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On an unsolved question concerning the Diophantine

equation 4x° + By = C

By Per HiceMARK

§ 1.
The Diophantine equation

2> + Dy® = o))

was solved completely by B. Deraunay [1]' who showed that it has at most
one solution in integers x and y when y = 0; if z, y is an integral solution, then

n=x+y?ﬁ (2)

is the fundamental unit of the ring R (1, Vﬁ, (1@)2)
T. NacerL [2], [3], [4], and [5] proved the same theorem independently of
DreLaUNAY and, moreover, a stronger form of the latter part of the theorem.

3
NaceLL [4] and [5] proved that # is the fundamental unit of the field K (VD),
except when D = 19, 20, and 28, in which cases 5 is the square of the funda-
mental unit. These values of D correspond to the solutions z = —38, ¥ = 3;
z=—19, y=T7; and x = —3, y = 1.

To solve (1), one has thus to determine the fundamental unit of K(Vf)),
and to examine whether it has the form (2) or not.
NAGELL [4] generalized these results and showed that the Diophantine equation

A43® + By® = C, 3)

where €' =1, or C =3, where 4 and B are >1 when C =1 and where 4 B
is not divisible by 3 when C = 3, has at most one solution in integers = and y.

He also established the following result: Put 4 = ac? and B = bd?, where
a, b, ¢, and d are positive integers, relatively prime in pairs, and possessing no
square factors. Then, if z, y is a solution, one has

7= é(zf@ by VBP = &, (4

! Figures in [ ] refer to the Bibliography at the end of this paper.
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P, HAGGMARK, The Diophantine equation Ax* + By® = C

3
where & is the fundamental unit of the field K (Vac®b?d), 0 < & <1, and
where 7 is an integer = 0.1
This theorem may also be expressed in the following way: If z, ¥ is a solu-
tion, then

n= a@VA <+ yVBF =, o)

3 3
where { is the fundamental unit of the ring R (1, Vac® b2d, Va?cbd?), 0 < <1,
and where s is an integer = 0.

The relation between ¢ and & is ¢ = &, or { = £2. Hence we have = s, or
r =38+ 1 (Cp. [4], p. 267).

Although an upper limit of the integers » and s could generally not be
determined, NAGELL succeeded in constructing an algorithm to decide if (3) is
solvable or not. In the former case, this algorithm gives a method to determine
the solution of the equation (Cp. [4], p. 257 and p. 263). This method, a sort
of descente finie, is, however, too cumbersome to be practical. It would thus
be of value to solve the question of the upper limit of » and s.

NageLL [4] has treated this question and proved that s = 0 when C =1,
and r =0 when C =3, if 4 is even and B is divisible by a prime factor of
the form 8¢t — 1, or 8¢+ 5, and if 4 and B are both divisible by a prime
factor of the form 8¢—1, or 8¢ + 5. He further proved in [4] that there is
an infinite number of fields K in which s = 0 and s = 1 when ¢ = 1, and
that there is an infinite number of fields K in which r = 0 and r = 1 when
C = 3.

NagerL [6] and {7] has proved that s £ 1 when C =1 if 4 and B contain
at most three distinct prime factors each.

Finally, NacerL [7] has proved that s £ 1 when C =1 if 4 and B contain
no prime factors of the form 3¢ + 1.

The purpose of the present paper is to show that the method employed by
NagerLr in [6] may be extended and used in a few more cases in order to
find an upper limit of » and s.

# and 1 denote the largest number of distinct prime factors of 4 and B
respectively. By », we denote the largest of the numbers x and 1. The fol-
lowing results are obtained in this paper:

r =1 when C =3 if v £ 2;

r =1 when C =3 if A and B are odd and v < 4;
r=1 when C=3 if A or B is divisthle by 4 and v < 4;
§=1 when C=1 o A and B are odd and v < 6;
s=1 when C=1 14 A or B is divisible by 4 and v < 6.

