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A connection between o-capacity and L’-classes of
differentiable functions

By Hans WaALLIN

1.

Let = (z',...,2™) be a point in the m-dimensional Euclidean space R™. The
following measure was recently used by Serrin [6] for investigating removable
singularities of a class of quasi-linear partial differential equations:

Definition. Let E be a bounded set in R™. M (E), where 1 <s< oo, is defined by
MS(E’)=inff|grad1p|sdx, (1.1)

where the infimum is taken over all continuously differentiable functions vy which
have compact supports and are =1 on E. If s=m we also require the support of
v to belong to a certain fized sphere |x| <R, < oo which is independent of E.

We intend to investigave the connection between M,(E) and the potential
theoretic o-capacity of E. As M (E)= M (E), where E is the closure of E, the
only case of interest is to consider compact sets. The investigation has a close
connection with [7], to which we shall refer concerning some details of the proofs.

Let us first introduce some notations. The support of a measure x4 and of a
function f is denoted by S, and S; respectively. S(r), >0, is the closed sphere
|z| <r. The a-potential, 0 <x<m, of a measure u is denoted by u, where

wi= [,

if O0<o<m,

1
and wh(z) = flog W du(y).

Here and elsewhere, the integration is to be extended over the whole space, if
no limits of integration are indicated. If u is absolutely continuous and has a
density f, du=fdx, we also write %/, instead of u’.

If I,(u) denotes the energy integral of u,

I, (p)= fuéi du(z),
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we define the o«-capacity of a bounded Borel set E, C,(E), by
Co(B)={inf I.(u)} ",

where the infimum is taken over all positive measures u with total mass 1
and S,<E. When «=0 we make this definition only if the diameter of E is
less than 1. For an arbitrary Borel set E we put Cy(E)=0 if and only if
Co(EN8)=0 for every sphere § with diameter less than 1.

We shall use the well-known fact that if F is a compact set with O (F)>0
—we suppose the diameter of F less than 1 if « =0—then there exists a unique
positive measure t with total mass k, £ >0, and S, < F such that inf, I (v) is
attained for y =1 where v ranges over the class of all positive measures with
total mass k¥ and S,cF. 1 is called the capacitary distribution with total mass k
of order o of F. u; has the following properties:

ug(x) = k{C.(F)}"! for every x € F except when z belongs

to a set of «-capacity zero. (1.2)
ug (x) <k{C.(F)} ! for every z€S,. (1.3)
uL(x) < M - k{C.(F)} ' everywhere, (1.4)

where M is a constant which may be chosen only depending on m. If a>0 we
may in fact choose M =2%<2" We shall also use the fact that if F is the
union of a finite number of closed spheres, then

ug(x) = k{C,(F)}™' for every =z€PF. (1.5)
The g-dimensional measure, 0 <f <m, of a bounded set B, Lg(E), is defined as

inf > 78,
v

where the infimum is taken over all the coverings of E by families of open
spheres with radii {r,}.

Let C* be the class of all infinitely differentiable functions in R™ and C¢
those functions in C* that have compact supports. Li,., p=1, is the class of
all Lebesgue measurable functions f in R™ such that [r|f(x)|Pdaz< oo for every
compact set F and L, p>1, is the class of all measurable functions f such
that §|f(z)|Pdx < co. We use the notation

1/p
||f||mm={ men»dx} ,

and we write ||f||.» instead of ||f||zs(rm).

2.

Theorem. (A). Let F be a compact set in R™ with C (F)=0, where 0 <a<m.
If «=0 we suppose that F is a subset of the sphere |x|<R,, where R, is the
constant occurring in the definition of M (F). The following conclusions are true:
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If 0<a<m—2, then M, _,(F)=0. (2.1)
If 0s<m—~2<a<m—1, then My_, .(F)=0 for every &>0

such that m—oa—e=1. (2.2)

(B). Let F be a compact set in R™ with M,(F)=0, where 1<p<m. The fol-
lowing conclusions are true:

If 1<p<2, then Cu_,(F)=0. (2.3)
If 2<p<m, then Cu_pi(F)=0 for every ¢>0. (2.4)
For the proof we need the following lemma.

