1.67 15 2 Communicated 22 November 1967 by Lennart Carleson

Minimization problems for the functional $\sup_x F(x, f(x), f'(x))$

By Gunnar Aronsson

The present paper is a continuation of the papers [1] and [2]. These papers treat the problem of minimizing the functional

$$H(f) = \sup_{x} F(x, f(x), f'(x))$$

over the class \mathcal{F} of all absolutely continuous functions f(x) which satisfy the boundary conditions $f(x_1) = y_1$ and $f(x_2) = y_2$. The discussion in [1] and [2] is mainly concerned with the existence and the properties of absolutely minimizing functions (defined in [1], p. 45) and unique minimizing functions. The question of the existence of a minimizing function is also treated in [2] and it is shown by an example ([2], p. 429) that a minimizing function in general need not have any of the properties proved for a.s. minimals ([2], Theorem 9'). However, if $F(x, f(x), \omega(x, f(x))) < M_0$ holds for a minimizing function f(x), then f(x) is a unique minimizing function (and hence f(x) is smooth and $F(x, f(x), f'(x)) = M_0$). This is proved below and a few immediate consequences of this theorem are also discussed.

We assume that F(x, y, z) satisfies the following conditions:

- 1. $F(x, y, z) \in C^1$ for $x_1 \le x \le x_2$ and all y, z.
- 2. There is a continuous function $\omega(x, y)$ such that

$$rac{\partial F(x,y,z)}{\partial z}$$
 is $\left\{egin{array}{ll} >0 & ext{if} & z>\omega(x,y), \ =0 & ext{if} & z=\omega(x,y), \ <0 & ext{if} & z<\omega(x,y). \end{array}
ight.$

3. $\lim_{|z|\to\infty} F(x, y, z) = +\infty$ if x and y are fixed.

A function f(x) is admissible (belongs to \mathcal{F}) if and only if f(x) is absolutely continuous on $[x_1, x_2]$ and satisfies $f(x_1) = y_1$, $f(x_2) = y_2$. Put $M_0 = \inf_{f \in \mathcal{F}} H(f)$. Thus, a function $f_0(x) \in \mathcal{F}$ is a minimizing function if and only if $H(f_0) = M_0$.

Theorem. Assume that f(x) is a minimizing function such that

$$F(x, f(x), \omega(x, f(x))) < M_0$$
 for $x_1 \le x \le x_2$.

Then f(x) is the only minimizing function. Furthermore, $f(x) \in C^2[x_1, x_2]$ and $F(x, f(x), f'(x)) = M_0$ for $x_1 \le x \le x_2$. (Compare Theorem 6' in [2].)

Proof. 1. Since $G(x, y) \equiv F(x, y, \omega(x, y))$ is continuous, there are numbers $\delta > 0$ and $M_0' < M_0$ such that $|y-f(x)| \le \delta$ implies that $G(x,y) \le M_0'$. Choose M_1 such that $M_0' < M_1 < M_0$. Then the functions $\Phi(x, y, M)$ and $\psi(x, y, M)$ (the same notation as in [2]) are defined and continuously differentiable for $x_1 \leqslant x \leqslant x_2$, $|y-f(x)| \leqslant \delta$, $M_1 \leq M \leq M_0$.

Put $E = \{(x, y) | x_1 \le x \le x_2, |y - f(x)| \le \delta\}$. Consider the differential equation

$$y' = \lambda \Phi(x, y, M) + (1 - \lambda)\psi(x, y, M), \tag{1}$$

where the parameters λ and M are assumed to satisfy $0 \le \lambda \le 1$ and $M_1 \le M \le M_0$, respectively. The differential equation is considered only in E and with the initial values $(x_0, f(x_0))$ for some arbitrary $x_0 \in [x_1, x_2]$. Since f'(x) is bounded for $x_1 \le x \le x_2$, and Φ , ψ are bounded in E, there exists a $\delta_1 > 0$, not depending on x_0 , λ or M, such that (1) has a unique solution on the interval $[x_0 - \delta_1, x_0 + \delta_1] \cap [x_1, x_2]$. Further, the solution, which we write $y(x; x_0, \lambda, M)$ depends continuously on λ and M.

