ARKIV FOR MATEMATIK Band 5 nr 35

1.64 04 4 Communicated 26 February 1964 A. PLEiser and L. GArDING

Asymptotic estimates for spectral functions connected
with hypoelliptic differential operators

By Nius NiLsson

1. Introduction

Let 2= (x,,...,,) be coordinates in R" and put D, = (27i) ' 8/6x, and D*= D3:... Din,
We shall consider a hypoelliptic differential operator M(D)=2M,D* with constant
coefficients. Let us assume that the coefficients M, are real, so that M (D) is formally
self-adjoint. Moreover, we suppose that M(£)— + co when || oo, EER™

If § is an open subset of R" and we define M(D) on 05°(S), we get a symmetric
linear operator a, in the Hilbert space L2(S). We let 4 be a self-adjoint extension of
a,. Then by the spectral theorem A4 has a spectral resolution E(1) of commuting
projection operators increasing with A (Nagy [7]). The operator E(1) is given by a
kernel e;(x,y), the spectral function of A: E(A)u(x)=[seix,y)u(y)dy, where e, is
infinitely differentiable in S x 8. This is proved in Hérmander [5] in the case where 4
is semi-bounded and in this paper in the general case.

If in particular §=R", there is a unique self-adjoint extension 4, of a, with a
corresponding spectral function e, ; which is easily computed by a Fourier transfor-
mation:

eo,1{x,y) = J\M(E) . exp 2ri(x—y, &) dE.

We are going to give a result on the behaviour of e(4) = ¢ 2(z,x) when A— + oo, We shall
show (Theorem 1) that there are real numbers @ and ¢, @ >0 and £ an integer >0 such
that for some number k>0

E'A%(log 1) < e(d) <kA%(log A)* (4 large)
and e'(A)=0(1)2% *log A)! (A—+ o).

An analogous result holds for the derivatives of ey, with respect to ,y:
e (@, x) = f godg.
ME<A

If n=2, we shall prove a sharper result, namely e(1)= k(1 +0(1)) A*(log A)* for a
positive number k, and where t=0 or t=1.
The proof of Theorem 1 uses analytic continuation properties of the function
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e(A), which follow from results in the author’s paper [8]. In particular cases the as-
ymptotic behaviour of e(1) has been investigated by Gortjakov [3], who then also
computed the numbers a and t. Further we prove an asymptotic result for e;(z,y)
when § is arbitrary. For this we show an estimate for a fundamental solution of
(M(D)—4) when A— — oo, and apply a Tauberian theorem of Ganelius for the
Stieltjes transformation. We get the following result (Theorem 2), valid also in the
not semi-bounded case,

|ea(x, x) — e, 2(x, ) | = O(1) 1 P(log A)*  (A—+ o),

where a, ¢ correspond to the polynomial M(£) as above and b >0 is the largest number
such that

|grad M(&)[< C(M(E)|+1)"" (VEER™
for some number C. When A— — oo, we have with some ¢>0

exx,y) =0(1)exp(—c|A]).

2. Notations. The spectral function

We introduce the following customary notations. If « is a multi-index (e, ..., ,),
where the o; are non-negative integers, we put |cx| =0y + ...+ a, and E* =& - ... Egn
with £=(&,,...,£,). We write D;=(2m 4)-10/ox;(j=1,...,n) and D=(Dy,...,D,). Let
M(&)=2M,£* be a complex polynomial in &,,...,&,,7>2. Then it corresponds to a
differential operator M (D)=2M,D* with constant coefficients. We shall assume
that it is hypoelliptic, i.e. (Hérmander [5]) that

M®E)/M(E)—>0 (€] oo, & real), (1

where M®@(£)=D*M (&), and the relation (1) holds for all « with |«|>0. Moreover,
we suppose that M is real. Then it follows from (1) that either M(§)— + oo or
M (&)~ — oo when |&|— oo (& real). Let us choose the sign of M so that M(&)— + oo.
Let S be an open subset of R”. We shall then work in the Hilbert space L2(S) with inner
product (u,v) =[5 u(x)v(x)dz and norm ||u||=(u,u). If we define M(D) on the
set 05°(8) of all infinitely differentiable functions, which vanish outside compact
subsets of S, we get a linear operator a, in L2(S), which is also symmetric, since M is
real so that M(D) is formally self-adjoint. Let us assume that A4 is a self-adjoint
extension of g, and that A is bounded from below, 4 >4,I, say, where I is the
identity operator in L2(S). In the sense of Nagy [7], to 4 there corresponds a spectral
resolution E(4), which is a projection-valued, non-decreasing function on the real
line. We have E(1)=0 for 2 <A, Since M is hypoelliptic, the following statement
holds (Hérmander [5]).