Lemma 1. Let 0 <a<pf <m. Let u be a positive measure with u(R™) < oo, Then

m-— o

ﬂ_ H

llefllzo < ML, - {(B™}2 -{ sup w (@)}P V7, provided 2<p= (2.5)
ZE€

R

and for every sphere S with radius r we have

%4 1|20 5y < My - {u(B™)}M7 - { sup ul (x)}*~ D%, provided 1<p< an»:—; <2. (2.6)
reRm

M, is a constant depending on m, p and « and M, is a constant depending
on m, p, &, § and r.

References to papers where this lemma is proved can be found in [7], p. 70.

Proof of (A) of the theorem. We first treat the case o>0. Let F,, for
n=1,2,3,..., be the union of finitely many closed spheres such that C,(F,)<n""
and F,o>F, where F is the given compact set with C,(F)=0. Let u, be the
capacitary distribution of order « of F, with total mass

pn(Fp)=2n - Co(F,).
This means that 0 <pu,(F,)<2. According to (1.5) and (1.4) we have
uyr(x)=2n for every x€F,, (2.7)

and uh*(x) <2Mn everywhere. (2.8)

(2.7) and (1.3) give that u!» is constant on 8., i.e. the restriction of w;" to
8., is continuous and consequently u“* is continuous everywhere according to
the continuity principle.

We now form w,=g@,% p,, ie. 9u(2)=f @ (2 —y) du.(y), where @, €CF is a
non-negative function with | @,dr=1. This means that J wadz <2. By choosing
8S,, belonging to a sufficiently small neighborhood of the origin we can make
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S, a subset of a given neighborhood of F, and accordingly also of F. As u}* is con-

tinuous we can, in this way, also make the difference |u¥*(x)—ui*(x)| less than
any given positive number everywhere (cf. [7], p. 59). Due to (2.7) and (2.8) we
can consequently choose ¢, such that

uf*(x)y>n for every x€EPF, (2.9)
and ug*(x) <M -n everywhere, (2.10)

where M is a new constant which is independent of n. We also observe that
uPr 0% as p, €CY.
Now we choose r, such that FU S, =S(r,/2) for every n. [According to the

above we can make the construction of v, so that this choice of 7y is possible.]
Let ¢ €C5° be a function, independent of n, which is identically equal to 1 in
S(r,) and put f,(x)=ué"(z) and
gn(@)=n""-fo(2) - p().
We observe that
gn€Cy and g¢g,(x)=1 for every xz€F. (2.11)

For every p>1 we obtain, with constants M which are independent of n:
f|gradg,,|”dx<M-n"’f”ngrad(plpdx%-M-n_"f|<pgradfn|”dx=ln+II,,.
As ¢ is identically equal to 1 in S(r,) and

o\ © .
i<z (2) " it lal=r,

we get I,<M-n"? -max |f,(z)] f|gr&d @|?dz < const -n~".

|z]>70

Let r, be independent of n and chosen so that S(r;)>S,. As

11, < const -n“”f |grad fal? de,

Sery)
we want to estimate |gradf,|. Due to the properties of y, we obtain
|grad f,(z)| < const-u)»,(x) for every z. (2.12)
We now choose p:
p=m—a if O<a<m-—-2
and p=m—a—¢ if m—-2<a<m-—1,
where ¢>0 is chosen satisfying m—a—e>1.
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Due to (2.12) and this choice of p we can use (2.5) or (2.6) in Lemma 1,
with § equal to a+1, to estimate II,. This gives, as [y,dzr<2,

I1, < const-n~? { sup u¥»(z)}* %,
zeRm

and, according to (2.10),

11, <const-n™t,

with constants that are independent of n.
The estimates of I, and II, show that

lim f|grad gulP dx=0
n—->00

with our choice of p. Combined with (2.11) this gives M,(F)=0, which means
that (4) of the theorem is proved in the case when a>0.