2. Now we divide the interval $[x_1, x_2]$ into N sub-intervals of equal length $<\delta_1: x_1 = X_1 < X_2 < X_3 < ... < X_{N+1} = x_2$. Next, we define N numbers $\{\lambda_\nu\}_1^N$ in the following way: Consider a fixed ν , $1 \le \nu \le N$. Since $H(f) \le M_0$, we must have

$$y(X_{\nu+1}; X_{\nu}, 0, M_0) \leq f(X_{\nu+1}) \leq y(X_{\nu+1}; X_{\nu}, 1, M_0).$$

Therefore, there is a uniquely determined number λ_{ν} , $0 \le \lambda_{\nu} \le 1$, such that $f(X_{\nu+1}) =$ $y(X_{\nu+1}; X_{\nu}, \lambda_{\nu}, M_{0}).$

- A. If $\lambda_{\nu} = 0$, then $f(x) = y(x; X_{\nu}, 0, M_{0})$ for $X_{\nu} \leq x \leq X_{\nu+1}$.
- B. If $\lambda_{\nu} = 1$, then $f(x) = y(x; X_{\nu}, 1, M_{0})$ for $X_{\nu} \leq x \leq X_{\nu+1}$.
- 3. Let η be any number such that

$$y(X_{\nu+1}; X_{\nu}, 0, M_0) < \eta < y(X_{\nu+1}; X_{\nu}, 1, M_0).$$

Then there is a number $M^* < M_0$ such that

$$y(X_{\nu+1}; X_{\nu}, 0, M^*) \leq \eta \leq y(X_{\nu+1}; X_{\nu}, 1, M^*),$$

and a corresponding λ^* , $0 \le \lambda^* \le 1$, such that $y(X_{\nu+1}; X_{\nu}, \lambda^*, M^*) = \eta$. Put $f_1(x) = y(x; X_{\nu}, \lambda^*, M^*)$. Then $F(x, f_1(x), f_1'(x)) \le M^* < M_0$ for $X_{\nu} \le x \le X_{\nu+1}$, i.e. $H(f_1; X_{\nu}, X_{\nu+1}) < M_0$.

We may also consider the interval $[X_{\nu-1}, X_{\nu}]$ and formulate analogous statements if $y(X_{\nu-1}; X_{\nu}, 0, M_0) > \eta > y(X_{\nu-1}; X_{\nu}, 1, M_0)$. (Note that the inequalities for η are reversed in this case.)

- 4. Next, we claim that one of these statements is true:
- A. All $\lambda_{\nu} = 0$.
- B. All $\lambda_{\nu} = 1$.

If A or B holds, then the assertions of the theorem follow easily (apply Theorem 6' in [2]).

Assume now that neither A nor B holds. We will then construct an admissible func-

¹ Compare Theorem 6 in [1] and Theorem 6' in [2].

tion $g_0(x)$ on $[x_1, x_2]$, such that $H(g_0) < M_0$. This will give a contradiction to the definition of M_0 , and thereby prove the theorem.

We use an induction argument.

Assumption. For any system of M consecutive intervals, where $M \ge 2$,

$$[X_{\nu}, X_{\nu+1}], [X_{\nu+1}, X_{\nu+2}], ..., [X_{\nu+M-1}, X_{\nu+M}]$$

such that $(\sum_{k=\nu}^{\nu+M-1}\lambda_k^2)\cdot(\sum_{k=\nu}^{\nu+M-1}(\lambda_k-1)^2)\neq 0$, there is an absolutely continuous function g(x) on $[X_{\nu}, X_{\nu+M}]$ satisfying

$$g(X_{\nu}) = f(X_{\nu}), \ g(X_{\nu+M}) = f(X_{\nu+M}) \quad \text{and} \quad H(g; X_{\nu}, X_{\nu+M}) \leq M_0.$$

