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On the Laplace transform of functionals on classes of
infinitely differentiable functions

By Mats NEYMARK

The purpose of this note is to study functionals on quasi-analytic and non-
quasi-analytic classes of infinitely differentiable functions, equipped with suit-
able topologies, and in particular to prove theorems of the Payley-Wiener type
connecting properties of functionals with the behaviour of their Laplace trans-
forms. This has been done in the non-quasi-analytic case by Roumieu [10], who
has studied so called ultra-distributions. For a related (and partially equivalent)
definition of generalised distributions, see e.g. Bjorck [2].

In this note the interest lies in the quasi-analytic case, although the theorems
do not exclude non-quasi-analytic classes. After some elementary definitions and
properties of the spaces and functionals to be considered we state two “Pay-
ley-Wiener theorems” in section 1. These theorems are proved in section 2 es-
sentially with methods taken from Hérmander [4]. In section 3 we prove some
approximation theorems, which are used to guarantee that a functional is
uniquely determined by its Laplace transform.

1. Funectionals on ¢z and Cy,

Let € be an open set in RY Then C%({}) denotes the space of complex-
valued functions with continuous derivatives of every order in Q. If «=(a, ...,
ag) is a multi-index (¢;=0,1,...), we write D*=D?... D3 where D,=38/éx;.
Similarly (*={5...C5% if £=({y, ..., )€C. We shall also write |a|=o;+
ceotog and ol =gt ... apl

Let L=(L,), be a family of positive real numbers defined for all multi-indi-
ces ee={(oy, ..., oy). Then O (Q) denotes the set of € C°(Q), such that for every
compact set K in  there are constants a >0 and C such that

Ya: sup|Df|<CaL,. (1.1)
K

¢;(€2) denotes the set of f€C™(Q), such that for every compact set K in Q
and every a >0 there is a constant ' such that (1.1) is valid.

It is clear that C.(Q) and ¢, (Q) are complex linear spaces.

A natural topology on ¢;(Q) is defined by the set of all semi-norms
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Ak
f—sup sup | D*f| 7, (1.2)
« K (3

where K is a compact set in Q and where % >0. We shall use the equivalent
set of semi-norms

el
f_-)"f”L.K.h:gs‘;P‘Da”E' (1.3)

It is easy to see that ¢ () is a Fréchet space with this topology.

On (. (Q) we use the topology which is defined by all semi-norms p on
C1(Q), such that there is a compact set K in Q and for every k>0 a constant
C such that

VIECL(Q): p(f)< O”f”L K (1.4)

(Of course we can here use the semi-norms in (1.2) instead of ||fl[; x. 5.)
Given two families L= (L,), and M =(M,), we write L<M, if there are con-
stants @ >0 and C such that

Yo L,<Ca"™M,. (1.5)

We write L<<M if for every a >0 there is a constant C such that (1.5) is
valid.

It is clear that L<M implies that ¢, (Q)<ey(Q) and C(Q) < Cy(Q) and that
L<<M implies that O {Q)cc,(Q). We also see that the corresponding inclusion
maps are continous. The converse implications are true, when the family L is
logarithmically convex, i.e. when logL, is a convex function of «, which is
equivalent to

LT
Ya: L¢=s1rlp 1gf;BLﬁ, ] (A)
where r runs over all r=(r, ..., r;) with »,>0 (cf. Bang [1], §3).
If L satisfies
Ya: Lyp<b*'L, if |p|=1 (B)

with some &3>0, then ¢,(Q) and O,(Q) are closed under differentiation. (B) is
also a necessary condition when L satisfies (A) (cf. Bang [1], § 4).
c(Q) and C (Q) are closed under multiplication, if L satisfies

Yo, VB: LoLy<Cc™*¥L,., (©)

with some constants C and ¢>0. For then it follows by means of Leibniz’ for-
mula for differentiation that

"fg"L ErS Ollf"L K, 2ch “ 9”1., K, 2ch (1.6)
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In the particular case when L,=I, for all &, where ()¢’ is a sequence of
positive real numbers, the condition (C) is a consequence of (A). For then (I,)§°
is logarithmically convex, and this implies 7,1, <ll,.,. However, in general (C)
does not follow from (A) (a counter-example can be found in Roumieu [10],
p- 159).

We recall the theorem of Denjoy-Carleman in the following general form
proved by Lelong [7]. See also Roumieu [10], Th. 1.