We now prove (A) when «=0. We can cover F by finitely many closed
spheres {S;}i' with diameters less than 1 such that UY 8, is a subset of |z|<R,.
It is clearly enough to prove that M, (FNS8)=0 for i=1,2,...,N, and it is
consequently enough to consider the case when F itself has diameter less than 1.
We can then repeat the construction which we used when «>0 but with ob-
vious modifications. For instance, the choices of ¢, and ¢ are made so that
8, and 8, are subsets of |z| <R, and we use the following lemma [cf. Fuglede 3,
p. 301] instead of Lemma 1:

Lemma 2. Let 0<f<m and 2<p=m/B. Let u be a positive measure with
compact support, S, <8(r,}. If S is a sphere of radius r, and w, denotes the sur-
face of the unit sphere in R™ then

.f S{“ﬁ (@)} da < {u(R™)}* 2 only(u) + M - {u(B")}?,

where M is a constant depending on m, r; and r,.

Remark. The following result and its proof has been communicated to me by
Professor Lennart Carleson:

If F is a compact set with L(E)=0, O<a<m—1, then Mp_.(F)=0.

As C,(F)=0 imphlies L., (F)=0 for every £>0, this gives a better result
than (4) of the theorem when 0<m—2<a<m—1.

The proof that L.(F)=0 implies Mn_,(F)=0 proceeds in the following way.
Let {x,}] be given points and S, (r), 7> 0, the open sphere |z —z,| <7, v=1,2,...,n,
and suppose that {r,}{ are chosen so that U} S,(r,)>F.

We define linear functions I, by

2r,—7r
L(r)= "T , 1,<r<2r

v
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and put
1 when z€8,(r,),
@.(x)= {L(lx—=,]) when z€8,(2)—S8,(),
0 when z belongs to the complement of S,(2r,).

Then we have
|grad g,|=7,* in the interior of 8,(2r,)—8,(r,).

If we put p(x) = max g;(z),

igign

then y(z)>=1 on F and

n
Jlgradw|m‘“dx< > f r, "~ dx < const. Y, 75,
Sv(zr,)

v=1 y=1

where the constant only depends on m. If L,(F)=0 we can make 2 7 arbitrarily
small, which means that

f |grad v |" *dx

will be arbitrarily small. By using standard methods to approximate y it is
possible to prove the existence of a continuously differentiable function f with
compact support and f(x)>1 on F so that

ﬁgrad]‘l'"‘“dx

is less than any given positive number. This means that L, (F)=0 implies
Mm_a(F)=O.

3.

Proof of (B) of the theorem. Let F be a compact set with M,(F)=0 where
1<p<m. We may assume m>1 because if m=p=1, then M,(F)>0 for every F.
We define « by

a=m~—p i 1<p<2,
and a=m—p+e if 2<p<m, where £>0, (3.1)
and we shall prove that C,(F)=0.

As M,(F)=0 there exists a sequence {f,};° of continuously differentiable func-
tions with compact supports and
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f{z)y>n for every z€F,

and f|gradfn|”dx<const., n=12 .... (3.2)

In the case when m=p we suppose furthermore, as we may, that Sy, is a subset
of |z| <R, for every n, where R, is the constant occurring in the definition of
M, (F).

Considered as a distribution, f, belongs to the class BL,(Lf,) of distributions
in B™ such that all the partial derivatives (in the distribution sense) of the first
order are functions in Lf,. This fact and the fact that Sy is compact mean
[see for instance 7, p. 71] that there exist constants b, and d;, not depending
on n, such that

f,,(x)=2bifii x—y|2“'”£ifn(y)dy ae. for n=1,2,..., if m>2, (3.3)
i=1 oy 9y

and

2
f,,(x)zZd{fiiloglx—yl-i,fn(y)dy a.e. for n=1,2, ..., if m=2. (34)
i=1 oy oy

However, since all the partial derivatives of the first order of f, are continuous,
we conclude that also the integrals in (3.3) and (3.4) are continuous and, con-
sequently, that the relations (3.3) and (3.4) are true everywhere in R™

To finish the proof of (B) of the theorem we need an estimate of the
a-capacity of the set HY> where the right members of (3.3) and (3.4) are larger
than a, a>0. By majorizing the integrals in (3.3) and (3.4) we obtain that there
exists a sequence {g,} of non-negative continuous functions such that H{” is a
subset of the set G§” where

gn(y)
U (x)=f—m~d
{7 o=y
is larger than ¢. We may also assume that S,, <S;, and, due to (3.2), that
fggdx<const, n=12,..., (3.5)

where the constant is independent of n.

