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On the Diophantine equation u®—D¢*= £4N

By BeneT StorT
Part 11

§ 1. Introduction.

Consider the Diophantine equation
1) . u?—Dv?= + 4N,

where D and N are integers and D is not a perfect square. In Part I of this
investigation' it was shown that it is possible to determine all the solutions
of (1} by elementary methods?

Suppose that (1) is solvable, and let « and v be two integers satisfying (1).

Then @i;l_@ is called a solution of (1). If w_—l—_g VD is a solution of the Dio-
phantine equation
@) 2*— Dyt = 4,

the number
u -+ vVB_w +yVD Uyt v VD
2 2 h 2

is also a solution of (1). This solution is said to be associated with the solu-

tion %j—;ﬂ/—l) - The set of all solutions associated with each other forms a

class of solutions of (1). - _
.. .. . +oVD w +vVD
A necessary and sufficient condition for the two solutions ot ;’ ) 3

to belong to the same class is that the number
v —u'v
2N
be an integer.
! See [1].

? These methods were developed by T. NaerrLL, who used them for determining all the
solutions of the Diophantine equation

u* — Dv* =+ N,
Nagell also proposed the notions used in this section. See [2], [3], [4], [5]).
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Let K be a class which consists of the numbers—ui%i]/—p »1=1,2,3,...
Then the numbers ui)—;jﬂ/Da t=1,2,83,... form another class, which is de-

noted by K. K and K are said to be conjugates of one another. Conjugate
classes are in general distinct but may sometimes coincide; in the latter case
the class is called ambiguous.

Among the solutions of K, a fundamental solution of the class is defined in

u* +0*'VD .

the follwing way. g I8 the fundamental solution of K, if v* is the
smallest non-negative value of v* of any solution belonging to the class. If

. . . . . —u* +v*VD
the class in not ambiguous, " is also uniquely determined, because —u-2—

belongs to the conjugate class; if the class is ambiguous, »* is uniquely deter-
mined by supposing u* = 0. u* =0 or v* =0 only occurs when the class is
ambiguous. .
If N=1, there is only one class of solutions, and this class is ambiguous.
For the fundamental solution of a class the following theorems were deduced
(D and N are natural numbers, and D is not a perfect square).

Theorem. If u_i;} VD

is the fundamental solution of the class K of the Dio-

phantine equation

(3) u?—Dv® =4N,
and if gﬁ%@ s the fundamental solution of (2), we have the inequalities
Y
4 ) By .
( ) 0svs= le +2 N
() 0 <|u} < V(z, +2)N.
Theorem. If QE—;@ is the fundamental solution of the class K of the Dio-

phantine equation

(6) u2— Dy = —4N,
and if ?le_l/i) 18 the fundamental solution of (2), we have the inequalities
(1) 0<vs —2=VA,
- le -2
(8) 0= |ulsV(@,—2N.
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Theorem. The Diophantine equations (3) and (6) have a finite number of
classes of solutions. The fundamental solution of all the classes can be found af-
ter a finite number of trials by means of the inequalities in the preceding theorems.

I f Uy + (%1 Vg
2

solutions QL_F;)—VD of K by the formula

15 the fundamental solution of the class K, we obtain all the

u+vVI)_u1+'01V5.x+yV]3
2 2 2

where ﬁ—g VD

tine equations (3) and (6) have mo solutions at all when they have no solutions
satisfying inequalities (£) and (5), or (7) and (8) respectively.
For the Diophantine equation

u®>—De® = + N,

runs through all the solutions of (2), including + 1. The Diophan-

corresponding theorems were deduced by NacerLr. In a review published in
the ‘Zentralblatt fiir Mathematik’® 36, (1951), p. 303, CasseLs declares that
NAGELL’s results were substantially known by TcmesvcuEF (J. Math. 16, (1851),
pp. 2567—282). This is not quite correct. In fact, TcHEBYCHEF showed that
when the Diophantine equation

w—Dv®=+N

is solvable, there is at least one solution satisfying the inequalities, and two
solutions when N is not a prime. Thus he obtained a criterion for the solva-
bility of the equation; but he could not solve it completely in this way. To
obt‘ain the complete solution of the equation it is necessary to introduce the con-
cept of class of solutions, as was done by NAGELL.

