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Extrapolation of absolutely convergent Fourier series by 
identically zero 

By INGEMAR WIK 

Introduction 

Let A be the Banach space of all functions / with period 27e and a repre- 
sentation /(x) = ~T~r an e 'nx, where [] ][[ = ~ _ ~  [a~ I < ~ .  We shall denote by •(a, b) 
the function with period 2g, whose restriction to ( - ~ ,  7e) is equal to the char- 
acteristic function of the interval (a, b) and by ~ the function 1 -  ~ ( -  g/2, ~/2). 

Let  / be a function in A with zeros a t  a and b. We ask for conditions o n /  
such tha t  /~f(a, b) is also in A. Theorem 1 gives a sufficient condition, which 
under certain circumstances is necessary (Theorem 2). 

I f  / E Lip ~, where a > 1/2 or even if / has the modulus of continuity co(h) where 
~=1 (1/(n)eo(1/n)< o~, we know (Bernstein [2]) tha t  /EA.  Putt ing a function 
equal to zero between two of its zeros does not increase its modulus of conti- 
nuity and thus we may  always modify, in this way, the functions tha t  satisfy 
the conditions above, without leaving A. On the other hand, we prove in 
Theorem 3 tha t  under the condition tha t  w(h)/h is non-increasing, the convergence 
of ~ (1/Vn)w(1/n) is a necessary condition for the above modification. Theorem 3 
thus contains a new proof tha t  the divergence of ~ r  (1/Vn)co(l/n) is a sufficient 
condition, provided that  eo(h)/h is non-increasing, for the existence of a function 
/~.A, with modulus of continuity O(eo(h)). See Stetchkin [6]. 

Throughout the paper  we shall use the letters C~, v = 1, 2, 3 . . . .  for constants. 

The subject of this paper has been suggested by  Professor L. Carleson and 
I wish to thank him for his valuable guidance. 

Preliminaries 

Let / be a function in A with zeros at  a and b. A translation does not affect 
the absolute values of the Fourier coefficients, so for our purpose we may  assume 
tha t  b = - a  and l al ~<z/2. We m u l t i p l y / b y  the continuous function a (x ) in  A, 
which we define as 1 in I xl ~ a ,  as 0 in ~a ~< I xl ~<z and linear on the remaining 
intervals. The parti t ion of [, / = / ~  +/(1  - a ) ,  shows tha t  we need only deal with 
/~. Without  loss of generality we may  assume tha t  /(x)~O for ~a<~lxl<~. 

We shall make repeated use of the following stronger version of a theorem of 
Rudin [5 p. 56]. 
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I. WIK, Absolutely convergent Fourier series 

L e m m a  1. Suppose / is a bounded/unction with period 27~, 0 < ~ < ~ and/(x) = 0 
/or ~- (~  <<.lxl<~z~. Let g(x) be defined /or all x by 

[~(x) /or Ixl<~ 
g ( x )  = /or Ix I > ~. 

Let K(t) be an even, positive /unction, non-decreasing /or t > 0 and such that 

K(2t) < CK(t) (1) 

/or some constant C. Then 

/ (x )=  ~ ane inx, where ~ ]a=lK(n)<~ 
n = - ~  n = - o o  

i~ and only i/ 

f: g(x )=  ~(t)e~tXdt, where I~(t)]K(t)dt<oo. 

Proo]. Condition (1) implies t h a t  

g(t) < Cl(Itl p + 1) (2) 

for some constants  C 1 and  p.  Le t  h(x) be a funct ion with  infinitely m a n y  deri- 
vat ives ,  such t ha t  h(x) ~ 1 for I x I ~ ~ - (~ and  h(x) - 0 for I x I >~ 7~. Then  

,f2h(x)e.X dx ]~(t) l=  ~ ~" It1 "+5+ l" (3) 

Since g(x) =/(x)h(x), we have  

1 e ~tXdx= 1 an e~(n t)Xh(x)dx= ~ anh(n- t )  ~(t) = ~ g(x) 2~ . . . . . .  

