Fourier transforms of the class 2,

By EDWIN HEWITT

It is well known that the theorem of RIESZ-FISCHER and the theorem of Plancherel, dealing with Fourier transforms of the classes \mathfrak{L}_2 on the circle and line, respectively, have analogues for other classes \mathfrak{L}_p (1 . Thus the theorem of Young-Hausdorff states that if <math>f is any function on $[0, 2\pi]$ such that $\int_0^2 |f(x)|^p \, dx < \infty$, then the numbers $c_n = \frac{1}{2\pi} \int_0^{2\pi} e^{inx} f(x) \, dx$ have the property that

$$(1) \qquad \qquad \sum_{n=-\infty}^{\infty} |c_n|^{p'} < \infty,$$

where $p' = \frac{p}{p-1}$, and

(2)
$$\left[\frac{1}{2\pi} \int_{0}^{2\pi} |f(x)|^{p} dx \right]^{\frac{1}{p}} \ge \left[\sum_{n=-\infty}^{\infty} |c_{n}|^{p'} \right]^{\frac{1}{p'}}$$

(See for example [5], pp. 189–202.) An analogous theorem, proved by Titch-Marsh (see [3], pp. 96–107), shows that every function f in \mathfrak{L}_p ($-\infty$, ∞) admits a Fourier transform of class $\mathfrak{L}_{p'}$ with norm in $\mathfrak{L}_{p'}$ ($-\infty$, ∞) majorized by a constant times the \mathfrak{L}_p norm of f. For both of these cases, examples can be given to show that not all sequences of class $l_{p'}$ or functions of class $\mathfrak{L}_{p'}$ can be obtained as Fourier transforms of the class \mathfrak{L}_p . (See [5], p. 190, and [3], pp. 111–112.) It is the purpose of the present note to show that this phenomenon must appear for all infinite locally compact Abelian groups.

Throughout the present note, let G stand for a locally compact Abelian group. Integration with regard to a suitably normalized Haar measure on G is indicated by expressions such as

$$\int_{G} f(x) dx.$$

For all numbers $r \ge 1$, the symbol \mathfrak{L}_r denotes the space of all complex-valued Haar measurable functions f such that

$$\int_{G} |f(x)|^{r} dx < \infty,$$

E. HEWITT, Fourier transforms of the class \mathfrak{Q}_p

under the usual definitions of addition and multiplication by complex numbers. \mathfrak{L}_{τ} is normed by

(5)
$$||f||_{r} = \left[\int_{C} |f(x)|^{r} dx \right]^{\frac{1}{r}}.$$

Let $\mathcal{C}_{\infty \infty}(G)$ denote the space of all continuous complex-valued functions on G each of which vanishes outside of some compact set. Let G^* be the group of all continuous characters of G, topologized in the usual fashion ([4], pp. 99–100). The expression (x, y) is used to denote the value of the character $y \in G^*$ at the point $x \in G$, or, dually, the value of the character $x \in G$ at the point $y \in G^*$.

For a function $f \in \mathcal{C}_{\infty \infty}(G)$, the Fourier transform Tf is defined by the usual expression

(6)
$$Tf(y) = \int_G (x, y) f(x) dx.$$

Throughout the present note, for every number p>1, let $p'=\frac{p}{p-1}$. A. Well has shown ([4], pp. 116-117), by using the convexity theorem of M. Riesz, that the mapping T of (6) has the property that $Tf \in L_p \cdot (G^*)$ and that $||Tf||_{p'} \le \le ||f||_p$, for 1 . Thus <math>T can be extended by continuity to a linear transformation T_p with domain $\mathfrak{L}_p(G)$ and range contained in $\mathfrak{L}_p'(G^*)$ such that:

(7)
$$T_{p}(\mathfrak{Q}_{p}(G))$$
 is dense in $\mathfrak{Q}_{p'}(G^{*})$;

(8)
$$T_p$$
 is linear;

(9)
$$||T_p f||_{p'} \leq ||f||_p$$
.

(Assertion (7) requires separate proof.) It follows immediately that T_p is a one-to-one mapping. Our aim is to prove the following fact.

