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Extrapolation of absolutely convergent Fourier series by
identically zero

By INcEMAR WIK

Introduction

Let A be the Banach space of all functions f with period 27 and a repre-
sentation f(z)= 2%, a,e™, where ||f||=>"|a.|< . We shall denote by ¢(a, b)
the function with period 27, whose restriction to (—m, @) is equal to the char-
acteristic function of the interval (@, b) and by ¢ the function 1 — ¢(—x/2, 7/2).

Let f be a function in A with zeros at ¢ and b. We ask for conditions on f
such that fp(z, b) is also in A. Theorem 1 gives a sufficient condition, which
under certain circumstances is necessary (Theorem 2).

If feLipe, where «>1/2 or even if f has the modulus of continuity w(h) where

‘:f:l(l/l/n)w(l/n)< oo, we know (Bernstein [2]) that f€A. Putting a function
equal to zero between two of its zeros does not increase its modulus of conti-
nuity and thus we may always modify, in this way, the functions that satisfy
the conditions above, without leaving 4. On the other hand, we prove in
Theorem 3 that under the condition that w(k)/h is non-increasing, the convergence
of > (1 /Vn)w(l /n) is a necessary condition for the above modification. Theorem 3
thus contains a new proof that the divergence of Zf"(l/l/n)w(l/n) is a sufficient
condition, provided that w(k)/k is non-increasing, for the existence of a function
f¢ A4, with modulus of continuity O(w(h)). See Stetchkin [6].

Throughout the paper we shall use the letters C,, v=1, 2, 3, ... for constants.

The subject of this paper has been suggested by Professor L. Carleson and
I wish to thank him for his valuable guidance.

Preliminaries

Let f be a function in 4 with zeros at @ and b. A translation does not affect
the absolute values of the Fourier coefficients, so for our purpose we may assume
that b= —a and |a|<z/2. We multiply f by the continuous function a(z) in 4,
which we define as 1 in |z|<a, as 0 in $a<|z| <z and linear on the remaining
intervals. The partition of f, f=fa+ f(1 — ), shows that we need only deal with
foa. Without loss of generality we may assume that f(x)=0 for 3a<|z|<a.

We shall make repeated use of the following stronger version of a theorem of
Rudin {5 p. 56].
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1. WIK, Absolutely convergent Fourier series

Lemma 1. Suppose | is a bounded function with period 27, 0 <d <7 and f(x)=0
for ;= <|z|<m. Let g(x) be defined for all x by

flx) for |z|<=
glx) =

0 for |z|>an.
Let K(t) be an even, positive function, non-decreasing for t>0 and such that

K(@2t)<CK(t) (1)
for some constant C. Then

fle)= 3 ane™, where > |a,|K(n)< oo
n=—o0 n=—00

if and only if

=]

g(x)sz §(t) e dt, where f git)| K(t)dt < oo.

VN —0

Proof. Condition (1) implies that
K(ty<CyjtlP+1) (2)

for some constants C; and p. Let k(x) be a function with infinitely many deri-
vatives, such that h(z)=1 for |z|<m—0 and A(z)=0 for |x|>m. Then

~

__1_ . —ixt
|k(t)[2nUwh(x)e dx

2
T 3
<|t|"+2 i 3)

Since g(z)= f(x)h(x), we have

o0

1 [* . 1 [ Z . ~
gf(t):%‘f g(oc)e’“””dyc=2—‘Z S a, " h(x)dr= D a,h(n—t)

and thus

["oixoa 5 jal " 1ie-ol&oa.

—0o0

For n>0 we make the following estimates

fm |ﬁ(n~t)|K(t)dt<f0 |h(n—1t)| K(t)dt

—0oQ
o0

+K(2n)f2n|ﬁ(n—t)[dt+f |B(n—t)] K(2)dt.
0

2n
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By (2) and (3) the first and third terms are easily seen to be uniformly bounded.

The second term is by (1), O(K(n)). For n <0 we have analogous estimates and
thus

fm |g) | K@tydt < C, E: | @, | K(n). 4)

—o0 n=-~00

On the other hand, we have

and § | @ | K(n) <

%
8

Y

=
—
WK

I

2

.

2

2 h( )dt

Estimates as above give

oo

> Jalkm=a] lgolkom )

The inequalities (4) and (5) prove the lemma.

