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Non-associative normed algebras and Hurwitz’ problem

By LArs INGELSTAM

1. Introduction

We will deal here with algebras over the real or complex numbers. All algebras
are supposed to have identity element (denoted e) but are not assumed associ-
ative: or finite-dimensional in general. A norm is a real-valued function z— ||«
on the algebra such that [|az||=|a|-|l2|] for any scalar «, ||z+y||<|l2||+|ly
for arbitrary xz and y and ||z||>0 for all x==0. We further consider the fol-
lowing conditions on the norm:

(i) A lositive definite inner product (z, y) is defined on the algebra, so that
ol ..

@) [lzyll=ll=ll-llz|l for all =, y.
(iii) |le]| =1 and ||ayll<||«||-]l¥ ]l

The term normed algebra is usually reserved for algebras (not necessarily with
identity) with norm- satisfying (iii). A normed algebra satisfying (i) and (iii) will
be called a prehilbert algebra with identity and one satisfying (ii) an absolute-
valued algebra.

The classical result by A. Hurwitz [3] is that a finite-dimensional real normed
algebra that satisfies (i) and (ii) must be isomorphic to the real numbers (Z),
the complex numbers (C), the quaternions (@) or the Cayley numbers (D).

More recent results that can be regarded as generalizations of Hurwitz’ theorem
have been mainly along two lines:

I. Other scalar fields than the reals and no restriction on the dimension.
N. Jacobsson [6] has obtained a complete analogue of Hurwitz’ result for arbi-
trary rfields of characteristic +2. Largely the same result was earlier obtained
by I. Kaplansky [7].

II. No inner product is assumed, i.e. the algebras considered are real absolute-
valued. A. A. Albert [1, Theorem 2] has proved that an algebraic (see below)
such algebra iz isomorphic to R, C, @ or D. A related result is due to F. B.
Wright [11]: An absolute-valued division algebra is isomorphic to R, C, @ or D.

We recall some definitions for (non-associative) algebras. Let A4 denote an

algebra and A, the subalgebra generated by the identity and an element z. 4
is called
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quadratic if A, is a field of order 2 over the ground field for all x except
scalar multiples of e,

algebraic if A, has finite dimension,

alternative if -x(xy) = (xx)y and (yz)xr=y(zx) for all x,y in 4,

power associative if A, is associative and commutative for all z. If 4 is
alternative or quadratic it is also power associative.

Our first result will go in the direction II. We prove (Theorem 2.2) that a
power associative real normed algebra satisfying (ii) must be isomorphic to
R, C, @ or D. The second main result in this paper generalizes Hurwitz’ theorem
in another direction. We keep condition (i), replace (ii) by the weaker (iii) and
are then able to prove that an alternative such algebra is isomorphic to B, C, @
or D (Theorem 3.1). (Since alternativity in fact follows almost immediately from
(i) and (ii), see [6, p. 58] or [7], we are justified in calling our results gener-
alizations of Hurwitz’ theorem.) Both proofs use Banach algebra methods and
in the latter we rely on a previously published result [4] by the author on the
associative case. Some results by E. Strzelecki, announced in [10] without proofs,
deal with situations similar to ours.

For algebras over the complex field we get, under the same assumptions, that
the only possible algebra is the complex field itself (Corollaries 2.3 and 3.2).
In the last section we construct a class of algebras, generalizing @ and D. In
this class we can find examples that show the natural limitations of the kind
of results obtained or cited in the paper.

An algebra A over the real numbers is said to be of complex type [5] if
the scalar multiplication can be extended to the complex numbers so that 4
becomes a complex algebra.

Lemma 1.1. Of the real algebras R, C, Q and D only C is of complex type.

Proof. It is easy to see that an algebra with identity e is of complex type
only if there exists an element j in its center satisfying j>= —e, see [5, p. 29].
Since the centers of R, @ and D are all isomorphic to R the conclusion follows.

2. Absolute-valued algebras

We begin by quoting a special case of the announced theorem.

Lemma 2.1. A commutative and associative real absolute-valued algebra with
tdentity 1s isomorphic to R or C.

Proof. An absolute-valued algebra cannot have any non-zero topological divi-
sors of 0. Hence a result by I. Kaplansky [8, Theorem 3.1] applies and gives
the conclusion.

Theorem 2.2. A power associative real absolute-valued algebra with ideniity is
isomorphic to R, C, @ or D.

Proof. We first show that the algebra, which we call A4, is quadratic. Let z
be an element which is not a scalar multiple of e and B the algebra generated
by x and e. According to the assumption B is associative and commutative.
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From Lemma 2.1 it now follows that B is isomorphic to C (since it is at least
two-dimensional). Hence A is quadratic, in particular algebraic of order 2. But
an algebraic absolute-valued algebra with identity is isomorphic to R, C, @ or D;
a result by A. A. Albert [1, Theorem 2].

The following corollary for complex scalars generalizes a well-known result for
commutative associative Banach algebras [9, p. 129].