Theorem. If G is a locally compact Abelian infinite group and if $1 , then the image <math>T_p(\mathfrak{Q}_p(G))$ is a dense set of the first category in $\mathfrak{Q}_{p'}(G^*)$, and the functions in $\mathfrak{Q}_{p'}(G^*)$ which are not Fourier transforms comprise a dense set of the second category.

This theorem was suggested by a question raised by I. Segal [2]. The proof is based on the following two lemmata.

Lemma A. Let G be any infinite locally compact group and let p be a number greater than 1. Then there exists a sequence $\{f_n\}_{n=1}^{\infty}$ of functions in $\mathfrak{L}_p(G)$ such that f_n converges weakly to zero in $\mathfrak{L}_p(G)$ and

(10)
$$||f_{n_1} + f_{n_2} + \dots + f_{n_m}||_p = m^{\frac{1}{p}}$$

for all subsets $\{f_{n_1}, f_{n_2}, \ldots, f_{n_m}\}\$ of $\{f_n\}_{n=1}^{\infty}\ (m=1, 2, 3, \ldots).$

Suppose first that G is discrete. Then let x_1, x_2, x_3, \ldots be any countably infinite sequence of distinct points in G, and let $f_n(x) = 1$ or 0 as $x = x_n$ or $x \neq x_n$. For an arbitrary bounded linear functional M on $\mathfrak{L}_p(G)$, there exists a

function $h \in \mathfrak{L}_{p'}(G)$ such that $M(f) = \int_{G} h(x) f(x) dx = \sum_{x \in G} h(x) f(x)$ for all $f \in \mathfrak{L}_{p}(G)$. Since $\sum_{x \in G} |h(x)|^{p'} < \infty$, we have $\lim_{n \to \infty} M(f_n) = \lim_{n \to \infty} h(x_n) = 0$. The equality (10) clearly holds for this sequence $\{f_n\}_{n=1}^{\infty}$.

If G is not discrete, then the Haar measure μ of every open set U containing the identity is positive but can be made arbitrarily small for appropriately chosen U. It is then apparent that there exists a sequence $\{A_n\}_{n=1}^{\infty}$ of pairwise disjoint measurable sets in G such that $\mu(A_n) > 0$ (n = 1, 2, 3, ...) and $\lim_{n \to \infty} \mu(A_n) = 0$. Write $\mu(A_n)$ as α_n ; and define $f_n(x)$ as being either $\alpha_n^{-\frac{1}{p}}$ or 0 as $x \in A_n$ or x non $x \in A_n$. It is plain that (10) holds for this sequence $\{f_n\}_{n=1}^{\infty}$. To show that f_n converges weakly to zero, consider first any bounded measurable function φ on G. We then have

$$\left| \int_{G} f_{n}(x) \varphi(x) dx \right| \leq \sup_{x \in G} \left| \varphi(x) \right| \cdot \alpha_{n}^{1 - \frac{1}{p}},$$

and thus $\lim_{n\to\infty} \int_G f_n(x) \varphi(x) dx = 0$. For an arbitrary function $h \in \mathfrak{L}_{p'}(G)$ and $\varepsilon > 0$, there exists a bounded measurable function φ such that $\|\varphi - h\|_{p'} < \varepsilon$. Applying Hölder's inequality, we find

$$\left| \int_{G} \left[\varphi(x) - h(x) \right] f_n(x) dx \right| \leq \left| \left| f_n \right| \right|_{p} \cdot \left| \left| \varphi - h \right| \right|_{p'} = \left| \left| \varphi - h \right| \right|_{p'} < \varepsilon.$$

From this, it follows that $\overline{\lim}_{n\to\infty} \left| \int_G h(x) f_n(x) dx \right| \le \varepsilon$, and hence f_n converges weakly to zero.