We now return to our problem for a function f which vanishes on
3a¢/2<|z|<m and use Lemma 1 with K(f)=1. In this case the lemma states
that f€A if and only if g(x)=>%,§(t)e“dt, where >%,|d(t)|di<oo. We put

gl(x):g(%x)=f; 4(8) € 211’”0lt—f~ dl(u)ei“’”du.

Then we have g,(z)=0 for |z|>3n/4 and g(+x/2)=0. Lemma 1 gives a cor-
responding function f,(x) € 4. Suppose that f,=f, ¢ € A. Applying Lemma 1 again,
we get a (corresponding) Fourier transform g,(x). Then g,((2a/7)x) is also a
Fourier transform and has a (corresponding) function f,(x)€A4. Now f,(x) is
exactly the function [1—¢(—a, @)]f. Thus we may assume that a=z/2. Our
problem is then reduced to the following:

Suppose f€4, f(:£7/2)~0. Under what conditions on f do we have || f| < oo
We first give a sufficient condition:

Theorem 1. Let fed, f(a)=[(b)=0, f(x)=2%%axe™ and

> lax| log | k| < oo.
Then fop(a, b) belongs to A.
Proof. We begin by proving the theorem for a= —b=x/2. We have

W(x)N:?, b,e™,  where bn=§wi2) for #=+0 and b,=4%.

nrw

67



1. WiK, Absolutely convergent Fourier series

Thus
sin (n — k) =/2

'l o0
2 Sm\R— B 1, .
nzoo zna/k n=k 2

|l foll=

Since >%,|a,|< oo, the series converges and diverges as 2 %y |c,|, where

C= 3 “"%Z—:?—n/g' (6)

k*n

We replace the function f/ by the sum f(z) of four functions with periods 7/2
and zeros at x=0.

o0
fo(x)__ z . i4nz+ Z By i(4n+1)1+ Z Bans ei(4n+2)z_|_ Z,a4n+get(4n+3)z. (7)
—o0 —o0

The ’ indicates that the terms a, p=0, 1, 2, 3, have been replaced by
— D n+0Q4n+p Tespectively. Instead of ¢, we then obtain c,. The difference is:

Zk#0a4k+l a0y _Zk#0a4k+3_ g zszauﬂ_szamw
in—1 4n—1 4n—3 4n—3 4n—1 4n—-3

,
Cyn = C4n ™=

The condition f{Lx/2)=0 gives

[ o0 oo -]
Z Q1= Z @y:3=0o and Z Ay = Z a4k+2=ﬂ-
— 00 —o0 —0o0 —oQ

We thus have

. *
(4n—1)(4n — 3)

[>]
c;n_04n= and z|64n—c;n|<°°-
—o0

Analogous considerations for 4,1, Cinss and Cinyg imply that > |c,] converges
and diverges as > |c.|. f, being of the form (7) implies that > %% |cn] is
bounded by the sum of four series of similar form. We consider one.

S’ q sin (n7|2)|

ld =3 2 U‘*n > -w]d4"“|+ z | danss)-
Here
1 0 1 1
Z ldMHI—"‘—w k;—:ooa‘k‘l +1- 4k| n~2—w k§0a4k(4n+1—4k 4n+1)‘
1 1

Z |a4,,|

ﬂ.-—-—OO

< log | k|.
an+1—4k 4n+1‘ Of’kzo[““’“l og | k|
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An analogous estimate of >, |dsn.3| shows that

o0

2 ldal<oo if Y |ay|log|k|< co.
o)

The other three series of (7) are similarly convergent under the corresponding
conditions and thus X%, |a|log|k|< oo implies that fp € A. This concludes the
proof when a= —b=gx/2.

K,(t)= max {1, log|t|} satisfies the conditions of Lemma 1. Thus the
convergence of > %, |a;|log|k| implies the convergence of the corresponding
integral [*,|g(t)| K,(t)dt. Using the fact that K,((7/2a)t)<C,K,(t) for some
positive constant (g and arguing as before, we see. that the theorem holds for
arbitrary e and b.

