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Fourier transforms of the class £

By Epwin HEwiITT

It is well known that the theorem of Rirsz-FiscHEr and the theorem of
Prancuerer, dealing with Fourier transforms of the classes £, on the circle and
line, respectively, have analogues for other classes €, (1 <p<2). Thus the theo-
rem of Youne-HAUSDORFF states that if f is2 any function on [0, 2 ] such that

f |f(x)|” dx < oo, then the numbers ¢, = -21_71 [‘ ¢™ f (x) dx have the property that
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(See for example [5], pp. 189—202.) An analogous theorem, proved by TircH-
MARSH (see [3], pp. 96—107), shows that every function f in &, (— o0, 00) admits
a Fourier transform of class &, with norm in &, (— oo, 00) majorized by a
constant times the ¥, norm of f. For both of these cases, examples can be
given to show that not all sequences of class I, or functions of class &, can
be obtained as Fourier transforms of the class €,. (See [5], p. 190, and {3],
pp. 111-112.) It is the purpose of the present note to show that this phe-
nomenon must appear for all infinite locally compact Abelian groups.

Throughout the present note, let G stand for a locally eompact Abelian group.
Integration with regard to a suitably normalized Haar measure on @ is indi-
cated by expressions such as

3) ff(:c) dx.

G

For all numbers r>1, the symbol &, denotes the space of all complex-valued
Haar measurable functions f such that

(4) [lf@fdz<oo,
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under the usual definitions of addition and multiplication by complex numbers.
£, is normed by

(5) k= 1@ [ da]r.

G

Let €. .. (G) denote the space of all continuous complex-valued functions on G
each of which vanishes outside of some compact set. Let G* be the group of
all econtinuous characters of &, topeologized in the usual fashion ({41, pp. 99-100).
The expression (z,y) is used to denote the value of the character y e G" at the
point z£@, or, dually, the value of the character z &G at the point yeG”.

For a function fe@, . (G), the Fourier transform 7'f is defined by the usual
expression

(6) Tf(y)~ ({ (z,y) f (@) da.

Throughout the present note, for every number p>1, let p'= p_g*l A. WELL

has shown ([4], pp. 116-117), by using the convexity theorem of M. RiEsz,
that the mapping T of (6) has the property that T'fe L, (G*) and that || Tf|l, <
<|Ifllp, for 1<p<2. Thus T can be extended by continuity to a linear trans-
formation T, with domain £,(G) and range contained in L, (G*) such that:

") T»(8,(G)) is dense in &, (G");
(8) T, is linear;
9 T Hlo <N 1l

(Assertion (7) requires separate proof.) It follows immediately that T, is a
one-to-one mapping. Our aim is to prove the following fact.

Theorem. If G is a locally compact Abelian infinite group and if 1<p<2,
then the image T, (%,(Q)) is a dense set of ‘the first category in £,.(G*), and
the functions in £, (G*) which are not Fourier transforms comprise a dense set
of the second category.

This theorem was suggested by a question raised by I. SEcaL [2]. The proof
is based on the following two lemmata.

Lemma A. Let G be any infinite locally compact group and let p be a

number greater than 1. Then there exists a sequence {f.}s~; of functions in
2, (G) such that f, converges weakly to zero in &,(G) and

1
(10) a4 frgt -+ fup llo=m?
for all subsets {fn,, fn,, - .., fa,} Of {fa}iza (m=1,2,3,...).
Suppose first that G is discrete. Then let z,, #,, =3, . .. be any countably
infinite sequence of distinct points in @, and let f.(z)=1 or 0 as z=z. or

Z#T,. For an arbitrary bounded linear functional M on £,(G), there exists a
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function he &, () such that M(f)=fh(x) fx)dz= Z;;k(x) f(x) for ali fe &, (G).
G re A
Since Z(Jk(x) |”" < oo, we have lim M (f,) = lim % (x,) =0. The equality (10) clearly

holds for this sequence {f,}3;.

If G is not discrete, then the Haar measure u of every open set U containing
the identity is positive but can be made arbitrarily small for appropriately
chosen U. It is then apparent that there exists a sequence {A,}a.; of pair-
wise disjoint measurable sets in ¢ such that u{d4,)>0 (n=1,2,3,. .1.) and

lim 4 (4,)=0. Write u(d,) as a,; and define f,(z) as being either a,? or 0

as zeAd, or v non & A,. It is plain that (10) holds for this sequence {f.}y.:.
To show that f, converges weakly to zero, consider first any bounded measur-
able function ¢ on G. We then have

I(Jl:/n(w)ww)dxl < sup ()| a, 7>

and thus lim f fa(z)p(z)dz=0. For an arbitrary function %e ¥, (&) and £>0,
n—>o00 G

there exists a bounded measurable function ¢ such that || —2||,-<e. Applying
HOLDER’s inequality, we find

u[w(x)—b(x)]fn(w)dxlSllfnllp-H<p—k||p'=||<p~hllp'<s.

From this, it follows that lim I f h(x)fa(z)d zl <e¢, and hence f, converges weakly
n->»00 G

to zero.

Lemma B. Let G be any locally compact group, let ¢ be a number >2,
and let {g,}7.; be any sequence of functions in ¥,(G) which converges weakly
to zero. Then there exist a subsequence {g.,}7-1 of {g.}7_1 and a positive con-

stant A4 such that

”g"1+g"2+'“ +g"m”q§Am%
for m=1,2,3, ....

This lemma has been proved for real spaces &, by BanacH and Mazur.
(See [1], pp. 197-199.) Their proof is stated for real £, on [0, 1] but can be
carried over verbatim for real £, on an absolutely arbitrary measure space. To
apply the proof of Banacu-Mazur to the present case, which treats a complex
space ¥,, we need only note that a sequence {g,}7., converges weakly to zero
if and only if the real and imaginary parts {Rg,}o, and {Jg.}3; converge
weakly to zero with respect to bounded linear functionals on 2, which are real
for real functions.

We remark also that Lemmata A and B hold for general measure spaces.

We can now prove our Theorem. Suppose that 1 <p<2, that @ is an in-
finite locally compact Abelian group, and assume that every function in £, (G*)
is the Fourier transform of a function in &, (G). The transformation 7', thus
maps &, () continuously onto L, (G*). A theorem of Bavacm ([1], p. 41,
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Théoréme 5) shows that the inverse transformation T';" is also continuous. Thus
there exists a constant C'>0 such that

(11) N2l <Nl <CUT >

for all fe%,(G@). Now consider the sequence {f,}n ; described in Lemma A, for
the space L,(G). It is plain that the sequence {Tf.}n-: converges weakly to
zero in £, (G%). By Lemma B, there exist a subsequence {T'f: |i1 and a

positive constant A such that

(12) “k‘lef”k “p' <Am}.

Combining (10), (11), and (12), we see that
1

(13) =113 fullo < 1|3 Tyl < ACm.

1 .
As (13) holds for m=1,2,3,..., we see at once that <35 which con-

S

tradicts our hypothesis. Hence 7T cannot map £,(G) onto £, (G*). A theorem
of Banacu ({1}, p. 38, Théoreme 3) shows that T, (%,(G)) must be of the first
category; since &, (G*) is complete, the set of functions in &, (G*) which are
not Fourier transforms must be of the second category and accordingly dense.

The University of Washington, Seattle, Washington.
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