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Asymptotic estimates for spectral functions connected 
with hypoelliptic differential operators 

By NILS 1NIILSS051 

1. Introduction 

Le t  x = @1 ..... xn) be coordinates  in R n and  p u t  D k = (2~i) -1 ~/~xk and  D ~ = D~ ' ...D~n. 
W e  shall  consider  a hypoel l ip t ic  di f ferent ia l  ope ra to r  M(D)= ~M~D ~ with cons tan t  
coefficients.  Le t  us assume t h a t  the  coefficients M~ are  real ,  so t h a t  M(D) is fo rmal ly  
self-adjoint .  Moreover,  we suppose  t h a t  M(~)->  + co when ]~] -+  oo, ~ ER n. 

I f  S is an  open subset  of R ~ a n d  we define M(D) on C~~ we get  a symmet r i c  
l inear  ope ra to r  a 0 in the  H i lbe r t  space L2(S). W e  let  A be a se l f -adjoin t  extens ion of 
%. Then b y  the  spect ra l  theorem A has  a spec t ra l  reso lu t ion  E ( 2 ) o f  commut ing  
p ro jec t ion  opera to rs  increasing wi th  2 (Nagy  [7]). The ope ra to r  E(2) is g iven b y  a 
kernel  e~(x,y), the  spec t ra l  funct ion  of A:  E(2)u(x)=~sex(x,y)u(y)dy, where  ex is 
inf in i te ly  d i f ferent iable  in S • S. This  is p roved  in H S r m a n d e r  [5] in the  case where A 
is semi -bounded  and  in this  pape r  in the  general  case. 

I f  in pa r t i cu l a r  S = R  ~, there  is a unique  se l f -adjoin t  ex tens ion  A 0 of a 0 wi th  a 
cor responding  spect ra l  funct ion  e0.~ which is easi ly  compu ted  b y  a Four i e r  t ransfor-  
mat ion:  

eo, x(x,y)= f~, e x p ( 2 z i ( x - y , ~ } ) d ~ .  
(~) < 

W e  are going to  give a resul t  on the  behav iour  of e(2) = eo.~(x, x) when2--> + oo. W e  shall  
show (Theorem 1) t h a t  there  are  real  numbers  a and  t, a > 0 and  t an  in teger  ~> 0 such 
t h a t  for some n u m b e r  k > 0  

a n d  

k-12a(log 2) t ~< e(2) <~ k2a(log 2) t (2 large) 

e ' ( 2 ) = 0 ( 1 ) 2  a l ( log2) t  (2-->+ c~). 

An  analogous  resul t  holds  for the  de r iva t ives  of e0.a wi th  respec t  to x, y: 

e(o~'~)(x, x) = JMf(~)<~ ~2~d~" 

I f  n = 2 ,  we shall  p rove  a sharper  resul t ,  n a m e l y  e (2)=  k(1 +o(1))2a( log 2) t for a 
pos i t ive  n u m b e r  k, and  where  t = 0 or  t = 1. 

The proof  of Theorem 1 uses ana ly t i c  con t inua t ion  proper t ies  of the  func t ion  
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e(~), which follow from results in the au thor ' s  paper  [8]. I n  part icular  cases the as- 
ympto t i c  behaviour  of e(~t) has been investigated by  Gor t jakov [3], who then also 
computed  the numbers  a and  t. Fur ther  we prove an asymptot ic  result for e;~(x, y) 
when S is arbitrary.  For  this we show an est imate for a fundamenta l  solution of 
(M(D)-~) when ~ - - > -  c~, and apply  a Tauber ian theorem of Ganelius for the 
Stieltjes t ransformation.  We get  the following result (Theorem 2), valid also in the 
no t  semi-bounded case, 

I e~(x, x) - e0, ~(x, x) [ = 0 (1 )  ~a-b(1og ~t) t (~---> + c~ ), 

where a, t correspond to the polynomial  M(~) as above and b > 0  is the largest number  
such tha t  

[grad M(~)[ ~< C([M(~)[ + 1) ~-~ (u e R") 

for some number  C. W h e n  2 - - > -  ~ ,  we have with some c > 0  

e~(x,y) = 0(1)exp ( -  c [2 [b). 

2. N o t a t i o n s .  The  spectra l  f u n c t i o n  

We introduce the following cus tomary  notations.  I f  a is a multi- index (~1 . . . . .  an) ,  
where the a, are non-negat ive integers, we pu t  [a] = al + ... + zr and ~ = ~ ' . . . . . ~  
with ~=(~1 ..... ~n). We write D j = ( 2 z  i)-l~/~xj(]=l ..... n) and D = ( D  1 . . . . .  nn).  Let  
M($) = ~ M ~  ~ be a complex polynomial  in ~1 . . . . .  ~n, n ~> 2. Then it corresponds to a 
differential operator  M(D)=~M~D ~ with constant  coefficients. We shall assume 
t h a t  it is hypoelliptic, i.e. (H6rmander  [5]) t ha t  