To every multi-index « there is a positive integer  such that D is continuous
(i.e. there is a continuous function v such that D*u=v in the distributional sense)
for every distribution w such that M (D)™ is locally square integrable, and we have
an inequality

sup | Du(e)| < (|| M(D)"w]| + [ul], (2)

where K is any compact subset of S, and C is independent of « but may depend on
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a, r, K, and 8. Of course, sup.x | D*u(x)| means sup.x|v(x)|, where v is the con-
P

tinuous function equivalent to D*. By (2) it may be shown (Hérmander [5]) that
E(4) is given by a kernel ¢;(z,y), the spectral function of A4, such that

B u(z) = f e, ypul)dy  (weIAS)),

where ¢; is defined and infinitely differentiable in Sx 8. Further e;(x, y) = ey, x)
for all z,y € S. We also have an estimate

5P (w,y)=i0\D% Df e, ) = 0(1) 27+ 0=+ (3)

when A— + oo, uniformly on compaet subsets of § X 8, with some positive numbers
p and k and all &, . For ¢; we also have the following lemma.

Lemma 1. For any « and any z €S, ¢® (z,z) is an increasing function of 4,
and the variation with respect to 4 on any real interval A satisfies the inequality

var efP (x,y) < (var ef*® (x, ) - var efP (y,y))*
A A A
for all x,y €8 and all «,8.

Proof. For the proof we refer to Bergendal [1], the Lemmas 1.2.2 and 1.2.1. There
the lemma is proved for the spectral function of an elliptic operator, but the proof
only uses that (e;—e,) is the kernel of an orthogonal projection if >y, and so it
works as well in our case.

In particular it follows from the lemma that for any z,y, «, the function e P(x,y) -
is locally of bounded variation. If 2<2,, then G(2)=(4 —4I)~! exists as a bounded
operator in L*(S), and ||(4 —AI)~'|| <(4,—4)~". If the integral of a real function with
respect to a spectral measure is defined as in Nagy [7], then G(1) = {1 (u — 1) E(u).
If in (3) the number p is smaller than 1, then

Ga(mry) = f " (= 1) e (@) @)

0

is defined as a continuous function in S x § (this is seen e.g. by an integration by
parts). From the definition of the integral with respect to a spectral measure (Nagy
[7]) it follows that on C§(S) (and also on L2(S)), G4 is the kernel of (4 —1)-%. We
shall call G Green’s function corresponding to 4. We see that for @eCs°(S) the
function y{x)=(G(z,-),p) is continuous (no correction is needed}. If in (3) also
(p4-kla+p]) <1, we get from (3) that G{*” is continuous in S X8, and

+oo

G5 () = f (= 1)"deP (2, y). ®)
2,

0

If instead of 4 we consider the operator B=A" with a positive integer r, then B
is self-adjoint and bounded from below, and B is further an extension of M(D)", defined
on C3°(8). Since M(D)" is hypoelliptic, B has a spectral function e, ;(x,y), and for
large 4 we have e, ;=e¢;1/~. Hence, taking r large enough, we may make the exponent
in (3) smaller than 1, if we have e, ; instead of ¢;. Hence, for any M, and §, (5)
holds for the Green’s function and the spectral function of A" if we take r large enough.
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We have a particularly simple case when the set § is the whole of R". Then the
Fourier transform

Ff(&) = exp(—2ni(z,£)) f(x)de

taken in the sense of Schwartz [11] is a unitary mapping of L*(8) into L} R"), and
Fa,F1 is multiplication by M(£). Hence a, has a unique self-adjoint extension 4,
and since the spectral resolution £,(1) of A5=FA;F is multiplication by the charac-
teristic function of the set {£| M ()" <A} and the operator (A7 —2)"! is multiplication
by (M(&)" —2)7L, we have

€o,r,2 (T, )= f s exp (2ni{x —y, &))dé

and Go.r2 (2, y) = f (M(&) — 1)L exp 2midz —y, &) dE. (6)

The integral is absolutely convergent for large negative 4 if 7 is large enough, since
for a hypoelliptic polynomial M () we have | M(£)| =C|&|¢ for all large real & with
some positive constants ¢ and C (Hérmander [5]).