C.(G$) is estimated by standard methods. The two cases p<2and p>2 give
different calculations. For the sake of completeness we treat one of them, the
case p>2, in detail. : ; ,

The estimate of C,(GS$”) is somewhat facilitated for certain values of m and p
if UnSs, is a bounded set. U,S; is bounded if m=p as Sy, is a subset of
lxl <R, n=1,2,8,..., in this case. But even when m>p=1 we may choose
{fn} so that U,S; is a bounded set. Because if U. S, is not bounded for the
sequence {f,} which was chosen originally, we replace {f,} by a sequence {f%}
defined by f(x)=f.(x) y(x), where p(z) is a function in C§° which is identically
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equal to 1 in a neighborhood of F. Then fr is continuously differentiable,
fa()>n on F and the set U. 8 is bounded. From the estimate

f|gra,d 2P dz < const f|f,, grad | dx + const flzp grad f,|? dx, (3.6)

we may, finally, prove that (3.2) is true with f, replaced by f»: according to
(3.2) the second term of the right member of (3.6) is less than a constant which
is independent on ». In order to realize that the whole expression (3.6) is less
than a constant it is hence enough to prove that

sup || full oz < 00, m>p>=1,
n

for every bounded set E. But this is an immediate consequence of (3.2), (3.3) and
(3.4) if p=1 and of (3.2) and the following inequality by Sobolev if m>p>1,

m
| fellr < const || grad f, ||, 7= oy _pp,

where the constant is independent of n.

In the calculations below, we assume, as we accordingly may, that U, Sy, is
bounded. This means that also U,S,, is bounded.

Now let m=p>2. Since {J,S,, is bounded, we can choose a finite number
7o such that U, S, <8(r)) =8, Let u be a positive measure with S,<GS” and
u(R™)=1. We obtain by means of Hélder’s inequality, if p'=p/(p—1),

a< f“f,?—l(x) du(x) = fs w1 (%) 9o () d2 < || g || 2o * || 08 -1 | 70 3.7

To estimate the last norm we use formula (2.6) of Lemma 1 with f=m—1.
An easy calculation shows that the conditions of the lemma are satisfied if we
choose & small enough in (3.1), a choice which we may obviously make without
limitation. (2.6) gives then

l| 4 -1 || w50y < comst { sup g (@)} 7"
xeRm

Remembering (3.5), we obtain, after simplification, from (3.7) and the estimate
above,

a® < const {sup u(x)}.
Now let u be the capacitary distribution with total mass 1 of order o« of an
arbitrarily chosen closed subset F$’ of GY”. This and (1.4) give

a® < const {C,(F)} 1.

Hence the same inequality is true with F{” replaced by G%” and we have proved
the following inequality when m>p>2:
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If m>p>=1 or m=p>2, then there exists a positive constant M, not de-
pending on @ and =, such that

CAGPY<Ma™®, a>0, n=12,.... (3.8)

The proof of (3.8) when 1<p<2, m>p—which may be completed even without
the assumption that U, S, is bounded—is first carried through when p=2 or 1,
after which the case 1 <p <2 is reduced to the case p=2 by an application of
Holder’s inequality. Compare for instance [7] formulas (8.11) and (8.15) where,
however, the presence of a function g complicates the proof.