M(~)(~)/M(~)-->O ( [ ~ [ - ~ , ~ r e a l ) ,  (1) 

where M(~)(~)=D~M(~), and the relation (1) holds for all a with [a[ >0 .  Moreover, 
we suppose tha t  M is real. Then it follows from (1) t ha t  either M(~)--~ + ~ or  
M(~)--> - co when [~:[ -->c~ (~ real). Let  us choose the sign of M so tha t  M(~)--> + ~ .  
Le t  S be an open subset of R n. We shall then work in the Hilbert  spaceL2(S) with inner 

p roduc t  (u,v)=~zu(x)v(x)dx and  norm [[u[I = (u ,u )  ~. I f  we define M(D) on the 
set  C~(S) of all infinitely differentiable functions, which vanish outside compact  
subsets of S, we get a linear operator  a 0 in L2(S), which is also symmetric,  since M is 
real  so tha t  M(D) is formally self-adjoint. Le t  us assume tha t  A is a self-adjoint 
extension of a 0 and tha t  A is bounded from below, A >~ ~0I, say, where I is the  
ident i ty  operator  in L2(S). I n  the sense of N a g y  [7], to  A there corresponds a spectral 
resolution E(~), which is a projection-valued, non-decreasing funct ion on the real 
line. We have E ( 2 ) = 0  for 2 < 20. Since M is hypoelliptic, the following s ta tement  
holds (H6rmander  [5]). 

To every multi- index :r there is a positive integer r such tha t  D~u is continuous 
(i.e. there is a continuous funct ion v such tha t  D~'u =v in the distr ibutional sense) 
for every distr ibution u such tha t  M(D)ru is locally square integrable, and  we have  
an  inequali ty 

sup ID~u(x)] < C([[i(n)vu][ + Hull), (2) 
x e K  

where K is any  compact  subset of S, and C is independent  of u but  m a y  depend on 
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~, r, K,  and S. Of course, sup~,K ID~u(x) l means supz~K Iv(x)], where v is the con- 
t inuous funct ion equivalent  to D~u. B y  (2) it m a y  be shown (H6rmander  [5]) t h a t  
E(~) is given by  a kernel e4(x,y), the spectral funct ion of A, such tha t  

E(2) u(x) = f s  e4(x,y)u(y)dy (u E L~(S)), 

where e4 is defined and infinitely differentiable in S • S. Fur the r  e4(x, y )= e4(y, x) 
for all x, y C S. We also have an est imate 

e(~'~)(x, y)--il~+~lD~ D~ e~(x, y) = 0(1)/~p+ ~(l~+~l) (3) 

when )~-~ + co, uniformly on compact  subsets of S • S, with some positive numbers  
p and k and all g,fl. For  e4 we also have the following lemma. 

Lemma 1. For  any  ~ and  any  x E S ,  e(~'~)(x,x) is an increasing funct ion of 4, 
and the var ia t ion with respect to ). on any  real interval  A satisfies the inequal i ty  

var  e~ ~'~) (x, y) ~ (var e(~ ~' ~) (x, x).  var  e(~ ~'z) (y, y))�89 
A A A 

for all x, y E S and all a, ft. 
Proo/. For  the proof we refer to Bergendal [1], the Lemmas  1.2.2 and 1.2.1. There 

the lemma is proved for the spectral funct ion of an  elliptic operator,  bu t  the proof 
only uses t ha t  (e4-%) is the kernel of an or thogonal  projection if 2>/~, and  so it 
works as well in our case. 

I n  part icular  it follows from the lemma tha t  for any  x, y, ~,fl the funct ion e(~'~)(x,y) 
is locally of bounded variation.  I f  ~t <)~0, then G(~)= ( A - X I )  -1 exists as a bounded 
operator  in L2(S), and ]](A ~I)-~ll ~< (~0-~)-~- I f  the integral of a real funct ion with 
respect to a spectral measure is defined as in N a g y  [7], then G(~t) = ~+0~r (# -~) - ldE(#) .  
I f  in (3) the number  p is smaller than  1, then 

G4 (x, y) = (l~ - ~.) ld% (x, y) (4) 
4. 

is defined as a continuous funct ion in S • S (this is seen e.g. by  an  integrat ion by  
parts). F rom the definition of the integral with respect to a spectral measure (Nagy 
[7]) it follows tha t  on C~(S) (and also on L2(S)), G4 is the kernel of (A -~t) -1. We 
shall call G~ Green's funct ion corresponding to A. We see tha t  for ~eCg' (S)  the 
funct ion ~0(x)-(G4(x,-),q)) is continuous (no eorrecl:ion is needed). I f  in (3) also 
(P +/c l~  +/~1) < 1, we get f rom (3) tha t  G~ ~'~) is continuous in S • S, and 

a p  ,~) (x, y) = (~ - ~.)-~de~ ~' ~) (x, y). (5) 

If  instead of A we consider the operator  B = A  r with a positive integer r, then B 
is self-adjoint and bounded  from below, and  B is fur ther  an extension of M(D)~, defined 
on C~'(S). Since 21/(D) ~ is hypoelliptie, B has a spectral funct ion er, x(x,y), and for 
large ~ we have er.4 =e2~,. Hence, taking r large enough, we m a y  make the exponent  
in (3) smaller than  1, if we have e~,~ instead of e4. Hence, for any  M, ~ and fi, (5) 
holds for the Green's functio n and the spectral funct ion of A ~ if we take r large enough. 
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We have a part icular ly simple case when the set S is the whole of R n. Then the  
Fourier  t ransform 

