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C o m m u n i c a t e d  9 O c t o b e r  1963 b y  OTTO FROSTMAN 

On the  in tersec t ion  o f  classes o f  infinitely differentiable  

funct ions  

By JA~ BOMAN 

1. Introduction 

I t  is well known tha t  the intersection of all non-quasianalytic classes of functions 
is equal to the class of all real analytic functions (see e.g. Bang [1]). In  the present 
paper we shall describe the intersection of more restricted families of non-quasiana- 
lytic classes of functions. 

I f  L: k-->L(Ic), k = 0, 1,2 . . . .  is a sequence of positive numbers, and C2 is an open sub- 
set of R n, we define CL=CL(~) as the set of infinitely differentiable functions u 
such tha t  to every compact set F ~ ~ there exists a constant C such tha t  

[D~ul<C~+tL(k) ~, if x e F  ( k = 0 , 1 , 2  . . . .  ). 

Here D k denotes an arbi t rary partial  derivative of order It. I f  L ( k ) = k  when k>~l, 
then C L is equal to the class pf all real analytic functions on ~2. 

Put  C~ = t h e  set of all functions in C L whose supports are compact subsets of ~ .  

Definition 1. The class C L is said to be quasianalytic, i /C~ contains no ]unction except 
the zero-/unction. 

A complete characterisation of the sequences L such tha t  the class C L is quasiana- 
lyric was given in 1926 by  the following theorem. 

Denjoy-Carleman Theorem. ( Carleman [3].) The class C L is quasianalytic i] and only i/ 
~=oL(k) -1 is divergent, where L denotes the largest increasing minorant sequence of L. 

Theorem 1. Let M and N be two positive sequences such that Z M  ( ]c )-I = oo , E N  ( k ) -1 < 
and N / M  is increasing. Denote by ~ (M, N) the ]ollowing set o/sequences L: 

~ ( M ,  N ) =  {L; L /M is increasing, L / N  is decreasing, ZL(k) -1 < ~ } .  

Then N C L = C sup(fz' ~), (1) 
L ~ ~(M, N) 

k 

where M ( k ) = M ( k ) ~  M(j) - t  (k>~O), 
0 

oo 

and ~(]c)= N(Ic) ~ N(j) -1 (k>~O), 
k 
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Note that  if M is increasing the Denjoy-Carleman theorem shows that  the con- 
dition ZL(k) -~ < co in the definition of ~ ( M ,  N) is equivalent to the condition that  
C L is non-quasianalytic. 

From Theorem 1 we formally obtain Theorem 2 and Theorem 3 by deleting the 
condition that  L/N is decreasing and that  L / M  is increasing respectively. 

Theorem 2. Let M be a positive sequence such that ZM(k)  - 1 =  oo. Put ~+(M)= 
{L; L /M is increasing, Z L(k)-I < co }. 

Then n C T = C A. 
L eX+(M)  

Theorem 3. Let iV be a positive sequence such that 7~N(k)-l< co. Put ~ - ( N )  = 
{L; L /N  is decreasing, ZL(k)-I  < co}. 

Then N C L = C ~. 
L e X - ( N )  

Taking M(k) = 1 for every k gives 2~(k) = k + 1, and the class in the right-hand side 
of (1) becomes C sup((~+l~' ~). In  some applications it is useful to know conditions 
on N in order that  this class be equal to the analytic class. I t  is obvious that  this is 
the case if ~ (k )<C(k  + 1) for some C. However, this condition turns out to be also 
necessary, as is expressed by the following theorem (see the remark after Theorem 1). 

Theorem 4. Let N be a positive increasing sequence such that ZN(k) -1 < co Then the 
intersection o~ all non-quasianalytic classes C L, where L is increasing and L / N  is de- 
creasing, is equal to the analytic class i /and only i/ ffi(k) < C(k + 1)/or some constant C, 
or, which is equivalent 

r162 

7 N ( j )  -1 < Ck/N(k) ( k =  ] ,  2 . . . .  ). (2) 
k 

Theorem 5. Under the conditions o~ Theorem I the classes C f~, C ~ and C s=r(~'#) are 
quasianalytic. 

Note that  the quasianalyticity of two classes C ~ and C s does not imply the qua- 
sianalyticity of the class C "p(A'B). In  Theorem 5 the quasianalyticity of the class 

C ~p (~' ~) follows from the quasianalyticity of the classes C ;~ and C ~ and the fact that  
the sequences 21I and N are related by the condition that  N / M  is increasing. 

In  the next section we give proofs of the theorems. In  section 3 we discuss a num- 
ber of special cases and applications. 