*

There is one exception from this theorem, viz. the equation
22° +y* =3,

which has the two solutions # = y =1 and « = 4, y = — 5. This exception is not taken
into consideration in the following.
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In order to prove the theorems mentioned above, we start from some of the
results in [4].

Let us first consider the case C = 1. If the number s of (5) is > 1, 5 may
be written as the biquadrate of a unit. It is proved in [4] that it is a nec-
essary condition for # being a biquadrate of R that the following equation
has a solution in integers f, g, Ny, and N,:

1 =fN}—274 N, (6)
where fg =A or fg = B. This condition is not sufficient. A necessary and

sufficient condition consists in the following system having a solution in integers
X, Y, and Z:

abZ? + 2XY = NM,
dY? + 2acXZ = dM?, (7
¢X® +2bdYZ = — LcN?
with N =2N, N, and (M, N) = 1.

If C =3 and the number r of (4) is > 1, # may be written as a biquadrate
of a unit. It is a necessary condition for 7 being a biquadrate of K that the
following equation has a solution in integers f, g, Ny, and N,:

1 =N —3¢"Ni, (8)
where fg = A4 or f¢g = B. This condition is not sufficient. A necessary and

sufficient condition consists in system (7) having a solution in integers X, Y,
and Z.

§ 2.
We begin by proving the following proposition:
Theorem 1. [f the equation
pra® -+ gmy® =3,

where p and g are distinct primes == 3 and where m and n only take the value
1 or 2, has a solution in integers x and y, then

n=3@V"+yVeg")?
8 S
18 the fundamental wnit of the field K (Vp™q>~™), or the square of this umit.

We have to consider the equation
1=7/N;—34'N;, 9
where fg = p* (or fg = ¢™), and we distinguish three cases:
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1) pis odd, f = 9" and g = 1.

(9) takes the form :
1= p®"N$— 3 NS. (10)

If N, is even, (10) is impossible since the congruence
3(N3?* + 1=0 (mod 8)
is impossible. Hence N; is odd and N, even, and we get from (10)

p" NI+ 1=3-2°N§, p"N3F1=28N5,
which gives
+2=3-2:N;— 28 N, (11)

We have either a =1, 8 =5, or a =5, § = 1. ‘Hence we get from (11) the
two equations
+1=3N5—16N;, (12)

+ 1 =48N§— N§. (13)
From (12) we get the congruences
3(N3?+ 1=0 (mod 8),

so that this equation is impossible. The upper sign of (13) is impossible
modulo 3. (13) may be written -

(4N3+ 1P — (4 N3 — 1P = 2 N§,
but, as is well known, the Diophantine equation
wd + 8 = 2u?

has the only solution #® = ¢® = w® when w == 0. Hence the impossibility of
the equation.
2) p is odd or even, f = 1 and ¢ = p".

(9) takes the form
1 =N} —3p*" N3, (14)

or
(p"N§ + 1)* — (p" N3 —1)® = 2V,

and we can see that (14) is impossible.

N p=2f=2"and g = 1.

(9) takes the form
1 = 227N} — 3 N}.
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If n =2, we get ,
1 =16 N —3N3;
but this equation is impossible since (12) is impossible. If n = 1, we get
1 = 4 (N — 3 (N3P

The Diophantine equation 42%® — 343 =1 has the only solution z = y = 1.
This gives |Ny| =|Ny| =1 and (Cp. [4], p. 263) a =2, b=c=d=1, N =2,
M=10ra=2b=41,¢c=d=1, N=92, M= —1.

The former solution corresponds to the equation

223 + ¢® = 3,

which we do not take into consideration. The latter solution corresponds to

the equation
243 + 414y = 3,

which has the solution ¢ = — 52, y = 19. However, the number
1(—52V2 + 19 VALY = (320 + 22 V164 — 30 V3369)2

3\
is not a biquadrate of the field K (V164). If it were, system (7) would have
a solution in integers X, Y, and Z. In this case the system may be written

4122 + XY = —1,
Y2+ 4XZ =1, (15)

X?+8YZ=—2,
which gives
82722 + 2XY —X2—82YZ =0,

4122 + XY + Y?* +4XZ = 0.