~t/(~) = j" exp( - 2zi(x,  ~))/(x) dx 

taken in the sense of Schwartz [11] is a un i t a ry  mapping  of L2(S) into L~(R~), and  
:~a0ff-1 is multiplication by  M(~). Hence a 0 has a unique self-adjoint extension A0, 
and since the spectral resolution/~r(2) of .~g = ffA~9 t-1 is multiplication by  the charac- 
teristic funct ion of the set (~IM(~) ~ ~<2} and the operator  (A r -2)  -2 is multiplication 
by (M(~) r --2) -1, we have 

eo,~,a (x, y) = | exp (2~i (x  - y, ~)) d~ 
JM 

and Go, r,a (x, y) = 2)-1 exp (2zd(x - y, ~)) d~. (6) 

The integral is absolutely convergent  for large negative 2 if r is large enough, since 
for a hypoelliptie polynomial  i ( ~ )  we have I M(~)I ~> C]~I ~ for all large real ~ with 
some positive constants  c and C (HSrmander  [5]). 

We now give a result on the asymptot ic  behaviour of eo.a(x, x), when 2 tends to  
-~c~. 

Theorem l .  Let  P(~I ..... ~ )  be a real polynomial  such tha tP (~ l  ..... ~n)-+ + c~when 
I~:1 -+ co (~e real) and let ~ be a multi-index. I f  

then there are positive numbers  c, C, and a, and a non-negative integer t such t h a t  

C-~2a(log 2) t ~< e(2) < C2a(log 2) t (2 > c) 

and e '(2)=0(1)2 ~ X(log 2) t (2--> + ~ ) .  

I f n = 2 ,  t h e n t = 0 o r t = l  and 

e(2) =(kq-o(1))2a(log 2) t (2"-> A- c~) 

with some positive constant  k. 

Remark. I t  is clear tha t  the numbers  a and t are uniquely determined by  P and ~. 
We shall call a = a(P, ~) and t - t(P, o~) the E-numbers  of the pair  (P, ~). 

The proof of Theorem 1 depends on the following lemma which is a p~rticular case 
of results in the au thor ' s  paper  [8] (Theorems 1 and 2 and Lemma 2). 

Lemma 2. Consider a real algebraic manifold V(2): p(2,~) - 0  in R n depending on 
2ER.  Here p(2,~) is a real polynomial  in 2 C R and ~ E R L  Suppose that ,  for some 
20, V(20) is not  e m p t y  and tha t  grad e p(20, ~) =4= 0 for all ~ E V(2o). Fur ther  assume t h a t  
there is a bounded subset ~2 of R"  such tha t  V(2) c ~ for all 2 in a neighbourhood of  
2 o. For  2 in a neighbourhood of 20, let coa(~) be a differential ( n -  1)-form on V(2) such 
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that  in any local coordinate system on V(20) with coordinates ~' picked among the 
~:~ (also defining a local coordinate system on V(~t) for ~ in a neighbourhood of 20) 
the coefficients of o)~(~) are regular analytic algebraic functions of (;t,~'). Define the 
function 

~(~) = f,(~) ~ (~) 

in a (sufficiently small) neighbourhood of 20. Let G(~) be a primitive function of g(2). 
Then there is a finite set W of points ~1 ..... s~E C such tha t  G() 0 m a y  be continued 
analytically along any pa th  in C not passing through any point of W. Moreover, all 
the determinations of G(2) in the neighbourhood of any ;t E (C-W) span a finite dimen- 
sional linear space over C. Put  ~ = 2. maxj]~jl .  Then, if 21 > ~ and if G1(2 ) is a function 
element of G() 0 at  21, there is a real number  c and to every positive integer N a number  
K such that  

] G(2)] ~<KI2] ~ 

for all ~ with ]21 >~ and for all determinations of G(2) tha t  may  be obtained from 
GI(~ ) by  analytic continuation at most N rounds in the region 121 >~. These proper- 
ties hold also for the function g(2) itself. I f  n = 2 ,  then there is a positive integer N 
such that  for [~ I > 

T~g(2)=g(2)+h(2), T~h()O=h(2), 

where T is analytic continuation one round in the positive sense along circles ]~t I = 
constant. 

For the proof of Theorem 1 we shall also need the following lemma. 

Lemma 3. Let q(~l ..... ~n) be a complex polynomial. Then there is a number  a such 
tha t  when ]21 > a  we have grad q(~)#0 for all ~E V(2): q(~) =2. 

Proo/. Consider the algebraic manifold grad(q(~)) = 0. I t  consists of a finite number  
of connected components F 1 ..... Fs, and q(~) is constant =~.j on every Fj. Then for 
]~[ >max(]2j l  ) we have that  grad q(~) is different from zero for all ~E V(2). The 
lemma is proved. 

Now let us turn to the proof of Theorem 1. I t  follows from lemma 3 that  e(~) is real 
analytic for ~t greater than some a. Consider the derivative /(~)=e'(2). We may  
write ](2) as an integral over V(2): P(~I ..... ~n) =~, 

I t  is clear that  the differential ( n -  1)-form (o~(~)= (d~/dP(~))v(x> on V(2) has regular 
algebraic coefficients in any  local coordinate system with coordinates among the 
~.  Hence e(2) has the properties stated in Lemma 2. 