We now give a result on the asymptotic behaviour of eys(x, x), when A tends to
+ oo.

Theorem 1. Let P(&,,...,£,) be a real polynomial such that P(§,,...,£,)— + cowhen
|&]| = oo (& real) and let o be a multi-index. If

e(d) = f £dE,
P& <A

then there are positive numbers ¢, 0, and @, and a non-negative integer ¢ such that
O-12%(log A)!<e(d) <CA%log A)* (A>c)
and e (A)=0(1)2*Ylog 1)t (A + o).
If n=2, thent=0ort=1 and
e(A)=(k+o()A%log 1)* (A~ + oo)
with some positive constant k.

Remark. Tt is clear that the numbers a and ¢ are uniquely determined by P and «.
We shall call ¢ =a(P, ) and ¢t =#(P, «) the E-numbers of the pair (P,x).

The proof of Theorem 1 depends on the following lemma which is a particular case
of results in the author’s paper [8] (Theorems 1 and 2 and Lemma 2).

Lemma 2. Consider a real algebraic manifold V(4): p(4,£)=0 in R" depending on
AER. Here p(A,£) is a real polynomial in 1 € R and & € R". Suppose that, for some
Ao V(Ay) is not empty and that grads p(4,,&) =0 for all &£ € V(4,). Further assume that
there is a bounded subset Q of R" such that V(i) =Q for all 4 in a neighbourhood of
Aq. For  in a neighbourhood of A, let w;(&) be a differential (n —1)-form on V(4) such
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that in any local coordinate system on V(4,) with coordinates &' picked among the
&, (also defining a local coordinate system on V(4) for 4 in a neighbourhood of )
the coefficients of w;(£) are regular analytic algebraic functions of (4,&’). Define the

function
9(A) = f ;3 (&)
V)

in a (sufficiently small) neighbourhood of 4,. Let G(4) be a primitive function of g(4).
Then there is a finite set W of points &,,...,£,€ € such that G(1) may be continued
analytically along any path in C not passing through any point of W. Moreover, all
the determinations of G(4) in the neighbourhood of any 4 €(C-W) span a finite dimen-
sional linear space over C. Put 9 =2-max;|&,|. Then, if ; >0 and if G4(4) is a function
element of G/(4) at ,, thereis a real number ¢ and to every positive integer N a number
K such that
|G(A)| <K|A|°

for all 2 with || >g and for all determinations of G(4) that may be obtained from
G,(A) by analytic continuation at most N rounds in the region |1| >g. These proper-
ties hold also for the function g(A) itself. If n =2, then there is a positive integer N
such that for |A| >p

TV9(A) =9(A) +h(2), T h(A)=h(2),

where T is analytic continuation one round in the positive sense along circles |1| =
constant.
For the proof of Theorem 1 we shall also need the following lemma.

Lemma 3. Let ¢(&;,...,&,) be a complex polynomial. Then there is a number ¢ such
that when |1| >o¢ we have grad ¢(&) =0 for all £€ V(4): ¢(£) =A.

Proof. Consider the algebraic manifold grad(g(&)) =0. It consists of a finite number
of connected components F, ..., F, and ¢(£) is constant =4, on every ¥, Then for
|A| >max(]4,]) we have that grad g(£) is different from zero for all £€ V(1). The
lemma is proved.

Now let us turn to the proof of Theorem 1. It follows from lemma 3 that e(4) is real
analytic for 1 greater than some ¢. Consider the derivative f(1)=¢'(1). We may
write f(1) as an integral over V(A): P(&,,....&,) =2,

) = f ., /TP,

It is clear that the differential (n—1)-form w;(&) =(d&/dP(£))vyy on V(4) has regular
algebraic coefficients in any local coordinate system with coordinates among the
&,. Hence e(1) has the properties stated in Lemma 2.