. . X
From the third equation of (15) we get Z == 0. If we put 7 =% ZZ =9, and

eliminate u, we get
' v + 300° + 246 0% + 3280 + 123 = 0. (16)

If (15) had a solution in integers, then v would be a rational number. However,
(16) has no rvatianal solution.

§ 3.
We shall prove the following proposition:

Theorem 2. Let a, b, ¢, and d denote positive integers, relatively prime in
pawrs, and possessing no square factors. If the equation

Ax® + By =3,
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where AB is not divisible by 3 and where A = ac® and B = bd® have at most
two distinct prime factors each, has a solution n integers x and y, then

7 = %(xf/;_l + ylg/J_B)s

s the fundamental unit of the field K(?Efcf b2d), or the square of this unit.
We have to consider the equation
1 =N —3¢Ng, (17
where fg = A (or fg = B), and we distinguish three cases:
1) fg is even and [ = 24A.
h cannot be even, for then
3(gN3 + 1=0 (mod 8),

which is impossible. Hence % is odd, and for the same reason N, is odd. It
is easily seen that g is odd. From (17) we get

— 412N — 34°N§. (18)

Since fg = 2hg is supposed to contain at most two distinet prime factors, and
since (k, g) = 1 according to (18), we have either 2 =1, or g = 1.
If we put 2 = 1, the equation (18) may be written

(9 N3 + 1)° — (g N§ — 1)° = (2 NV3)".
However, the Diophantine equation
28+ P = 28

has integral solutions only when zyz = 0. Thus we get the only solution
N, =|Ny| =1, =2, and g = 1. Asis shown in § 2, this solution corresponds
to the equations

223 + 43 =3 and 2a® + 414% = 3.

We do not take the former equation into consideration. The latter equation
satisfies the conditions of the theorem.
If we put ¢ = 1, we get from (18)

1 =4rN;—3NS,
which gives
2RN}+1 =3NS, 2aNIF 1 =N,
and
+ 2 = 3N} — N,

where the lower sign is impossible modulo 3. The equation may be written
(N2 = 3(NY®—2.
284
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However, as was shown by T. NagrrL [5], the equation
22 =3y —2

has the only integral solutions z = 1, y = + 1. We thus get |N,| = | Ng| =
=|Ny| =|N,l =1 and % = 1, and again the above-mentioned equations.

2) fg is even and g = 2h.
Let us first suppose that % is odd. (17) may be written

1 =/2NS—3 412 NS. (19)

It is immediately evident that N; and f are odd integers. Further we have
f=+1, because if f =1, (19) could be written

QAN + 1 — (2R N3 — 1)° = 2(N%;

but this equation is impossible. Since fg = 2 is supposed to contain at most
two distinct prime factors, and since (f,h) = 1 according to (19), we have
h =1. Hence (19) may be written

1=/,NS—3 -4N3,
which gives
[N+ 1=3-2NS, fNIF1=2Ni
and
+1=3N— N,

where the upper sign is impossible modulo 3. The equation may be written
(N3 + 1)° — (N3 — 1)° = 2(N3)>

Hence the impossibility of (19) when % is odd. ) )
Let us now suppose that % is even. Then g = 4k;, where %; is odd, since
4 and B possess no cubic factors. (17) may be written

1 =fN¢— 3. 2¢h2 NS (20)

As before, it is clear that f is odd and # 1. By (20) we have (f, ;) = 1, and
thus we get 4; = 1. (20) gives

[N} +£1=3-2"Nj, fNiF1=28Ni,
which gives
+2 =3 -2*Ni— 2/ N;.
We have either @ =1, § =3, ora = 3, § = 1. Hence we get the two equations

+ 1 =8N§—4N§, (21)
+1=12N5— Ng, (22)
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where the upper signs are impossible modulo 3. (22) may be written
QN3+ 1)° — (2N5 — 1)° = 2(N3)%,

so that this equation is impossible. (21) may be written

4(ND® — (N =

and since the equation 4z* —34® = 1 has the only solution z = y = 1, we get
| N, = |N3]~]N2[-\N]~1 and f=7. This gives a =17, b=11, ¢ = 2,
d=1,M=1,N=2,0ora=T,b=57,c=2,d=1, M =—1, N=2