From the fact tha t  all the determinations of e(~) span a finite dimensional linear 
space over the complex numbers it follows (see e.g. Goursat [4], p. 447-460) that  in a 
neighbourhood of infinity e(;t) is a finite sum of terms of the type 2#(log ~t)~H().), where 
fi is a complex number, v a non-negative integer, and H(2) is analytic and single- 
valued in a neighbourhood of ~ .  Hence every such function H(;t) may  be developed 
into a Laurent  series ~-~_~oak~t z, convergent in a neighbourhood of oo. Further  all the 
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functions H(2) are linear combinat ions of functions of the form 2V(log 2)/'h(2), where F 
is a complex number,  /t an integer, and h(2) some branch of e(2). Because of the 
estimate of e(2) obtained in lemma 2 the Lauren t  series of any  H(2) contains only a 
finite number  of non-zero terms with a positive exponent.  

Let  us write every term 2r 2)"H(2) so tha t  H(2) = ~o =- ~ ak2~ with a 0 #0 ,  which 
we can always do, choosing fl conveniently.  Then among the terms of e we select the 
' largest '  ones, first taking those having Re({/) maximal,  =a ,  say, and among these 
keep those who have v maximal,  =t ,  say. Then, in every such 'maximal '  term we 
replace H(2) by  the constant  te rm in the Lauren t  expansion. The sum of the selected 
terms is then a funct ion 

~(2) = 2a(log 2)~(cl 2 ~' + . . .  + c 12 i/~') = 2a(log 2) t" O(log 2), 

where the c~ and k~ are constants  and the k~ real, and we m a y  suppose tha t  (I) is not  
identically zero. By  our method  of picking the terms in ~0 we have 

e(2) - ~(2) = o(1) 2~(log 2) t (4-+ + o~). (7) 

We have (I)(#)=(I)a(#)+ i(P2(/z), where (1) a and qb~ are functions of the type  

g(#) = A lsin(d~kt + e~) + . . .  + A qsin (dqkt + eq), (8) 

where the A j, dj and ej are real constants  and q some positive integer. I t  is well known 
(see e.g. Besicovitch [2], p. 5, Th. 12) t ha t  a funct ion g of the type  (8) has the following 
property.  I f  to 0 is in the range of g, then there is to every e > 0 an increasing sequence 
#1,/z2,... of real numbers  and a positive number  K, such tha t / t~-+ + c~when 7" 
-+ -4- c ~ , ~ t j + l - / ~ j < K  for all 7" and 

Ig( J)- ol . . . . .  

By this proper ty  we get  tha t  @2--- 0. For, if there were a number  Y040 in the range 
of (P2, then there would be a sequence (~j), tending to + ~ ,  such tha t  

IIm(~(2j))l > ly012?(log b)t/2,  

and from (7) it would then follow tha t  e(2j) is non-real, if j is sufficiently large, which 
is a contradiction, since e is real. Hence (I)2 ~0 ,  and  (I)=(I) I. An analogous a rgument  
shows tha t  (I)~>0, as a consequence of the inequali ty e(2)~>0. Now let us consider 
e'(2). 

From the way  of picking the terms in ~ we find 

e'(2) - a U - a ( l o g  2)t(P(log 4) +2~-a(log 2)t(I)'(log 4) (9) 

+o(1)2"- ' ( log2)  ~ (2-+ + ~ ) .  

By  the same type  of a rguments  as above for r and (I) 2 we get  f rom (9) and e'(2) >~ 0 (e(2) 
is evidently increasing) 

(I)'(/~) >~ - a(I)(kt ). (10) 

Since (I) is not  identically zero, and (I) >~ 0, there is an increasing sequence/% #2, ... such 
tha t /x  j-+ + ~ when 7"-+ + ~ ,  and with two positive numbers  C and K 

( ~ j + I - # j ) < K ,  dp(~j)>C, for all j. 
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Let  # be an arb i t rary  number  :>/.tl, and let ~uz be the largest juj which is ~</~. The 
solution of the differential equat ion u ' = - a u  which passes through the point  
(#l, (I)(#z)) is 

u(x) = (I) (/~l) exp ( - a(x -/~l)). 

From (10) it then follows (I)(x)>~u(x) for x~#z ,  and so a mus t  be non-negative,  
since otherwise (I) would grow exponentially,  bu t  we know tha t  it is bounded. Fur the r  
x =~u gives 

(I)(#) ~> Cexp ( - a K )  >0 .  

By  (7) we now get the s ta tement  about  e(~t) in the theorem. Tha t  about  e'(~) 
follows from (9). 