and thus  

f\ F Id(t) l K(t) dt = ~ l a~ I [~(n- t)[ K(t) dt. 
n =  o r  - a r  

For  n > 0 we make  the  following es t imates  

f :~c l f~(n- t )  lK( t )d t~  f ~  ' f~(n-t)]K(t)dt 

F + K(2n) I ~(n - t)[ dt + I~(n- t) l K(t) dr. 
0 2 n  
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By (2) and (3) the first and third  terms are easily seen to be uniformly bounded.  
The second term is by  (1), O(K(n)). For  n < 0  we have analogous estimates and 
thus 

fTooig(t) iK(t)dt~Can=-r162 ~ ]aniK(n). (4) 

On the other  hand, we have 

-=fL O(t) f~(t - n) dt 

and ( ) 
Est imates  as above give 

f 
oQ 

l a~ l K(n) < C a [ ~(t) / K(t) dt. (5) 
n =  v r  - o r  

The inequalities (4) and (5) prove the lemma. 
We now return to our problem for a funct ion / which vanishes on 

3 a / 2 ~ l x l ~ z  and use Lemma 1 with K(t)~=l.  I n  this case the lemma states 
t ha t  /EA if and only if g(x)=~ooO(t)eU~dt, where ~_o~lO(t)ldt< ~ .  We pu t  

gl(x)=g 2a x = d(t)eU~Xdt= gl(u)e~UXelu. 

Then we have gl(x)=O for Ix l ~ 3 z / 4  and g ( ~ r / 2 ) = 0 .  L e m m a  1 gives a cor- 
responding func t ion / l (x)  E A. Suppose t h a t / 3  = [i" qJ E A. Applying Lemma 1 again, 
we get  a (corresponding) Fourier  t ransform g2(x). Then g2((2a/z)x) is also a 
Fourier  t ransform and has a (corresponding) funct ion /a(x)EA. Now /a(x) is 
exact ly the funct ion [1 - ~( - a, a)]/ .  Thus we m a y  assume tha t  a = ~/2. Our 
problem is then reduced to the following: 

Suppose / E A, /( + ~/2) = 0. Under  wha t  conditions on / do we have II/~ II < oo ? 
We first give a sufficient condit ion:  

Theorem 1. Let /CA, /(a)=/(b)=O, t(x)=~_ooake ~kx and 

o o  

log Ikl< 

Then /~(a, b) belongs to A. 

Pro@ We begin by  proving the theorem for a = -  b =~ /2 .  We have 

o r  

q~(x) N ~bne ~x, where b~ -sin(n~/2) for n4=0 and bo= �89 
o~  n T ~  
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Thus 
sin (n - k)~/2 

II[~ll =1  ~ z ak F-�89 
~ - ~ l k * n  n = ]r 

Since X_~ l a=l < o~, the series converges and diverges as ~T~  I ca I, where 

sin (n - k) ~/2 
ca = ~. ak (6) 

k ~ rt TI, - -  ]C 

We replace the funct ion / by  the sum ]o(x) of four functions with periods ~/2 
and  zeros at  x = 0 .  

lo(x)= X'a ,ne"az+ X'a,,~+le'('n+Dx-t- Z'a,n+2ei(4'~+2)z+ ~'a,n+ae i('n+3)z. (7) 

The ' indicates t ha t  the terms ap, p = 0, 1, 2, 3, have been replaced by  
-~.a.oa4n+v respectively. Ins tead  of ca we then obtain  c~. The difference is: 

Xk*oa, k+l al Xk,oa4k+s aa _ X-~cca4~+l ~ - ~  a4k+a 
C g n  - -  C 4 a  - -  "t 

4n - 1 4n - 1 4 n  - 3 4 n  - 3 4 n  - 1 4 n  - 3 

The condit ion /( + zt/2) = 0 gives 

~a4k+l= ~a,k+a=o~ and ~a4k= ~a ,e+2=~.  
- c o  - r  - v o  - ~  

We thus have 

C,a -- C,a-- and I c,n - c;~ I < ~ .  
(4n -- 1)(4n - 3) _~ 

�9 C t �9 Analogous considerations for c,n+l, 4a+2 and c4n+a imply  tha t  X_~r I cal converges 
and  diverges as ~T~r [0 being of the form (7) implies t ha t  X ~ l c ~ l  is 
bounded  by  the sum of four  series of similar form. We consider one. 

