w|=1,
and because of the invariance of the harmonic measure w(z) = w,(f(2); S.,), where w,
is the harmonic measure with respect to the unit circle.

Now @D can be covered by a finite number of discs, 0y, 0y, ..., 6y, with radius .
oD always contains a point, z,, with |z, —z,| >d/2. #, is contained in a disc o; with
centre a;, and then |a; — 2| =d/2— 0> 20. Thus, for every z, in D there is a ¢, such
that o(z,) and o, are disjoint. But all the sets 2D N o; correspond to sets of positive
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measure on |w|=1, otherwise their harmonic measures with respect to D would be
identically zero. It follows from the Poisson representation that there is a constant
K, independent of z,, such that

1—w,(f(zy), Sz,) = K9
Hence there is a constant K such that 7 < K {(z,)}*.

Proof of Theorem 1: The proof depends mainly on methods of Bers and Carleson.

We assume D to be Carathéodory, and start by observing, with Mergeljan, [3]
p. 136, that it is enough to show that for every n >0 and every ¢>0 there is a
polynomial, P(z), such that

fle"(z) f'(z) — P(z) |2a(z) dA <e.

For if k(z) is arbitrary in H(a; D), h(p(w)) ¢'(w) is clearly in H2(a(p(w)); |w|<1),
and thus, by condition (b), there is a polynomial, @(w), such that

Llh(z) —QUE) f' () Palz) d4 = ﬁ - | Agp(w)) @' (w) — Q(w) [Pa(p(w)) dA <e.

But @(f(z))f'(z) is a linear combination of functions f*(z)f(z), and thus there is a
polynomial, P(z), such that

| 1euenie-pe ko ad <
It follows that for every ¢> 0 there is a P(z) such that
f | B(z) — P(z) [2a(z) dA <&,
D

which proves this first assertion.
Any bounded linear functional, L, on H%a; D) can be expressed in the form

L(h) = f h(2) u(z) d4,

where u(z) is a function satisfying

fbly(z) [Pa(z)"rd4 < oo. (1)

We are thus required to prove that if the function

. OFy.
m(z) fDC_ZdA 0
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L. I. HEDBERG, Weighted mean square approximation in plane regions

for all z in D, then (1) implies that
f f"(2) [ (2) p(2)dA=0, n=>0.
D

Now, for ¢>0 we define a C*° function, w,(z), in D with the following properties:
O0<wmyz) <1,
W (z)=0 for 4(z)<g,
w,(z)=1 for d(z)=2q,
|grad w,(2)| < K /g for some constant K.
Such a function obviously exists, for the function §(z) itself satisfies | d(z,) — 6(2,) | <
|2, — 25| We denote by D, the set {z; ¢ <d(z) <2q}.

We assume for the moment that u(z) € 0™ and is zero outside a compact subset
of D. Then the function m(z) is econtinuous in the whole plane and

om(z) _
oz

in D (see e.g. [9], p. 29). Now, following L. Bers [1], we apply Green’s formula to a
region D' < D, such that 3D’ is smooth and contained in the set where d(z) <gq. By
the analyticity of f"(z) f'(z) we find

—a[ ok @l @unad= [ ol rer@ne

— g0 u(2)

_J‘D,qu(z) @) f (z)ym(z) dA — fablwa(z) @) ' (2) m(z) dz

From the definition of w,(z) it follows that the boundary integral is zero, and that
we can replace D’ by D in the other integrals. Thus

owq(z

ﬂf w(2) f"(2) f'(2) pl) d A = L ") f'(2) m(z) dA. (2)

Letting ¢ — 0 we find that the integral on the left tends to [ 5 f"(2) f'(2) u(2)d4, and

hence we have to prove that the integral on the right tends to zero.
By the definition of wy(z) and the Schwarz inequality

[, 2242 ) ey mieyaa

<gfp |f"(z)f'(z)|26(z)*%dA.J‘D |m(z)|26(z)%dA. (3)

Here
fD PG () [0() dA<Kq* L IRIACTCIEE

<Kqt |/'(z) pdAd=Kq f dA<K,

1-l/@I<Kq} 0<1-{w|<Kq}
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where the second inequality follows from the lemma. (Throughout the paper we use
K to denote different constants.) Because of this and the definition of .D, the left-
hand side in (3) is majorized by ¢ ! {p,|m(z)[2d4, and we have to prove that
Joq|m(z)[2d4 =o(q}).