From the fact that all the determinations of ¢(1) span a finite dimensional linear
space over the complex numbers it follows (see e.g. Goursat [4], p. 447-460) that in a
neighbourhood of infinity e(1) is a finite sum of terms of the type A°(log 1)"H(4), where
f is a complex number, » a non-negative integer, and H(A) is analytic and single-
valued in a neighbourhood of co. Hence every such function H(A) may be developed
into a Laurent series 2 ;> ,,,4*, convergent in a neighbourhood of co. Further all the
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functions H(4) are linear combinations of functions of the form 4*(log 1)“h(1), where y
is a complex number, g an integer, and Ah(4) some branch of e(1). Because of the
estimate of (1) obtained in lemma 2 the Laurent series of any H(A) contains only a
finite number of non-zero terms with a positive exponent.

Let us write every term A’(log A)’H(4) so that H(4)=>%__ o A" with a,==0, which
we can always do, choosing 8 conveniently. Then among the terms of e we select the
‘largest’ ones, first taking those having Re(f) maximal, =a, say, and among these
keep those who have y maximal, =¢, say. Then, in every such ‘maximal’ term we
replace H{4) by the constant term in the Laurent expansion. The sum of the selected
terms is then a function

p(A) = A%(log A)(c, A% + ... 4+ ¢, A¥) = A%(log A) - D(log 2),

where the ¢, and k, are constants and the k; real, and we may suppose that ® is not
identically zero. By our method of picking the terms in ¢ we have

e(A) — p(A) = o(1) A*(log A)*  (A— =+ o0). (7)
We have ®(u) =y(u) +iDy(u), where @, and ®, are functions of the type

glu)=Asin{dyp +e) + ... + Asin(dp +e), (8}

where the 4, d; and ¢; are real constants and ¢ some positive integer. It is well known
(see e.g. Besicoviteh [2], p. 5, Th. 12) that a function ¢ of the type (8) has the following
property. If w, is in the range of g, then there is to every ¢ >0 an increasing sequence
Hys tg,-.. of real numbers and a positive number K, such that p;~ + cowhen j
=+ oo, ;. —p; <K for all § and

Ig(,u])_wol <8>j=1:2>“~-

By this property we get that ®,=0. For, if there were a number y, =0 in the range
of ®,, then there would be & sequence (4,), tending to + oo, such that

|Em(g(4,))] > |yolAf (log 4;)'/2,

and from (7) it would then follow that e(4,) is non-real, if j is sufficiently large, which
is a contradiction, since e is real. Hence ®,=0, and ® =®,. An analogous argument
shows that ® >0, as a consequence of the inequality e(4) >0. Now let us consider
e'(4).
From the way of picking the terms in ¢ we find
€¢'(4) =al*"1(log A)'"®(log A) +A*"(log 4)!®’(log 1) 9)
+o(H)A*log A) {A— + o0),

By the same type of arguments as above for ® and @, we get from (9) and e'(1) =0{e(4)

is evidently increasing)
O’ () > —ad(u). (10)

Since @ is not identically zero, and ® >0, there is an increasing sequence g, g, ... such
that u;— + oo when j— + oo, and with two positive numbers ' and K

(i) <K, ®(u))>C, forallj.
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Let u be an arbitrary number >u,, and let u, be the largest u; which is <u. The
solution of the differential equation % = —au which passes through the point
(s, D)) is

w(@) =D (u;)exp (—alx—wm)).

Erom (10) it then follows ®(x) Zu(z) for  >u;, and so @ must be non-negative,
since otherwise ® would grow exponentially, but we know that it is bounded. Further
x=u gives

DO(u) = Cexp(—aK)>0.

By (7) we now get the statement about e(1) in the theorem. That about (1)
follows from (9).