In part T the maximum number of classes corresponding to square-free N
was determined. The main subject of this paper is the determination of the
maximum number of classes corresponding to an arbitrarily given N. We shall
also prove that a given equation has at most one ambiguous class.

§ 2. Generalities.

Suppose that ut ; 22 and Up + ;) 1 VD

are to solutions of the Diophantine
equation
1) u?—Dv?= 44N,

where u, u; and v, v; satisfy inequalities (4) and (5), or (7) and (8) respec-
tively. Then, as easily seen,

9 0= |uvy Fuyo| 229N,
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where the equality signs only hold if v = uy, v = vy.
Eliminating D from the expressions

(10) W —Do? = + 4N, i — D = + AN
we obtain
(11) (wvy + wyv) (uvy —uyv) = + 4N (0f —°).

From (10) we also get

(12) (wuy F Dovy)? — D(uvy F uy0)2 = 16 N2,
or, dividing by 4N2,

uwy F Doo\* . (uw :}:M)z‘
(13) e R e

Thus all the prime factors of N are divisors of either of the expressions

uvy F Uy v
2

as is apparent from (11). If all the prime factors of N are divisors of the same
expression, the squares of the left-hand side of (13) are integers. Then

uvy +uv=0 or uvy ¥ uyv=2yN.

But then w = u;, v = v, and the two solutions coincide.
wp + VD u; + 0 VD uj + v,-VD ux + v VD

Let 5 ) 5 2 , ... be a number of so-
lutions of the Diophantine equation
1) w?—Dv: = + 4N

in which every u and v satisfy inequalities (4) and (5), or (7) and (8) respec-
tively, provided « is non-negative.
For the sake of brevity we introduce the notions
(@ )t = §(wiv; + wjvi),
(5 9) 7 = 3 (wivj — uyvi),
Gy )F = 3 (wiv & o).
Suppose that
N=plpy...00",
where 4, are positive integers, 1 £r =< n. If p!r is one of the prime powers

which divide N, it is apparent from (11) that (¢, j)* is divisible by p%r and
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that (¢, j)~ is divisible by pr, where ar and f, are non-negative integers which
satisfy the condition @, + 8, Z y». Then we may suppose that (4, j)T is divis-
ible by

a

Dy Py D
and that (¢, j)~ is divisible by
ol ph,
where p is the greétest divisor of p¥r which divides (¢, 1)* and pP is the

greatest divisor of plr which divides (z, )=, 1 £ 7 £ n. From (11) it is appa-
rent that

ar + fr 2 Yr-
We express this fact by the symbol

.. a o B: B
G Heplpy ..o © pf‘p; co.p
. | o : . ui+uVD
We call this symbol the distribution corresponding to the solutions —3—2—1—,

'“7’_"';’1@, or shorter the distribution corresponding to (¢, 7).
If ar = y: holds for every r, 1 < r < u, or if f, = y, holds foreveryr, 1 S 7 < n,
u; + ’UiVD uj + ’UjVD
5 and 3
Let the distributions corresponding to (7, §)* and (h, k)* be

coincide.

it is apparent from (13) that the solutions

GHepn, ...000 epf‘pg’ e pf{‘,

(h, k)@ py B3 ..., epf‘ pg" 'pﬁ".

Suppose that ¢ and b be two non-negative integers, and let min (a, b) be the
least one of the two numbers @ and b. If

min (a,, ar) + min (Br, fr) Z yr

holds for every r,1 < ¢ < n, the distributions corresponding to (s, /)* and (k, k)T
are said to be posztwe—equwalent to each other. If

min (ar, f7) + min By, ar) = pr

holds for every r, 1 < r < n, the distributions corresponding to (¢, §)* and (&, k)t
are said to be negative-equivalent to each other. B _
i + % VD uj + ’UjVD
3 b
‘2 -2

The definitions of distribution corresponding to the solutions
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positive-equivalent distributions and negative-equivalent distributions given above
include the definitions given in Part I, which hold for yy=pa= -+ =y =1.
When proving Theorem 7 in Part I we proved the following results.

If p, divides (¢,9)t and (s, %)*, it also divides (7, k)~

If p, divides (i,§)* and (i, k)~, it also divides (7, B)*.