I t  remains to show the stronger assertions in the case n = 2. By  Lemma 2 there is 
an integer N > 0  such tha t  in a neighbourhood of c~ we have TNe '= e ' +  h, TNh =h. 
Hence h(~) is in a neighbourhood of ~ a single-valued funct ion of ~I/N, and so is 
F(~) = e ' ( 2 ) -  (2N~i)-lh(2)log ~. Thus h and F m a y  be developed into Puiseux series 
in a neighbourhood of ~ .  F rom the estimate by  Lemma 2 holding for e'(~) it follows 
tha t  h and F are of polynomial  growth,  and so their Puiseux expansions contain only 
a finite number  of non-zero terms with a positive exponent.  Hence in a neighbourhood 
of ~ we have 

k 0 k0 t 

e'(~)= ~ ak~k/N+(1og~) ~ bk~ kIN 
k =  o v  k = - ~ 

By integrat ion we find 

e(2) = F~(2) + (log 2) F2(2 ) + b N (log 2)2/2, 

where F 1 and F~ are Puiseux series, convergent  in a neighbourhood of ~ and contain- 
ing only a finite number  of terms with a positive exponent.  Since e(2) grows faster 
than  some positive power of 2, the term b_N(lOg2)2/2 is not  the leading one, and the 
part icular  s ta tement  for n = 2  follows. (I t  m a y  be shown tha t  actual ly  b_N:O. ) The 
theorem is proved. 

Now we re turn to our hypoelliptie polynomial  M(~) and the unique self-adjoint 
extension A 0 in L2(R ~) of M(D), defined on C~(R'~), and the spectral function 
eo.~(x, y ) =  ~M(~)<~ exp (27d(x--y, ~})d~. For  an a rb i t ra ry  multi- index ~ we have 

Z )  O, 1 ( ~ ,  
JM (~)~2 

Hence Theorem 1 gives a result on the behaviour  of e(~'~))(x,x) when x--> + ~ ,  and 
to the pair (M, ~) we have a pair  of E-numbers  a(M, o:) and t(M, oQ. 

3. A n  e s t i m a t e  for a certa in  f u n d a m e n t a l  so lu t ion  

We consider (M(~)r-~)  with a positive integer r and ]t large and negative. The 
operator  (M(D)r-~t)  has a temperate  fundamenta l  solution with pole zero which is 
the inverse Fourier  t ransform of (M(~) r-~)-l. Hence the fundamenta l  solution with 
pole x is 

hr.z(x,y) =~ (i(~) r _~)-1 exp (2zi(y - x,~}) d$, 
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where the integral  is absolutely  convergent  if r is large enough. I t  is clear t ha t  h~,a 
is the  complex conjugate  of the  Green 's  funct ion of A~ given b y  (6). We  are going to 
show t h a t  outside the pole the  fundamen ta l  solution tends  exponent ia l ly  to zero, 
when ~--> - ~ .  For  t h a t  we shall need the following lemma.  

L e m m a  4. I f  M(S) is a hypoell ipt ie  polynomial  of degree m, then  there  is a largest  
n u m b e r  b=b(M) such tha t  O<b<~l/m and 

I/<=)(S)[ < r  + 1) ~ ~=' (1U 

for  some n u m b e r  C and all real S and  all ~. I f  r is a posit ive integer,  then  b(M ~) = b(M)/r. 

Proo/. For  a proof  we refer to H 6 r m a n d e r  [6], Theorem 3.2, except  for the  last  
s t a t ement ,  bu t  this is easily checked using t h a t  i t  is p roved  in H 6 r m a n d e r  [6] t ha t  if b 
is the largest  n u m b e r  such t ha t  (11) holds for all ~ with I~l = 1, then  (11) holds for 
all ~ with the same b. 

We also have  

L e m m a  5. Let  N be a hypoell ipt ic  polynomial  and  pu t  b =b(N).  Then  

IN<=>(s +  zs0) - N+(s)I < cIg(lsl + 1)-~ +  ljo) 

for  some cons tant  C, all ~, all real S and  ~ ~> I and  all complex z wi th  I z[ ~< 1. Here  
S0 is a rb i t r a ry  in R n and  C and c are posi t ive and  independent  of S, z, and  z. 

Proo/. B y  Taylor ' s  formula  

N(=)(S + ~zS0) - N(=)(S) = ~ (~z)Wj (S), 
]=1 

where m is the  degree of N and  Nj  is a l inear combinat ion  of der ivat ives  of N of 
order  ( I ~ I + J)" B y  L e m m a  4 we have  

I 'z Nj(S)I < C@I'(IN(S)I + 1) (12) 

with some constant  C. F r o m  the well-known inequal i ty  xay l-a<< - x + y for  x, y > 0 and  
- - ' ~  =(IN(S)[  +1)  and  a=]b, we get 0~<a~<l, then, f rom (12), pu t t ing  x - e j  , y 

Iv~zJNj(S)l < CNJ(IN(S)[ + 1)-o'=q[N(S)I + 1 + 7~llb). 

Since IN(S) l >~ IS[ k with some posit ive k for large I Sl the  proof  is complete.  
F rom L e m m a  4 we also get 

L e m m a  6. I f  N(S) is hypoelliptic,  then  

IN+(S)l < c(ISl + + 1) 

for all cr and  all real S, where c and  C are posi t ive constants.  We m a y  now give an  
es t imate  for the fundamen ta l  solution considered. 

L e m m a  7. Le t  N(S) be real and  hypoell ipt ic  and  let N ( S ) - > +  cr when IS]--> c~. 
P u t  b =b(N) .  Then 
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hz(x, y) = f e x p  (2~i(y - x, ~>) (N(~) - 2)-~d~ 

:is (with respect to y) a tempera te  fundamenta l  solution with pole x of (N(D)-2)  
when 2 is large and negative, and 

D~h~(x,y) = O(1) exp (-cl21 ~) ( 2 - * -  ~ )  

~or x =4=y, all :r and some c >0.  The est imate is uniform on compact  subsets of the 
region x 4y .  