Consider then the intervals

$$[X_{\mu}, X_{\mu+1}], [X_{\mu+1}, X_{\mu+2}], ..., [X_{\mu+M}, X_{\mu+M+1}]$$

and assume that $(\sum_{k=\mu}^{\mu+M} \lambda_k^2) \cdot (\sum_{k=\mu}^{\mu+M} (\lambda_k - 1)^2) \neq 0$. Then the assumption can be applied to at least one of the systems of intervals

$$[X_{\mu},X_{\mu+1}],...,[X_{\mu+M-1},X_{\mu+M}] \quad \text{and} \quad [X_{\mu+1},X_{\mu+2}],...,[X_{\mu+M},X_{\mu+M+1}],$$

for instance the first. This gives a function g(x) satisfying $g(X_{\mu}) = f(X_{\mu})$, $g(X_{\mu+M}) = f(X_{\mu})$ $\begin{array}{ll} f(X_{\mu+M}) & \text{and} & H(g;\,X_{\mu},\,X_{\mu+M}) < M_0. \\ & \text{Put} \,\,g_{\lambda}(x) = g(x) + \lambda(x-X_{\mu}). \,\,\text{It is obvious that} \,\,H(g_{\lambda}) < M_0 \,\,\text{if} \,\,\big|\lambda\big| \leqslant \lambda_0. \end{array}$

Now consider the interval $[X_{\mu+M}, X_{\mu+M+1}]$. According to (3) above, there are numbers η , arbitrarily close to $f(X_{\mu+M})$, and corresponding functions $f^*(x)$ such that $f^*(X_{\mu+M}) = \eta$, $f^*(X_{\mu+M+1}) = f(X_{\mu+M+1})$ and $H(f^*; X_{\mu+M}, X_{\mu+M+1}) < M_0$. If η is fixed, we determine λ by the condition $g_{\lambda}(X_{\mu+M}) = \eta$.

Now choose η so close to $f(X_{\mu+M})$ that $|\lambda| \le \lambda_0$, and consider the function

$$\varphi(x) = \begin{cases} g_{\lambda}(x) & \text{if} \quad X_{\mu} \leqslant x \leqslant X_{\mu+M}, \\ f^{*}(x) & \text{if} \quad X_{\mu+M} \leqslant x \leqslant X_{\mu+M+1}. \end{cases}$$

It is clear that $\varphi(x)$ is absolutely continuous, $\varphi(X_{\mu}) = f(X_{\mu}), \ \varphi(X_{\mu+M+1}) = f(X_{\mu+M+1}),$ and $H(\varphi; X_{\mu}, X_{\mu+M+1}) < M_0$.

This shows that the validity of the assumption for $M(\geq 2)$ intervals implies its validity for M+1 intervals.

Finally, the validity of the assumption for M=1 and M=2 follows easily from (3). This completes the proof.

Next, we illustrate the theorem by means of some simple examples.

Example 1. Assume that $F(x, y, z) \equiv \varphi(x, y) + \psi(x, y)z^2$, where $\varphi(x, y)$ and $\psi(x, y)$ are continuously differentiable for $x_1 \le x \le x_2$, $-\infty \le y \le \infty$. Assume also that there are constants K_1 , K_2 , K_3 such that $K_1 \geqslant \varphi(x,y) \geqslant K_2$, and $\psi(x,y) \geqslant K_3 > 0$. We consider the minimization problem between the points (x_1, y_1) and (x_2, y_2) .

Put $t = (y_2 - y_1)/(x_2 - x_1)$.

If $K_2 + \overline{K_3}t^2 > K_1$, then there is a unique minimizing function f(x). Further, $f(x) \in C^2[x_1, x_2], F(x, f(x), f'(x)) = M_0 \text{ and } f'(x) \neq 0 \text{ for } x_1 \leq x \leq x_2.$

Proof. Since $\lim_{|z|\to\infty} F(x, y, z) = +\infty$ uniformly in x and y, there exists a minimizing function f(x) (compare Chapter 1 in [2]). Further, it is obvious that $M_0 \ge K_2 + K_3 t^2$. Hence, $F(x, f(x), \omega(x, f(x))) = \varphi(x, f(x)) \le K_1 \le M_0$, and we can apply the theorem. This proves the above assertion.