By a theorem of Sobolev [8] a function

_ u(f)
z)waIC*zlldA

belongs to L2(D) if u(z) € L?(D) for some p > 1 such that { >1/p +1/2 -1, and then

¥ 1/p
{ fD|mz(z)|2dA} <K”D|ﬂ(z)|ﬂdA} , (4)

where K depends on p, A and D.
By Hoélder’s inequality, for p <2

» 1-p/2
[ luaraa<{[ juerraerad " {[ aprer} )

The second integral on the right is finite as soon as p/(2 —p) <4, i.e. p<8/5, by
assumption (a), and so u(z) € L?(D) for p<8/5, by (1).

Now we can remove the regularity hypothesis on u(z) and prove that (2) holds
for all u(z) satisfying (1). For if A==1, (4) holds for all p> 1, and thus by (3), (4),
and (5)

[,. 228 peyeymizyaa

<Kq f | u(z) Pa(z) " dA.

i

If we apply the Schwarz inequality to the left-hand side in (2) we find

2
fD wo2) =) f'(z) u(z)dA | < fD |1"2)f'(2) [Pa(z) 44 fDI (@) [ alz)" dA.

Because for any u(z) satisfying (1) there is a sequence {u,(2)} 5 of functions in C*°
such that [,]u.(2) —pu(z)Pa(z) ' dA->0, these two inequalities show that (2) holds
for all such u(z).

Assuming that m(z)=0 for z€ D, we shall now estimate m(z) in D by means
of a device due to Carleson, [2], and show that §p,|m(z)[*d4 = o(q?).

Fix a z€D and let 2,€2D be such that |z—z,| =d(z). Let C, be the disc with
centre z, and radius d§(z). Every circle |s—z,| = o intersects the open set D,, because
of the Carathéodory property, and hence there is a measure do(s) which is supported
by linear segments in D, 1 C,, such that

f do(s)= g
Is—2dl<e
for all p <d(z). As m(z)=0 in D, we find

mie) = 51 [ nte) = mion aote) = o [ 28 e [222 o), ()
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L. I. HEDBERG, Weighted mean square approximation in plane regions
where the change in the order of integration is permissible, because it follows from
the estimates below that

do(s)
[, motaa [0 <o

In (6) we always have |z —s| <26(z). For () > 34(z) (and | £ —z| <44(2)) we have
| —s|=8(2) = 3d(2), and hence, in this case

1

4(2)

z—S8

Qt_s do(s)

<4. (7)

If | £ — 2| >48(2) we have |L—s|>|t—2|—|2—s|>4]|{—2], and thus

1 z—s 46(z)
—| {0 <. 8
s [ate <2 ®
Finally we assume that §(C)<3d(z) and |{ —z|<4d(z). We let , be a point on
oD such that | —&,|=8(C). For every s in D,,, |{—s|>d((), and if s also satisfies
Co—s|>268(C), we have | —s|>|L,—s]|—0(8) = }| &y~ s|- If we put |s—z,|=rand
Lo— 2| =75, then |{;—s|> |r—r,y|, and it follows that | —s|= 3 [r—r,|if [r—1r,| >
26(Z). Hence, by the definition of do,

do(s) dr 2J‘ dr
[t—s1~Jo@ 2 [r=rl

where the first integral is taken over all 7 with |r— ry| <248(J), and the second over
all r with |r —ry| > 28(¢) and 0 < r < §(z). The second integral is clearly greatest when
7o = 4d(z), and it follows that

1

0(2)

z—s
?S do (8)
since §(2) is bounded by a constant.

Now m(z) can be written as the sum of three integrals m;(z),7=1, 2, 3, corre-
sponding to the domains 4; where (7), (8), and (9) hold respectively. It is thus suffi-
cient to show that for7=1,2,3

1
<Kllog% +K,<K, logg(z_—)—FKz, )]

f |mi(2) [ d4 = o(q*).
Dq
By (7) we find

f [ my(z) P d4 <Kf { |-‘Lﬁ@)—IdA;}szz

AIIC_Z|
2
<K f ) {a(z)* ) llf‘_‘i) !,‘dA;} dA,
| u(2)] }2
<Kq%foq{ ey .
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But by (4) and (5)