It remains to show the stronger assertions in the case n=2. By Lemma 2 there is
an integer N >0 such that in a neighbourhood of co we have T’ =¢' +-h, T"h=h.
Hence A(4) is in a neighbourhood of oo a single-valued function of 1", and so is
F(A)y=¢'(1) — (2Nni)-'h(A)log A. Thus » and F may be developed into Puiseux series
in a neighbourhood of co. From the estimate by Lemma 2 holding for ¢'(4) it follows
that k and F are of polynomial growth, and so their Puiseux expansions contain only
a finite number of non-zero terms with a positive exponent. Hence in a neighbourhood
of o we have

ko Ko’
e'(l)= > a A"+ (log z)k_z by AN

Fo—

By integration we find
e(A) = F(2) -+ (log 2) F(2) + b_y (log 4)°/2,

where F, and F; are Puiseux series, convergent in a neighbourhood of oo and contain-
ing only a finite number of terms with a positive exponent. Since e(4) grows faster
than some positive power of 4, the term b_y(log2)?/2 is not the leading one, and the
particular statement for n =2 follows. (It may be shown that actually b_y=0.) The
theorem is proved.

Now we return to our hypoelliptic polynomial M (&) and the unique self-adjoint
extension A, in L% R") of M(D), defined on C§(R™), and the spectral function
€0,.2:(2,y) = § mey<i exp (2milx —y,£>) dE. For an arbitrary multi-index « we have

e (@, )= f £ dx.
M<K

Hence Theorem 1 gives a result on the behaviour of e®)(z,z) when x— + oo, and
to the pair (M, a) we have a pair of E-numbers a(M,«) and ¢(M,x).

3. An estimate for a certain fundamental solution

We consider (M (£)"—A) with a positive integer r and 4 large and negative. The
operator (M (D)"—1) has a temperate fundamental solution with pole zero which is
the inverse Fourier transform of (M(£)”—1)~1. Hence the fundamental solution with
pole z is

by i(@,y) = § (M(8)" =) exp (2midy —,6>) d&,
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where the integral is absolutely convergent if r is large enough. It is clear that A, ;
is the complex conjugate of the Green’s function of 4g given by (6). We are going to
show that outside the pole the fundamental solution tends exponentially to zero,
when A— — co. For that we shall need the following lemma.

Lemma 4. If M (&) is a hypoelliptic polynomial of degree m, then there is a largest
number b=>5b(M) such that 0<b<1/m and

|M@&)| < o ME)|+ 1) (11)
for some number C and all real £ and all «. If 7 is a positive integer, then b(M ") =b(M)/r.

Proof. For a proof we refer to Hormander [6], Theorem 3.2, except for the last
statement, but this is easily checked using that it is proved in Hérmander [6] that if b
is the largest number such that (11) holds for all & with |x| =1, then (11) holds for
all & with the same b.

We also have

Lemma 5. Let N be a hypoelliptic polynomial and put b =b(N). Then
[N +7280) — NO(E)| < CLRI(] + D)=V (&) + )

for some constant C, all «, all real £ and =1 and all complex z with |z| <1. Here
&, is arbitrary in R" and C and ¢ are positive and independent of &, z, and 7.

Proof. By Taylor’s formula

3

N(E+ 128,) — N¥(&) = Z (z2)'N;(8),

where m is the degree of N and N, is a linear combination of derivatives of N of
order (|| +7). By Lemma 4 we have

[T/ N (&) < O] /(| N (&)] + 1)t 0D (12)

with some constant C. From the well-known inequality z%y'—*<x 4y for z,y >0 and
0<a<1, then, from (12), putting z=7"°, y=(|N(&)| +1) and a=3b, we get

|2/ N (&) < ClV (N ()| + 1)~ (N (&) + 1+ ).

Since |N(&)| = |&|* with some positive & for large |£| the proof is complete.
From Lemma 4 we also get

Lemma 6. If N(&) is hypoelliptic, then
[N < o(lg] -+ 1)~ H(NE)| + 1)

for all & and all real &, where ¢ and C are positive constants. We may now give an
estimate for the fundamental solution considered.

Lemma 7. Let N(£) be real and hypoelliptic and let N(£)— + oo when |£]|—oo.
Put b=5b(N). Then
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oz, ) = f oxp (2icy o, £5) (N(E) — 1) ~dE

is (with respect to y) a temperate fundamental solution with pole x of (N(D)—A4)
when 1 is large and negative, and

Dy ha(, y) = O(1) exp (= c|AP") (A= — o0)

for x=+y, all « and some ¢>0. The estimate is uniform on compact subsets of the
region x .