The condition 3%, |ay| log [k|< oo cannot, in general, be improved. This
follows from

Theorem 2. Let f(x)= 2" a, ™ be a gap series such that n,,ifn.>A>1 for
positive values of my, and ny_1fn,>A>1 for megative values of n,. Further, let f€ A
and f(x)=0 for x= +x/2. Then fp€A if and only if 2% |ax|log|n|< oo.

Proof. We give the proof for the case 7, =0 (mod 4). Put fp~ > %, c,e™.
Since ay= — 2 ,.0a, we have by (6)

o0

P

fom—o0 4n+1 Ny

1

— (nk—no)a_k
[4n+1 —n,)

k-0 4n+1_nk

|04n+1 | =

We consider the terms |cy,+1|, where n satisfies the inequality [4n+1—n,| < le
for some p, and put 4n+1—n,=m. We then obtain

¢, (lnp—no“apl_

> 7
ol L)

(1 — 1) i
k+p 4n+1— e

), C,>0.

Using the gap condition, it will easily be seen that the second term in parenthesis
is uniformly bounded. Thus

1
|cans1|> Cg|ay|log |n,| — Oy——==, where Cg>0.
n 4= <y T VI”p'

It follows that

o0 ] x 1
2 | Cansr|>Cg > lazzll()gl"pl_os Z Vnl
—o0 - o V||

The second series is convergent by the gap condition and this proves the ne-
cessity of our condjtion in case n;,=0 (mod 4). It is easily seen that the same
estimates hold for an arbitrary sequence {n}>, satisfying the gap condition.
Since the sufficiency follows from Theorem 1, the proof is complete.
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1. Wik, Absolutely convergent Fourier series

Corollary. Let w(h) be a positive non-decreasing function, defined for 0<h <m,
such that w(h)—0 as h— +0. Then there exist two functions f€A and g ¢ A with
modulus of continuity w(h, f) and w(h, g), such that w(h)<w(h, g)= ok, f).

Proof. The example is furnished by f and fp in the above theorem. In [1 p. 179]
Bary has proved that there exists a function f(z)= 2§ ay¢™* in A that has a
modulus of continuity w(h, f) > w(h). It is easily seen that in her proof, we may
choose 7n,=0 (mod 4) and satisfying ny,,/n;>A>1. Thus by Theorem 2, fp=g¢
does not belong to 4. See also Bary [l p. 177-178].

Theorem 3. Let w(h) be a positive non-decreasing function in 0 <h <m such that

Zl/i (1) oo and )k is non-increasing.
1

Then there exvists a function f€A with zeros at + m/2, whose modulus of continuity
ts O(w(h)) and yet fp ¢ A.

The proof is based on a lemma of Shapiro-Rudin [4], previously used by
Kahane—Salem in [3 p. 129-138] in a similar context. The lemma states that
there exists a sequence {gn}i"w where ¢,= + 1, such that

y-1
D g, <16Vv—y, for all z, u and », »> u. (8)
n=g
I. Construction of f
We let f= > a,¢'"", where ay= —>7.1a,, and a, is chosen as follows for

n=0. In the interval 2¢<n <29"' we choose «(g) equidistant integers

g =274 Blg), n2.q =27+ 2B(q), -, Pa@.a =2+ x(q) ()

such that p(¢)>1 and «fq)=[2%p(g)]. We put

1
y(@) =& for m=m,
A= n

0 otherwise,

where g, are the numbers occurring in the above mentioned lemma and y(g)
a positive function of ¢.

1I. Estimate of the modulus of continuity of f

Let 2>0 be an arbitrary number. Then for some g, we have 27D
and

o0

| {2+ ) — f(2)| < 4h sup +2sup| 2 ayet™. 9)
x z | n=2%+1

2do i1
Z nanel nx
n=1
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By the triangle inequality and (8) we obtain

o 21 @)
Zgnan el < go (@) ;Zl &, exp {4i(29+ kf(q) =}
71 ) N Q-1 — Qo—1
=2 pe T <16 2, y(qw“@zo( 2 vl 2" (ﬂ(q))‘%)
if B(g) = 0(29). (10)