2 3
f {f Ilg‘”—(i)ll“dAc} dA2<K{f | (@) |s’5dA} < oo,
D D D

and it follows that if we put ¢g=27",v=1,2, ...,

5 2
lim { f MdA;} dd,=0
DglJD

=200 l C -2 |7l4

which proves our assertion for m,(z).
For m,(z) we find by (8) that

f Imy(z) [2d4 <K f {5(z) f l’u(C)lszg}szz
Dg Dq Azlc—zl

2
< qu fDq {fp I i"u_(i)rl/‘ dA;} dA,= O(Q%)>

as above.
Similary, in the third case it suffices to prove that

logd 2 3
[l

If we replace the inequality (5) by

fb | u(z)|? | log 8(z) [P dA4
pi2 1-p/2
< {f | u(z) 2 a(z)_ldA} {f a(z)P'®P| log §(z)| 2@~ P dA} ,
D D
this case follows as before, by assumption (a), and the proof of Theorem 1 is complete.
Remark: Tt is easily seen from the proof that if 9D is so regular that 1 —|f(z)| <

K {4(2)}" for some « in } <a <1, assumption (a) can be replaced by

f (@(2)|log 8(2) [})**d A < .
D

3. Application to a generator problem, and examples

Applied to the generator problem stated in the introduction, Theorem 1 gives the
following result. For notation see the introduction.

Theorem 2: A function p(w)= 28 @, w" is a generator for A if it is univalent in
|w|<1, and if, for some o> 12,
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L. I. HEDBERG, Weighied mean square approximation in plane regions

> n(log n)*|@n[* < oo.
2
Remark 1: Note that the condition that ¢ is in 4 and is univalent implies that
28 n|@n]* < oo.

Remark 2: Tn the case when >3 n'**| g, |* < co for some o >0, H. S. Shapiro has
recently obtained a simple direct proof of the above theorem (private communication).

Proof: ¢ maps the unit disc onto a region D which is bounded by a Jordan curve.
Let the inverse of ¢ be f.

It is easy to prove by means of Parseval’s relation and elementary estimates,
that for any g(w) = > g, w" the condition >3 n(log n)*|g,|* < oo is equivalent to

1 X
ﬁ | 1| g'(w)[? (]og 1—) dA < co, (10)

=Tl

Thus, if we apply this to ¢, and pass to D, we find

1 o
J, o 44

for some a > 12. It follows, by the lemma and by the remark following Theorem 1,
that the weight function

1 1+8
a,g(z) =1+ (log ITI]‘(—Z)') ,2€ D,

satisfies all the conditions in Theorem 1, whenever f< «/4— 3.
Furthermore, by Cauchy’s inequality,

1
= n(log ny'*?

1
2

=) ] 1 foo
lol=3lonl <laul+ {3 [Eosntogm i} an

It is enough to show that for every £>0 there is a polynomial P such that
lw— P(p(w)) || < e. But by (10) and (11), for g> 0,

3
o= Pl <| Py | +K{[ 1= PlonyFastplon da)
3
=JP(¢(0))I+KUDI}"(Z) —P'z) IZ%(Z)dA} .
Here the last integral can be made less than & (if 8 <o/4 —3) by Theorem 1, for

1 1+8
ful f'(2) |2aﬁ(z) dAd= fmq (1 + (log 1=Tw |w|) )dA,

which is certainly finite. Then we can choose P(g(0)) =0, which proves the theorem.
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Our result is neither included in, nor does it include, Newman’s theorem. This is
a consequence of the following two constructions.

Theorem 3: There is a region D, bounded by a non rectifiable Jordan curve, such
that the Riemann mapping function f(z) satisfies

JD(1—|f(z)|)‘“dA< oo
for every e < 1.

Proof: We shall construct inductively a sequence of regions, {Dn}3°, such that
D,c D, ., and then define D= U5 D,.

D,
Fig. 1

See Fig. 1. We let D, be a square with sides of unit length. We divide one of the
sides in three parts so that the length of the middle part is 1/V/2, and the lengths

of the other parts are § — 1/21/2. We choose a number, N 1-and divide the middle part
in N; equal parts, and then we let each of these parts be the base of an isosceles
right triangle, which lies outside D;. The union of D, and these N, triangles is D,.

To construct D, we first divide each of the 2N, legs of the isosceles triangles of
Dy — D, in three part in the same proportions as above. Then we choose a number,
N,, (to be determined later) which is a multiple (> 2N,) of N,, and divide each of
the middle parts in N,/N, equal parts, and add isosceles right triangles lying outside
D, as above. The length of the legs of one of these triangles is clearly 1/4N,. The
union of D, and these 2N, triangles is D,.

Now assume that D, is constructed and that D, — D,_; consists of 2" !N, isos-
celes right triangles with legs 1/2"N,. To construct D,,; we choose a multiple,
N,.1(>2N,), of N, and divide the 2"N, legs of the triangles constituting D, — D, _,
in three parts as before. Then we divide the middle parts in N,.,/N, equal parts
and add isosceles right triangles lying outside D, as above. We evidently have
2"Np+1 such triangles whose legs are 1/2"*'N,,,,.