Corollary 2.3. A power associative complex absolute-valued algebra with identity
is isomorphic to the complex numbers.

Proof. If scalar multiplication is restricted to real numbers the algebra, A,
satisfies the conditions of Theorem 2.2, and A4 is isomorphic to R, C, Q or D.
But 4 is also of complex type and Lemma 1.1 tells that 4 is isomorphic to C.

3. Prehilbert algebras with identity

We recall that a prehilbert algebra with identity is an algebra with identity
(e) on which is defined a positive definite bilinear (in the complex case sesqui-
linear) form (z,y), such that the norm ||z||=(x, z)? satisfies

lzyll<llell-llzll.
flell=1.

Theorem 3.1. An alternative real prehilbert algebra with identity is isomorphic
to R, C, Q or D.

Proof. We first prove that the algebra, 4, is quadratic. Let z be an element
which is not a scalar multiple of e. The algebra spanned by z and e is an as-
sociative commutative prehilbert algebra with identity and dimension >2. It
follows from [4, Theorem 2 and Remark] that it is isomorphic to . Hence 4
is quadratic and also [1, Theorem 1} finite-dimensional, since it is alternative.

For two given elements z and y we study the algebra A, generated by e,
z and y. We distinguish two cases:

1. The set {e, , y} is linearly dependent. Then A4, is generated by e and one
element and is isomorphic to R or C.

2. The set {e, z, y} is linearly independent. Since A is quadratic, z and y
satisfy equations

(x—ae)?+y%=0,
(y—Pe) +08%=0,
with «, B, v, & scalars, y and 6=0. With a=y 'z —ae) and b=95""(y — fBe) we

}]13ave a*= —e¢ and b>= —e. If we further put u=a+b, v=a—b we get uv+vu=0.
ut

ab+ba=u®—a®— b =u®— 2e=nu + Je,
ab+ba= — (®—a®—b*) = —v%+2e=pv+ve
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for scalars x, y, I v But then »=4y, and »=u=0 because of the linear inde-
pendence and u?, »® are (negative) multiples of e. Adjusting by scalars we get
elements 7, § such that

#=jt=—e, 4+ji=0

and 4, is generated by {e, ¢, j}. But since 4 is also assumed alternative the
elements e, ¢, §, k=1j satisfy the deflmng relations for the four basis elements
of the quaternion algebra. Hence A, is isomorphic to @.

Now we have seen that the subalgebra generated by e and two elements z
and y is isomorphic to R, C or Q. This subalgebra is of course a (pre-)hilbert
algebra with identity. In [4], however, it was observed that the ‘“‘usual” norms
for R, C and @ are the only ones ma,kmg them hilbert algebras with identity.
Since these norms all satisfy (ii), the given norm, restricted to 4, must also
satisfy (ii). But this simply means that for any pair z, y

llzylt=ll=li- %]l

The result now follows from Theorem 2.2 (or already from Hurwitz’ original
theorem [3]).

The corollary for complex scalars is a slight generalization of a result, implicit
in the article [2] by H. F. Bohnenblust and S. Karlin as pointed out in [4,
Theorem 1].

Corollary 3.2. An alternative complex prehilbert algebra with identity is isomorphic
to the complex numbers.

Proof. If we restrict scalar multiplication to the real numbers and define a
real inner product as {z, y>=Re(x, y), the norm is unchanged and the algebra
satisfies the assumptions of Theorem 3.1. Then it is isomorphic to R, O, @ or D,
but since it is also of complex type it must be isomorphic to ¢ (Lemma 1.1).

Remark. The assumption in Theorem 3.1 and [4, Theorem 2] can be replaced
by: A is a normed algebra with identity e whose norm satisfies (iii) and'is such
that the unit sphere has a unique hyperplane of support at e (i.e. e is regular
in the sense of E. Strzelecki [10]). In the reasoning the condition (e, )=0
should then be replaced by x€ H, where e+ H is the hyperplane of support to
the unit sphere at e.

4. A class of algebras

In this section we construct a certain class of algebras, illustrating the natural
limitations of some of the results obtained.
Let A be a non-void set and {i;}ica a set of symbols, indexed with A. Let

A be the vector space generated by {i;}1c». We will define a multiplication on
A, through

(7 7/" = ?’1!"

where 4, is a doubly-indexed set in 4. A distinguished element in A is called 0.
i3, shall have the properties
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two=1to2=1%; for all A,

Gp= —tu if 0=Au=+0,
and tn=—14 if A+0.
Then i,=e¢ is an identity for 4. If we let

x=oye+ goouia, y=Poe+ goﬂzin,
we have (all 3’s in the sequel will be finite sums taken over all of A except 0)
2y = (@fo— 2 aafr) e+ 2 (xoBa+ Booa)iat+ } %.2: (4B — 0 3) g

We also define the inner product

(x, y) = oo + 2, 1B
and the corresponding norm

l|2]1*~ o+ Z af.