If p, divides (z,7)~ and (s, k)=, it also divides (5, k).
Let the distribution corresponding to (j, k)* be

) P " o 5
G ke py ..., ©1 Dy ...D" -

If the distributions corresponding to (4,7)* and (¢, k)T are positive-equivalent
to each other, it is apparent that

min (a,, a7) + min (B, fr) Z P
holds for every r, 1 £r = n. Thus
B =y

holds for every 7, 1 £ 7 < n. In the same way, if the distributions correspond-
ing to (s,7)T and (s, k)t are negative-equivalent, it is apparent that

’”
ar = Yr

wr VD
holds for every 7, 1 =7 <n. In both these cases the solutions Y ;’V >

ur + vk VI)
2

Let

coincide.

U + leE Uy + van) ugz + %VD u; + mVl_) u; + 'v,-Vf)
3 2 P A | b H

2 2 2 ' 2 2

Yk +;" VD , Um +;mVD , ... be the solutions of (1) in which « and v satisfy
inequalities (4) and (5), or (7) and (8) respectively, provided u is non-negative.

If we know the distributions corresponding to (1, 2)* and (1, 3)*, we may
determine the distribution corresponding to (2, 3)*. If we also know the dis-
tribution corresponding to (1,4)%, we may determine the distributions corresponding

“to (2, 4)% and (3, 4)%, and so forth.

We now determine the conditions for all the solutions to be distinct.
Let the distribution corresponding to (1, 2)* be

(1, %) ep;‘p;’ e p:", o pf‘ pﬁ“ - pﬁn;
If ar=9, r=1,2,3,...,n, or if fr=yn r=1, 2,3,...,n,1t i1s apparent
that the solutions "2 ;’1 VD & wit ’2”' VD coincide. Thus these possibilities

have to be excluded. Further, if the distributions corresponding to (1, 1) and
(1, j)* are positive-equivalent or negative-equivalent, it is apparent that the
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u; + wuVD u; + U,'VD
2 2
tions satisfying inequalities (4) and (5), or (7) and (8) respectlvely, and where w
is non-negative, depends on the number of distributions corresponding to (1, 2)*,

solutions coincide. Thus the number of distinet solu-

(1, 3)%, , (1, 9)%,... any two of which are neither positive- equlvalent nor
negative-equivalent. :
Let v
(L) ep'py,...00 © ﬁnga e pi"
be a distribution in which
ar + ﬁr > '}’r

holds for one or more r, 1 = r < n. If

L j)ep vy ...00", epf‘ pg" - pﬁ"

is a distribution in which
aréa;,/fhgﬂ;,a;—i'ﬂ;:)’r

holds for every r, 1 < r < n, the distributions corresponding to (1, ) and (1, 7)*
are positive-equivalent.

§ 3. The number of classes for an arbitrarily given NN.

Theorem 9. 1) Suppose that

2, 2 2t,, 2b1+1 2bp+1 25, +1
N=p 'p, ...0,™0 " ' -G

where a; are positive integers and b; are non-negative integers and p; and g; are
primes all of which are different.
Suppose that n>0. Then the Diophantine equation
(14) W D= d4gtugl | plm gt Bl
has at most 2 1(2a; + 1} (2ag + 1) ... 2am + 1) (31 + 1)+ 1) ... 0a + 1)
wi + VD
2

solutions in which w; and v; satisfy inequalities (4) and (5), or (7)

and (8). respectively, provided w; is non-negative.

Suppose that n =0 or that n >0 and the greatest power of g; which divides D
18 qu orq“"e7+1 >b Biz0,i=1,2,...,n If g =2 holds for j = §’, for
it s suffwwnt that D = 2% D, holds, by 2 aj 2 0, Dy =3 (mod. 4). Thei;&__ (14)
‘ 1,+ s D . .
has at most 3 ((2ay + 1) (2ay + 1) ... (2am + 1) + 1) solutions “——;’— in
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which wi and v; satisfy inequalities (4) and (9), or (7) and (8) resqectively, pro-
vided u; 15 mon-negative.