CL(Q) does not contain any function with compact support contained in Q (ex-
cept the zero function), if and only if

3 Lo/Ln=+ oo, ()

where the sequence L= (L,)§ is the largest logarithmically convex minorant sequence
of (infiy_y Ly)ile, t.e. L is given by

L, =sup inf " "L,.
>0

o

The statement is true also when (C(Q) is replaced by ¢ (Q).

Cr(Q) and ¢, (Q) are called quasi-analytic when L satisfies (D).

A linear form u on ¢,(Q) is continuous if and only if there are a compact
set K in Q and constants >0 and C such that

|“(f)| < Cnf”L,K,n (1.7

for all fec (Q). A linear form % on () is continuous if and only if there are
a compact set K in Q and for every % >0 a constant ' such that (1.7) is valid
for all feC(Q).

We denote by c;(Q) and CL(Q) the topological dual spaces of ¢ (Q) and
CL(Q) resp.

It is clear that ¢;(Q)<=CL(Q)<=C®(Q) with continuous inclusion maps, if we
give C*(Q) the usual topology defined by all semi-norms f— > |<m Supg|Df|
where K is a compact subset of Q and m a non-negative integer. Therefore
the restriction to ¢ (Q) or Oy (Q) of a distribution with compact support in Q
is a continuous linear form on ¢;(Q) and C(Q) resp. However, the formula

ulf) = 2, Dualf) = 2.(— 1) D7f) (1.8)

defines a continuous linear form w on ¢, (Q), whenever all u, are measures with
support in some compact set K in Q and with total mass || u.|<CH*/L, (K,
C and h independent of «). Therefore there are functionals on ¢, (Q) and on
C1(Q), which can not be extended to distributions.

Using the Hahn-Banach theorem one can see that every u€ci({2) has the
form (1.8).

We say that a compact set K, in Q is a carrier of or carries a functional
u€cy(Q), if for every compact neighbourhood K< of K, there are constants
k>0 and C such that (1.7) is valid for all f€c,(Q). Similarly K, carries u€
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C1(Q), if for every compact neighbourhood K <Q of K, and every h >0 there
is a constant (' such that (1.7) is valid for all fe O, (Q).

In the non-quasi-analytic case there is also the concept of support of a funec-
tional u on ¢, () or CL(Q): At least if L also satisfies (C) we can define supp »
as the smallest compact subset K of Q, such that w(f)=0 when f=0 in some
neighbourhood of K. It is clear that supp » is contained in every carrier of .
Conversely, supp u is a carrier of u, because for every compact neighbourhood
K of supp u one can find ¢€c () with supp p<K and ¢=1 in a neighbour-
hood of supp #. Then

|u(f)| = |u(¢f)| < OIH(PHL, K, 2ch"f”L. K. 2ch

with some constant €’ follows from (1.7) anp (1.6).
We define the Laplace transform @ of a functional » on ¢ (R%) or C (R?) by

VieC: #(l)=u(x—>e"P), (1.9)

where (x,>=u,(;+ ... +2,{; When u € C(R? we must require that inf,a!*L, >0
for some @ >0, so that f(x)=e"% belongs to C (R? for all {€C:. If u€c,(RY)
we must require that inf,a!L,>0 for all @ >0. Then it is clear that @ is an
entire function in €%, because the Taylor series of ¢‘*% is convergent in O (R?)
and in ¢, (R% resp.

The inequality (1.7) implies (with =&+ i)

l| le] | et
W) <O D sup | D% ® e =( ailsl sup €% = Oq,(hE) eH¥® (1.10)
P p
« K Lu o La K
where 9(0) =§ I%l and  Hg(8)= sup {z, &. (L.11)

Hy is the supporting function of (the closed convex hull of) K and is con-
tinuous, convex and positively homogeneous of degree 1.

If w€cy,(RY) is carried by K, we know that for every ¢>0 there are con-
stants k>0 and C such that (1.7) is valid for all f€c,(R%) with K replaced by
K.={z€R% d(zx, K)<¢&}. If u€CL(R? is carried by K, there is a constant C for
every ¢>0 and h>0 such that (1.7) is valid for all f€ O (R% with K replaced
by K.. Therefore, if we replace K by K, in (1.10) and use the equality Hg (£)=

Hg(&)+¢|&| we have proved the first parts of the following two theorems.

