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Addendum to “The Wiener-Hopf equation in an
algebra of Beurling”

By EpGAR AsPLUND

In a paper [1] by the author the main statement (Theorem 3, page 107) states,
for a kernel f in the Beurling algebra A2 (defined on page 90) a complete set of
solutions ¢ in the dual space B2 of A2 to the Wiener-Hopf equation

J‘w flx—yyoly)dy = p(x) +p(x), @x)=0 for x <0, y(x) =0 for >0,

under certain conditions.

1. The function f is hermitean symmetric (f( —x)=f(x)) so that the fourier trans-
form f(&) = [, f(x)e **dx is real valued.

2. The function loglf~l[ is locally integrable, so that the Szegd factorization
f(&) —1=em® e~ can be defined (page 99); one can continue %, and h, analytically
to the upper respectively lower half-plane; also, on every interval on the real axis
contained in the complement of f-1(1), &, and h, are in a sense defined by Lemma 3,
page 100, “locally” in A2.

3. The set f~!(1) is countable, and if {b,} is the set of points for which (& —b,)f
(§) <0 in some neighborhood of b, then > |b,| < co.

Under such conditions the “formal solution’” E(Z)=cl "TT(1 —B,/0)(1 —b,/0)7Y,
¢ real, n pos. integer, > |B,|< oo, gives the complete set of solutions, back-trans-
forming the formulae

P& —in) = B — i), P(E+in) = PEHDB(E + i)

provided one can show by means of the criteria of Theorem 2, page 95, and Proposi-
tion 6, page 96, that ¢ is the analytic continuation into the negative half-plane of a
transformation of a funetion in B? vanishing on the negative half-axis and that
¥ is the analytic continuation into the positive half-plane of a function in B} (the
“sub-dual” of A?) vanishing on the positive half-axis. The purpose of this note is
to show that the condition on ¥ is superfluous. The application of the above cited
criteria to ¢ and 9 yield the explicit conditions written out the first two rows of
page 107, so we will demonstrate here that the second of these conditions is dispen-
sable.

The proof of this fact follows to a great extent the original proof of Theorem 3 in
[1], and we here skip some of the details that were carried out there. We suppose
then that E is given subject to the same conditions as in [1] except for the one
insuring that p is the analytic continuation of a B} function (line 2, page 107).
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Then ¢ € B2 can be found satisfying p(x) =0forz <0and ¢(& —in) = [Po) e e ¥ dx
=¢™ ¢~ B (£ —in), and the goal is to show that d(x) = [§° f(x —y)@(y) dy — p(z) vanishes
for x>0.

We define the function V in the complement of the real line by

0 =)
f {f fz—y) ) dy}e‘i“dx —e©E(),Im ;>0
- fw d(x)e " dx, Im ¢ <O.
0

We observe that the proof on page 108 of the analytic continuation to points outside
f~1(1) on the real line carries over almost verbatim for this new definition of V. It
is true that v appears in the formulas, but that is only superficial, since it comes
from e™© () that is transformed back and forth, and this function could equally
well have been kept till line 7 from below (there are a couple of misprints on this
page 108, line 9 from below should begin [{{f ... and on lines 7 and 8 from below one

should have
. IO RO e gy METIO-MOPE 4 ih) ).

The isolated singularities off the origin are removable as before, since at these the
function e™® E() grows at most as (Im) * (and for the other terms we have the
previous estimates). Hence V() is an entire function of 1/, and it is clear from the
Riemann-Lebesgue lemma applied to the definition that V has a zero at infinity.
The other zeros of V can be estimated by means of Jensen’s formula and, as was the
case with B on pages 104 and 105, this analysis shows that V(£)=c"[I(1—./(),
with ¢ real, » natural number and > |y, | < co.

Noticing that this means that V(1/{) is an entire function of order at most one,
and that if its order equals one then its type will be zero, we expand it in a power
series, V({)=>% v,{" and back transform to get 8(x)= —25° (v,,,(3)"/nl)z™.
Using the growth theory for entire functions we see that  may be continued to an
entire function §(z) of order at most 4, and that if the order of d is } then its type will
be zero (the relevant growth theorems are listed in Boas [2] as Theorem 2.2.2, page 9,
and Theorem 2.2.10, page 11). Now we know that the restriction of ¢ to the positive
real axis shall be a function in B2 Hence the function

u(z)=£f§6(z)6_(5dz

is, by Proposition 2 of [1] (page 93) bounded on the positive real axis, and since %
is also of growth order at most §, minimal type it is of course standard that » is a
constant (Theorems 1.4.2 and 1.4.3 of Boas [2]: Phragmén-Lindeldf type theorems)
and that so is 4.

Now we have that V({)=c/ for some constant ¢ and we will make use of the
definition of V for small negative pure imaginary values of . Fix an arbitrary £>0
and decompose the kernel function f=f,+f, so that f; has compact support and
[|f2|| 4= <e. Then f, is an entire function and |f,(0) —1|<e. Let { tend to zero along
the negative imaginary axis. Then
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- V(C)=f0 JO fi@ =y o(y) (™17 — e 1) dady + (£,(0) ~ 1) ¢(0)

+[trp@e e
0
and in view of the estimates

[ e arowe = ctemany| < 4ol

!<f1<0>—1)¢<:)|<|2§|(1+|cl>%ll¢ll

(Proposition 7 and Theorem 2, pages 96 and 95 respectively of [1]), and

. 2
<\ifallllplllle1e! llaa@llvpll(”m)

Um(fz*qﬂ)(x)e'“””dx
0

it is clear that, since ¢ was arbitrary, the function V({) does in fact vanish identically.
The proof is then complete.

The author is grateful to professors L. Carleson and Y. Domar for encouragement to pursue
this sharpening of the main result in [1].
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