I wish to express my gratitude to professor Lars H6rmander for his stimulating 
instruction and valuable criticism. 

2. Proofs of the theorems 

We first deduce some formulas which connect the sequences M and N with their 

respective transforms _M and h ~. From the definition of M we obtain 

l - J l ( k ) - l = l  - M(k) -1 m(]) -1 = M(]) -1 M(i) -1, if }>~1. 
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k k 

Hence 1-~ (1 - -  M ( ~ ) - I )  = (M(0) ~ M(j)-I) -x. (3) 
1 O 

Similarly we obtain 

I-[ ( 1 - ~ ( j ) - ~ ) = Z N ( j )  -~ _N(j) -1, k ~ l .  (4) 
0 k 1 0  

(Note tha t  M(k) > 1 when k >~ 1 and ~(k)  > 1 for every k.) From these formulas 
it follows immediately that  Z2i~/(k) -1 and Z~(k )  -1 are divergent. In fact, since 
ZM(k) -1 is divergent by assumption, (3) proves tha t  H ( 1 -  M(k) -1) is divergent 
to zero and hence that  Z~/(k) -I is divergent. Similarly (4) shows tha t  Z3~(k) -1 
is divergent, since 5:N(k) -1 is convergent. 

Using (3) and the definition of l~/ we can express M(]c) when k~> 1 in terms 
of M(0) and ~r: 

k 

M(k) = M(0) ~r(k) 1-[ (1 - ~/(j)-~). (5) 
1 

Similarly we obtain from (4) 

N(k) = ( ~ N ( ~ l - ~ ) - ~ ( k ) / ~ I 0 1  ( 1 - ~ ( j ) 1 ) .  (6) 

/ 

Formulas (5) and (6) show tha t  to  any given sequence Ak such that  Ak > 1 and 
Z A ;  1= ~ there exist positive sequences M and N (not uniquely determined), 
such that  21l(k)=_N(k)=Ak when k>~l, ZM(k) -1=  oo and Z N ( k ) - I <  co. 

^ 
Proo[ o/ Theorem 1. First we prove that  if LE~(M,N),  then CL~C s~p(M'N) 

Since Z L ( / c ) - I = c <  oo and L/M is increasing, we have 

k k k 

C > ~ / ( j ) - I  = ~ (M(j)/L(j)) M(j) -1 ~> (M(k)/L(k)) Z M(?') :1 = L(]c)-l/~/(k) �9 (7) 
0 0 0 

Similarly, since L/N is decreasing 

C > ~ L ( j ) - i :  ~ (~V(~)/L(~)) ] ~ ( j ) - I  ~ (N(k)/L(k)) ~ N(i) -x = L(]c)-l~(k). 
k k k 

(8) 

Thus CL(k) > max (21~/(k), 3~(k)), which proves that  CL~ C sup(~'~) and hence tha t  
fl cLD CSUp(~, ~) 

To prove that  fl CLcC sup(~'~) we shall prove tha t  to an arbi t rary function 
g q.C sup(M'N) there exists a sequence L such tha t  L E~(M,N) and g~C L. If  
g r C~Up(~ ' v N), there exists a compact set F c ~,  such that  G(k)= (supx~ylDkg(x) [) 1/k 
satisfies 

lim (G(k)/max (/]~/(k),/~(k))) = oo. (9) 
koo0  
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W-e have to find a sequence 15 E ~((M,/V) such that  

lira (G(~)]L(~)) = ~ .  (10) 

We may assume that  GIN is bounded, since otherwise (10) is satisfied with L=tV, 
and clearly N 6  ~ (M,  N). Let  aj and bj be sequences of positive numbers, such 
that  af-> oo and bF->0 when ?'--> co, and Z(a~br < oo. In  view of (9) we can find an 
increasing sequence of indices kr such that  

GCk#)/max(.~lCkj), ~(kr >~a~ (~=1, 2 . . . .  ). ( l l )  

Then b~G(k~)/M(k/)--> ~ by  virtue of (11) and the fact that  yll/M is increasing. Also, 
br162 since GIN is bounded. Thus by taking a subsequence if necessary 
we can always obtain that  

5~G(kt)/M(kj) is increasing, (12) 

~sG(kj)/N(kr is decreasing, and (13) 

G(ks)/max(l~l(ks), N(kj)) >/a j, (14) 

where ~j and t j  are subsequences of the sequences aj and b i respectively and hence 
satisfy ~j-->0 and Z(gj~j) -1 < c~. 