Here 

~2 Id.I= Y ,k.. ~'' a'kSin(n~12)n--4k = ~2 Id~..i+ Z Id~.+~I. 

Id, n+l I = ~.' a,~. 1 1 
. . . . . .  e=_~ ~ n +  1 - 4 k  a=-~  o a4~ 4 n +  1 - 4 k  

~< ~ [a4~l ~ 4n+ 1 1 1 
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An analogous estimate of ~?~r I d4.+sI shows that  

 ld.l<  if  la, lloglkl< . 
- o o  k~:0 

The other three series of (7) are similarly convergent under the corresponding 
conditions and thus ~_~r Ilk I log I k[ < ~ implies that  /q E A. This concludes the 
proof when a = - b = 7e[2. 

g i ( t ) = m a x  {1, loglt])  satisfies the conditions of Lemma 1. Thus the 
convergence of ~T~ ak log [k I implies the convergence of the corresponding 
integral ~ l ~ ( t ) l  Kx(t)dt. Using the fact that  K~((z/2a)t)<CeKi(t ) for some 
positive constant C~ and arguing as before, we see that  the theorem holds for 
arbitrary a and b. 

The condition ~-~r log I kl < ~ cannot, in general, be improved. This 
follows from 

Theorem 2. Let / (x )=~_~a~e  ~kz be a gap series such that nk+l/n~> 2> l /or 
positive values o/ nk and nk link > 2 > 1 /or negative values o/nk. Further, let / E A 
and / (x )=0  /or x=-4-et/2. Then / T e A  i/ and only i/ ~ _ ~ l a k l l o g l n k l <  c~. 

Proo/. We give the proof for the case nk------0 (mod 4). Put  /q~'f.~_~cc, e~L 
Since % =  - ~ n , 0 a =  we have by (6) 

ak 1 (nk -- no) ak 

W e  consider the terms I c,~+l I, where n satisfies the inequality 14n + 1 - n~l < V] n~l 
for some p, and put 4n + 1 - n ~  = m. We then obtain 

Using the gap condition, it will easily be seen that  the second term in parenthesis 
is uniformly bounded. Thus 

1 Y le'n+ll>lcsla 'll~ where Cs>O. 14n+l-npl<Vl-~-p 

I t  follows that  

C,n+ll > Ca_~. l a~ l log ln~ l -c9  VIn l" 

The second series is convergent by the gap condition and this proves the ne- 
cessity of our condition in case nk~0  (mod 4). I t  is easily seen that  the same 
estimates hold for an arbitrary sequence {nk}_~ satisfying the gap condition. 
Since the sufficiency follows from Theorem 1, the proof is complete. 
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Corollary. Let co(h) be a positive non-decreasing /unction, defined /or 0 ~ h  ~7~, 
such that co(h)->O as h-~ + O. Then there exist two /unctions / E A  and gi lA with 
modulus o/ continuity co(h, /) and co(h, g), such that co(h)~co(h, g)= co(h, /). 

Proo/. The example is furnished by / a n d / ~  in the above theorem. In  [1 p. 179] 
Bary has proved that  there exists a function /(x)= ~ a ~ e  i~k~ in A that  has a 
modulus of continuity co(h, /))co(h).  I t  is easily seen that in her proof, we may 
choose n k ~ 0  (rood 4) and satisfying nk+l /nk>~>l .  Thus by Theorem 2, / 9 = g  
does not belong to A. See also Bary [1 p. 177-178]. 