It is easy to see that the 6D so constructed is a Jordan curve. The difference in
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length between ¢D,., and 8D, is 1—-1/ V2 for all n, and thus 8D is not rectifiable.
We shall show that the numbers &, can be chosen so that ) satisfies the require-
ment in the theorem.

It is enough to show that the Green’s function, g(z), of D, with the centre of D,
as pole, satisfies [, g(z) *dA < oo for all a<1.

We shall determine the sequence {N,}{° inductively. We assume that the numbers
N;,1<i<mn, are already chosen. Let the Green’s function of D, with pole at the
centre of D, be g,(z). Then, if I, is the subset of ¢D, to which the triangles of D, .,
are to be joined, the inner normal derivative, dg.(z)/2n, of g,(z) is continuous on
and near I,, and

Min ogn(z)

zely on

=21,>0.

Thus there exists an &, >0, such that if z,€I,, if z € D, lies on the normal to é.D,
through z,, and if |z —z,| <&,, then

gn(2) > | 2— 2, -
We choose Noi1>Max (V2/27 e, exp (1/72)),
and complete the construction of D by choosing N, arbitrarily.

For every n,0<g,(z) <g(z) in D,. Thus, for «>0,

f g(z)‘“dA<f g.(z)" “dA+Zf gn(z) *dA.

Dp—Dp-1
If one of the triangles in D,— D, _, is extended into D, _; by a square (which
then has the side }/2 /2"N,), we have on the side, l,, of the resulting pentagon, P,
which faces the triangle,
Ia#) > n-1(2) > 901V 2/2" N,
for by the choice of N, V§/2"Nn <é&,_,. Hence in P,
9u() > (0-1V2/2"N,) 04(2),

where w,(z) is the harmonic measure of [, with respect to P,. But
f wa(z)"*dA =K(1/2"Nn)2f w1(2)*dA,
Pn P,

by the invariance of the harmonic measure, and the last integral is finite for all
« <1, because the angles in P, are all greater or equal to 7z/2. It follows that

gn(2) " dA< K 2" P N5 1% <K 2" P N3 (log N,
Dp—Dn-1 !
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by the choice of N,,. But N3 *(log N,,)* is bounded as n—oo. Hence [, g(z) *dA4 < oo
for all ax<1.

Theorem 4: Let k(t) be a decreasing function for 0 <t <1, such that lim, .o k(t) = co.
Then there is a region D, bounded by a rectifiable Jordan curve, which is such that the
mapping function f(z) satisfies

[ ra-lr@has-e.

Proof: Let {0;}7 be a sequence of discs with centres at the points a; on the
x-axis, and radii #; with
1< Q1 — @ <Pyt T4
for all i. Let D,=Ujo; and D= U§ o,. See Fig. 2. We shall prove that the se-
quences {a,} and {r;} can be chosen so that D fulfils the requirements.

Fig. 2

We first choose {r;} so that 2§ 7, < co. Then D is clearly bounded by a rectifiable
Jordan curve.

For given {a;} we let w(z) be the harmonic measure with respect to D—o¢, of
00, 0 a4 If g(z) is the Green’s function of D with pole at @y, g(z) is bounded on
00, ( 6, by a constant C, which is independent of the choice of a;, 7 > 1. This follows
from the fact that there exists a region which has o, N g, as a part of its boundary,
and which contains D — ¢, for every choice of a;, i > 1. Then g(z) < Cw(z) in D — g,.
Also, if we assume that f(ay)=0,1 —|f(2)| <log 1/|f(z)| = g(2). It is therefore enough
to show that we can make [,_s k(Cw(z))d4 = co.

In a dise 05, 1> 1, w(2) is always less than the harmonic measure with respect to
o; of the part of do; which is contained in ¢;_; U 6;+1. That is, w(a;) is majorized by
the sum of the central angles corresponding to the arcs d; N 6;-1 and 80; N 6;.41. Thus,
for any given positive sequence, {t;}5°, we can clearly choose the a; inductively in
such a way that 2Cw(a;) <t,7>1.

By Harnack’s inequality w(z) <2w(a;) in the disc, o;, with centre a; and radius
7;/3, and it follows that

f k(Cw(z))dA > § f KCo(z)dA> g 2 k(t) .
D~0y Ui

But the sequence {#}3° can be chosen so that >3 k(f;)r;?= oo, and this proves the
theorem.
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