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Minimization problems for the functional

sup, F(x, f(x), f" (%))

I

By GUNNAR ARONSSON

The present paper is a continuation of the papers [1] and [2]. These papers treat
the problem of minimizing the functional

H(f) = suer(x, f(.’l?), f(x))

over the class J of all absolutely continuous functions f(x) which satisfy the boundary
conditions f(z,) =y, and f(w,)=y,. The discussion in [1] and [2] is mainly concerned
with the existence and the properties of absolutely minimizing functions (defined in
[1], p- 45) and unique minimizing functions. The question of the existence of a
minimizing function is also treated in [2] and it is shown by an example ([2], p. 429)
that a minimizing function én general need not have any of the properties proved for
a.s. minimals ([2], Theorem 9'). However, if F(z, f(zx), oz, f(z))) <M, holds for a
minimizing function f(x), then f(x) is a unique minimizing function (and hence f(x) is
smooth and F(z, f(z), f'(x)) =M,). This is proved below and a few immediate conse-
quences of this theorem are also discussed.
We assume that F(x, y, z) satisfies the following conditions:

1. P(x, y,2) €C! for o, <z <wx, and all y, 2.
2. There is a continuous function w(z, ¥) such that

>0 if z>ow,y),
oF(x,y,z2)

p is =0 if z=ow(y),

<0 if z<oxy).
3. limy,, o F(x, ¥, 2) = + oo if  and y are fixed.

A function f(z) is admissible (belongs to F) if and only if f(x) is absolutely con-
tinuous on [z, x,] and satisfies f(z,)=y,, f(x;) =y,. Put My=inf,.;H(f). Thus, a
function fy(z) € F is a minimizing function if and only if H(f,)=M,.

Theorem. Assume that f(x) is @ minimizing funciion such that
F(x’ f(x)’ w(x, f(x))) <M0 fOT x1<x<x2'

Then f(x) is the only minimizing function. Furthermore, f(x)€C?x,, x,] and
F(z, {(z), f (x))=M, for x; <x <z, (Compare Theorem 6’ in [2].)

509



G. ARONSSON, Minimization problems. 111

Proof. 1. Since G(z, y)=F(x, y, w(x, y)) is continuous, there are numbers 6>0
and Mg <M, such that |y—f(zx)| <4 implies that G(z, y) <M. Choose M, such that
M{<M,<M, Then the functions ®(z, y, M) and y(x, y, M) (the same notation as
in [2]) are defined and continuously differentiable for z; <z <w,, |y— )| <4,
M, <M<M,

Put E={(x, y)|z, <z<z, |y—f(x)| <0}. Consider the differential equation

where the parameters 4 and M are assumed to satisfy 0<A<1 and M, <M <M,
respectively. The differential equation is considered only in E and with the initial
values (z,, f(z,)) for some arbitrary z,€ [z, ,]. Since f'(x) is bounded for z; <z <x,,
and @, y are bounded in E, there exists a 8, >0, not depending on x,, 2 or M, such that
(1) has a unique solution on the interval [z, —d,, Z,+0;]N [, #,]. Further, the solu-
tion, which we write y(x; x,, 4, M) depends continuously on 4 and M.

2. Now we divide the interval [x;, x,] into N sub-intervals of equal length
<&y 4, =X, <X, <Xg<...<Xy;; =%, Next, we define N numbers {4,})’ in the fol-
lowing way: Consider a fixed », 1 <y <N. Since H(f) <M,, we must have!

Y( Xy Xy, 0, M) SHX 1) SY(X a5 X, 1, M)
Therefore, there is a uniquely determined number 4,, 0<1,<1, such that {(X,,,)=
y(XV+1; XV’ Z’V’ Mo)'
A. Tf 1,=0, then! f(x)=y(z; X,, 0, M,) for X <x<X,,.
B. If A,=1, then! f(z)=y(x; X,, 1, M,) for X ,<z<X, .
3. Let 5 be any number such that
?/(X,,+1; Xvs 07 Mo) <77<y(Xv+1; XW 1’ MO)
Then there is a number M* <M, such that
Y X5 X, 0, M) <n<y(X,.s; X, 1, M),

and a corresponding A*, 0<A*<1, such that y(X,,,; X,, 1*, M*)=9.

Put f,(x)=y(x; X,, A*, M*). Then F(z, f,(2), fr(x)) <SM*<M, for X, <z<X,,,
ie. H(f;; X,, X, 1) <M,.

We may also consider the interval [X, ;, X,] and formulate analogous state-
ments if y(X,_;; X,, 0, My)>n>y(X,_; X,, 1, M,). (Note that the inequalitites for
7 are reversed in this case.)

4. Next, we claim that one of these statements is true:

A. All 4,=0.
B. All 4,=1.

If A or B holds, then the assertions of the theorem follow easily (apply Theorem
6’ in [2]).
Assume now that neither A nor B holds. We will then construct an admissible func-

1 Compare Theorem 6 in [1] and Theorem 6 in [2].
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tion g,(x) on [z, T,), such that H(g,) <M,. This will give a contradiction to the defini-
tion of M,, and thereby prove the theorem.
We use an induction argument.

