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On the growth of minimal positive harmonic functions in
a plane region

By Bo KJELLBERG

L. We consider a plane, open, connected region D, the case of infinite con-
nectivity being most interesting. This paper has its starting-point in an attempt
to characterize boundary points in a way more suited for purposes of function
theory than is possible with the aid of the purely geometric concept accessible.
Let us fix an arbitrary accessible boundary point P of D, defined by a systein
of equivalent curves from some inner point to P. Two continuous curves [}
and I, in our region, ending at P, are said to be equivalent, if there exist
curves in D situated  arbitrarily close to P which join a point of I with a
point of I,

We now suppose that there exist in D positive harmonic functions, tending to
zero n the vicinity of every boundary poini except P; we denote the class of
these functions by Up. That Up is non-void evidently implies a certain regu-
larity of the region D; for simplicity we have chosen a definition of Up some-
what more restrictive than is necessary for the following.

2. One may ask how to generate functions of Up. A procedure, near at
hand, is to start from the (generalized) Green’s function G (My, M,) for D and

a’ sequence of inner points Pg, Py, ..., Py, ..., converging to P, then form the
quotients

G (M, P,)
1 M) = ’ ’ n = 1, 2, ey

and finally take limit functions of the family {g, (M)}, normal in every closed
part of D. Every member of Up can be linearly expressed by such limit func-
tions (MarTIN [4]). On the other hand, as instances of irregularity, we can
construct regions where boundary continua are so accumulated towards an ac-
cessible boundary peint P that it holds true for every limit function of (1) that

(a) it tends to infinity in the vicinity of a whole boundary continuum,
or that
(b) it tends to zers in the vicinity of every boundary point except P’ 3£ P.

3. We now turn to a closer examination of the class Up. If all functions
of the class are proportional, we define P as harmonically simple, otherwise
multiple. We shall not examine here how to distinguish between these eventualities,
a question which we have had occasion to investigate somewhat in another con-
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nection [3]. A trivial case, when P is simple, may be mentioned: if a suf-
ficiently small circle with P as centre cuts off from D a simply connected re-
gion with P as a boundary point. If not, we only state the following sufficient
condition (proof as in [3], p. 25-26):

Suppose P can be circumscribed by a sequence of closed curves y, in D of
length I, such that I, -~ 0 as n - co. Let d, denote the shortest distance from
y» to the boundary of D. Then P is simple, of

lim sup dn > 0.

n— o0 ln

4. Consider now the case when the multiplicity of P is a finite number n,
i.e. the class Up consists of linear combinations of » positive harmonic func-

tions g, Us, . . ., Un. We normalize them to be = 1 at some inner point Py of D.
We then form the function
n
2) w= Ay,
v=1
where the real constants A, A, ..., Ax satisfy the condition
n
3) =1,
1
and interest ourselves in the values of (4, As, ..., 4) for- which w is positive,

i.e. belongs to Up. The set K of these values is convex; let us show that it
also is compact. K is the complement of the open set which corresponds to
n

those w’s which change signs in D. Substitute for a moment (3) for Zl, =0;

1
then w(Py) =0 and w changes signs. By continuity we infer that for some
£>0 1t must be true that w changes signs for

Sal<e lZA,,=1

1 . 1

n i.e. also for N

2l =1, \Z|zy|>1-
1 1 €

n
.. .. 1
Hence positive %’s, under the condition (3), must correspond to Z |4 ] = .
1
As image of the normalized functions of Up we have thus obtained a bounded,
n
closed, convex set K on the plane Zlv = 1 in the Euclidean space R™.
1

. In the usual manner we may associate planes of support with K and by
“corner” denote a boundary point as being the sole point of K belonging to a
plane of support. A corner obviously corresponds to an extremal function of
Up that can dominate no other positive harmowic functions tham its own sub-
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multiples. Our supposition that Up is a class of functions linearly composed of
7 elements, also implies that K must be a “‘polyhedron” with exactly n corners.
Each function of Up is a linear combination with non-negative coefficients of
the extremal functions which correspond to these corners.