When m=p=2 we have the following inequality instead of (3.8): If S is an
arbitrary sphere with diameter less than 1, then there exist constants M and a,,
such that

C @ nSy<M-a® if a>ay, m=p=2, n=12,.... (3.9)

Remembering that f.(z)>n on F, that H{’ < G}, and that (3.3) and (3.4)
are true everywhere, we obtain

C(F)<C (G, n=1,2,.... (3.10)

(When «=0, i.e. when m=p=2, F is to be replaced by Fn &S and G’ by
G5 NS where S is a sphere having diameter less than 1.) (3.10) combined with
(3.8) or (3.9) give that C,(F)=0, and (B) of the theorem is proved.

Remark 1. The same methods of proofs also give an analogous theorem if we
introduce derivatives of higher orders in (1.1).

Remark 2. Restricting ourselves to the case m>p we observe that the result
(2.4) of (B) of the theorem is best possible in the following sense:

If m>p>2 there exists a compact set F satisfying
M (F)=0, Cn_,(F)>0. (3.11)

To prove this we shall use the following result by du Plessis [5, Theorem 4
and p. 1311f.]:

Let « and ¢ be given numbers, 0 <a<m, 2<g< oo. There exists a compact
set B with Cpn_o(E)>0 and a function f€L? with compact support such that,
if y=m—a/g, then ) (x)=oc everywhere on K.

It should be noted that the proof of this fact which is illustrated for the
case m=2 in [5] is incomplete. The set E which is constructed in [5], p. 132,
(where it is denoted by M) can not be used if 1<o<2=m. However, for E
it is possible to use the m-dimensional Cantor set which is the Cartesian product
of m equal 1-dimensional Cantor sets, @, where @ is the usual Cantor set which
is obtained starting from an interval of length 1 and a sequence {£,} such that
0<§,<1/2; i.e. @= N G,, where G, consists of 2” closed intervals each of length
£1&; .. & Tt is well known that if 0<f<m, then Cs(E)>0 if and only if
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Lt

Z 2_-"”‘(5152 En)_ﬂ< 0,

n=1

By using this it is possible to construct the function f and to carry through
the proof by obvious modifications of the proof given by du Plessis for the case
m=1 [4, p. 8961f.]. '

We now turn to the proof of the existence of a compact set F satisfying
(3.11), where p is given. m>p>2. According to the above there exists a com-
pact set F with Cp_,(F}>0 and a non-negative function g € L? with compact
support such that u9_,(z)=c on F. We shall prove that M,(F)=0. Let, for
n=1,2,..., 9, €05 be a non-negative function with § @ndz=1 such that U, S,
is a bounded set. As u§_i(¥r)>7n on an open set containing F we have
U 1% @, (®)>n on F if we choose S, in a sufficiently small neighborhood of
the origin. Putting ¢g,=g% @, this means that ul* (x)>n on F since

PR | _ 1 —
um~1_7.m~1*gn_rrrpl*g*(]?n—um—l*(Pn-

Furthermore, we have uf;‘_leC"". We now choose a function ¢ € C5° which is

identically equal to 1 on a set, the interior of which contains ¥ and U, Ss,
and put

fa(@)=n""uln (2) - p(a).
Hence €05, fo(z)=1 on F. (3.12)

There exists a constant M such that
f|grad falPdx< Mn=" f|uf:fl grad " dz+ Mn~? f|(p graduf |Pdx. (3.13)

In the same way as in the proof of (A) of the theorem we realize that the
first term of the right member tends to zero when n—oo. The second term of
the right member may, for instance, be estimated by means of the theory of
singular integrals. We have [1, p. 129]

oudr 1(a:) xi__yi
el =lim (1l —m = . (y)dy a.e.,
Py eLo ( ) r—vise Ix_yl 19 (¥ dy

and from this we infer [1, p. 116],

| grad we» | ||1» < const || g ||z»,

where the constant is independent of n. But an application of Hélder’s in-
equality shows that (see for instance [2, p. 192]),

lgallzo = llg % @ullzr <llgllzr - N pnllz =g llzo,
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and consequently we have proved that also the second term of the right member
of (3.13) tends to zero when n —oo. Hence

lim f[grad ful? dz=0.

This combined with (3.12) finally gives that M, (F)=0 and so we have proved
the existence of a compact set F satisfying (3.11) if m>p>2.
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