Theorem 1. Suppose that inf,a!"L,>0 for all a>0. If u€ci(R?) is carried by
a compact set K in R?, then for every &>0 there are constants h>0 and C such
that U =14 satisfies

VEECE: |U(Q)| < Cqu(hl) ePx®+eidl, (1.12)

Conversely, if L also satisfies (A) and (B) and if U is an entire function in
C? such that (1.12) is fulfilled for all ¢ >0 with a convex compact set K in R?
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(C and h>0 depending on &), then there is a unique functional uw€cp(R?) such
that =U and u is carried by K. Here L' = (L), 1s defined by Ly =L, q. .. .1

Theorem 2. Suppose that inf,a!”L,>0 for all a>0. If u€CLR? is carried by
a compact set K in R2, then for every £>0 and h>0 there is a constant O such
that U =4 satisfies (1.12).

Conversely, if L also satisfies (A) and (B) and if U is an entire function in
C* such that (1.12) is fulfilled for all >0 and h>0 with a convex compact set
K in R? (C depending on & and h), then there is a unique functional u€ C7.(R%)
such that 4="U. u is carried by K at least if L also satisfies (C) and (a!),<L.

Remark 1. From (B) follows that ¢..(R%) < ¢, (R and Oy .(RY) < C (RY) with con-
tinuous inclusion maps. Equality holds if L also satisfies L<L' and then the
topologies coincide too. This means that we can replace L' by L everywhere
in Theorems 1 and 2, if we add the condition L<L'. Whend=1 or L, depends
only on |«|, L<I' follows from (A).

If L depends only on |«|, say L,=1I, when |a|=n, then we can replace
qu(hl) in (1.12) by q,(k|Z|), where g¢,(t) =>0t"/1,, because

a(|2]/Va) < qu(0) < Cay(| )
with ¢ depending only on d.

Remark 2. When L satisfies only (A) and (B), we can see that w in Theo-
rem 2 is carried by K if K is a closed rectangle in R? with sides parallel to
the coordinate planes. See the proof of Theorem 2. The stronger conditions on
L for arbitrary convex compact sets K are used when we approximate by means
of Theorem 4 but they should not be the best possible.

However, our notion of carrier does not seem to be very interesting for func-
tionals on ¢;(Q) or C;(Q), when these spaces are contained in cqy,(Q). It is
well-known that () (Q) is the space of real analytic functions in €, and when
Q is connected, cuy(Q) is the space of restrictions to Q of entire functions in
(?. The restriction mapping is an isomorphism of the space A(C%) of entire
functions in €% onto c¢uy(Q). It is also an homeomorphism, if 4(C% has the
usual topology, which is defined by all norms f— | f||x =supg|f|, where K is a
compact set in C% In fact, it follows from Cauchy’s inequalities and Taylor’s
formula that

1 e, .2 < Ollfle and |[fle<Clflla.on (1.13)

for all f€ A(C%. In the first inequality C and the compact set K’ in (¢ depend
on h>0 and the compact set K in Q, and in the second inequality €' and >0
depend on z€Q and the compact set K in C% (1.13) also shows that every
u € cy(QY) is carried by every non-empty compact set in Q, if Q is connected.
The same statement is true for C7(Q), when L< <(a!),, and for ¢;(Q), when
L<(a!)., at least if L also satisfies L,,z<a!*"¥1*1g1L; with some a>0.

These properties of a functional u on ¢ (Q), when L<(a!),, or on Cy(Q),
when L< <(«!),, are also reflected in the estimate (1.12). For if L,< Ca'*«! then
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qu(l)= 0 Vexp (3f.1]¢5|/a), so that (1.12) can not tell anything precise about
the carrier of u.

On the other hand, no estimate ||f||, x »<C|f|lz.x» Wwith K¢ K’ can hold in
c(Q) when (a!);<<L or in C,(Q) when (a!),<L. To see this we can choose
a€ K\K' and define f(x)=(|z—a[*+i8)"", where 6>0 can be chosen arbitrarily.

For functionals on c,(€2) one should instead use carriers defined by means
of the norms on A(CY), ie. carriers of analytic functionals. Such carriers have
been studied e.g. by Martineau [8] and Kiselman [5] and [6].

2, Proofs of Theorems 1 and 2

The main step is the following lemma.

Lemma 1. Suppose that L satisfies (B), that K is a convex compact set in R® and
that U is an entire funciion in C%, such that

VieCh |U(Q)| < Ogu(hl) e x® (2.1)
for some h>0 and C. Then there is an entire function W in €% =C?% x C¢ such that

viel: W(0)=U() (2.2)

’

and V(¢ )eC:  |W(L, :')]gi—cic—lh(ah;) eHEEN 1 4| L' |)%, (2.3)
1--Ca
where ¢ depends on C, h, L, K and d and a on L and d.
Let us first see how we can use Lemma 1.