Proo/. Take an a rb i t ra ry  ~oER ~, let z be a complex number  and pu t  H~(~,z)= 
N ( ~ +  [21~z$0)-2. By  Lemma 5 it  follows, taking ~ =  12[ ~, t ha t  there are positive 
numbers  C', C and ( -41)  such tha t  

C-I(IN(~)] + ]h i )<  IH ( ,z)l <C(IN( )I + Ihl) (2<21) (13) 

for  all real $ and all z with I zl ~< C'. 
Now, for I Im (z) l ~< c' the inverse Fourier  t ransform of 1/H~(~, z) (with respect to 

~) is equal to exp (2~iz]21b(y, ~0})h~(0, y). In  fact, a t ranslat ion by  z ]2 I~o corresponds 
by  the Fourier  t ransformat ion to mult ipl icat ion by  exp(2giz]2]b(y,~o}), since 
H~(~,z) keeps away from zero when Izl <~c' (see Nilsson [8], p. 114). 

Le t  B(y) be a positive definite homogeneous polynomial  of degree /. Then 
B(y)exp  (2~i [2[~(y,~=o})h~(0,y) is (as a funct ion of y) the inverse Fourier  t ransform 
of B(D~)(1/Ha(~,z)). From the rules of differentiat ion we see tha t  B(D~)(1/H~(~,z)) 
is a linear combinat ion of terms (H~')(~,z)-... -H~J')(~,z))/Ha(~,z) r+l, where 5 1 ~  ~1 =]" 

Now it follows from (13) and Lemma 5 tha t  

]H (~) (~, z)/H~($, z)] 4 C(]~ I + 1) -c I~l 

for  all real $, all 2<21 and all z with ]z] <c ' ,  and where C is a constant .  So we may  
conclude tha t  if [ is sufficiently large we have 

IB(D~) (1/H~(~, z)) I ~< C(I~ [ + l )  - n - 1  

with some number  C, independent  of ~, 2 and z for ]z I ~c' and 2<21. Bu t  t h e n w e  
get, put t ing  z - ic' : 

IB(y) exp (27~c'Nb(y, ~0))h~(0, y)[ ~< C (2 < 2~) 

for all y, where C is some number,  independent  of 2 and y. 
Since ~o is arbi t rary,  the lemma follows in the case a = 0. To get it for a rb i t ra ry  a 

we need only notice tha t  for y ~:0 we have N(Dy)Sh;.(O,y)=2~ha(O,y) and then use (2). 

4. Asymptotic estimates for the spectral function when the domain 
S is arbitrary 

First  we are going to establish a relat ion between the Green's functions of A r 
and A~, Gr.~(x, y) and Go r.~(x, y) = hr.~ (x, y), respectively. 

Lemma 8 (see Odhnoff [10]). In  L2(S) one has the following identi ty.  
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Gr, x(x, ") =~vhr.~(x," ) + ( B - k )  lk~.~(x," ), (14) 

where x is a rb i t rary  in S, ~oEC~(S), ~v real and ~v(y) =1  in a neighbourhood of x. 
Fur the r  B = A r, and 

kr.~(x, y) = (~v(y) By - B~p(y) )hr.~(x, y). 

(In part icular  kr,~(x,. ) E C8r 

Proo/. Let  us denote the r ight  side of (14) by/~,~(x,. ) and prove tha t  

( ( B -  ,~) u,b.~(x, .  )) = u(x) (15) 

when u E O ( B  ~) = f l ~  ~ ( B  j) c C~176 (the last relation by  (2)). I n  fact, we have seen 

tha t  ( (B-~)u,G~,~(x, . ) )=u(x)  for all u such tha t  ( B - ~ ) u E C ~ ( S ) ,  and, ( B - X )  -1 
being bounded, we should then have (v,/r.~(x,') - G~,~(x,. )) = 0 for all v E C~(S), and 
the lemma would follow. To verify (15) we first consider (with u E D(BOO)) 

( ( B -  X)upfhT.~(x,. )) = (~v(B-~)u,h~.~(x,. )) 

- ( ( B  ~)~u, hr,~(x, '))+((y~B- B~f)u, hr.~(x,')) 

- u(x) + ((y~B - B~f) u,h~.a(x, ")), (16) 

where in the last step we have used tha t  hr.~(x,') is a fundamenta l  solution of 
(M(D) ~-4)  with pole x. Now we consider 

((B - , ~ ) u , ( B  -;t)-~k~.~(x,. )) = (u, kr. ~(x,. )) 

=(u,(~vB-B~f)hr, x(x,')) =((ByJ-yJB)u,h~.~(x,')), (17) 

where the last step is permit ted  since the differential operator  (B~v-y~B) vanishes 
outside a compact  subset of 8 -  {x}. The lemma now follows from (16) and (17). 

