ARKIV FOR MATEMATIK Band 5 nr 20

Communicated 9 October 1963 by OTro FROSTMAN

On the intersection of classes of infinitely differentiable
functions

By Jan BomMaN

1. Introduction

It is well known that the intersection of all non-quasianalytic classes of functions
is equal to the class of all real analytic functions (see e.g. Bang [1]). In the present
paper we shall describe the intersection of more restricted families of non-quasiana-
Iytic classes of functions.

If L: k—>L(k), k=0,1,2, ... is a sequence of positive numbers, and € is an open sub-
set of B", we define C*=C%{)) as the set of infinitely differentiable functions »
such that to every compact set ¥ < () there exists a constant C such that

| Du| <C*L(ky, if z€F (k=0,1,2,...).

Here D* denotes an arbitrary partial derivative of order k. If L(k)=Fk when k>1,
then C” is equal to the class of all real analytic functions on Q.
Put C§ =the set of all functions in C* whose supports are compact subsets of Q.

Definition 1. The class OF is said to be quasianalytic, if O contains no function except
the zero-function.

A complete characterisation of the sequences L such that the class C* is quasiana-
lytic was given in 1926 by the following theorem.

Denjoy-Carleman Theorem. (Carleman [3].) The class C* is quasianalytic if and only if
SroL(k)1 is divergent, where L denotes the largest increasing minorant sequence of L.

Theorem 1. Let M and N be two positive sequences such that ZM (k)= = oo , XN (k)1 < oo
and N|M is increasing. Denote by K (M, N) the following set of sequences L:
X(M, N)y={L; L|M is increasing, L|N is decreasing, SL(k)*<oco}.

Then n or=cewdtd (1)
LeXx(M,N)
where Mk)= M(ké M@ (k=0),
0
and Fl)=NESNG™T (6>0),
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Note that if M is increasing the Denjoy-Carleman theorem shows that the con-
dition ZL(k)~* < oo in the definition of J(M, N) is equivalent to the condition that
C* is non-quasianalytic.

From Theorem 1 we formally obtain Theorem 2 and Theorem 3 by deleting the
condition that L/N is decreasing and that L/M is increasing respectively.

Theorem 2. Let M be a positive sequence such that X M (k)™= co. Put X*(M)=
{L; LM is increasing, T L(k)™ < oo}.

Then n ot=0%

Lext(M)

Theorem 3. Let N be a positive sequence such that SN(k) ' < co. Put X (N) =
{L; LN is decreasing, T L(k)™ < oo}.

Then n ct=cv.
Lex—(N)
Taking M (k) =1 for every k gives M (k)=Ek+1, and the class in the right-hand side

of (1) becomes C***W*+1:M n some applications it is useful to know conditions
on N in order that this class be equal to the analytic class. It is obvious that this is
the case if NV (k) <C(k+1) for some C. However, this condition turns out to be also
necessary, as is expressed by the following theorem (see the remark after Theorem 1).

Theorem 4. Let N be a positive increasing sequence such that XN (k)= < co. Then the
intersection of all mon-quasianalytic classes C*, where L is increasing and. L|N is de-
creasing, is equal to the analytic class if and only if N(k)<C(k+1) for some constant C,
or, which is equivalent

3N(7‘)‘1<Ck/N(k) (k=1,2,...). 2)

Theorem 5. Under the conditions of Theorem 1 the classes C™, C¥ and O™ gre
quasianalytic.

Note that the quasianalyticity of two classes C4 and C® does not imply the qua-
sianalyticity of the class C sup4:- B Tn Theorem 5 the quasianalyticity of the class
s . B follows from the quasianalyticity of the classes 0™ and C¥ and the fact that

the sequences M and N are related by the condition that N/M is increasing.
In the next section we give proofs of the theorems. In section 3 we discuss a num-
ber of special cases and applications.

I wish to express my gratitude to professor Lars Hormander for his stimulating
instruction and valuable criticism.

2. Proofs of the theorems

We first deduce some formulas which connect the sequences M and N with their
respective transforms M and N. From the definition of M we obtain

. -1 k
13 =1 (e / Sy =3 Mo /S it ke
0 [1] 0
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k
Hence - M6 O)ZM(y) (3)
Similarly we obtain
k-1 0 oo
[Ta-FG))-386) /S8 b>1. @)

(Note that M (k)>1 when k>1 and N(k)>1 for every k.) From these formulas
it follows immediately that XM (k) and SN(k)™® are divergent. In fact, since
S M(k)' is divergent by assumption, (3) proves that II(1— M(k)™") is divergent
to zero and hence that XM (k)™ is divergent. Similarly (4) shows that N (k)™
is divergent, since TN(k)' is convergent.