The former solutlon corresponds to the equation
2823 + 11¢% = 3,
”vghichr‘ha,s the solution z = 52, ¥y = — 71. However, the number
3 3
1(52V28 — 71V11)

s .
is not a biquadrate of the field K (V28-11%). If it were, system (7) would
have a solution in integers X, Y, and Z. In this case, (7) may be written

TTZE + 2XY = 2, (23)
Y2+ 98XZ =1,
2X2+22YZ = —4. (24)

It follows from (23) that Z is divisible by 2. If we put Z = 2Z,, we may
write (24)
X2+ 2YZ, = —2,
so that X is divisible by 2. If we put X = 2X;, we get from (23)
797+ 2X,Y = 1;

but this equation is impossible in integers X;, Y, and Z,.
The latter solution corresponds to the eguation

282% + B71y® = 3,
which has the solution z = — 724, y = 265. However, the number
Y(— 724 V28 + 265V571)3

3_-.—%-—
is not a biquadrate of the field K (V/28-5712). If it were, system (7) would
have a solution in integers X, Y, and Z. In this case the system may be
written
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75712 +2XY = —2, (25)
Y2+ 28XZ =1,
2X2 +2-571YZ = —4. (26)

It follows from (25) that Z, and from (26) that X is divisible by 2. If we
put Z =2Z; and X = 2X,, we get from (25)

7-571-2224+2X,Y = —1;
but this equation is impossible in integers X,, Y, and Z,.
3) fg is odd.
If we put / =1 in (17), it may be written
(@N; + 1P — (g N3 —1)° = 2(NY)’,

and we can see that this equation is impossible. Hence f = 1. N; is odd in
(17); otherwise we would get from (17) the congruence

3(gN3)?+ 1=0 (mod 8),
which is impossible. - Hence N, is an even integer, and we get

NI+ 1=3-2002N3, fNIT1=2°0kNi,
which gives
+2=38-2032NE — 281> NS. {27)

We have either a =1, § =5, or a =5, 8 =1.
In the former case we get

+1=3KN— 162N,

which is impossible modulo 8.
In the latter, we get
+ 1 =3-16h* N — K* N§, (28)

where the upper sign is impossible modulo 3. If & = 1, (28) may be written
(4hN§+ 1 — (4h N5 — 1) = 2(N%?;

but this equation has no integral solution when N and N, are = 0. Hence
k1. Since fg is supposed to contain at most two distinct prime factors and
since (f,9) =1, f==1, and ¢ =hk==1, g evidently contains only prime factors
of the same kind, and we may put ¢ = p*, where p is an odd prime and
n =1, or » =2, According to (28), we have (A, k) = 1, which implies & = 1.
Hence the equation (28) may be written

1= p2» N$ — 48 N§,
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which gives
p"Ni+1=3-2'N§, p"Ni¥1=2"Ni,
and
+2=3-2'NE — 2¢ N§. (29)

We have either y =1, £¢=3, or y =3, ¢ = 1. Hence we get from (29) the
two equations
1=3NE—4NS, (30)

+
+1 =12 N¢ — N§, (31)

where the upper signs are impossible modulo 3. The equation (31) is identical
with the equation (22) and thus impossible. (30) is identical with (21) and has
the only solution |Ng| =|Ns| =1, which gives |N,| =|N3| =1, |[N,| =2,
[Ny =1, g=17 and f=97. We get a =679, b=2131, c=d =M =1,
N=40ora=679,b=110771,¢c=d=1, M= —1, N = 4.