Assume that  kl = 0 and put  

L'(k)=$jG(k~)N(k)/N(kj), kr 0"=1, 2 . . . .  ), 

L"(k)=~r162 kr162 ( j = l ,  2 . . . .  ), 

L"(0) =5IG(0), and 

L(k) =min  (L'(k), L"(k)) (k=O, 1, 2 . . . .  ). (15) 

Then it is obr tha t  (10) is fulfilled, since L(kj) =SjG(kj) for every ~ and 5F->0. 
Next we prove that  L]M is increasing if L is defined by  {15). In  view of (12) .L"/M 

is increasing. L'[M is increasing in every interval kj ~< k < k j+ 1, since L'/N is constant 
in that  interval and N/M is increasing according to the assumption. Noting that  
L'(kj) =L"(kj) for every i we conclude that  L[M is increasing in the whole interval 
k~>0. Using (13) we can prove in an exactly analogous way that  L/N is decreasing. 

Finally we prove tha t  ZL(k) -1 is convergent. From the definition of L we obtain 
L(k) -1 <~L'(k) -a + L"(k) -1 and since L'(k~) =L"(kj) 

y. L(~)-~< Y L'(k)-~+ Y L"(k) -~ 
kj<~k<kj+l kj~<k</q+l kj<k<k~+l 

= ~/- la(]Cj)- 12~(]r ~, I~(]r ~ M(~) -1 
ki<.<k<ki+1 k:j<k</q+1 

< b, :-~ a(k,)-~R(kj) + $i2~ a(k,1)-~.~(~J-~l). 

This together with (14) gives 

/(k)--I ~< (~j~j)--I .Jff (aj+ 15]§ 
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which proves that  ZL(k) -1 is convergent, since Z(Sj~j)-* is convergent. This completes 
the proof of Theorem 1. 

Proo/ o/ Theorem 2. Formula (7) proves that  

N c L ~ c  ~. 
X+(M) 

On the other hand, if we can find a sequence N such that  N/M is increasing, N ~ ~/ 
and ZN(k) -1 < oo, we obtain from Theorem 1 

N C Lc f l  cL=c'~(~'~)=C~. 
X+(M) X(M,~) 

P u t  A k = min (M(k), (M(k) + M(]r + 1))/M(]c + 1)). Since ZAk -1 ~> Z~/(k) -1 = co, the re- 
mark following formula (6) shows that  there exists a sequence N such that  

-~(lc)=Ak ( I t=l ,  2 . . . .  ) (16) 

and ZN(]r oo. I t  is obvious that  ~(k)~<2V/(]c) for every ]r so it only remains to 
prove that  N/M is increasing. In  fact, from (6) we obtain 

N(lc+ 1). N(k) M(k) 2~(]c+ 1) 1 M(k) 
M(k + 1)" M(k) = M(]c + 1) ~(]r (1 -/~(]c) -*) > M(k + 1) (/~(k) - 1) ~> 1. 

The last inequality follows from (16). The proof is complete. 

Proo/ o/ Theorem 3. Formula (8) shows that  

N c L ~ c  ~. 
X -  (N) 

The opposite inclusion will follow in exactly the same way as in the proof of Theorem 
2 if we can find, for a given sequence N, a sequence M such that  ~/~< 2~, ZM(~) -1 = 
co and N/M is increasing. By the remark fo l lo~ng formula (6) we can find a se- 
quence M such that  ]s -1 = co and 

2tl(k) =min((N(k - 1) +N(k))/N(k - 1), 2~(k)). (17) 

Then we obtain from (5): 

N ( k + l ) . N ( ] c )  N(]c+I)  M(k) 1 N ( k + l )  

M ( k +  1 ) " / ( k )  N(k) ~ / (k+  1) 1 - 2~/(k + 1)-1 > N(k) (~/(k + 1) - 1) >~1' 

where the last inequality follows from (17). This proves Theorem 3. 

Proo/ o/ Theorem 4. As we have already mentioned it follows from Theorem 1 
and the Denjoy-Carleman theorem that  the intersection studied in Theorem 4 
is equal to C sup((k+l)'~). Clearly this class always contains the analytic class. 
Hence what we have to prove is tha t  C sup((~+l~' ~) is contained in the analytic class if 
and only if (2) holds. The sufficiency of (2) is trivial. In proving the necessity we 
shall use the following lemma. 
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Lemma 1. Assume that B(k) >~ k and that B is almost increasing in the sense that 

B(k + 1) ~> B(k) - a  (18) 

with some constant a independent o/ k. Then C B is contained in the analytic class i / and  
only i / B ( k )  <~ Ck /or some C and all k >~ 1. 