Using (3) and the definition of M we can express M(k) when k>1 in terms
of M(0) and M:

M(k)=M(0) M(k)rll(l — ()Y, (5)

Similarly we obtain from (4)

N(k) = (ZN ) M) H(l NGy, (6)
\

Formulas (5) and (6) show that to any given sequence 4, such that 4,>1 and
DY PREECS there exist positive sequences M and N (not uniquely determined),

such that M(k)=N(k)= A, when k>1, SM(k) = o and TN(k) < co.

Proof of Theorem 1. First we prove that if L€ X(M,N), then C*> Qe Ut B
Since XL(k)'=C< co and L/M is increasing, we have

k k k . A
c> %L(f)'1 = % (MG)/LG) M)~ > (M (k)/L(k)) %M(f)'1 =L(k) ' M(k). (7)
Similarly, since L/N is decreasing

c> %L(f)_1 = % (NG LGY NG) ™' = (N (k)| L(k)) %N(?')_1 =Lk)'NE).  (8)

Thus CL(k) > max (M (k), N(k)), which proves that C*> =% and hence that
N CLD Csup(lf{, XI).

To prove that n Ot ™D e shall prove that to an arbitrary function
g¢0 s“p(’i" ™ there exists a sequence L such that L€JX(M,N) and g¢C.. If
g ¢ 0= MM there exists a compact set F < Q, such that G(k) = (sup:cr | DFg(x)| )"
satisfies

,E)T?o (G(k)] max (M (k), N (k))) = oo. (9)
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We have to find a sequence L€ X(M, N) such that
lim (G(k)/L(k)) = <. (10)

We may assume that G/N is bounded, since otherwise (10) is satisfied with L=N,
and clearly N€ X(M,N). Let a; and b; be sequences of positive numbers, such
that a;— oo and b,—0 when j— oo, and X(a;b;) 1 < co. In view of (9) we can find an
increasing sequence of indices %, such that

Glk)max(M(k), N(k)>e, (i=1,2,...). (11)

Then b,G(k,)] M( k,)-> oo by virtue of (11) and the fact that M /M is increasing. Also,
b,G(k,)|N(k,)—0, since G/N is bounded. Thus by taking a subsequence if necessary
we can always obtain that

b,G(k,)|M(k,) is increasing, (12)
b,G(k,)/N(k;) is decreasing, and (13)
Q(k,)/max(M(k;), N(k)>a,, (14)

where d, and b, are subsequences of the sequences a, and b, respectively and hence
satisfy 5,0 and 2(@,8,)~1 < co.
Assume that k, =0 and put

L'(k) =5jG(kJ)N(k)/N(k})’ ki<k<ku: (5=1,2,...),
L (k) = b4y G(kyyy) ME) M (Kky), B <k<kyy (7=1,2,...),
L"”(0)=5,G(0), and

L{k)=min (L'(k), L"(k)) (k=0,1,2,..). (15)

Then it is obvious that (10) is fulfilled, since L(k,)=5,G(k,) for every j and b,~0.
Next we prove that LM is increasing if L is defined by (15). In view of (12) L"'/M

is increasing. L'/M is increasing in every interval k; <k <k,,,, since L'/N is constant
in that interval and N/M is increasing according to the assumption. Noting that
L'(k)=L"(k,) for every § we conclude that L/M is increasing in the whole interval
k>0. Using (13) we can prove in an exactly analogous way that L/N is decreasing.

Finally we prove that LL(k)-! is convergent. From the definition of L we obtain
Lk <L'(ky2+L" (k)" and sinee L'(k;) =L" (k;)

2 Lk'< 3 LET+ 3 LT

kiSk<kj+1 ki<k<kj+1 kj<k <kjt+l
=57Qk) N (k) 3 NE) T HEACE )T M (k) S MR
kigk<ki+1 kj<k<Kj+l

<87 Gl B (ly) + B Oy 1) ™ B (B ).
This together with (14) gives
L(ky™ < (d;b;)" Y (@41 Br0) 7

kiSk<kj+1
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which proves that XL(k)~! is convergent, since X(d;b;)~! is convergent. This completes
the proof of Theorem 1.
Proof of Theorem 2. Formula (7) proves that

N ctoow,

X+

On the other hand, if we can find a sequence N such that N/M is increasing, N <M
and ZN (k) < co, we obtain from Theorem 1

n CLC n L= Osup(M Ny _ CM

Xt X (M, N)

Put 4, =min (]l':f(k), (M(k)+M(k+1))/M(k+1)). Since 24,1 >3 M(k)-L = oo, the re-
mark following formula (6) shows that there exists a sequence N such that

Nk)y=4, (k=1,2,..) (16)

and ZN (k)1 < oo. It is obvious that N(k) <M (k) for every %, so it only remains to
prove that N/M is increasing. In fact, from (6) we obtain

N(k+1) N(k) Mk) NE+1) 1 M(k)

ME+1) Mk) ME+1) Nk (A-NE Y M+ 1) Nk -1) >1.