The function W which we get in the lemma can be developped in a Taylor
series

W) =300,

where all U, are entire functions in C% By Cauchy’s inequalities and (2.3)
we get

| U< sup |W(Z, L) B
1gii<ri r

<O+ [T ) e ™ g ahn) ———

, 2.4)

, 2 B 1
<290 (1 + | L' |)*2eHEE sup (2ahr)’
& L

rry ... g

where r=(ry,...,r,) with r,>0. Now if L satisfies (A) we get from (2.4)
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(2ah)

veenn 1)

Vel |UAC|<2%7 Hmﬂu+¢gpw. (2.5)

We shall now use the Payley-Wiener theorem for distributions (see e.g. Hor-
mander [3], Th. 1.7.7). Thereby we get for every o a distribution u, with com-
pact support contained in K and with %,=U,. (Observe that #,(l)=14.(—1().)
If we choose ¢ € C*(R%) with compact support contalned in K, and with ¢p=1
in a neighbourhood of K, then we get from (2.5)

~d

Fuolf) | = | ualepf) | = (27) f fia( — 5)@(5)«15‘

jee|+d A
< ogr G f<1+l§|)3d|¢f(§)|df

(2ah)'“' sup | DFf|, (2.6)

<C S
T Lm |ﬂ|<N Kg

where C, depends only on ', h, @ and d and where N =4d+ 1.
If L satisfies (B), so does L' with some 5>1. Then we can define

u(f) = g U (D*f) (2.7)

with absolute convergence for all f€ 0*(R?) such that
171l oo < =+ o0, (2.8)
where %' =2b"ah. For by (2.6) we get

2ah) #!
(2ah)=!

§|ua(D°‘f)|<Ollmz<N§ up | D*f|

26%ah
<0, lﬁ|Z<N(2ah) I‘“Zsup|D"‘f|(—a—)— Call Hliz e (2.9)

where C, depends on C), & and d.
It is clear that

WUL) = (x> e 0) =D uy(w-> %) = 3 L, (0) = D ULL) = WL, ) =U(2)
(2.10)
by means of (2.2).
Proof of Theorem 1. Suppose that U satisfies the hypothesis in the second
part of Theorem 1. Then we can use Lemma 1 and the procedure descrlbed
after it with K replaced by K, (we remember that Hy (£)= Hg( (&) + ¢] £]).
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we change C, to C' and A’ to h in (2.9), we get for every £>0 a functional
u,, defined and satisfying

|| < ONFllz, Koo n (2.11)

for all f€c, (R%); C and b depend on e. Furthermore 4. = U for all &. However
we do not know from the construction described above that the functionals
u. are all identical. We need to know that a functional u€c¢'L.(R?) is uniquely
determined by its Laplace transform #. Now we can see that u(f) is uniquely
determined by %, when f is a polynomial, because the Taylor series of % is
convergent in c¢;(R%. By the Hahn-Banach Theorem it is then necessary and
sufficient to know that the polynomials are dense in ¢, (R?). Therefore when
we have proved Corollary 3a in the following section, we can conclude that all
u, are identical. Denoting the common value by u we get a unique % €c;.(R%)
such that %= U. From (2.11) also follows that u is carried by K.

Proof of Theorem 2. Suppose that U satisfies the hypothesis in the second
part of Theorem 2. Then using Theorem 1 we get a unique functional u € cz.(R)
such that #=U. The proof also shows that

|u(P) | < Ce.n || Fllz xoen (2.12)

for all f€c, (R and all £>0 and A>0. Using (2.12) and approximation by
means of Theorem 3 in section 3, we can then extend » uniquely to a con-
tinuous linear form on C.(R?), which we denote by u too. More precisely |u(f) | <
Conllflleurn if fECL(RY and I is a rectangle (with sides parallel to the coor-
dinate planes) such that K,,<I. Hence % is carried by the smallest such rec-
tangle containing K.

If L also satisties (C) and («!),<IL then so does L’. Therefore cn(R%) <c.(R%)
and we can use Theorem 4 in section 3 with L replaced by L’. Let K’ be a compact
neighbourhood of K such that Theorem 4 is applicable (with K’ instead of K).
Then ug(f) =lim, . u(Tx ,f) exists and satisfies

|ur ()| < Cei|| Hllzn kue e < Cee | Fll 2 (2.13)

for all feCL(RY), if Ks; =K' and k<% is sufficiently small (depending on A, L
and ). Therefore ug € C7(R% and so ug =wu, because it is clear that ug =u on
¢, (R%) and the extension of # to a continuous linear form on O (R?) is unique.
Hence (2.13) shows that w is carried by K. The proof of Theorem 2 is con-
cluded.