To simplify some formulas we shall consider the sequence {k}, although it does not 
take a positive value when k =0;  thus in a number  of formulas k should take the 
values k >~ 1 instead of k >~ 0. 

To deduce Theorem 4 from Lemma 1 it is sufficient to show tha t  N is almost in- 
creasing in the sense of (18), and hence tha t  the same is true of the sequene~ B = 
sup({k+l} ,  2~) And this follows from (6) and the fact tha t  N is increasing: 

.N(k+ 1) .57(k + I) .N(k+ 1) _ 
s N(k) (1 - -~(k)  -1) -- ~ - - - i  ~ 1. 

For the proof of Lemma 1 we need this well-known result (see e.g. Bang [1]). 

Lemma 2, I / E ( k )  k and F(k) k are logarithmically convex, then C s is contained in C F 
i /and  only i / E ( k )  • CF(k) /or some C. 

I f  B(k) k had been assumed to be logarithmically convex, then Lemma 1 would have 
followed immediately from Lemma 2, since /~ is logarithmically convex. 

We have to make a simple computation, the result of which can be expressed as 
follows. 

Lemma 3, Let m and n be positive integers, such that n/m > e, and let G(k) be de/ined 
]or m<~k<~n, in such a way that G(m)>~m, G(n)>~n, and klogG(k) is linear. Then 

n/m 
max (G(k)/k) > (2e) -J log (n/m)" (19) 

We now prove Lemma 1 using Lemma 2 and Lemma 3. We need of course only 
prove the necessity of the condition B(k) ~< Ck. Given the sequence B, define B o as the 
largest sequence such tha t  B0(k)~<B(k) and klogB~ is convex. In  other words 
B~ ~ is the largest logarithmically convex minorant  of B(k) ~. Let/c~, j = 1, 2 . . . . .  
be the increasing sequence of all k >~ 1 such tha t  B(k)=BO(k). Assume tha t  C s is 
contained in the analytic class A, tha t  B(k)>~k and tha t  B satisfies (18). Then 
obviously C B~ c A  and by  Lcmma 2 there is a constant C such tha t  B~ 
Further,  since B(kj)= BO(kj) for every j, we have 

B(k) < B(/cj+l) + (kj+l -/c~) max (a, 0) 

k k, 

~< (C + max (a, 0))(kj+l/kj), if /cs~<k~<ks+l. 

To prove Lemma 1 it thus only remains to show tha t  kj+l/k j must  be bounded if 
B~ is bounded. But  this is immediately seen from Lemma 3, if we take m = kj, 
n =kj+ 1 and B~ G(k). (Note tha t  B~ for every k, since B(k)~> k and ~ is 
logarithmically convex.) 
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I t  remains  to  prove  L e m m a  3. Firs t  note  t h a t  the  inequal i ty  

]clog G(]C) ~> ]C logn - mlog  (n/m), (20) 

holds for each k, since it  obviously  holds for ]C = m and  ]C = n, and  bo th  sides are l inear 
in ]C. Tak ing  ]c o = [mlog (n/m)] + 1, where Ix] denotes  the  integral  pa r t  of x, we have  
m < ]c o < n, and  we obta in  f rom (20) 

m a x  log (G(]c)/]c) > log n - 1 - log ]co > log (n/m) - 1 - log 2 - loglog (n/m), 
k 

which is the  same as (19). 

Proo/ o/ Theorem 5. I n  view of the  Den joy -Ca r l eman  theorem it  is enough to  p rove  
t h a t  the series Z2V/(]c) -1, y~/~(]c)-i and  Y~(maxd/(]c), _h~(k))) -1 are divergent .  We have  
a l ready  p roved  t h a t  y~ M(]C)-I and  y~( ]c ) - i  are divergent ,  so it only remains  to  prove  
t h a t  Z(max(Jll(k), /~(]c)))-1 is divergent .  

Set M(]c)- l=ak,  ~ ( ] c ) - l = b  k and  dk=min(ak,  bk). The  condit ion t h a t  N/M is in- 
creasing can be fo rmula ted  in t e rms  of ak and  b~ b y  means  of the  formulas  (5) and  (6): 

N ( ] c §  ak+~ bk 1 ]c>~I. (21) 
M ( ] c §  bk+~ ak (1--  ak+l) (1--  b~) ~>1' 

We  first  p rove  t h a t  if (21) is valid,  then  the  following inequal i ty  holds 

d~+l bk 
b k+l" d~ ~> (1 -- dk+~) (1 - bk), (22) 

i.e. (21) is val id  with d k =min(ak,  bk) ins tead of a k. To see this, pu t  cj =dj/bj, and note  
t h a t  (22) mus t  hold if 

Ck+i/Ck >~ 1. (23) 

Since % ~< 1 for  each j, it is clear t h a t  (23) holds if ak+l >~bk+l, because then  ck+l = 1. 
On the other  hand,  if ak+l <bk+l, then  dk+l =ak+l, and  b y  apply ing  (21) and  the  fact  
t h a t  dk<~a k we obta in  (22), which proves  the  assertion. 