Theorem 3. Let co(h) be a positive non-decreasing /unction in 0 <~ h :~ :z ,such that 

1 Vn \n] and w(h)/h is non-increasing. 

Then there e~ists a /unction / E A  with zeros at +_~/2, whose modulus o/ continuity 
is O(co(h)) and yet /q~ r 

The proof is based on a lemma of Shapiro-Rudin [4], previously used by 
Kahane-Salem in [3 p. 129-138] in a similar context. The lemma states that  
there exists a sequence { ~ } ~  where s~= + 1, such that 

:v-~l ] 
e,e *€ <16V~--# ,  for all x, # and v, v>/~. (8) 

n~[t 

I. Construction o / /  

We let / = ~ _ o a n e  ~4~x, where a 0 = - ~ - l a ~ ,  and a~ is chosen as follows for 
n # 0 .  In  the interval 2q<n~<2 q+l we choose a(q) equidistant integers 

= 2~ + f i (q) ,  n2,~ = 2 ~ + 2 f l (q ) ,  n.(r = 2~ + ~ (q ) f i (q )  nl.q . . . ,  

such that  f i (q))1  and ~(q)= [2q/fl(q)]. We put 

1 
7(q)ne k for n=nk.q 

a n :  
0 otherwise, 

where ek are the numbers occurring in the above mentioned lemma and y(q) 
a positive function of q. 

II .  Estimate o/ the modulus o/ continuity o/ / 

Let h > 0 be an arbitrary number. Then for some q0 we have 2 -(q~ < h ~< 2 -q' 
and 

I/(x+h)-/(x)l<4hS~xP n=12~ nanei4nx + 2 s u p  n=~2qo+lane4inx. (9) 
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By the triangle inequality and (8) we obtain 

I il I nane ~a~ < Z Y(q) Z sk exp {4i(2 q+kfl(qlx} 
n = l  q = 0  k = l  

if fl(q) = o(2q). (10) 

The  second series in (9):is 

o0 e ~4nx ] u(q) ~ ei4kfl(q)x ] 

q=qo 

We put S~.q=~=l%e ~4~'z(q)x. Then by (8)ISk.q[<16Vk for every q. A summa- 
tion by parts of the inner series gives, if fl(q)= o(2q), 

a ( q ) ~ k e i 4 k f l ( q ) x l ~  l ) S~(q),q 
k = l  ' ncz(q),q 

~~ 16 V J ( ~  �9 2 ~  
<--)  ~ V~+ 2, o{(fi(q) 

k = l  

T h u s  12 lane 4  xl=o{q  ' } Illl 

and we obtain 

I/(x+ h)-  /(x)l=OI 2qio Z Y(q)" 2q/2(fl(q)) -�89 ~ Y(q)(fl(q)" 2q)-�89 
[. q=O q=qo 

(12) 

In order that  our estimates should be valid and /EA we have to impose con- 
ditions on fi(q) and ~(q), namely (10) and X~0 (y(q)/fl(q)) < oo respectively. 

I I I .  Estimate o/ II/q~il 

Let / q ~ _ ~ c n e  ~nx. We restrict ourselves to studying Icn] for positive n ~ l  
(rood 4). We have by (6) 
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Thus 

k=[an141 k = l  k~[6n/b]+ l 

(13) 

We first show tha t  ~ l e ~ l  < ~ and ~FI I~I  < ~ and then tha t  EF[d~[  is di- 
k a vergent  under  certain conditions on fl(q) and 7(q)" Define sk as ~ = 1  k. Then  

using the same method  tha t  yields (11) we see tha t  [skl=O(1/~]r we assume 
tha t  

7(q) " (fl(q))-t = O(1). (14) 

An est imate  of l e~ I gives 

k=l 4 n + l - 4 k  4 n + l  ~<4~1  

In  a similar way  we find tha t  I / . l = O ( 1 / n t )  �9 I t  follows tha t  E~ r and 
~ [ / n l  < ~ -  In  the series ~ F l d n l  we let the summat ion  run only over those n 
tha t  satisfy: 

q 3 n  6n 

for some q and p.  Then  

4 ] t6n151 ka~ 4~,(q)[ ~. 8~ [ 
Id~ l=4~+- i  k = ~ m 4 n ~ : i - - 4 k  = ~ l , = z " ~ , - 4 n +  l Z4n, .q l  ' 

where 1 ~< r 1 ~< r 2 < ~(q). Le t  the integer s = s(n) be defined by  the condit ion tha t  
n,.q is the integer in the sequence {nr.q} t ha t  is nearest  to n and pu t  n -  n,.~---m. 
Thus we have,  if y (q )>  0, 