Assumption. For any system of M consecutive intervals, where M >2,

[Xw Xv+1] [Xv+1’ Xv+2]a AL [Xv+M—1a XV+M]

such that (O%EM~112). (S4EM-1(1,. —1)2) 0, there is an absolutely continuous function
g(x) on [X,, X, ] satisfying

g(Xv) Zf(XV)’ g(Xv+M) =f(Xv+M) and H(g: Xw XV+M) <M0‘
Consider then the intervals
[X/m X/H—l]’ [X;H-l’ -X/H-z]; srey [X//,+M9 X/1,+M+1]

and assume that (O4EMA2)- (S4+ (2, —1)?) 0. Then the assumption can be applied
to at least one of the systems of intervals

[X/u Xﬂ+1]: ooy [Xﬂ+M—1’ X/H—M] a‘nd [Xﬂ+]_’ X,u+2]’ erey [X/L+M: X/H-M+l],

for instance the first. This gives a function g(x) satisfying g(X,)={(X ), 9(X ;1) =
X pae) ond Hig; X, X, 0) <M,

Put g,(x)=g(x )+/'l(x X o). It is obvious that H(g,)<M, if |A]| <4,

Now consider the 1nterva1 X ,HM, X, 1311]- According to (3) above, there are
numbers 7, arbitrarily close to f(X,,), and corresponding functions f*(z) such that
X ) =1 (X parin) =F(X pinsa) and H(fS X, X)) <My If 7 is fixed,
we determine 2 by the condition gi(X ) =7.

Now choose 7 so close to f(X ,.,) that |A] <4y, and consider the function

ol ={g,l(ac) if X, <e<X,.m,
Aoy if X uw<e<Xuiua

Tt is clear that ¢(x) is absolutely continuous, ¢(X,) =HX,), P(X siari1) =HX pimsa),
and H(p; X, X, 004) <M.

This shows that the validity of the assumption for M(>2) intervals implies its
validity for M +1 intervals.

Finally, the validity of the assumption for M =1 and M =2 follows easily from (3).
This completes the proof.

Next, we illustrate the theorem by means of some simple examples.

Example 1. Assume that F(z, y, 2) =@z, y) +y(z, y)2?, where ¢(z, y) and (2, y)
are continuously differentiable for z, <@ <x,, —oco <y<oco. Assume also that there
are constants K, K,, K, such that K, >¢(x,y) > K,, and p(z, y) > K;>0. We cons1der
the mlnlmlzatlon problem between the points (z;, y,) and (x,, ¥5).

Put t=(y,—yy)/(x,—2,).

If K,+ K2 >K1, then there is a umique minimizing function f(x). Further,
H(@)EC¥y, 3], Fla, [(@), (@)= My and /() +0 for 2, <w<a,.

Proof. Since lim ;e F(, ¥, 2) = + oo uniformly in 2 and y, there exists a mini-
mizing function f(x) (compare Chapter 1 in [2]). Further, it is obvious that
M,>K,+K,t2. Hence, F(z, {(z), oz, {(x)) =9z, {(x)) <K,<M, and we can apply
the theorem. This proves the above assertion.
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Example 2. This shows an application of Theorem 1 to a “converse” problem. We
assume as before that F(z,y, z) satisfies the conditions 1, 2 and 3 for x;, <wx<w,
and all y, z. Let there be given two numbers y,, ¥,, such that y, #y,, and a number M.
Here, an admissible function g(x) has to be absolutely continuous on an interval
x; <w<E<uz, and satisfy g(x,) =, 9(&)=y,, and F(z, g(z), ¢'(x)) <M. We assume
that the class G of admissible functions is not empty. For each g(x) € §, the functional
X(g) =min {z|g(x) =y,} is defined. The problem is to minimize X(g) over . (This is
analogous to time-optimal problems in control theory.) Hence, a minimizing func-
tion gy(x) has to satisfy X(g,)=inf,.;X(9).

Assume that go(x) is @ mintmizing function such that F(z, gy(x), w(z, go(x))) <M for
2, <x<X(gy). Then go(x)€C? and F(z,g4x), golx)) =M for z,<w<Xl(g,). Further,
9o(x) is the only minimizing function.

Proof. Consider the “original”’ problem, to minimize H(f), between the points
(%, ¥;) and (X(g,), ¥2)- Let F be the class of admissible functions for this problem,
and put M,=inf;.; H(f). Since ¢,€F, and H(g) <M, we have M <M. Assume that
M, <M. Then there must be a function f,(x)€F such that H(f)) <M. Put f,;(x)=
fol@) +A(x —y). If |A] <Ay, then H(f;, ,, X(g,)) <M. Further, if y,>y, and 1>0,
then there is a £ < X(g,), such that f,(£) =v,, and the same holds if y, <y, and 1<0.
Consequently, 4 can be chosen such that f,(z) € G and X(f;) <X(g,). But this contra-
dicts our assumptions regarding g,(x). Hence M,=M, and g,(x) is a minimizing
function for both problems. Now, the results follows directly from Theorem 1.

Remark. This result can also be proved by transformation of the given problem
to a control problem, and application of the Pontryagin maximum principle. It can
be shown by means of examples that the result is no longer true if the condition
F(x, go(x), w(x, go(x))) <M is omitted.

Remark. Necessary conditions for minimizing functions for the “original”’ problem
can also be derived by the following approach:! Let f(x) € C! be a minimizing function
and let ®(x)€C? vanish at x =2, and x=x,. We also assume that F(x, y, z) €C?, but
no other condition on F(x, y, ) is needed. Put U ={x| F(x, f(z), {'(x)) =M,}. Consider
a neighbouring function f(z)+A®(x) where 1 is a “small” parameter. By applying
the mean-value theorem to ¢(t) = F(z, f +tA®, f +-tA0')— F(z, f, f') between t =1 and
£=0 it is not difficult to verify that we must have min; . ; (a(x) ®(x) +b(z) O'(x)) <O,
where a(z) = F,(z, f(z), f'(x)) and b(z) = F (z, f(z), f'(x)). This leads to various relations
between the set U and the zeros of a(x) or b(z). For instance, if b(x) 0 on U, then U
is the whole interval x; <z <z,.

}n, Swed,

Institute of Mathematics, University of Uppsala, Upp

1 Compare the results in [3], pp. 14-15.
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