Next  we are going to estimate the term (B-2)-lk~,~(x, . )  in (14). B y  L e m m a  7 we 
have 

where c is a positive constant  and b corresponds to M by  L e m m a  2 and the est imate 
is uniform in the neighbourhood of any  point  in S. I t  follows tha t  

II(B-A)-ikr,~(x, ")ll =o(1)exp(-cl l 
Let  ~ be an arbi t rary  multi-index, and let us consider/)~(B-~t)-~kr,~(x," ). By (2) we 
then get, if r is large enough, 

D~(B--~)-~kr,~(x,y)--O(1)exp(--C']),ib/r) (~-->--oz) 

with a positive constant  c', and the estimate is uniform on compact  subsets of 
eo • S, where ~ is a neighbourhood of an  a rb i t ra ry  point  in S. B y  L e m m a  8 it is then 
easy to  see tha t  

D~(G~.x(x,y) -Go,,,x(x,y)) = O ( 1 ) e x p ( - k ] X [  ~/~) (~-+ - ~ )  

uniformly on compact  subsets of S > S, where k is a positive constant .  
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Since (Gr,~(y, x) - Go, ,,~(y, x)) = (Gr,~(x, y) - Go,~,s(x, y)), it also follows t h a t  

D~(G~,~(x,y)-Go,~,~(x,y)) =O(1)  exp  ( - k l 2 p  l*) (2-+ - co) 

un i fo rmly  on compac t  subsets of S • S. Hence,  wi th  an a rb i t r a ry  posit ive integer  s, 
if r is large enough 

(A~ + A~) (Gt,~(x, y) - ao,~,~(x, y)) = 0(1) exp ( - kl21 b~ ) (~-+ - o~) 

uniformty~on- compac t  subsets  of S • S. B y  well-known es t imates  for  elliptic opera tors  
(of the type  (2)) it then  follows t h a t  for any  pair  (a,fl) of multi-indices 

( ~ ( ~ , f l ) ,  
i x ,  y )  - y ) )  = o ( 1 )  e x p  ( - klml - co ) ,  (18)  

if r is large enough. 
I f  we assume A >0 ,  A 0 > 0 ,  we have  b y  (6) and  (18) 

- -  ~0. r,,k~, y)) = 0(1) exp ( -- 
d o  

when  ~ - + -  c~. To get  informat ion  for  (er.~-eo.r,x) f rom this es t imate  we shall use a 
Taube r i an  theorem b y  Ganelius. The  theorem to be quoted is unpubl ished bu t  will 
a p p e a r  in the  M a t h e m a t i e a  Scandinaviea;  the  corresponding theorem for  the La- 
place t r ans fo rmat ion  has been announced  in [12]. (If we are content  with the result  
ez(x,x) = (1 + o(1)) eo.~(x,x) we can use a Tauber ian  theorem b y  Keldish [13], where 
the  Tauber ian  condition is 

I t  follows f rom Theorem 1 t ha t  this condit ion is satisfied, if r is large enough.) 
Firs t  we define a slowly oscillating funct ion as a posit ive,  cont inuous funct ion L 

on  the  posi t ive real line such t ha t  L(cco)/L(co)--->l when (o--> + c~ for every  c > 0 .  
Then  we have  

L e m m a  9. Le t  the funct ion a(#) be locally of bounded  var ia t ion  for # >0 .  Suppose 
t h a t  ff~ ~ (/z + co)-ida(/z) is convergent  for  co = some x o > 0. (and hence for every  co not  
on  the  negat ive  real axis). Le t  c, n, and  v be real numbers ,  c > 0 ,  0<n~<�89 and  v < l .  
L e t  L(co) be a slowly oscillating function.  Then,  if 

f o ~  ( # + c o ) - i d a ( / z ) = O ( 1 ) e x p  (-c[co[ ~) (co--> + ~ )  (19) 

a n d  s u p (  f da(#))<.O(1)coV-*L(co)(~o-->+~),  (2O) 
a~ 

w~<~l~<a) +o)  1 - n  

t h e n  a(co) = 0(1) o ' - * L ( o )  (co--> + co). 

Now we are going to app ly  this Tauber i an  theorem to the  funct ion 

(~(~) = (eo, r~.(x, x) e(/'2)(x, x)) 
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with ~ arb i t rary  and xES .  We let (a,t) be the E-numbers  of (M,~). Wi th  c = t h e  
number  k of ( 1 8 ) , u -  b/r, v =a/r and L(a))= (log co) t we have tha t  c, ~, v, and L satisfy 
the conditions of the lemma, if r is large enough, and also the other  conditions are  

eo.r.~(x,x) in satisfied, (19) because of (18) and (20)because of the estimate for (~ /~)  (~'~) 
Theorem 1 and the fact  tha t  e(/ff)(x,x) is a non-decreasing funct ion of ~, which was  
s ta ted in Lemma 1. Hence we get the conclusion of Lemma 9: 

(e(o~'/)~(x, x) - e(/'~)(x, x)) = 0(1) ~(~-~)/r(log ~)t (~--~ + ~ ) .  (21) 

B y  (21) and L e m m a  1 we now get  

var  e(/,i~)(x, y) = 0(1) ~(%+~-2~)/e~(log ~)(t:~+tfl)/2 
(Jl A + ;t~-b/') 

when ~-> + oo. Here (am, tl) and (am, t2) arc the E-numbers  of (M, ~) and (M, fi), re- 
spectively, and a and /5 are a rb i t ra ry  multi-indices, x and y belong to S, and r is 
sufficiently large. The same est imate holds for <~' ~) ~ eo ~.~ t+, y), and so, taking 