Lemma B. Let G be any locally compact group, let q be a number ≥ 2 , and let $\{g_n\}_{n=1}^{\infty}$ be any sequence of functions in $\mathfrak{L}_q(G)$ which converges weakly to zero. Then there exist a subsequence $\{g_{n_k}\}_{k=1}^{\infty}$ of $\{g_n\}_{n=1}^{\infty}$ and a positive constant A such that

$$\|g_{n_1} + g_{n_2} + \dots + g_{n_m}\|_q \le A m^{\frac{1}{2}}$$

for $m = 1, 2, 3, \ldots$

This lemma has been proved for real spaces \mathfrak{L}_q by Banach and Mazur. (See [1], pp. 197–199.) Their proof is stated for real \mathfrak{L}_q on [0, 1] but can be carried over *verbatim* for real \mathfrak{L}_q on an absolutely arbitrary measure space. To apply the proof of Banach-Mazur to the present case, which treats a complex space \mathfrak{L}_q , we need only note that a sequence $\{g_n\}_{n=1}^{\infty}$ converges weakly to zero if and only if the real and imaginary parts $\{\mathcal{R}g_n\}_{n=1}^{\infty}$ and $\{\mathcal{I}g_n\}_{n=1}^{\infty}$ converge weakly to zero with respect to bounded linear functionals on \mathfrak{L}_q which are real for real functions.

We remark also that Lemmata A and B hold for general measure spaces.

We can now prove our Theorem. Suppose that 1 , that <math>G is an infinite locally compact Abelian group, and assume that every function in $\mathfrak{L}_{p'}(G^*)$ is the Fourier transform of a function in $\mathfrak{L}_p(G)$. The transformation T_p thus maps $\mathfrak{L}_p(G)$ continuously onto $\mathfrak{L}_{p'}(G^*)$. A theorem of Banach ([1], p. 41,

E. HEWITT, Fourier transforms of the class \mathfrak{Q}_p

Théorème 5) shows that the inverse transformation T_p^{-1} is also continuous. Thus there exists a constant C>0 such that

$$||Tf||_{p'} \le ||f||_{p} \le C ||Tf||_{p'}$$

for all $f \in \mathfrak{Q}_p(G)$. Now consider the sequence $\{f_n\}_{n=1}^{\infty}$ described in Lemma A, for the space $\mathfrak{Q}_p(G)$. It is plain that the sequence $\{Tf_n\}_{n=1}^{\infty}$ converges weakly to zero in $\mathfrak{Q}_{p'}(G^*)$. By Lemma B, there exist a subsequence $\{Tf_{n_k}\}_{k=1}^{\infty}$ and a positive constant A such that

(12)
$$\| \sum_{k=1}^{m} T f_{n_k} \|_{p'} \leq A m^{\frac{1}{2}}.$$

Combining (10), (11), and (12), we see that

(13)
$$m^{\frac{1}{p}} = \| \sum_{k=1}^{m} f_{n_k} \|_{p} \le \| \sum_{k=1}^{m} T f_{n_k} \|_{p'} \le A C m^{\frac{1}{2}}.$$

As (13) holds for $m=1, 2, 3, \ldots$, we see at once that $\frac{1}{p} \leq \frac{1}{2}$, which contradicts our hypothesis. Hence T cannot map $\mathfrak{L}_p(G)$ onto $\mathfrak{L}_{p'}(G^*)$. A theorem of Banach ([1], p. 38, Théorème 3) shows that $T_p(\mathfrak{L}_p(G))$ must be of the first category; since $\mathfrak{L}_{p'}(G^*)$ is complete, the set of functions in $\mathfrak{L}_{p'}(G^*)$ which are not Fourier transforms must be of the second category and accordingly dense.

The University of Washington, Seattle, Washington.

BIBLIOGRAPHY

- Banach, Stefan. Théorie des opérations linéaires. Monografje Matematyczne, Warszawa, 1939
- Segal, Irving, E. The class of functions which are absolutely convergent Fourier transforms. Acta Sci. Math. Szeged 12, 1950, pp. 157-161.
- 3. TITCHMARSH, E. C. Introduction to the theory of Fourier integrals. Oxford University Press, 1937.
- Weil, André. L'intégration dans les groupes topologiques et ses applications. Act. Sci. et Ind. 869. Hermann et Cie., Paris, 1940.
- Zygmund, Antoni. Trigonometrical series. Monografje Matematyczne, Warszawa-Lwów, 1935.

Tryckt den 7 januari 1954