Remark. 1f L<L', ie. if L,<Ct* L, for some constants ( and ¢>0, then we
can replace L, by L, in (2.6), if we also replace O; by C,C and % by th. After
that the proofs of Theorems 1 and 2 work with L instead of L’

Proof of Lemma 1. The idea is taken from Hormander [4], 4.5 and the proof
in based on the following lemma, which is Theorem 4.4.3 in Hérmander’s book.
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Lemma 2. Let S and S’ be complementary complex linear subspaces of C" and
let ¢ be a pluri-subharmonic function in C* such that

lpz+2)—gz)|<B if z€C €S and |Z'|<1 (2.14)

for some constant B. Then if V is an analylic function in S such that

f | V% %do < + oo, (2.15)
s

where o is the Lebesque measure in S, there is an entire function W in C" such
that W=7V in S and

f| W|2e_"’(1+]z|2)’3"dm<Af | V [e~*do, : (2.16)
S

where m is the Lebesque measure in C*, k is the complex dimension of S’ and A
depends on B, 8 and S'.

For the definition and properties of of pluri-subharmonic functions we refer
to Hoérmander [4], 2.6 (and 1.6). The condition (2.14) on ¢ is weaker than the
condition (4.4.9) in Hormander’s book, but an examination of the proof there
shows that our condition is sufficient. However, our constant 4 is not (6me®)*
when 8 and 8" are not orthogonal.

In Lemma 1 we suppose that L satisfies (B) for some b>1. Therefore

é-«x+ﬁ| blﬁlé— d+ﬁ,

+!9

<q:(0"'7)

gy =3 5 <5107

and from this follows
(1+]2)"qu(2) < C1q: (0670, 2.17)

where C, depends only on » and d.

Now suppose that U satisfies the hypothesis in Lemma 1. Let S be the
subspace {(Z,{): L€C?} of C** and define an analytic function V in S by V({, 0)=
U(Z) for all ZEC".

Using (2.1) and (2.17) (with n=d+ 1) we obtain

f | V(, £) |Pqr (6% T hE) 2 2HEOdg
C%f I V(C} C) |2qL(ké‘)—2e—2HK(§)(1 4 h] CI)—2dv2do_

<0%02f (L+2|C])2 Pdo=Cy< + oo, (2.18)
S

where ¢ is the Lebesgue measure in S.
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We shall now use Lemma 2 with n=2d, S ={(0,{): {€C?} and ¢ defined in
O2d by

@, 0) =2 log qu(b""'h) + 2 Hk(£)).

By means of the rules in Hérmander [4], 1.6 and 2.6, we can see that ¢ is
pluri-subharmonic in €*¢, because

bd+1h 4
log q;(b*"*hl) =sup log > |—(—i|,
R PIrS A 7

where each log|(b**'h()*|/L, is pluri-subharmonic. and Hy is convex. Further-
more ¢ satisfies (2.14) for some B since ¢ (b°"'h) does not depond on (' and
Hpy is uniformly continuous.

(2.18) means that V satisfies (2.15) and so Lemma 2 gives an entire function
W in €** such that W(,)=V(Z,{)=U(;) when {€C? and

fl W(C: Z,) |2qL(bd+1hé-)—2e—2HK’E’)(l 4 |C|2+ l C/ |2)—3ddm

<4 J | (¢, &) [2qu (0% 1he) % 2 x@da < AC, (2.19)
S

in view of (2.16) and (2.18). Here m is the Lebesgue measure in C*%.
Repeated use of the inequality

|u(0)| < (m“z)’lf | u(z)| dwdy,

lzl<r

which is valid when w is analytic for |z|<r in C, then gives

W&, ) E a2ty ... ol f | W, ) fdm
l2;~C41<1E 41
ley—L71<1
SACHA | Ly L2+ 2| )Ygu@b hE): sup RGO (L4 |2 |

lzy=¢y1I<1

(2.20)
in view of (2.19) and the inequality 1+ A%+ u®<(1+24)*(1+ p)® for 1>0 and

u=0. Using (2.17) (with n=3d) and the uniform continuity of Hy and log (1
|2'|) we can from (2.20) conclude that

| W, )| <O\ &y ... Lo 2qu(2b2 T RE) PR (L + | I ])%,

where €' depends on 4, C,, L, d, » and K. So if we put a=2b6*"*!, we have
proved (2.3) in Lemma 1.
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3. Approximation theorems