The last inequality follows from (16). The proof is complete.
Proof of Theorem 3. Formula (8) shows that
N c:o0v.

x=a0
The opposite inclusion will follow in exactly the same way as in the proof of Theorem

2 if we can find, for a given sequence N, a sequence M such that M<N , SM(k)t=
oo and N/M is increasing. By the remark following formula (6) we can find a se-
quence M such that XM (k)1 = co and

M(ky =min((N(k — 1) + N(k))/N(k — 1), N(k)). 17)
Then we obtain from (5):

N(e+1) N(k)_N(k+1) Mk 1 o N(k+1) -

Mk+1) Mk Nk Jf(k+1) 1- Mk+1)" N(k)(B(k+1)— 1)

where the last inequality follows from (17). This proves Theorem 3.

Proof of Theorem 4. As we have already mentioned it follows from Theorem 1
and the Denjoy-Carleman theorem that the intersection studied in Theorem 4

is equal to C*®+1:-®  (learly this class always contains the analytic class.

Hence what we have to prove is that C*"***1-® jg ¢ontained in the analytic class if
and only if (2) holds. The sufficiency of (2) is trivial. In proving the necessity we
shall use the following lemma.
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Lemma 1. Assume that B(k)>=k and that B is almost increasing in the sense that
B(k+1)=B(k) —a (18)

with some constant o independent of k. Then CF is contained in the analytic class if and
only if B(k)<Ck for some C and all k>1.

To simplify some formulas we shall consider the sequence {&}, although it does not
take a positive value when k£=0; thus in a number of formulas k should take the
values k21 instead of £>0. -

To deduce Theorem 4 from Lemma 1 it is sufficient to show that N is almost in-
creasmg in the sense of (18), and hence that the same is true of the sequenc% B=
sup({k+1}, N). And this follows from (6) and the fact that N is increasing:

Nk+1) Nk+1l) N+ 1)

= =1
Nk  NRQA-NE™) Nk)-

For the proof of Lemma 1 we need this well-known result (see e.g. Bang [1]).

Lemma 2. If E{k)* and F(k)* are logarithmically convez, then CF is contained in CF
if and only if E(k)<CF(k) for some C.

If B(k)* had been assumed to be logarithmically convex, then Lemma 1 would have
followed immediately from Lemma 2, since k* is logarithmically convex.

We have to make a simple computation, the result of which can be expressed as
follows.

Lemma 3. Let m and n be positive integers, suck that njm>e, and let G(k) be defined
for m<k<n, in such a way that G(m)>m, G(n)=n, and klog Q(k) is linear. Then

n/m

max (GU)/E) > 20)" o

(19)

We now prove Lemma 1 using Lemma 2 and Lemma 3. We need of course only
prove the necessity of the condition B(k) <Ck. Given the sequence B, define B as the
largest sequence such that B°(k)< B(k) and klog B%k) is convex. In other words
B(k)* is the largest logarithmically convex minorant of B(k)*. Let k,, j=1, 2, ...,
be the increasing sequence of all k=1 such that B(k)=Bo(k). Assume that CZ® is
contained in the analytic class A4, that B(k)>% and that B satisfies (18). Then
obviously C®*c A4 and by Lemma 2 there is a constant C such that B°(k)<Ck.
Further, since B(k,;)= Bk, for every j, we have

l_i__) < B(kj1) + (kjr — k; ;) max (a, 0)
ko k,

<(C+max (a,0)) (k. fk), i ky<k<k.,.

To prove Lemma 1 it thus only remains to show that k,,,/k; must be bounded if
BY%k)/k is bounded. But this is immediately seen from Lemma 3, if we take m=k;,
n=k;,, and BYk)=G(k). (Note that B%k)=>k for every k, since B(k)>k and k* is
logarithmically convex.)
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It remains to prove Lemma 3. First note that the inequality
klog G(k) =k logn —mlog (n/m), (20)

holds for each k, since it obviously holds for k=m and k==, and both sides are linear
in k. Taking ky=[mlog(n/m)]+1, where [x] denotes the integral part of x, we have
m<ky,<n, and we obtain from (20)

m%xlog (G(k)/k)>1ogn —1 —logk,>1log(n/m)—1—log2 —loglog (n/m),
which is the same as (19).