2) Suppose that n>0 and that all p; and ¢; are odd primes. If solvable, the
equation has at most

2*2a; + 1)(2as + 1) ... 2am + 1) (b + 1)(by + 1) ... (b + 1) classes when N

and D are relatively prime ;
2"_"'(2 (@n—ay) + 1)(2(a,—an) + 1) ... (@™ W) T DO — By + 1)
by— Byat 1) o by — Bry— T 1) classes when p2 % 4s the greatest power of
28p+1

is the greatest power of pn which divides D, anZap, pz0, h=m—m' + 1,
m—m' +2,...,m, 0Sm =m, and further, when qz"" is the greatest power
of qj which divides D, b;2 ;2 0, j=1,2,..., n—n', and when g, 2er or qzﬂ"+1
is the greatest power of g, which divides D, a;>b,, Br Z 0,7 =n—n' + 1, n—n’+
+2,...,n 050 Sn;

one class when N 1is a divisor of D.

Suppose that n>0 and that pm = 2, or g, = 2 respectwely. If solvable, the equa-
tion has at most

the same mumber of classes as if all primes were odd, when D =22 D;, aZ 0,
D, =1 (mod. 4);
the same number of classes as if there were only m — 1 primes p;, or n—1
primes g; respectively, and if all primes were odd,

when D= 22D, a2 0, D, =38 (mod. 4);

when D = 22271 D, B Z 0.

Suppose that n =0 or that n >0 and the greatest power of g; which divides D
18 q; 2% or qﬂ’H, w>bj, f;i20,7=1,2, ..., n. If ¢f =2 holds for j =7, for
7"t is suf]‘zcwnt that D = 2% D, holds, bj z aj = 0,°D, = 3 (mod. 4). If solvable,
the equation has at -most

(20, + 1) (2a, + 1) . (2am + 1) classes when oll p; are odd primes which are prime
to D;

(2@, =) + 1) (20— ) + 1) o . 2y — %rmm) + 1) classes when p3
1s the greatest power of p; which divides D, a;>a; Z20,0=1,2,..., m—m/, and
when p2a" or piﬂhﬂ 1s the greatest power of pn which divides D, o = ap, 3 Z 0
h=m—m'+1, m—m'+2,...,m, 0 =m’ = m;

i 'whwh dwzdes D, ¢;>0a;20,1=1,2,..., m—m/, and when p, "or'p

the same number of classes as if all p; were odd, when pm =2 and when D =
=22D,, 20, Dy=1 (mod. 4);

the same number of classes as if there were only m — 1 primes p; all of whick
were odd, when pm = 2 and

when D=22D,, « 20, D=3 (mod. 4);

when D = 2%+1D 8= 0.

Proof: Suppose that all primes are odd and that N and D are relatively prime,

. . D — D
and consider the solutions L +2v1VB , 22 _'_2’02 Yo e +2”tv_ ’
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which % and v satisfy the conditions of the first part of the theorem. It is
apparent from Section 2 that the number of distinct solutions satisfying these
conditions depends on the number of distributions corresponding to (1, 2)%,
(1,3)%, ..., (1,8%, ... any two of which are neither positive-equivalent nor
negative-equivalent.

We first suppose that m = 0, n = 1. Consider the following distributions.

1,2 e g

2b.
(1’ 3) ® ql 1’ © 91

25 —1 2
1L4)eq o4,

(1,25 +3)o gt

It is apparent that any two of these distributions are not positive-equivalent
and that every other distribution is positive-equivalent to at least one of these
distributions. Moreover, it is apparent that these distributions are negative-
equivalent in pairs and that two distributions of different pairs are not nega-
tive-equivalent. Thus the maximum number of distributions any two of which
are neither positive-équivalent nor negative-equivalent is &, + 1. If we exclude
the distribution

1,2)e ¢ or (1,26 +3)o gt

there remains &, distributions. Then it is apparent that there are at most
by + 1 solutions satisfying the conditions of the first part of the theorem.

We now suppose that m = 0, n = 2. From the preceding case it is apparent
that there are the following number of distributions any two of which are
neither positive-equivalent nor negative-equivalent. :

(1,2) ® ¢ &1,
(1,3)e qu‘“ qzb’,_ O q,,
(1,206, + 1] + 1) ® ¢**, o g

2 b
1,20, +11+2) 0™ &2, e q,

(1, 4[1’3 + 1] + 1) &) qul, (S ' q:b"+1,
(1,206, +1][02 + 1] + 1) ® &t e qi‘ q:b""l,

1

It is easily seen that any two of these distributions are neither positive-
equivalent nor negative-equivalent and that every other distribution is positive-
equivalent or negative-equivalent to one of these distributions at least. If we
exclude the distribution : 4 [
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%by+1  2byt1
(L2)®og, " g

there remains 2 (b, + 1) (b + 1) — 1 distributions. Then it is apparent that
there are at most 2 (b; + 1) (by + 1) solutions satisfying the conditions of the
first part of the theorem.