If f is defined in the closed intervall [a, 5], the Bernstein polynomials
P,f(n=1,2,...), are defined by

L (n k(b—a)\ {x—a\* (b—a\" "
Pnf(x)*go(k)f(a—f— n )(b—a) (b—a) : (3.1)

It is well-known that P,f—f uniformly in [a, b] when #->co, if f is continu-
ous in {a, b] (see e.g. Meinardus [9], 2.2.). A simple calculation shows that

o T =\ gl k=) (2= a)F (=g
D’Pnf(x)—(b_a)j(n_j)!,zo( b )Af(‘” n )(b—a) (b—a)

(3.2)
where A’f is defined recursively by A% =f and
Nf(x)= N~ (x -+ b;_a) — N ().
When f€C%([a,b]) we have
—_,\i M 1 g
Alf(z) = (b—‘]-”) f f D"f(x—l—{)—aZti) dty, ..., dt,. (3.3)
n 0 0 n g
When f is defined in a rectangle 7 =[a,, b,]1% ... x [ag, b, ] <R? and v = (v, ..., vy)
(»v=1,2, ... for j=1, ..., d), we define
Y ﬁ(b—a)) (x—a) (b—ax)*
P, f(z)= , 3.4
=, 3 (5 ¢ —ay .
where a=(ay, ..., a,), b=(b, ..., b,),
p—a)_

(Bu(by— “i)/”n eees Palbg— a’d)/vd)y

)G ()
B/ \Bs Pa
and 0<fB<v means that 0<g,;<yv, for j=1,...,d. P,f is constructed by suc-
cessive applications of formula (3.1) with respect to the variables =, ..., z, and
with n=w, ...,v;, a=ay,...,a; and b=b, ..., b; resp.

If f is continuious in I, it follows that P,f—f uniformly in I when »— oo (in
the sense that min (v, ..., »,)>oo). This is proved by the same methods as in

the one-dimensional case and should be well-known.
When f€C>(I), we get by combining (3.1)~(3.4)

v
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D)= S (vl—ea)f«( *ﬁ(bv_ a)) k) Ut P

V(v — ) ogp<r (b—a)™*"
where fol@) = f f D“f( ) by oo dby gy oo dbgy oo By gy (3.6)
with o) (b1 —% z Byis very 2 tdj)
v 151 1

It follows from (3.6) that

f«(a + —ﬂ—(b—;ﬂ)

fa(a+ /3(3’_;“)) _Daf(ﬁ @M)

Yy— o

<sup|D*f| (3.7)
I

< su D*f(y) — D*{(z) | =4, v»
|y;-zﬂ<agz},—a;)/v,~l fty) el ' (3.8)
Y,z

when 0<fS<y—oa. From (3.5), (3.6) and (3.7) follows

v! " v—a\(@—al(b—a)y “F
o — a1 D2 (ﬂ) b—ay*

™ : 0BT~

| D*P, f(z)| <
= ;—m(,,v_! 1| DY | <sup| Df| it wel (3.9)
and from (3.5), {3.6) and (3.8) follows
| D*P, f(2) — D*f() |
! (v~ac) (w—a)ﬂ(b—x)”‘“_ﬁ
B

S Cay D -
= )l 0 (b—ay—*

| P, D*}(x) — D*f(x) ]+( )|D°‘f(w| it zel

»!
¥y~ a)!

o=

and from this follows

) )StllplD“fl‘

!
o —Dl<e B xf__ D [ A -
st}pIDPvf Df]<cm+81§p|P,, D% Df|+( o —a)
(3.10)

Here ¢, ,—0 when y— oo with « fixed becaunse of (3.8) and the uniform con-
tinuity of D*f In I. The continuity of D*f in I also implies that P,_,D*f— D°f
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uniformly in I when y—oco with « fixed, as we have already observed. Finally

v /v (v—a)l->1 when y— oo with « fixed. Therefore we can conclude from (3.10)
that for fixed «

sup|D*P,f—D*f|-0 when y->oo. (8.11)
I

In section 2 we use the following approximation theorem.

Theorem 3. If L=(L,), and h>0 are given and if f€C®(I) satisfies

lle.rn< + o0 (3.12)
then | Pof—Ffllz..n=>0 when vp—>oo (3.13)
(t.e. when min(y,, ...,v,)—o0). Here I is a rectangle in R and P,f is defined

by (3.4).