The’ second series in (9) is

) %«(q) idkfla)
;: Er e
Anz k
> aye < —_
2qv+1

k=1  Trq

We put Sio= >k 16,d?P@% Then by (8) |Sy,|<16Vk for every q. A summa-
tion by parts of the inner series gives, if B(g)=0(29),

a@)—1 1 S
> Sk.q (__ ! )+—a(q)'g

k=1 P Mr+l.q Noa),q

(@) & PGk

k=1 Mg

@)@ 7 16 Voc(q
22(1 z l/k

=0{(f9-297*}-

o0
Z anez41u: _
290+1

Thus

0{ S @) <ﬁ(q)-2qr%} (11)

a=do

and we obtain

|+ b~ f@)| =0 {quoqéy(q)-2"’2(ﬂ(q))“*+ > y(q)(ﬂ(q)aqr%}. 12)

a=qy

In order that our estimates should be valid and j€ A4 we have to impose con-
ditions on f(g) and y(g), namely (10) and > 3%, (v(g)/B(g)) < oo respectively.

II1. Estimate of ||fol|

Let fp~2%,c,e™. We restrict ourselves to studying |c,| for positive n=1
(mod 4). We have by (6)

[ve]
Z“k

k=1

|C4n+1 ‘ =

§ 1 1 _
71 \dn+1-— 4k 4n+1
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1. Wik, Absolutely convergent Fourier series

Thus
167/5) (3n/41-1
|C4n+1l> Z On,ic| — Z Cn, | — Xn,xc zldnl_lenl_lfnl- (13)
k=[3n/4] k=1 k=[6n/5)+1

We first show that >{°|e,|<co and 3{°|f.| <o and then that >i°|d,| is di-
vergent under certain conditions on f(g) and y(g). Define s, as >7_;a,. Then

using the same method that yields (11) we see that [s| = O(1/VE) if we assume
that

(@) (B@) "t =0(1). (14)

An estimate of |e,| gives

Bn/41-1 1 1 [3n/4]'8k| l3[3n/4]—1| ( 1 )
L <4 S S+ =05 ).
,21 % (4n+ 1-4k 4n+ 1) ‘ ,;gl n? n ni

len|=

In a similar way we find that |f,|=0(1/n}). It follows that >i°|e,| and
2| fal < oo. In the series 2:°|d,| we let the summation run only over those n

that satisfy:
3n 6n
|2 <= | <207
? <[4] [5]

(15)

for some ¢ and p. Then

Ta

A

pordnt+1l—4n,,

4
4l=

b

k| ai)
k=[3n,4]4n+l~4k 4n+1

where 1<r, <r,<a(g). Let the integer s=s(n) be defined by the condition that
N is the integer in the sequence {n, .} that is nearest to n and put n—n,,=m.
Thus we have, if p(¢g)>0,

T Te

Es-»p

9a+1 |dn|> 1 Z
s-14m+1+4pf(9))

o T [am+1]

Esip

Ziam+1-dpBg)|

where |ry| <a(g) and |r,|<a(g). We estimate the first sum by Abelian trans-
formation and put ¢,=>%_ &, By (8) |o,|<16 Vp for every s and using
|m|<pB(g)/4 we obtain

Ts

2 40, 8(q) ’
S Dgl [4m +1 —4pB(q)][4m +1—4(p+1)B(g)] "

@Vppla) 16 _ (L
<8 2wt B (ﬂ(q)) '

Es+p

121 4m +1—4pp(q)

G, ’

r3- B(a)
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An anologous estimate holds for the second sum and thus

2(1+1 1 1
P > —_ e - —
7(@) el > ™ G0 B
Hence, even if y(g)=0,
(g) log p(q)
|dn.,q+m|>ouy 2q§1L’
| m|<pia)a

where ([, >0 and does not depend on ¢ or s. Since s assumes at least o(g)/4
different values when n lies in the interval defined by (15) we obtain

q+1 .9q. ! 1
4,500 s q;;(-q2)a+03g pa)_ v@ ﬁ?qg) PQ@ ¢ o,
n=2¢

It follows that >3°|d,| is divergent if

< y(g) log B(q)
% B(q)

is divergent. If (14) is satisfied we then have by (13) that X% |c,|=co. The
function | constructed above thus belongs to 4 but fp does not, if the following
conditions are satisfied:

(i) 1<p(g)=0(2%,

IV. Proof of the theorem

The divergence of >F l/l/;z o(l/n) is equivalent to the divergence of
%6272 0(279. We form a mew function w,(h)=min (w(h), Vh). Then w,(h)/h is
non-increasing and 2 32¢2%% ©,(27% = co. Thus, without loss of generality, we may
assume that (k) <Vh. By Lemma 2 below we may choose a sequence {g}°
such that >2,2%2 (2 %)= oo and

(27 W) (3179 < (2 P) < (27 %+1) ()1, (16)
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1. Wik, Absolutely convergent Fourier series

Put y(q /Vﬂ ) and define A(q) as 292 w(279) for ¢g=g¢, and A(g)=0 for g=+g,.
Then 0\/'{(q)<1 and 27 Ag)= co. We choose B(g)>1, non-decreasing and such

that
< Z(q) < A(g) log Blg)
Z d ==
Ve VRw

Since A{(g) <1 we may choose f(q)=0(2%. Thus the conditions (i)-(iv) are satis-

fied. The function f constructed by means of the above §(q) and y(q)=l/ﬂ(q) AMq)
has, by (12), a modulus of continuity w(, f), satisfying

wih, f)= {20., S 29 32"'21@}

Qo

for 27D <5 <927% Now we have

q% 292 J(g)= 2 2% (27 %). (17)

qy<do

By the second inequality in (16) the terms in the series increase at least as the
terms of a geometrlc series with ratio 6/5. The sum is dominated by its last
term and since 27w(277) is non-decreasing the sum is 0{2"“ (27%)}. By the first
inequality in (16) we obtain, since (279 is non-increasing,

22 Mg = 2 027%)= 0o M)}

We have now proved that w(h, )= O(w(h)), which concludes the proof.

Note. The condition that @(h)/h is non-increasing enters only in the estimate
of (17). It can thus be replaced by the slightly less restrictive

Co(27) = 0{2° w(277)} for p<gq.

Corollary. Let w(h) be a positive non-decreasing function on 0<h<um such that

>*1/ Vol [n)=co and w(h)/h is non-increasing. Then there exists a function g ¢ 4,
whose modulus of continuity is O(w(k)).

Proof. The function fp constructed in Theorem 3 is such a function. Other
examples have previously been constructed by Bernstein [2] and Stetchkin [6].
See Bary [1 p. 165-177].

Lemma 2. Let {a,}¥ be a sequence of positive numbers, such that @, <2 2 and
27022y, diverges. Then there exists an increasing sequence {k,}¥° of positive in-
tegers such that

( )kv+1 ey ;:W < (%) Foy 41— Fy (]_8)
v+ 1

and such that >3, 2%/%ay, diverges.
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Proof. We put 2%2q,=b,, choose 6>0 and construct a sequence {k,}7°, such
that

(1 -8y 178 < 2 (1) G)fit o (18")

First we define the sequence {n,};" by
n, —1

n<np

Nuer = min {n]b, = (1--6)"b,,, for all p=0}.
(

This sequence is infinite because the contrary would imply the existence of an
integer n and a sequence {p,}°, p, > oo, such that bn.p, > (L= ) ™b,. This however
violates the condition: b,<1 for every n. Let m be the largest integer in
Ny SN <. such that b, (1—6)"'1""b, . Then

by < —8)'r-1"Phy, <(L--0) Py, ie.
bm>(] _()\)pbm;p for 0<p<n;,,1——m
Since also
b2 (L=0)" 1" "bny 12 (1 = 0)7 by, fOr p2my, —m
we have by definition m =mn, and

nu:l

Z lbn ~= bn/l 1 z l - O(bﬂ;l-‘_])'
T
Thus D bn,— 00, (19)
no-1

We define {k,}7 as a subsequence of {n,};® by

by =mn,
k,.1-: min {n,|bn, = -+ 8 ™ by,}.
nu>kp

This sequence is infinite. The contrary would imply the existence of an n,,
such that
by p < (1 +0)" "1t by,

for all p>0. This is impossible since > by, — oo.
Now the sequence {k,}i° satisfies (18") as an immediate consequence of the
construction. By the definition of {k,}{° we obtain:

I)n;,,gbk,, 2 (1-+ (5) (bk,)

kyny<ky p-0

Using (19) we realise that >:2 bi, diverges. Choose 6<0,1 and the proof is
complete.
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