Now, if ak were > bk only for a finite n u m b e r  of ]C, it  would be t r ivial  t h a t  
•dk is divergent ,  since Zak  is divergent .  Hence  we can assume t h a t  dk=b~ for 
inf ini tely m a n y  k. I t  is obvious  t h a t  we can  also assume t h a t  dk=  bk < �89 for  
infini tely m a n y  k. Le t  m denote  a n y  of those indices k. L e t  n be the  smallest  
integer  such t h a t  Z~bk~> �89 Then  n>m and  we have  Zmn-ldk ~< Zm~-Ibk < �89 Since 
I I ( 1 - c k )  > 1 - - Z c k  for  a r b i t r a r y  c~ such t h a t  0 <  ck< 1, we ob ta in  

r I ( 1 - - b k ) l - I ( 1 - - d k ) > ~ ,  i f  m<~<n. (24) 
m m 

B y  mul t ip ly ing  the  inequali t ies (22) for k=m, m §  1 . . . . .  ] -  1 and  using (24) and  
the  fact  t h a t  bm =dm we ob ta in  

d s-1 
~ > l - [ ( 1 - b k )  I-[ ( 1 - d k ) > ~ ,  if m < i < n  (25) 
bj m + l  
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~l n - 1  n - 1  

and ~n>~ 1-[ (1--bk)1-I ( 1 - d k ) ( 1 - d , ) > � 8 8  
b, ~ z m+l 

which gives 

Now recall 
this gives 

dn > is rain (1, bn). (26) 

tha t  n was chosen so that  ~b~>~�89 Together with (25) and (26) 

n - - 1  

dk > ~ ~ b~ + ~ min (1, b~) > ~. (27) 
m m 

Since (27) can be proved for an infinite number of indices m, it follows that  Zdk is 
divergent. This completes the proof of Theorem 5. 

3. Applications 
We will now study a number of special cases of our theorems. 
I. Taking M(k) = 1 for every k gives 2~/(k)=]c + 1. Taking into account the Denjoy- 

Carleman theorem (see the remark after Theorem 1) we can express the corresponding 
special case of Theorem 2 as follows. 

Theorem 6 (see e.g. Bang [1]). The intersection o/ all non-quasianalytic classes C L, 
where L is increasing, is equal to the class o/all  real analytic/unctions. 

II .  Taking M ( 0 ) = I  and M ( k ) = k  when k>~I gives ~l(k)=k(l+Y~(1/]))  if k~>l. 
Since there are constants C 1 and C 2 such tha t  C1 logk~<Y~(1/j) ~<C21ogk , Theorem 2 
gives 

Theorem 7. The intersection o/ all non.quasianalytic classes C L, where L(k)/k is 
increasing, is equal to the class C (k lo, k}. 

The class C L is said to be inverse closed, if uEC L and u=~0 implies tha t  1/uCC L. 
Rudin [5] proved that  if L(k) k is logarithmically convex and C L is non-quasianalytic, 
then C L is inverse closed if and only if L(k)/k is almost increasing in the following 
sense: there exists a constant C such that  L(j)/~ <~ CL(k)/k when ~ ~<k. Using this 
result Rudin proved the following theorem, which is closely related to Theorem 7. 

Theorem 8. The intersection o/all  inverse closed non-quasianalytic classes C L, where 
L(k) k is logarithmically convex, is equal to the class C (~ log k). 

III .  We indicate two applications of Theorem 4. First, take N( k ) = k  a, (k>~l), 
where a > l .  This gives ~ ( k ) < 2 k / ( a - 1 ) ,  so that  (2) is satisfied. This special case of 
Theorem 4 can be used in the study of the propagation of analyticity of solutions of 
linear partial differential equations of general type (see Boman [2]). 

Ehrenpreis uses another special case of Theorem 4 in studying the range of con- 
volution operators [4]. He considers the intersection of all non-quasianalytic classes 
C L, where L is increasing and satisfies L(k § 1) < CL(k) for some constant C, This case 
one can obtain from Theorem 4 by taking N(k) = C k where C > 1, which gives ~(k) = 
C/(C-1)  for every k. 
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