We now consider the case when m = 0. From the preceding case it is appa-
tent how to determine a set of distributions any two of which are neither
positive-equivalent nor negative-equivalent. In fact there are

1 (by + 1) (by + 1) ... (bn + 1)

such distributions. If we exclude the distribution
’ (1’ 2) e qul‘i‘l q:b’*"l L. qibn'*'l

there remains 2"~1(b; + 1)(by + 1) ... (bn + 1) — 1 distributions. Then it is
apparent that there are at most 27~1(b; + 1)(by + 1) ... (bn + 1) solutions
satisfying the conditions of the first part of the theorem.
We now suppose that m = 1, # = 0. Then we have to consider the following
distributions.
243
1,2)ep ",
24,1

(1,3)6271 ’ epl’
2ay
(1,2a; +2)0 p; .

It is apparent that any two of these distributions are not positive-equivalent
and that every other distribution is positive-equivalent to at least one of these
distributions. Moreover, it is apparent that all distributions except

(1,0, + 2)®py, ©9p7

are negative-equivalent in pairs and that two distributions of different pairs
are not negative-equivalent. Nor is

1,a, + 2)®p}, © 97

negative-equivalent to any other distribution. Thus the maximum number of
distributions any two of which are neither positive-equivalent nor negatlve-
equivalent is a; + 1. If we exclude the distribution

(1,2) ® ™ or (1,2a, + 2)© "
there remains a; distributions. Then it is apparent that there are at most
g +1=3(2a +1)+1)

solutions satisfying the conditions of the first part of the theorem.

We next consider the case when m = 2, n = 0. Then it is apparent that
there are the following distributions any two of which are neither positive-
equivalent nor negative-equivalent. ‘
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(1,2) @ 2% p*,

Uty —
(1,3)®p§41 p2= 1, G_PZ’

(Laz + 1) ® 5, 93", ok,

2a,—1 2
(1!a2 + 2) ®p1 ' pzaza ep19

+1 +1 -1 -1
(1, ay ay + 1) ® pt]l_l p;g y © p:1 13;2 >

24,
(1’ ay Ga + 2) ® pl l: ef';aq,

i

+1  ap-1 ~1  aptl
(1,200 + @ p" 97, 097" py

a; 2a,

(1:2a1a’2+2)$p1 pz ’ eptlh’

(1,2a1a5 +ay + 1) ® pllh p;’“, e PT‘ ?;rl,

(1,200, + ay + 2) @ 2" 13, © PP,

ay+1

(1,2a100 +a; + a3+ 1)@ D, p;’, e p':‘_l p;’,

(1,2a1a; + ay + ap + 2) @ 7 Py, ©p) Py

It is apparent that any two of these distributions are neither positive-equi-
valent nor negative-equivalent and that every other distribution is positive-
equivalent either to one of these distributions or to a distribution which is
negative-equivalent to one of these distributions. If we exclude the distribution

24,
(1,2) @ pi* py
there remains 2a,a; + a; + ap distributions. Then it is apparent that there are
at most
‘ 2aqpag +a; +ag+1=134(2a, +1)Q2ay + 1) +1)
solutions satisfying the conditions of the first part of the theorem.

We next consider the case when m = 3, n = 0. From the preceding case it
is easily seen that we get 4, ayas distributions in which (1,t)* and (1, £)~ are
not divisible by any p;® on the same time, 2a; g, distributions in which (1, &)+
and (1,¢)~ are only divisible by p; by the same time, a, distributions in which
(1,2)* and (1,%)~ are divisible by p;‘ pg’ on the same time and one distribu-
tiog in which both (1,#)* and (1,¢)~ are divisible by p;" »; Py Then it is ap-
parent that there are
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dajagas + 2a1ay + 20003 + 2a30; + a3 + ag +az + 1

distributions any two of which are neither positive-equivalent nor negative-
equivalent. Then there are at most

1(2a; F )20y + 1)(2ag +1) + 1)

solutions satisfying the conditions of the first part of the theorem.