Example 2. This shows an application of Theorem 1 to a "converse" problem. We assume as before that F(x, y, z) satisfies the conditions 1, 2 and 3 for $x_1 \le x \le x_2$ and all y, z. Let there be given two numbers y_1, y_2 , such that $y_1 \neq y_2$, and a number M. Here, an admissible function g(x) has to be absolutely continuous on an interval $x_1 \le x \le \xi \le x_2$ and satisfy $g(x_1) = y_1$, $g(\xi) = y_2$, and $F(x, g(x), g'(x)) \le M$. We assume that the class G of admissible functions is not empty. For each $g(x) \in G$, the functional $X(g) = \min\{x \mid g(x) = y_2\}$ is defined. The problem is to minimize X(g) over G. (This is analogous to time-optimal problems in control theory.) Hence, a minimizing function $g_0(x)$ has to satisfy $X(g_0) = \inf_{g \in G} X(g)$.

Assume that $g_0(x)$ is a minimizing function such that $F(x, g_0(x), \omega(x, g_0(x))) < M$ for $x_1 \le x \le X(g_0)$. Then $g_0(x) \in C^2$ and $F(x, g_0(x), g_0'(x)) = M$ for $x_1 \le x \le X(g_0)$. Further, $g_0(x)$ is the only minimizing function.

Proof. Consider the "original" problem, to minimize H(f), between the points (x_1, y_1) and $(X(g_0), y_2)$. Let $\mathcal F$ be the class of admissible functions for this problem, and put $M_0 = \inf_{f \in \mathcal F} H(f)$. Since $g_0 \in \mathcal F$, and $H(g) \leqslant M$, we have $M_0 \leqslant M$. Assume that $M_0 \leqslant M$. Then there must be a function $f_0(x) \in \mathcal F$ such that $H(f_0) \leqslant M$. Put $f_\lambda(x) = f_0(x) + \lambda(x - x_1)$. If $|\lambda| \leqslant \lambda_0$, then $H(f_\lambda, x_1, X(g_0)) \leqslant M$. Further, if $y_2 > y_1$ and $\lambda > 0$, then there is a $\xi \leqslant X(g_0)$, such that $f_\lambda(\xi) = y_2$, and the same holds if $y_2 \leqslant y_1$, and $\lambda \leqslant 0$. Consequently, λ can be chosen such that $f_\lambda(x) \in \mathcal G$ and $X(f_\lambda) \leqslant X(g_0)$. But this contradicts our assumptions regarding $g_0(x)$. Hence $M_0 = M$, and $g_0(x)$ is a minimizing function for both problems. Now, the results follows directly from Theorem 1.

Remark. This result can also be proved by transformation of the given problem to a control problem, and application of the Pontryagin maximum principle. It can be shown by means of examples that the result is no longer true if the condition $F(x, g_0(x), \omega(x, g_0(x))) \le M$ is omitted.

Remark. Necessary conditions for minimizing functions for the "original" problem can also be derived by the following approach: Let $f(x) \in C^1$ be a minimizing function and let $\Phi(x) \in C^1$ vanish at $x = x_1$ and $x = x_2$. We also assume that $F(x, y, z) \in C^1$, but no other condition on F(x, y, z) is needed. Put $U = \{x \mid F(x, f(x), f'(x)) = M_0\}$. Consider a neighbouring function $f(x) + \lambda \Phi(x)$ where λ is a "small" parameter. By applying the mean-value theorem to $\varphi(t) = F(x, f + t\lambda \Phi, f' + t\lambda \Phi') - F(x, f, f')$ between t = 1 and t = 0 it is not difficult to verify that we must have $\min_{x \in U} (a(x)\Phi(x) + b(x)\Phi'(x)) \leq 0$, where $a(x) = F_y(x, f(x), f'(x))$ and $b(x) = F_z(x, f(x), f'(x))$. This leads to various relations between the set U and the zeros of a(x) or b(x). For instance, if $b(x) \neq 0$ on U, then U is the whole interval $x_1 \leq x \leq x_2$.

Institute of Mathematics, University of Uppsala, Uppsala, Sweden

REFERENCES

- 1. Aronsson, G., Minimization problems for the functional $\sup_x F(x, f(x), f'(x))$. Arkiv för matematik 6, 33–53 (1965).
- Aronsson, G., Minimization problems for the functional sup_x F(x, f(x), f'(x)). (II). Arkiv för matematik 6, 409-431 (1966).
- Meinardus, G., Approximation von Funktionen und ihre numerische Behandlung. Springer-Verlag, Berlin, 1964.

¹ Compare the results in [3], pp. 14-15.