Proof. Take an arbitrary £,€R", let z be a complex number and put H;(&,z) =
N(& 4 |A|26) —2. By Lemma 5 it follows, taking v=|4|°, that there are positive
numbers €', € and (—4,) such that

CH|N@| + 2D < |Haé,2)| <CUNE|+]4]) (A<iy) (13)

for all real & and all z with |z| <C'.

Now, for |Im (z)| <¢’ the inverse Fourier transform of 1/Hy(&,z) (with respect to
£) is equal to exp (22| A|*(y,&>)Ra(0,y). In fact, a translation by z|4|°, corresponds
by the Fourier transformation to multiplication by exp (2miz|4|’(y,&,)), since
Hj(£,2) keeps away from zero when |z| <c¢' (see Nilsson [8], p. 114).

Let B(y) be a positive definite homogeneous polynomial of degree f. Then
B(y)exp (27i|A|*Cy, &> ) Ra(0,y) is (as a function of y) the inverse Fourier transform
of B(D¢) (1/H;(§,2)). From the rules of differentiation we see that B(Dg)(1/H(&,2))
is a linear combination of terms (Hf(&,2)-...- HEP(E,2))[Ha(&,2)" !, where 2 |«,;| =f.

Now it follows from (13) and Lemma 5 that

|H®(&,2)/Hy(&,2)| < O(|&] + 1) 7!

for all real £, all 1 <4, and all z with |z| <¢’, and where C is a constant. So we may
conclude that if f is sufficiently large we have

|B(De) (1/Ha(&,2))| < O(lel + )"

with some number O, independent of £, 1 and z for |z| <¢’ and A<4,. But then we
get, putting z=1c":

|B(y) exp (27¢ |27y, E))ha(0, p)| < O (A< 1y)
for all y, where C is some number, independent of 2 and y.

Since &, is arbitrary, the lemma follows in the case «=0. To get it for arbitrary «
we need only notice that for y +0 we have N(D,)*h;(0,y) =1°h4(0,y) and then use (2).

4. Asymptotic estimates for the spectral function when the domain
S is arbitrary

First we are going to establish a relation between the Green’s functions of A4’
and Ag, Gy, y) and Gy . a(x,y) =h, 1(x,y), respectively.

Lemma 8 (see Odhnoff [10}). In L?(S) one has the following identity.
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Groa(@, ) =phr sz, )+ (B—2) ki, "), (14)

where « is arbitrary in S, p€CF(S), y real and yp(y)=1 in a neighbourhood of z.
Further B=A4", and

ke (. y) = (p(y) By — Byyp(y)hr.a(z, y)-
(In particular %, i(z,-) €C¢°(8S).)
Proof. Let us denote the right side of (14) by f i(z,*) and prove that

((B—A) ufralx, - ) =ulz) (15)

when © € D(B%) = N;° D(B’) = C*(8) (the last relation by (2)). In fact, we have seen
that ((B—2)u, Gy a(z,-)) =u(x) for all » such that (B—1)u€CF(S), and, (B—A)!
being bounded, we should then have (v, [, 2z, ) — Gr 2(x,-)) =0 for all v€CF(S), and
the lemma would follow. To verify (15) we first consider (with € D(B*))

(B =N u,phri(x,")) = (w(B —A)w,bra(x,"))
:((B*A‘,)'{;)%,}l/r,;,(x,')) + ((wB—B'q))u,hr,l(xa'))
=u(x) + (¢ B — By)u, ke a(x,")), (16)

where in the last step we have used that A, ;(x,-) is a fundamental solution of
(M (D) —4) with pole z. Now we consider

((B _Z) u:(B ~'1)~lkr.l(xa N= (u7 kf,l(x> . ))
= (%(WB - BW)hr,}.(x’ = ((Bw _#’B)u,hr,z(m, N, 17)

where the last step is permitted since the differential operator (By —yB) vanishes
outside a compact subset of §— {x}. The lemma now follows from (16) and (17).

Next we are going to estimate the term (B —A4)~%, s(x,-) in (14). By Lemma 7 we
have

st - Oy exp(—c A]) (1> — =),

where ¢ is a positive constant and b corresponds to M by Lemma 2 and the estimate
is uniform in the neighbourhood of any point in 8. It follows that

|(B~2)"k;a(x,")|| =O(L)exp( —c|l|b” (A—— oo).