We now consider the case when # = 0 and m is arbitrary. From the preced-
ing cases it is apparent how to find the maximum number of distributions
any two of which are neither positive-equivalent nor negative-equivalent.

If Si is the k-th elementary symmetric function of the numbers ay, ag, ...,
Om, 1 £k =m, we get
gm—1 Q. distributions in which (1,¢)* and (1,¢)” are not divisible by any
p? on the same time,
gm-2 & . distributions in which (1, #)* and (1, ¢)~ are divisible by just one

a; .
p;* on the same time,

961 §, distributions in which (1,#)* and (1,%)~ are divisible by m —k of the
powers p;' on the same time,

S, distributions in which (1,¢)* and (1,¢)~ are divisible by all the powers Dt
except one on the same time.

If we add the distribution
1,2) ® p}* vy ... o™ © P VOSN
and exclude the distribution in which any of (1,¢)* and (1,¢)~ is divisible by
2 2, 2a,, .
Py Dy e Py there remains
31(2a;+1) Qag+1...Qan+1)+1)—1

distributions any two of which are neither positive-equivalent nor negative-equi-
valent. It is easily seen that every other distribution is positive-equivalent either
to one of these distributions or to a distribution which is negative-equivalent
to one of them. Then it is apparent that there are at most

3(Cay+ 1) Cag+ 1) ... Qam+ D +1)

solutions satisfying the conditions of the first part of the theorem.

We next consider the case when m = 1, n = 1. Then it is clear that any two
of the following distributions are not positive-equivalent and that every other
distribution is positive-equivalent to one of these distributions.

(1,2) ® 5} g™,

2a; 2b:
(1’3)®p1l qll’ GQI’

(1,[2ay + 1][26, + 2]+ 1) © 2% &

262



ARKIV FOR MATEMATIK. Bd 2 nr 10

It is apparent that these distributions are negative-equivalent in pairs and that
two distributions of different pairs are not negative-equivalent. Thus there are

(2ay +1) (b + 1)

distributions any two of which are neither positive-equivalent nor negative-
equivalent. If we exclude the distribution

(1,2) ® 2, ¢ or (1,[2a; + 1] [2b; + 2] + 1) © p™ ¢!

there remains (2a; + 1) (b, + 1)—1 distributions. Then there are at most
(2ay + 1) (by + 1) solutions satisfying the conditions of the first part of the
theorem.

Finally, we consider the case when both m and n are arbitrary. From the
preceding case it is apparent that there are at most

2124+ 1) 2as+1) ... Zam+ 1) (by + 1) (by +1) ... (ba + 1)

distributions any two of which are neither positive-equivalent nor negative-equi-
valent, and at most the same number of solutions satisfying the conditions of
the first part of the theorem. Hence this part of the theorem is proved.

Suppose that » >0 and that all p, and g; are odd primes. If N and D are
relatively prime, there are at most

2™(2a, +1) (202 +1) ... Qam+1) (by +1) (bg+ 1) ... (bu + 1)

classes, since it is apparent that every solution satisfying the conditions of the
first part of the theorem may correspond to two classes. When pf"i is the greatest

o o o + v VD

power of p; which divides D, a;>a; 2 0, every u is divisible by p;%. If h T4 21——
+ VD . R . )

and X2 e two solutions satisfying the conditions of the first part of

2
the theorem, p;* divides both (1,#)* and (1,#)~. In order to get the maximum

number of distributions any two of which are neither positive-equivalent nor
negative-equivalent, it is clear that the factor (2a; + 1) of the expression deduced
above must be substituted by the factor (2(ai — @) + 1), and similarly in the
number of classes. When pia" is the greatest power of p, which divides D,
ar Z ap, every w is divisible by p;%. When piﬁ %1 is the greatest power of ps
which divides D, every u is also divisible by py". In fact, from (14) it is seen
that if N is divisible by p;* and D is divisible by p-%"", u? is divisible by
oy *"!. Then u is divisible by A%%*’. But then D? is divisible by p™**% and
thus ¢® is divisible by ps and v is divisible by p;. But then De?* is divisible

by pip #*3 and then u is divisible by pi"+2. It is apparent that we may con-

tinue, till w is divisible by p;*. In both these cases, the powers of pia" give
no contribution to the number of distributions and the number of classes.
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In the same way, when q?“" is the greatest power of ¢; which divides D,
bj = a; 2 0, the factor (b; + 1) may be substituted by (bj—a; + 1), and when

qf“’ or qfﬂ’H is the greatest power of ¢, which divides D, a,>b,, fr 2 0, the

powers of ¢, give no contribution to the number of distributions and the number
of classes. If +=1,2,...,m—m', h=m—m'+1, m—m' +2,...,m, 0=
Smsm j=1,2,..., n—n,r=n—n"+1, n—n" +2,...,n 020 Zn,
the number of classes is at most