The former solution corresponds to the equation

6792° + 21314° = 3,

which has the solution z = 20168, y = -— 13775. However, the number
1(20168 V679 — 13775 V2131)*

3——«v__,
1s not a biquadrate of the field K(V679-21312). If it were, system (7) would
have a solution in integers X, Y, and Z. In this case, the system may be
written

679-2131 2% + 2 XY = 4, (32)
Y2 +2-6719XZ =1, (33)
X2+2-2131YZ = —8. (34)

From (32) and (34) we see that Z and X, respectively, are even. It follows
from (33) that Y is odd. We put Z = 2Z;, and X = 2X; and get from (32)
and (34)

6792131722 + X, Y =1, (35)

X2+ 2131YZ, = —2. (36)

Let us suppose that X; is odd. From (35) we get that Z, is even, and from
(36) that X; is even, which contradicts our postulate. Hence X; is even, and
from (36) we get that Z; is even. We put X; = 2X, and Z; = 2Z,, and get
from (35)

679-2131-47 +2X,Y = 1;

but this equation is impossible in integers X,, Y, and Z,.
The latter solution corresponds to the equation

6794° + 1107714° = 3,
288 ’
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which has the solution x = — 280904, y = 51409. However, the number
1 (— 280904 V679 + 51409 V110771)*

3—_—.,
is not a biquadrate of the field K (V679 1107712). If it were, system (7) would
have a solution in integers X, Y, and Z. In this case, the system may be
written

679110771 2% + 2 XY = — 4, (37)
Y24+ 2.-679XZ =1, (38)
X2 +2.11077T1YZ = —8. (39)

From (37) and (39) we see that Z and X, respectively, are even. It follows
from (38) that Y is odd. We put Z = 2Z, and X = 2X;, and get from (37)
and (39)

679-11077123 + X, ¥ = — 1, (40)

X;+ 110771 YZ, = — 2. (41)

Let us suppose that X; is odd. From (40) we get that Z; is even, and from
(41) that X; is even, which contradicts our postulate. Hence X; is even, and
from (41) we get that Z, is even. We put X; = 2X, and Z, = 2Z,, and get
from (40)

679110771473 + 2 X, Y = 1;

but this equation is impossible in integers X,, Y, and Z,.

§ 4.

Let us suppose that equation (3) has a solution in integers and that 7 is
the biquadrate of a unit in R when C =1, and in K when C = 3. Then
equations (6) and (8), respectively, have a solution in integers f, g, Ny, and N,.
Further, system (7) has a solution in integers X, Y, and Z. We know that
N =2N; N, and that (M, N) =1. M is thus odd. The system may be written

abZ? + 2XY = 2N, N, M, (42)
dY?+ 2acXZ = dM2, (43)
¢X?+ 2bdYZ = —2cNiNj. (44)

Let us suppose that 4 = ac? and B = bd? are odd integers. From (42) we
get that Z is even, from (43) that Y is odd, and from (44) that X is even.
We put X =2X, and Z =2Z,, and get from (42)

2abZ% + 2X1 Y= NlNzM.

Thus we have either Ny or N, divisible by 2. If N, is even, we get from (6)
the congruence
3(3gN3? +1=0 (mod 8),
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and from (8) the congruence ‘
3(gN3* + 1=0 (mod 8),

which are both impossible, so that N; must be odd and N, even. We put
N, = 2Ny and can write the system

abZ?+le=N1N3M, (45)
dY? + 8acX,Z, = dM?,
¢X?+ bdYZ, = — 2¢NiNL. (46)

Let us suppose that N is odd. If X, is odd it follows from (45) that Z, is
even, and from (46) that X, is even, which contradicts our postulate. Hence
X, is even, and from (46) we get that Z; is even, but this is impossible
according to (45). Hence N; is an even integer, N3 = 2 N,, and we conclude
that a necessary condition for 7 being a biquadrate of R when C' =1 and of
K when C =3 is that the following equations have a solution in integers
f’ 9, Nl, and N2:

1=/ N¢—27-228N3, (47)
and
1=/ N¢—3-22#2NS, (48)

respectively, where fg = 4 or fg = B.
Let us consider the equation (48). If f =1, (48) may be written

(2N + 1f — (PgNg— 1) = 2 (N}

but this equation is impossible. Hence f == 1, and we get from (48)

fN§i1=2aﬁN§’ fN:1;11=3'2ﬂngg7
which gives
+2=22NS—3.2842N5. (49)

We have either a =1, f =11, or a = 11, .= 1. Hence we get from (49) the
two equations

+1=FfN—3 2°¢I N, (80)
+1=2°f NS —3giNs, (51)

where the lower signs are impossible modulo 3. From (51) we get the con-
gruence
3(g N3* + 1 =0 (mod 8),

so that this equation is impossible.