Proof. From (3.9) follows that

Bl

hl«l
Pi— < & Y 5 17 3 B, x 14
N Pf= s |MZ@SHIPII?PJ DfI}La+2|a|Z>NSI;p|DfIL (3.14)

The second sum is independent of » and tends to 0 when N — oo because of
(3.12). The first sum tends to 0 when y— oo and N is fixed because of (3.11).
Hence (3.13) follows from (3.14).

Corollary 3a. The polynomials form a dense subspace of c (R%).

Corollary 3b. The polynomials form a dense subspace of Cr(R?).

In section 2 we also use an approximation theorem, which works for more
general compact sets than rectangles in R% Therefore let K be a compact set
in R? and let

() = (2m) 4% 172,

We have defined ¢ so that

f(pclw:l. (3.15)
Then if f is a continuous function in K, we can define

T, f(x) =Tk, f(x) = fo(y)tp(S(x—y))sddy (3.16)

for all >0. T;f is the restriction to R? of an entire function in €% because ¢
is such a function and we integrate over a compact subset of R®.
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From (3.15) and (3.16) follows immediately

sup| 7,f] <sup| 1] (317)
Ré K

Now suppose that K, is a compact subset of the interior of K and that
d=d(K,, (K). Then we get from (3.15) and (3.16)

T, f(w) = f(x) | =

fle—u/s)p(u)du— ff(x) p(u)du

s(z—K)
< s lfe=u/s - @] [ pwdwr2splfl | g
<, sl =f@l2smlil [ pods (3.18)

if z€K, and r/s<4§. If we choose r= Vs, it follows from (3.18) that

sup|T,f—f| >0 when s— 4 oo (3.19)
Ko

for every compact subset K, of the interior of K, because f is uniformly
continuous in K and {5, @(u)du—~0 when r— + co.

Now we suppose that f€C® in a neighbourhood of K and that K is so
regular that we can use Stokes’ formula for K and its boundary ¢K (oriented
with the normal pointing outwards). For our purposes it is sufficient that K is
the union of a finite number of a rectangles. From (3.16) we then obtain by
Stokes’ formula

D,Tf(x) = f D glsta— sty

=LD;-1‘(y)¢(s(x—y))sddy—f @(7‘ Y p(s(x—y))) s’dy

=T D;f(x) + (—1)s* - 1) pls(x—y))dg,, (3-20)

where df,=dy, A ... Ady;_1 Ady; 1 A ... Adys The interpretation of (3.20) when
the dimension is 1 is obvious. We also get

axf ) pls(z—y)) dy;—é’f {(y) Dp(s(x — y))dd;. (3.21)
k

Using (3.20) and (3.21) we see by induction that
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DT f(w) =T, D*f()

d oaj—-1
+2 3 (—D’s"*’“’”'”f DD f(y) D Df p(s(@ — y))dg;,  (3.22)
i=1 k=0 oK
where o] = (. ..., %1, 0, ...,0) and o =(0,...,0, &1, ..., oz). If o;=0 then the
corresponding sum over over k in (3.22) shall be 0.

Now let K, be a compact subset of the interior of K and put § =d(K,, (K).
Then it follows from (3.22) that

| DT () — D*f() | < | T D*f(w) — D*f() |
oj—1
2

k=0

+
i

s

ghtlas l+a SlKl’p |Daj’D;zj7k—lf| lslllgdl Dacj"Djk(p(u) l A(aK)
ul>s

if zekK, (3.23)

where A(9K) is the (d— 1)-dimensional measure of 9K.
From (3.19) and (3.23) follows that

sup | D*T,f—D*| ~0 when s— -+ oo (3.24)
Ko

for every fixed «, because

™ sup |DPp(u)|—~0 when r—oco

lulzr

if >0 and § is a multi-index.

Theorem 4. Suppose that f€C* in a neighbourhood of a compact subset K of
RC, which is so regular that Stokes’ formula is applicable, and suppose thai

I Fllz.z.n< + oo, (3.25)

where h>0 and L=(L,), sotisfies (C) and (a!).,<L, which implies that there are
constants C and a>0 such that |a|! < Ca'*'L, for all «. Then

| 7.t~ Fllz. 0 nie—0 when s—>+ o0 (3.26)

if T.f is defined by (3.16), K, is a compact subset of the interior of K and
h<(5a) " 'd(K,, QK). ¢ is the constant in (C); here we suppose that ¢>1.

In the proof we need the following estimate of the derivatives of ¢.