2n= 2@y, —a +1) 2@, —a)+1) ... (2 (a’Ym—mj _* a‘ym—-m’) +1)-
: (byx_' ay, + 1) (bwk_ Ay, + 1) v (byn—n’_ Ly + 1)

If #>0 and pm =2, or g, = 2 respectively, (14) is only solvable in odd u
and v when D=1 (mod. 4). If D = 2%D,, D, =1 (mod. 4), every u is divisible
by 2% a < am, or a < b, respectively, or by 2°m, or by 2°»*! respectively, when
a = am, or a > b, respectively. Thus the equation has the same number of classes
as if all primes were odd. When D = 22°D1, a0, D=3 (mod. 4), or when
D=2" 1D, B =0, every u is divisible by 2*#, or by 9%n*1 respectively. In
that case (14) has the same number of classes as if there were only m — 1 primes
p;, or n—1 primes g; respectively, and if all primes were odd.

We next suppose that n = 0 or that n > 0 and the greatest power of ¢; which

divides D is ¢;7 or ¢/1*', a;>bj, f;Z0, 1=1, 2,...,n If gr=2 holds for
j=19’, for 47 it is sufficient that D = 22“f'D1 holds, by 2 aj = 0, D; = 3 (mod. 4).
Then it is apparent that every % is divisible by q’{‘ q;’ e qf'”. In that case
(14) has at most ’

}(@a+1)@a+1 ... 2am+1D+1)

solutions in which u and v satisfy inequalities (4) and (5), or (7) and (8) re-
spectively, provided « is non-negative. When all p; are odd primes which do
not divide D, there are at most .

31 2a; +1)(2a:+1)...(2am+1)
classes because one of the solutions corresponds to only one class, and this class
is ambiguous. In fact, suppose that
. ! ’ zb ’
D=qu‘ q:b' v g, Dy

holds, b; 2 b2 0. As D is divisible by ¢7 or by ¢/7*", &;>b;, 20, it is

+9VD

apparent that every ¢; divides D;. Suppose that k- 2 is a solution of (14)

in which ,
a, a b b by
u=p"0 ... p::” R il T8
2 (bi—b1") 2 (bs—by) 2 (by—by")
kA PR A A
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holds. Then (14) may be written
2q, 2 2a,, 2b; 2 28 v
BBy By G gt (W=D = T A )

As D, is divisible by ¢; s .. . gn, it is apparent from Theorem 8 in Part I that
w2 —Div?=t4q1¢2...

has one ambiguous class, if it is solvable. It is apparent that this class corresponds
to an ambiguous class of (14). If p?"’: is the greatest power p; which divides D,
a>a; 20, ¢=1,2,..., m—m’, and when pia" or pi'g"ﬂ is the greatest power
of pr which divides D, as = an, fo 20, h=m—m' +1, m—m' +2,...,m,
0 = m’ £ m, it is apparent there are at most

20y, —ay) +1) 2@y, —ay +1) ... 2@y, — %p_n) T 1)

classes. When pn =2 and when D =2%D,, a 20, D, =1 (mod. 4), it is appar-
ent from the preceding cases that there is the same number of classes as if
all p; were odd. When pw =2, D=2%D,, a 20, D;=3 (mod. 4), or when
pm =2, D=22+1D, B 20, there is the same number of classes as if there
were only m —1 primes p;. Hence the theorem is proved.