If the equation (48) has a solution in integers, so has equation (50). We
have f;g; =¢, and as before we can see that f; & 1., which implies ¢ = 1.
Since (f,g) = 1, fg contains at least two distinct prime factors.
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Continuing this process, we arrive at the equations
1 =fiN: —3-2°g} Vs,
1= NS —3-2°g3 N,
1 =fiNh —3-2°¢i N}, (52)
where fy05 =91, f395 = g5, and fyg, = g5. Further we have f, + 1, f3 & 1,

and f, == 1, which implies ¢, &= 1, g+ 1, and g3+ 1. Since (f,q) =1,
(f2,92) = 1, and ({5, g5) = 1, 1t follows that

fa="thtetsfsgs

must have at least five distinct prime factors if (48) is to have a solution in
Integers. We have thus proved

Theorem 3. Let a, b, ¢, and d denote positive integers, relatively prime in
pairs, and possessing no square factors. If the equation
Ar® + By? =3,

i

where 4 = ac® and B =bd?® are odd integers mot divisible by 3, coniaining at
most four distinct prime factors each, has a solution in integers x and y, then ‘

n =—g(xf’/2 + ylg/ff)3

15 the fundamental unit of the field K(Vﬁi)z—d), or the square of this umat.

The reasoning will be quite analogous if we start from equation (47). We
have only to substitute the coefficient 27 for 3 everywhere. (52) may then be
written

1= ﬁ 7?1 — 27 '2492 (132,
which gives
f4N:1)‘1 t1= 2Yf§N(1i37 f4N§1 F+1=27 nggN(li‘},
and
2 == 27 fNT, — 27 - 2¢ g3 Nia.

il

We have either y =1, e =3, or y =3, ¢ = 1.
In the former case, we get

+ 1= fiN —27- 4¢3 N, )
where the lower sign is impossible modulo 3. If fy = 1, (53) may be written
(695 Niu + 1)° — (6 95 N3, — 1)° = 2(N%)"; ’
but this equation is impossible. Hence f; == 1, and we get from (53)

[sN =1 =2fN%, fsN&:F 1 =2 27¢ N5,
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which gives
' +1=f3N% — 272 N,

where the lower sign is impossible modulo 3. However, as was shown by
T. Nacerr [6], this equation has no solution in integers when the number of
distinct prime factors in g5 = fgg6 1s = 2.

In the latter case, we get

+1=4/N% — 274 V%, (54)
where the lower sign is impossible modulo 3. If /s = 1, (54) may be written
1 =4N3;—27¢2NS;
but this equation is impossible modulo 9. Hence f; = 1, and we get from (54)

2]‘5N:1;3 +1= f§N§5, 2f5N?3 1= 27Q§N$s,
which gives
T2 =N — 276 Nis. (55)

In (55) we have fg == 1, otherwise we would get
i 2 = N?ﬁ - 27ggN?67

which is impossible modulo 9.
Hence we have fsg5 = g4, foge = 95, [5 = 1, and f¢ == 1, which implies g, = 1,
and g; + 1. Since (f4,94) =1 and (f5,95) = 1,

fg = fthiststatslegs

must have at least seven distinct prime factors if (47) is to have a solution
in integers. We have thus proved

Theorem 4. Let a, b, ¢, and d denote positive integers, relatively prime in
parrs, and possessing no square factors. If the equation

Az + By? =1,

where A = ac® and B = bd? are odd integers > 1, containing at most six distinct
prime factors each, has a solution in tntegers x and y, then

3 3

n=(xVA4+yVB)?
3 3 —

is the fundamental unit of the ring R (1, Vac2b2d, Va2cbd?), or the square of
this wunat.