1 + 4p f l (q )  ' 

where [r a I < ~(q) and Ira [ < a(q)" We est imate the first sum by  Abelian trans- 
P 8 format ion and pu t  % = ~ = 1  ~+~. By  (8) l a ~ l < 1 6 [ / p  for every  s and using 

I m I < fl(q)/4 we obtain 

t. + 1)fl(q)] I t.  8s+p "~ ~--1 [4m + 1 4ap fl(q) + at, 
p~--1 4m + i ~--4pfl(q) -- 4pfl(q)] [4m + 1 -- 4(p r a �9 fl(q) 

 lEp (q)]2 
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An anologous es t imate  holds for the second sum and thus  

2 q+l 1 1 
/'tJ'q' ] d,~,,+,, { ~> 4m + 1 el0 "O,'q,.'p~} 

Hence;  even if 7 (q )=  0, 

(~ 7(q) log fl(q) 
I m ]<fl(q)/4 

where C n > 0 and  does not  depend on q or s. Since s assumes a t  least  a(q)/4 
different values when n lies in the in terval  defined by  (15) we obta in  

2q+x~ ]d~[~> Clx'2q'7(q) log fl(q)_ C,27(q ) _  log fl(q) C1~>0. 
, , ~  t~(q)" 2 q+~ f l ( q )  ' 

I t  follows t h a t  ~ r  I d=l is d ivergent  if 

~; 7(q) log fl(q) 
/_., 
x fl(q) 

is divergent.  I f  (14) is satisfied we then  have  by  (13) t h a t  ~ [ c ~ ] =  o~. The  
funct ion / constructed above  thus  belongs to A b u t / ~  does not,  if the following 
conditions are satisfied: 

(i) 1 ~<fl(q) =o(2q), 

(ii) ~ 7(q) 

(iii) O<7(q)(fl(q))-�89 <l, 

(iv) ~ Y ( q )  7 f l ~  log fl(q)= ~ .  

IV.  Proo] o/the theorem 

The divergence of ~l/~n~o(1/n) is equivalent  to the divergence of 
~~ We form a new funct ion ~Ol(h)=min (~o(h), I/h). Then  ~Ol(h)/h is 
non-increasing and  ~ 2 q/2- ~2 -q~ - z~q=o ~'a~ j - ~ .  Thus,  wi thout  loss of general i ty,  we  m a y  
assume tha t  o~(h)~<~/h. B y  L e m m a  2 below we m a y  choose a sequence {q~}[r 
such t h a t  ~ 2~r 2 -~2-q~ ~ -  ~ = 1  ~ j -  oo and  

O)(2-qr+ l )  (5)qv+l-q~ .~< t j)(2-qv) -~< 0) (2-q~+1)(5)q ,+l -q~.  (16) 
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Put 7(q)/~fl(q)= 2(q) and define 2(q) as 2 q/2 0)(2 -q) for q = q~ and X(q)= 0 for q =L q~. 
Then 0 ~<~(q)~< 1 and ~ ~(q)= ~ .  We choose fl(q)~> 1, non-decreasing and such 
that  

2(q) < oo and ~2(q) log f l ( q )  
1 ]//~ (g) ~ - V ~  i ~ "  

Since 2(q)~< 1 we may choose fl(q)= o(2q). Thus the conditions (i)-(iv) are satis- 
fied. The function / constructed by means of the above fl(q) and ~,(q) = ]/fl(q) ~(q) 
has, by (12), a modulus of continuity 0)(h,/)," satisfying 

[ l q ~  } 
o)(h,/) = O/2qo o~ 2 q'2 2(q)+ ~2qo ~/~ 2(q) 

for 2 (q0+l)<h~<2-q0. Now we have 

qo-1 

Z 2q/2 2(q)= Z 2 q~o(2-q~). (17) 
0 qv <qo 

By the second inequality in (16) the terms in the series increase at least as the 
terms of a geometric series with ratio 6/5. The sum is dominated by its last 
term and since 2q0)(2 q) is non-decreasing the sum is O{2q~176 By the first 
inequality in (16) we obtain, since 0)(2 q) is non-increasing, 

2-q/22(q) = ~. o)(2 -q~)= 0{0)(2 q0)}. 
qo qv ~q~ 

We have now proved that  0)(h, [ )= O(0)(h)), which concludes the proof. 