Proposition 4.1. A4 is a quadratic (hence power associative) algebra with identity
such that every non-zero element of A has a two-sided inverse (A is an “‘almost
division algebra” ).

Proof. Take x=oaye+ > aziz, az+0 for some 1=+0. Then
(x—ope)’=—Cad)e

and the algebra generated by = and e is isomorphic to C. Define the conjugate
Z of x

T=oye— 2 aia
Then Fox=z-%=|z|]e
so that |z]| %%
is two-sided inverse of z.

Hence we know the existence of quadratic, power associative algebras of any
(finite or infinite) dimension. This, together with the result [1, Theorem 1] by
Albert that alternative quadratic algebras over any field is of finite dimension
I, 2, 4 or 8, gives a fairly complete idea of what can be said about quadratic
algebras in general.

Proposition 4.2. If i3,=0 for 0FA+u=0 A is a prehilbert algebra with identity.
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Proof. Tt only remains to prove ||zy||<l|j«}|-||»]l-
Ny |I* =1l (oo~ 2 aaBa) € + 2 (o B3+ Boxa) ia||*
- B8+ (S aafa) — 2By 2 afrt 3 2 0 + ab 2 B+ 200 By 2 0P
= (a5 + X od) (B3 + 28D — [Z ek 2 fi— (S B
<|l=]®-liyll® (using Schwartz’ inequality).

Thus we have constructed power associative prehilbert algebras with identity
of any dimension. In particular, Theorem 3.1 would not be true if “alternative”
was weakened to merely “power associative’.

The A4 of Proposition 4.2 is also an example of an “almost division algebra”
that is not a division algebra, i.e. such that the functions x—ux and z—>za map
the algebra onto itself for every a+0. For instance x—>ix, A+ 0, maps A onto
the subspace spanned by e and 3; and thus 4 is not a division algebra if it
has more than two dimensions.

Another special case of some interest is when the produét of two basis elements

is plus or minus a new basis element {(e.g. B, C, @ and D are of this type).
Then we have

B0 1 = 2 = s, ) b s

where f and s are functions

f: AxA-—>A,

st AxA—>{-1, +1}.
For A, u+=0 f and s must satisfy

fA,u)=fu, 2, sAp)=—su A if A+pu
and fA,A)=0, s(1,2)=—L
An element w= a;i; is called a pure veclor.

Proposition 4.3. If A has the properties mentioned above, and moreover f, restricted
to the set where 0+A+pu+0 and s(, u)= +1, is injective, then ||uv||=|lull-||v|]
for all pure vectors u,v. It follows that multiplication is continuous in the normed
topology -and {{zy fj<2{j={|-y|.

Proof. If u=J.o312, v=1 B1i; we get
w=—(Zaupet2 S abuin=—Cmpet >3 (afu— wufs) i
Atu sthy=+1

In this expression all the i-elements are different, and
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lwolP=Caf)®+ 23 (afu—aufs)?
s(logwy=+1

=(Z o)’ +1 33 (dph+ o fi— 20 Br0t )
=)+ (S ad) (2 D) — (S o) =|[w|f- || o]l

Now let x=cae+u, y=[F,e+v. Then
|2y || = | ccoBoe + otgv + Bore + uv ||
<JowBol + oo 1l +18o] lll+[l]| - [l
=(la|+llolh Bl + N2l <2li=ll- Il

(using the elementary inequality &% <V2(£2+9?).
This concludes the proof.

Remark 1. If A has finite dimension f cannot be injective in the sense men-
tioned in Proposition 4.3 unless dim 4 <4.

Remark 2. Multiplication is not necessarily continuous in the normed topology.
For an example, let A = {integers>0} and define % =1y; if 0<k<l, iy= — g,

if k>1>0. With o= (
Vn

, , 1. .
t, it 1) and y,=—(lns1+... +i2a) We get

Vn
xnyn=;b(zn+2+ 2py3+ .0+ (=) izn +niania + (0 — Diznia+ ... + 23,1+ 132).

It is then easily verified that

0%+ 1\?
||xnn=nynu=1but”%%":( 3n )*“”

when 7n—>co. Hence multiplication is not (simultaneously) continuous.

Remark 3. The completion of 4 as a normed space is congruent to the Hilbert
space I*(A). If multiplication is continuous on A (as in Propositions 4.2 and 4.3)
it can be extended to the whole of I*(A), to produce examples of (not neces-
sarily associative) Banach algebras with identity.

We finally give an example of an absolute-valued algebra that does not
satisfy the assumptions of Theorem 2.2. Let A’ be a vector space as above
and define

7:17:;4 = ’g(l’ :u) if(l-lt)'
Here s has values +1 and 1, f(4, A)=0, s(1, A)=constant, f(4, wy=fu, A)*0
and s(A, u)= —s(u, ) when A< i Moreover f, restricted to A, u such that =4
and s(, u)= +1, shall be injective.
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Proposition 4.4. With the assumptions above A’ is an absolute-valued algebra
(without identity ).

Proof. Computation as in Proposition 4.3.
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