§ 5.

Let us now suppose that 4 = ac?, or B = bd? is even and divisible by 4.

Let us further suppose that equation (3) has an integral solution and that %
is a biquadrate of R when C =1, and of K when C = 3. Let 4 be even and
divisible by 4. Then ¢ = 2¢;, where ¢; is odd.
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We first consider the case C = 1. )
I % is a square of R, the following equation has a solution in integers z,,
v1, and z; (Cp. NaceLL [4], p. 253):

wotc + i b*d + Latbd® —3uymabed = 1. (56)

Further, we have either

%ﬂ:iNz, %:iMz, 2 = MN, (57)
or
SR g;zy*‘:ath, 2z = MN. (38)

When % is a biquadrate of R, it follows from (56) and (57) that N is even,
and that the following equation has a solution in integers f, g, Ny, and N,:

1 =N — 274 NS, (59)

where fg = 4, and 2N, N, = N; it follows from (56) and (58) that M is even
and that equation (59) has a solution in integers f, g, Ni, and N,, where
fog =B, and 2N, N, = M

Let us regard the relations (58). Since M is even, y; and z; are even.
Since ¢ is even, z, is even; but this is impossible according to (56). In the
present case we can thus only use relations (56) and (57). It is hence sufficient
to consider (59) when fg = 4 = 4acl.

Since 7 is supposed to be a biquadrate of R, system (7) has a solution in
integers X, ¥, and Z. The system may be written

abZ® + 2XY = 2N, N, M, (60)
dY? + dac, XZ = d M2, (61)

Since (M,N) =1, M is odd. Further a, b, ¢;, and d are odd integers. It
follows from (60) that Z is even, from (61) that Y is odd, and from (62) that
X is even. We put Z =2Z; and X = 2X,, and get from (60)

2abZ% + 2X1Y = NlNzM,

so that Ny or Ny must be even. As before, we conclude that N; is odd and
N; even. We put N, = 2N, and may write (59)
1=/N}—27- 24 NS. (63)
It is easily seen that f is odd. Hence g = 4¢;, and (63) may be written
. 1=PN—27-2°#N8, (64)
where fg, =;—4 contains odd prime factors only. Equation (64) is analogous

to (50), and exactly the same reasoning as in § 4 may now be applied. We
have thus proved '



P. HAGGMARK, The Diophantine equation Ax® -+ By® = C

Theorem 5. Let a, b, ¢, and d denote positive integers, relatively prime in
parrs, and possessing no square factors. If the equation

Az® + By® = 1,

where A = ac* and B = bd? are > 1, and where one of the numbers A and B s
divisible by 4, and contains at most five distinct odd prime factors, has a solu-
tion wn integers x and y, then

9 = (xf/;l + yls/f?)3

3 3
is the fundamental unit of the ring R (1, Vac?b?d, Vazcbdz), or the square of
this unat.

We regard the case (' = 3, and suppose that % is a biquadrate of K. The
reasoning is altogether the same as before. We have only to substitute the
number 9 for 1 in the right member of (56), and the coefficient 3 for 27 in
(69),(63), and (64). We obtain the following result:

Theorem 6. Let a, b, ¢, and d denote positive integers, relatively prime wn
pairs, and possessing no square factors. If the equation

Az® + By? = 3,

where AB s mot divistble by 3, and where one of the numbers A = ac® and
B =bd? is divisible by 4, and contains at most three distinct odd prime factors,
has a solution in wntegers x and y, then

77=—§(xf/z+y13ﬁB)3

is the fundamental unit of the field K (Vactb®d), or the square of this umit.

Remark. Theorems 5 and 6 express a somewhat more general result than
the one given in § 1. It is not necessary to postulate anything as to the
number of distinct prime factors in the odd one of the integers 4 and B.
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