Note. The condition that 0)(h)/h is non-increasing enters only in the estimate 
of (17). I t  can thus be replaced by the slightly less restrictive 

2q0)(2 q)=O{2V0)(2-P)} for p<~g. 

Corollary. Let 0)(h) be a positive non-decreasing /unction on 0 <~h < ~  such that 
~ 1/Vn0)(1/n)= ~ and 0)(h)/h is non-increasing. Then there exists a/unction g r A, 
whose modulus o/ continuity is O(0)(h)). 

Pro@ The function /~ constructed in Theorem 3 is such a function. Other 
examples have previously been constructed by Bernstein [2] and Stetchkin [6]. 
See Bury [1 p. 165-177]. 

Lemma 2. Let {ak}7 be a sequence o/ positive numbers, such that % <~2 -k/2 and 
~ o r  ~k /2  k=oz ak diverges. Then there exists an increasing sequence {k~}~ o/ positive in- 
tegers such that 

a k v + l  

and such that ~=12k,/2 ak, diverges. 
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P r o @  We pu t  2~/",a =b~, choose 8 >  0 and  cons t ruc t  a sequence {k~}~, such 
t h a t  

(1 - 5) ~ ~-~,' ~ b~,, < (1 t d) ~ t ~ , .  ( 1 8 ' )  

F i r s t  we define the  sequence {nl,}~' by  

n 1 - 1 

n,,+, rain { n [ b , , ) ( l - - O ) " b , , , p  for all  p>~0}. 
[ n < 71 l ,  

This sequence is infini te because the  con t r a ry  would i m p l y  the  exis tence of an  
integer n and a sequence {P,.}i , P, . -  oo, such t ha t  b, ,  p~ ">~ ( l -  8) P~bn. This however  
viola tes  the condit ion:  b ~ < i  for every  n. Le t  m bc the  larges t  i n b g e r  in 
n t, ~< n < ~b,~ 1 such t h a t  bm ~ ( 1 - 8)'~' ~ i -  mb~,l,, r Then 

bm~p<(l -d)~/ , : -1  . . . .  ~bn~,..1~<(l--8) ;bin i.e. 

b , , , ) ( 1 - 8 )  ~bm~€ for 0~<p~-n~, ,1-  m. 
Since also 

b m ~ (1 - 8)'b r l- mb,~," i >~ (i  - 8)~ b,~+~ for p ~ nl,~l - m 

we have  by  def ini t ion m=n~,  and  

n l t  : I 

b ~ . b , , , , ~  ~ ( 1 - 8 ) ' - - 0 ( b , , , . 1 ) .  
n~, "- 1 ~) - 0 

Thus  bnl, " oo. 
/~ - 1 

W e  define {k,,}~ as a subsequence (,f {n,,}~ ~ by  

]C  I ~ n 1 

k~.~-: min {n t, I b,~ > (1 -t- 8) ~.' % b~,,}. 
r l / ~  > k I, 

(19) 

This sequence is infinite.  The con t r a ry  would imp ly  the exis tence of an  n~,, 
such t ha t  

bn~, ~ ~ ~ (1 + d)~,, 'b" v b,/, 

for all p >  0. This is impossible  since Z,, .1 ,~,== �9 
Now the sequence {k,,}~ satisfies (18') as an immed ia t e  consequence of the 

const ruct ion.  By  the def ini t ion of {k~}~ r we obta in:  

o ~  

b~p<<.bk~ ~ (1-t-8)-P=O(bk,,).  
k v ~ n / L < k v  } I p -  0 

Using (19) we realise t h a t  ~,,~-tbk~ diverges.  Choose 8 < 0 , 1  and  the proof  is 
complete.  
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