- ~+(+'~)  + x  +'~ - + ( + , Z ) l +  y ) ) ,  ,7(,u) - ~o,~,,~ ,~,p ~,~, ~+, 

we get  by  the Tauber ian theorem 

(~,fl) (eo. re(x, y) - e(/.'~l~)(x, y)) = 0(1) ~(a,+~-2b)/2r (log 2)<t~+t~)/2 (22) 

when ~--> + oo. However ,  we wan t  the results for e~ = el,), and no t  for erA. From 
the relation er,~ =e~l~, we immediately  find tha t  (22) is valid not  only for r suf- 
ficiently large but  also for r = 1. Our restriction tha t  A > 0, A 0 > 0, m a y  also be 
removed,  since by  a t ranslat ion in the eigenvalue parameter  ~ we m a y  make these 
two inequalities satisfied, and the t ranslat ion does no t  change the asymptot ic  for- 
mulas. 

We can also take care of the case where A is not  bounded from below. We have  
the following lemma. 

Lemma 10. Let  A be an arb i t rary  self-adjoint extension in L2(S) of a 0 and E(2) the  
corresponding spectral resolution. Then for any  ~, E(2) is given by  a kernel e~: 

E(2) u(x) = f s  e~(x, y) u(y) dy (u E L2(S)), 

where e~ is infinitely differentiable in S • S and  where 

e(~'Z)(x, y) = 0(1) exp ( - cN b(M)) (),--> - c~) 

uniformly on compact  subsets of S •  Here c is a positive constant  and ~,/5 are  
a rb i t ra ry  multi-indices. 

Proo/. For  a proof we refer to Nilsson [8], the Theorems 3 and 4, where the corre- 
sponding theorem is proved for an  elliptic differential operator  P(D). The proof,  
however, works as well in our case. For  it uses essentially three facts: 

(a) To every x E S we have a fundamenta l  solution g~(x, y) with pole x of (P(D) -~t), 
defined when ~ is large and negative and decreasing exponential ly outside the pole 
when ~-+ - ~ ,  
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(b) the fundamenta l  solution g~(x, y) above satisfies an inequal i ty  

uniformly on compact  subsets of S • S and for all 4. Here C and ~ are positive con- 
stants,  

(c) we have for P(D) an interior a priori L2-estimate of the type  (2) (this paper).  

:Now (a) holds also for M(D) (Lemma 7) and so does (c). Fur the r  in [8] (b) is only 
used to make  certain tha t  the mapping  

u--> fj:g.~(.,y)u(y)dy ( K = c o m p a c t ~ S )  

is continuous f rom local L 2 to local L 2 and tha t  the cont inui ty  is uniform with respect 
to 4. I n  our case we have tha t  M(~)~>CI~I k when ~ is large, with some positive c, 
C, and it follows tha t  the temperate  fundamenta l  solution of (M(D) r -4)  is uni formly 
bounded  with respect to 4, if r is large enough and 4 large and negative. 

This result m a y  then replace (b) in question of M(D)  r, bu t  via the e lementary con- 
nection between spectral functions of M(D) and M(D) r, with r odd, we get the 
desired result also for M(D). 

B y  L e m m a  10 we m a y  now see tha t  (22) is valid also if A is no t  bounded  from 
below. For  let us consider A r with r even; then A ~ is bounded from below so tha t  (22) 
holds for e~.~. But  e.~=e_.~+er.~, for 4 > 0 ,  and so by  lemma 10 we get  (22) also for e~. 

We collect our results in the following theorem. 

Theorem 2. Let  M(~) be a real hypoelliptic polynomial  in R ~, n>~2, such tha t  
M(~)--> + ~ when ]~[ - ~ .  Let  S be an open subset of R n and let a 0 be the opera- 
tor  in L2(S) defined by  the differential operator  M(D), acting on C~(S). Suppose tha t  
A is a self-adjoint extension in L2(S) of %, not  necessarily bounded  from below. Then  
the spectral resolution E(4) of A is given by  a kernel e~(x,y): 

E(4) u(x) = / ~  e~(x, y) u(y) dy (u E L2(S)), 

where ez is infinitely differentiable in S • S, and 

e(~'~)(x,y) = 0(1) exp ( -cl41 b(M)) (4--> - ~ ) 

for any  multi-indices ~,fl. Here c >0 ,  and b(M) is the largest positive number  b such 
tha t  with some constant  C 

IM(~)(~)I <~ C([M(~)] + 1) T M  

for all ~ and all real ~. (If M is elliptic and of degree m, we have b(M) = 1/m). Further ,  
if A 0 is the unique self-adjoint extension in L2(R n) of M(D), defined on C~(Rn), 
and e0.~ its spectral function, then 

(e(~'~)(x, y) - e(o~ff)(x, y) ) = O(1 )4 ( t~+t f l  eb(M))(log 4)(t~+t~)/2 
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when)~--> + c~. Here ~,fi are arbitrary. The pair (ar, tT) is characterized by the property 
that  

K-l,~.a~ ' (log ~)~ ~< e(oVS)(x, x) <. K~%' (log 2)~ 

for some K >0, all large positive ~ and y = ~,fl. That  such numbers exist  was proved 
in Theorem 1. 
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