Proof of Theorem . In view of the Denjoy-Carleman theorem it is enough to prove
that the series TM(k)~t, SN (k) and S(max(M(k), N(k)))~ are divergent. We have
already proved that M (k)~! and ZN(k)-1 are divergent, so it only remains to prove
that Z(max(M (k), N(k)))-! is divergent.

Set M (k)" =a,, N(k)1=b, and d,=min(a,, b,). The condition that N/M is in-
creasing can be formulated in terms of a, and b, by means of the formulas (5) and (6):

N(k+1) N(k) _are b 1

: = —— e >1,k>1. 21
ME+1) M(k) bre: ax (1—arsq)(1— by) (21)

We first prove that if (21) is valid, then the following inequality holds

dk+1‘§c
bk+1 dlc

Z (1 —drs1) (1 — by, (22)

i.e. (21) is valid with d, =min(a,, b;) instead of a,. To see this, put ¢;=d,/b;, and note
that (22) must hold if
Crr/C > 1. (23)

Since ¢;<1 for each , it is clear that (23) holds if a,, >b,,,, because then ¢, ,=1.
On the other hand, if a,, <b,,,, then d,,, =a,,,, and by applying (21) and the fact
that d, <a, we obtain (22), which proves the assertion.

Now, if @, were > b, only for a finite number of %, it would be trivial that
Xd, is divergent, since X.a is divergent. Hence we can assume that dj =5, for
infinitely many k. It is obvious that we can also assume that d,=5b,<} for
infinitely many k. Let m denote any of those indices k. Let n be the smallest
integer such that X7,b,>1. Then n>m and we have 3, 'd,< X5 b, < }. Since
II(1 —¢) >1— ¢, for arbitrary ¢, such that 0<c,<1, we obtain

i J ’

[TA-b)[1(1-d)>1 if m<j<n. (24)
By multiplying the inequalities (22) for k=m, m+1,...,j—1 and using (24) and
the fact that b,=d, we obtain
j-1

ST A=) [T (1-d)>3 if m<j<n (25)

7

o &
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— n-1
and H W) [T (1—di) (1 —d,)> (1 —dy),
m m+1
which gives d, >} min (1, b,). (26)

Now recall that n was chosen so that X7%b,>}. Together with (25) and (26)
this gives
n-1

%d,‘>i 2 b+ 3imin (1, b,) >4 (27)

Since (27) can be proved for an infinite number of indices m, it follows that 2d, is
divergent. This completes the proof of Theorem 5.

3. Applications

We will now study a number of special cases of our theorems.

I. Taking M(k)=1 for every k gives M(k)=k+1. Taking into account the Denjoy-
Carleman theorem (see the remark after Theorem 1) we can express the corresponding
special case of Theorem 2 as follows.

Theorem 6 (see e.g. Bang [1]). The intersection of all non-quasianalytic classes C~,
where L i3 increasing, is equal to the class of all real analytic functions.

II. Taking M(0)=1 and M(k)=Ek when k>1 gives M(k) E1+Z51)5) if k=1,
Since there are constants C, and C, such that C; logk <Z¥(1/j) <0, logk, Theorem 2
gives

Theorem 7. The intersection of all mon-quasianalytic classes C*, where L(k)[k is
increasing, is equal to the class C*1°8 1},

The class O is said to be inverse closed, if w€C* and u =0 implies that 1/u€C~.
Rudin [5] proved that if L(k)* is logarithmically convex and C* is non-quasianalytic,
then C” is inverse closed if and only if L(k)/k is almost increasing in the following
sense: there exists a constant C such that L(j)/j <CL(k)/k when j<k. Using this
result Rudin proved the following theorem, which is closely related to Theorem 7.

Theorem 8. The intersection of all inverse closed non-quasianalytic classes CF, where
L(kY* is logarithmically conver, is equal to the class C*'°%™,

ITI. We indicate two_applications of Theorem 4. First, take N(k)=#", (k>1),
where a>1. This gives N(k) <2k/(a—1), so that (2) is satisfied. This special case of
Theorem 4 can be used in the study of the propagation of analyticity of solutions of
linear partial differential equations of general type (see Boman [2]).

Ehrenpreis uses another special case of Theorem 4 in studying the range of con-
volution operators [4] He considers the intersection of all non-quasianalytic classes
C*, where L is increasing and satisfies L(k + 1) < CL(k) for some constant C. This case
one can obtain from Theorem 4 by taking N(k) =C* where C>1, which gives N(k)=
C/(C —1) for every k.
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