Let « be an arbitrary multi-index, and let us consider D*(B —1)tk, (x,). By (2) w
then get, if r is large enough,

Dy(B, =) kr.a(z,y) =O(L)exp(—¢'[A["") (A== o°)

with a positive constant ¢’, and the estimate is uniform on compact snbsets of
o % 8, where o is a neighbourhood of an arbitrary point in S. By Lemma 8 it is then
easy to see that

D3(Gri(@,y) = Go,r.4(x ) =O(1)exp (—k|2]"")  (A— — o)
uniformly on compact subsets of § %8, where k is a positive constant.
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Since (G iy, ) — Go, r,a(y, %)) = (Gr, 2(x, y) — Go.r 2(x, ¥)), it also follows that
Di(Gr, i, y) — Go,r.a(z, 7)) = O(1) exp (— A"} (A— — o0)

uniformly on compact subsets of 8 X S. Hence, with an arbitrary positive integer s,
if r is large enough

(A3 + A5) (Gra(x, y) — Go,r, 12, ) = O(1) exp (= K|A]"") (A= — oo)

unifermly-on-compact subsets of 8 X 8. By well-known estimates for elliptic operators
(of the type (2)) it then follows that for any pair («,§) of multi-indices

(G52 (@, y) — G, 9) = 0(1) exp (— KAL) (A= o), (18)

if r is large enough.
If we assume 4 >0, A,>0, we have by (6) and (18)

+o0
f (= DT @, y) — e, y) = 0() exp (— KA

when A— — co. To get information for (e ; —ey 1) from this estimate we shall use a
Tauberian theorem by Ganelius. The theorem to be quoted is unpublished but will
appear in the Mathematica Scandinavica; the corresponding theorem for the La-
place transformation has been announced in [12]. (If we are content with the result
ez, 2) =(1 +0(1))eps(x,2) we can use a Tauberian theorem by Keldish [13], where
the Tauberian condition is

0
o< (51 e,,l(x,x))/er,;(x,x) <l.

It follows from Theorem 1 that this condition is satisfied, if 7 is large enough.)

First we define a slowly oscillating function as a positive, continuous function L
on the positive real line such that L{cw)/L{w)—>1 when w— + oo for every ¢>0.
Then we have

Lemma 9. Let the function o(u) be locally of bounded variation for x> 0. Suppose
that [§® (4 +w)do(u) is convergent for o =some x,>0. (and hence for every w not
on the negative real axis). Let ¢, %, and » be real numbers, ¢>0, 0<x¢ <} and »<1.
Let L(w) be a slowly oscillating function. Then, if

f;“ (p+ @) do(u) = O(1) exp (—clof) (w—>+ o) (19)

o}
and sup ( f da(/,z)) <O 0 ™L(w) (w— -+ o), (20)
o<Q<m ol
then o(w)=0Q) 0" *L{w) (w—>+ o).
Now we are going to apply this Tauberian theorem to the function

o) = (e67u(x, ) — e (2, @)
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with « arbitrary and z€S8. We let (a,t) be the E-numbers of (M,«). With ¢=the:
number k of (18),%=>b/r, v=a/r and L(w) = (log w)* we have that ¢, x, », and L satisfy
the conditions of the lemma, if r is large enough, and also the other conditions are
satisfied, (19) because of (18) and (20) because of the estimate for (6/04) ef ) (x, x) in
Theorem 1 and the fact that e*{(x, ) is a non-decreasing function of A, which was
stated in Lemma 1. Hence we get the conclusion of Lemma 9:

(€65, 2) — e (2, 2)) = 0(1) 29~ (log A)F (A= + o). (21)
By (21) and Lemma 1 we now get

var %P (x, y) = O(1) A% 272 (Jog })tat P2
(A a+ar-bir)
when A— + co. Here (a,,t,) and (a,, t,) are the E-numbers of (M, «) and (M, f5), re-
spectively, and o and § are arbitrary multi-indices, « and y belong to §, and 7 is
sufficiently large. The same estimate holds for ef% (x, ), and so, taking

o(u) = (5, y) — el (@ Y)),
we get by the Tauberian theorem
(e§Fh(x,y) — 2P (@, ) = O(1) A+ 420 (log )@t (22)

when A— + oo. However, we want the results for ¢;=e¢, ; and not for e, ;. From
the relation e, ;=er we immediately find that (22) is valid not only for r suf-
ficiently large but also for »=1. Our restriction that 4>0, 4,>0, may also be
removed, since by a translation in the eigenvalue parameter 4 we may make these
two inequalities satisfied, and the translation does not change the asymptotic for-
mulas.