Lemma 3. If ¢(u)=(27) %% 1“1"* (w € RY), then for every m there is a constant
C such that

Vo r1*1*7™ sup | Dp(u) | < 05| a|! (3.27)

lulzr
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Proof. g is also defined by
lp(u):(2n)~dfei<u,§>e"|51”/2d§‘
It follows that

/r|1|+m |Do¢(p(u) I — rla[+m(2n)—d

J‘(i{:)“ei(u' He18 I”/2d§

— (zn)—drtaﬁm

f(%s = n)ae;'(u,é)—-(a.y;)e*ﬁ 22+ !212~i<€,ﬂ>d§

< (gn)—d,.luI+me—<u.n>+lnl'/2f(lgl + |n|)lale—lélfl2d§

+ 00

< Cr'“'*"’e"”zj (t+ ) le 2 1dg
0

T + oo
<2Ia|0(72|a|+m+d—1e—r=/2f e_t”‘zdt-}—e—ﬂ/zj\ t2|o:|+m+d—le—t"/2dt)

0 T

if |ul=r (3.28)

Here we have moved the integration to the hyperplane R+ iy in C7, where
n is the vector in R? which has the same direction as « and length r. It is
obvious that this is possible by Cauchy’s integral theorem.

Using the inequality

g 2 < (k4 ) < 2RV (2R + 1) ... (2k+ n)

and the equality

Jm A A J.m grrDiZemtgp — QFT@DED (k4 (d+ 1)/2)

0 0

we obtain (3.27) from (3.28) with a new constant C.

Proof of Theorem 4. It §=d(K,, [K), we get from (3.23), (3.17) and Lemma 3

B\ K+l i
(5) (ke + o)

(3.29)

d aj—1

sup | DT, f— D*f | <2sup| D*f|+ ¢, 3. S sup| D™ Dy~
Ko K i=-1k-0 K

with -a new constant C; not depending on « or s.
Now suppose that f satisfies (3.25). Then using the condition (C) with ¢>1
and |a|!<Ca'*!' L, we see that (3.29) implies that
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S sup| o7, f— pep| LD h/") <2 sup]D“f] h/c

\x|>N K, Je|>
d ocj—l h[ae| 5 (S E+lay”| k+i+la;”|
TGOS S S sup | DYDY /81
j=1]la|>N k=0 K (aq ....,ozj_l,acjfk~l.0....,O)
" 5ah 5
<2 > suplDfl»——l—OZ > sup]Dfl——,
lef>N K |1B8|>N—|x|-1 K

(3.30)

where the new constant O, is mdependent of N and s. In the last sum we
have changed (a,...,-1,0;—k—1,0,...,0) to B. Suppose that h<d/5a. Then
(3.30) implies that

h cIo=|
N7sf = Flle konie < 2, SuP|D“Tsf_Duf|( /L)'

Ja|<N K, £

4—(2—%02 > (-5%h)m) > suplD“f'

|af<m |¢|=N-m K

(5“") T

(3.31)

Here the middle and the last term tend to 0 when m— + co and N —m— + oo.
They are both indeépendent of s. The first term tends to 0 when s— + oo for
fixed N. Therefore (3.26) follows from (3.31) and Theorem 4 is proved.

Corollary 4a. If L satisfies (C) and (x!)e<<L, then the entire functions in
R? are dense in ¢ (Q), if Q is an open set in Re.

Corollary 4b. If L satisfies (C) and («!)o<L, then the entire functions in R* are
dense tn C(Q), if Q is an open set in R4 :

Corollary 4a shows that the image of ¢,(R%) (under the restriction mapping
¢ (R?) —¢,(Q)) is dense in ¢(Q), if L satisfies (C) and («!),<<L. By Corollary
4b the same statement is true for C;, if L satisfies (C) and (a!)y<ZL. On the
other hand it is not true for ¢, (Q) if L<(al), or for Oy (Q) if L<<(al), and
Q is not connected.

If u€cy(RY) is carried by a compact subset of Q<R? then u(f)=wu(g) when
f and g€c (R and f=g¢ in Q. Hence we can identify the space of all such %
with the space of continuous linear forms on the image of c;(R9) in ¢(Q2), and
all these linear forms can be uniquely extended to ¢ (Q) if and only if the
image of ¢, (R% is dense in c¢,(Q). Therefore we can identify c; () with the
space of all u€c,(R% which are carried by compact subsets of Q, at least if
L satisfies (C) and («!),<<L. This statement is not true when L=< (a!), and Q
is not connected.

Similarly C7(Q) can be identified with the space of all u€Cy(R%) which are
carried by compact subsets of Q, at least if L satisfies (C) and («!),<ZL. It is
not true when L<<(a!), and Q is not connected.
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