5. This property: to dominate no other positive harmonic functions than
its own submultiples, has been taken by R. S. MARTIN as the definition of a
minimal positive harmonic function. In a work [4] of great interest he has made an
exhaustive study of these functions and showed their set to be sufficiently wide
to serve as a basis for representation of every positive harmonic function by a
linear process. This holds true for an arbitrary region; not only in the plane
but in a space of any number of dimensions. In the case of a circle, for in-
stance, the result is well-known: the representation by means of Poisson-
Stieltjes’ integral formula, whose kernel is minimal positive.

As an immediate consequence of the definition of minimal positive harmonic
functions, we prove '

Theorem 1. Let vy, vy, . .., vn be minimal positive harmonic functions in a
region D and u an arbitrary positive harmonic function. Suppose that the relation

n n
u << Z v, holds throughout D. Then u= Z ¢, vy, where the constanis ¢,= 0.
1 1

Proof. We form a sequence of regions regular for Dirichlet’s problem, whose
sum is D: Dyc Dy< ... < Dy< ... - D. Tt is then possible, in each Dy, to
represent % as a sum: ¥ = Zf‘,h,yk, where h,r are positive harmonic functions
sach that A, <<v,,v=1, 2, T.:.I., n. Let, for instance, %,r be the solution of
1’:),.

P

1

Dirichlet’s problem for D; with the boundary values - u. As the sequences

n
. ayge . - 1 .
{hvr)% constitute normal families, a selection process gives u = Z h,, where h, is
1

a harmonic function, satisfying 0 < kb, < »,. Because v, is minimal positive, we
have A, =¢,v,, and the theorem is proved.

6. In the following study of the growth of functions we locate the boundary
point P at infinity. We measure the growth of a function u(z) in the region
D by the order

0 =limsupM~),

F 00 lo

where M (r) = }1}1b % (2).
2j=7
We now prove

Theorem II. In a region D, let v;, v, - . ., va, n = 2, be minsmal positive har-
monic functions of which no two are proportional, tending to zero in the vicimity

349



B. KJELLBERG, Minimal positive harmonic functions

of every finite boundary point. The order of v, being denoted by g,, i then holds
true that

|
(4) R—-=2

1 9
Proof. We form the harmonic functions

~ka, v=1,2,...,'n.

k#wv

According to theorem I there exist partial regions W, of D, where w, > 0.
These regions Wy, W, ..., Wn, where one of the functions v, exceeds the sum
of the others, have no common points. Hence there are n separate regions,
stretching out towards infinity; in each one a positive harmonic function is
defined, vanishing at every finite boundary point. The situation is analogous
to that appearing in the proof of the Denjoy-Carleman-Ahlfors theorem about
the number of asymptotic paths of an integral function of given order. Here
we need only refer to one of the well-known proofs of this theorem to obtain
(4); [1], or [2), p. 105.

Let us now return to the exposition in no. 4 and suppose that our boundary
point co has finite multiplicity », yet that » = 2. The orders of the hnearly

independent positive harmonic functlons Uy, Ug, . . ., Un are denoted by o1, 02,
.., 0n- As mentioned, each wu, can be written as a linear combination with
non-negative coefficients of the minimal positive vy, s, . . ., ¥, with orders gy,
Q2 « - -, 0n. From this we conclude
S1_o%1,
1 Qv Q
t.e. relation (4) holds true also for wuy, us, . . ., Un

The condition n = 2 is essential; if the boundary 1s sufficiently “weak”, the
order of a- w€Up may be 0; for instance, in the trivial extreme case of D
being 1 <<|z| < oo, then u = log |z|.

7. Consider finally a region D where there exist an infinity of minimal
positive harmonic functions, vanishing at every finite boundary point. Of course,
we here mean functions of which no two are proportional. It is easy to con-
struct regions with a continuum of such functions: by choosing as boundary
of D appropriate segments of the lines arg z = x & for rational »’s, we may
assign a function to every direction corresponding to an irrational .

For every particular choice of n minimal positive harmonic functions theorem
II holds true; especially, the number of functions of order < g is < 2p. More
completely, we can state

Theorem III. Those minimal positive harmonic functions, vanishing at every
finite boundary point, which are of fimite order, form a countable set. For the
orders p, of these functions it holds true that

s1_
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