We can also take care of the case where A4 is not bounded from below. We have.
the following lemma.

Lemma 10. Let 4 be an arbitrary self-adjoint extension in L*(S) of ¢, and E(A) the
corresponding spectral resolution. Then for any 4, E(A) is given by a kernel ¢;:

EQ2)u(z) = L ex@ y)uly)dy  (w€LX(8)),

where e, is infinitely differentiable in §x 8 and where
P, y) = O(1) exp (— AP ™) (A== <o)

uniformly on compact subsets of S x 8. Here ¢ is a positive constant and o,f are
arbitrary multi-indices.

Proof. For a proof we refer to Nilsson [8], the Theorems 3 and 4, where the corre-
sponding theorem is proved for an elliptic differential operator P(D). The proof,
however, works as well in our case. For it uses essentially three facts:

(a) To every z €8 we have a fundamental solution g;(x,y) with pole x of (P(D)—4),
defined when 2 is large and negative and decreasing exponentially outside the pole
when A— — oo,
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(b) the fundamental solution g;(z,y) above satisfies an inequality

[gaz, )| <C-|z—y| ™" (2+p)

uniformly on compact subsets of § xS and for all A. Here C and § are positive con-
stants,
(¢} we have for P(D) an interior a priori L2-estimate of the type (2) (this paper).

Now (@) holds also for M{(D) (Lemma 7) and so does {¢). Further in [8] (b) is only
used to make certain that the mapping

u——>f g+, y)u(y)dy (K =compact<S)
K

is continnous from local L? to local L? and that the continuity is uniform with respect
to 4. In our case we have that M(&) >O|§]k when ¢ is large, with some positive c,
C, and it follows that the temperate fundamental solution of (M (D)"—4) is uniformly
bounded with respect to 4, if r is large enough and A large and negative.

This result may then replace (b) in question of M (D), but via the elementary con-
nection between spectral functions of M (D) and M(D)", with r odd, we get the
desired result also for M (D).

By Lemma 10 we may now see that (22) is valid also if 4 is not bounded from
below. For let us consider 4" with r even; then A" is bounded from below so that (22)
holds for e, ;. But es=e_; + e, 5 for 1>0, and so by lemma 10 we get (22) also for e,.

We collect our results in the following theorem.

Theorem 2. Let M(&) be a real hypoelliptic polynomial in R", n>2, such that
M (&)~ + co when || —oco. Let S be an open subset of B” and let @, be the opera-
tor in L2(8) defined by the differential operator M (D), acting on CF(S). Suppose that
A is a self-adjoint extension in L*(S) of a,, not necessarily bounded from below. Then
the spectral resolution E(1) of 4 is given by a kernel e;(x,y):

E)u(z)= L ez, y)uly)dy  (w€LXS)),

where e, is infinitely differentiable in S xS, and
P(z,9) = (1) exp (=i ®) (A~ o2)

for any multi-indices «,. Here ¢ >0, and b(M) is the largest positive number b such
that with some constant C

| @) < C(M &) +1)
for all o and all real £. (If M is elliptic and of degree m, we have b(M)=1/m). Further,
if 4, is the unique self-adjoint extension in L2(R"™) of M(D), defined on C§°(R"),
and e ; its spectral function, then

(e P (@, y) — e (2, 9)) = O()A‘* 8~ ¥ (log 7) ‘=P
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when 1— + oo. Here a,f are arbitrary. The pair (a,,¢,) is characterized by the property
that

for

K13% (log A)'« < {7 (x, %) < KA% (log A)%

some K >0, all large positive A and ¥ = o, 8. That such numbers exist was proved

in Theorem 1.

S o [ @ bo

=

10.
11.
12.

13.
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