§ 4. The number of ambiguous classes.
We shall prove :

Theorem 10. The Diophantine equation
(1) ul—Dvt= 1+ 4N
has at most one ambiguous class.
Proof: Suppose that
24, 2 20, 2b+1 2b,+1 28, +1
N=p1u’p2a2. N A e g,
where @; are positive integers and b; are non-negative integers and p; and ¢;

are primes all of which are different. Further suppose that p?"i is the greatest

power of p; which divides D, a;>a;20,1=1,2,..., m/, that pia" or pzhﬁ wtli

is the greatest power of pp which divides D, arZas, 20, h=m"+1,
m +2,...,m, that qu."f is the greatest power of ¢; which divides D, b; 2 a; 2 0,
i=12,..., n’, and that qf"’ or qfﬂ r+1 i3 the greatest power of ¢, which divides

D, a;>b,, 20, r=n"+1, #’+2,...,n Then (1) may be divided by

PRI L G g G G
and we get the Diophantine equation
W2 —gui1 gz .. g Dyw® = 14 pf(“‘_“‘) p:(”’_"’) ... pf,f'am'—a’”') .
qf(b‘_a‘)ﬂ g D 1 g
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This equation may be written
(15) w?—rDyv? = + rst?,

where st2 and D, are relatively prime.

According to Theorem 4 in Part 1, the necessary and sufficient condition for the
solutions 11#) and MJM

of the Diophantine equation
w?—Dv* = £4N
to belong to the same class is that
Uh — v
2N
be an integer.
Suppose that (15) is solvable and has an ambiguous class the fundamental

solution of which 18 H—’;_r—&- As the class is ambiguous,
2u' v
2N

must be an integer. As si> and D, are relatively prime, st must divide ¢’. But
then s also divides ' which is impossible. Thus a necessary condition for (15) to
possess an ambiguous class is that s = 1 holds. o
Suppose that there is another ambiguous class the fundamental solution of which is
Wy + viVr Dy

) - As the class is ambiguous,

ui vt

2N
is an integer. But then ¢ divides »;. The necessary and sufficient condition for
the two ambiguous classes to coincide is that

w vl — u v’
9re?

be an integer. It is apparent that r divides u’ as well as u{ and that ¢ divides
o', w1, v" and vi. Hence the theorem is proved.

§ 5. Numerical examples.
Finally, we give some examples which illustrate the preceding theorems.
Example 1. «?—17¢% =128 = 4.2%,

The fundamental solution of the equation u*—17¢® =4 is } (66 + lﬁyﬁ).
For the fundamental solutions in which # and v are non-negative, according to
inequalities (4) and (5) we get '
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Oévél/bi‘,zzv:0<u§V68N.

We find the fundamental solutions
1(+14 +2V1T), 3 (+20 +4V17), 1 (£31 +TV17).
Example 2. %®— 17* = 256 = 4,25,

We find the fundamental solutions 16, } (118 + 2V17), § (£33 + 7TV17),
1(+52 +12V17).

Example 3. u®—7v* = 128 = 4.25. ~

The fundamental solution of the equation w*—7+®* =4 is § (16 + 6 V7).
For the fundamental solutions in which % and v are non-negative, according to
inequalities (4) and (5) we get

0<v=V2N, 0<u < VI8N.

We find the fundamental solution 3 (24 +8V7). As D=3 (mod. 4), the equa-
tion has only one class.
Example 4. »®-—148¢® = 78732 = 4.3°.

The fundamental solution of the equation u* — 148% = 4 is } (146 + 12 1/148).
For the fundamental solutions in which % and v are non-negative, according to
inequalities (4) and (5) we get

0<ovs< ]/327N,O<u§1/371\7.

We find the fundamental solutions } (+432 + 27V148), } (1048 + 83V148).
Thus the number of classes is less than the maximum number.

Example 5. u* —60® = —180 = —4.45 = —4.5.32 ~
The fundamental solution of the equation «? — 6v* = 4 is 1 (10 + 4V6). For the
fundamental solutions in which « and v are non-negative, according to inequalities
(7) and (8) we get
0<v=7, 0s5u=18.

We find the fundamental solutions % (+6 + 6V6). As 3 divides 180 there are
only two classes.

Example 6. 42— 170 = 70304 = 4.23.13%.

We find the fundamental solutions
3(£269 + 11 VIT), § (+286 + 26 V17), § (326 + 46 V1T), } (£377 + 65V17),
3 (473 + 95VIT), 4 (+598 + 130 V17), § (£734 + 166 V17),

3 (+949 + 221 V17).
Thus the equation has the maximum number of classes.
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