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On an u n s o l v e d  q u e s t i o n  c o n c e r n i n g  the  D i o p h a n t i n e  

e q u a t i o n  A x ~ + B y~ = C 

By P E R  H ~ G G M A R K  

The Diophantine equation 

w  

x a + D y a = 1 (1) 

was solved completely by B. DELAUNAY [ ] ]1  who showed that  it has at most 
one solution in integers x and y when y =# 0; if x, y is an integral solution, then 

3 

= x + u 1/]5 (2) 

3 3 

is the fundamental unit of the ring R (1, l/D, (lfD)2). 
T. NAGELL [2], [3], [4], and [5] proved the same theorem independently of 

DELAUNAY and, moreover, a stronger form of the latter part of the theorem. 
3 

•AGELL [4] and [5] proved that  ~ is the fundamental unit of the field K (VD), 
except when D = 19, 20, and 28, in which cases ~ is the square of the funda- 
mental unit. These values of D correspond to the solutions x . . . .  8, y = 3; 
x = - - 1 9 ,  y = 7 ;  and x = - - 3 ,  y = l .  

3 

To solve (1), one has thus to determine the fundamental unit of K ( V D ) ,  

and to examine whether it has the form (2) or not. 
NAGELL [4] generalized these results and showed that  the Diophantine equation 

A x  a + B y  a = C ,  (3) 

where C = 1 ,  or C = 3 ,  where A and B are > 1  when C = I  and where A B  
is not divisible by 3 when C = 3, has at most one solution in integers x and y. 

He also established the following result: Put  A = ac  ~ and B = bd  2, where 
a, b, c, and d are positive integers, relatively prime in pairs, and possessing no 
square factors. Then, if x, y is a solution, one has 

= 0 (x VA + v VB) ~ = ~', (4) 

1 Figures in [ ] refer to the Bibliography at the end of this paper. 
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3 

where $ is the fundamental  unit  of the field K ( V a c  2b zd), 0 < ~ < 1, and 
where r is an integer > 0.1 

This theorem m a y  also be expressed in the following way:  If  x, y is a solu- 
tion, then 

= ~ (x VA + y l /B) ~ = ~s, (5) 

where ~ is the fundamental  uni t  of the ring R (1, Va c a b 2 d, V ~  e b d2), 0 < ~ < 1, 
and where s is an integer > 0. 

The relation between ~ and ~ is ~ = $, or ~ = ~2. Hence we h a y e r -  s, or 
r = s + 1 (Cp. [4], p. 267). 

Al though an upper  limit of the integers r and s could generally not be 
determined, NAGELL succeeded in constructing an algorithm to decide if (3) is 
solvable or not. I n  the former case, this algorithm gives a method to determine 
the solution of the equation (Cp. [4], p. 257 and p. 263). This method,  a sort 
of descente /inie, is, however, too cumbersome to be practical. I t  would thus 
be of value to solve the question of the upper  limit of r and s. 

NAGELL [4] has t reated this question and proved tha t  s = 0 when C = 1, 
and r = 0 when C = 3, if A is even and B is divisible by  a prime factor of 
the form 8 t - - l ,  or 8 t  + 5, and if A and B are both  divisible by  a prime 
factor  of the form 8 t - - l ,  or 8 t  + 5. He further proved in [4] t ha t  there is 
an infinite number  of fields K in which s = 0 and s = 1 when C = 1, and 
tha t  there is an infinite number  of fields K in which r = 0 and r - 1 when 
C = 3 .  

NAGELL [6] and [7] has proved tha t  s < 1 when C = 1 if A and B contain 
at  most  three distinct prime factors each. 

Finally,  NAGELL [7] has proved tha t  s < 1 when C - 1 if A and B contain 
no prime factors of the form 3 t  + 1. 

The purpose of the present paper  is to show tha t  the method employed by  
NAGELL in [6] m a y  be extended and used in a few more cases in order to  
find an upper  limit of r and s. 

# and ~ denote the largest number  of distinct prime factors of A and B 
respectively. By  v, we denote the largest of the numbers  # and ~. The fol- 
lowing results are obtained in this paper:  

r <  1 when C = 3  i] v < 2; 

r < 1 when C =  3 i] A and B are odd and v < 4; 

r < I when C =  3 i /  A or B is divisible by 4 and v < 4; 

s < 1 when C =  1 i[ A and B are odd and v < 6; 

s <  1 when C =  I i /  A or B is divisible by 4 and v <  6. 

1 There is one exception from this theorem, viz. the equat ion 

2 x 3 -b y3 = 3, 

which has the two solutions x =  y :  1 and x =  4, y =  - -5 .  This exception is not  taken 
into consideration in the following. 
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In order to prove the theorems mentioned above, we start  from some of the 
results in [4]. 

Let  us first consider the case C =  1. If the number s of (5) is ~ l , ~ m a y  
be written as the biquadrate of a unit. I t  is proved in [4] that  it  is a nec- 
essary condition for ~] being a biquadrate of R that  the following equation 
has a solution in integers ], g, N1, and N~: 

1 = f N~ - -  27 g~Ni,  (6) 

where / g  = A or / g  = B.  This condition is not sufficier.t. A necessary and 
sufficient condition consists in the following system having a solution in integers 
X, Y, and Z: 

l 
a b Z  ~ + 2 X Y  = N M ,  

d Y  2 + 2 a c X Z  = d M  2, (7) 

c X  ~ + 2 b d Y Z  = - - l c N ~ ,  

with N = 2 N  1Ne and (M,N)  = 1. 
If C = 3 and the number r of (4) is ~ 1, ~] may be written as a biquadrate 

of a unit. I t  is a necessary condition for ~ being a biquadrate of K that  the 
following equation has a solution in integers ], g, N1, and N2: 

1 = / :  N~ - 3 g:N~, (S) 

where / g  = A or / g  = B.  This condition is not sufficient. A necessary and 
sufficient condition consists in system (7) having a solution in integers X, Y, 
and Z. 

w  

We begin by proving the following proposition: 

Theorem 1. I /  the equation 

pn x 3 W qm y3 = 3, 

where p and q are distinct primes ~ 3 and where m and n only take the value 
1 or 2, has a solution in  integers x and y, then 

3 

= i (x V-~ + y  V ~ )  ~ 
8 

is the ]undamental uni t  o] the /ield K ( p ] ~ q 3 : ~ ) ,  or the square o/ this unit.  

We have to consider the equation 

1 f i N [  3 : N  6 - -  g 2 ,  

where / g  = pn (or / g  = qm), and we distinguish three cases: 

(9) 

281 



P. HAGGMARK, The Diophantine equation A x 3 + B y  3 = C 

1) p is odd, / = p n  and g = l .  

(9) takes  the form 
1 = p2nN~--  3NL (10) 

I f  N i  is even, (10) is impossib]e since the congruence 

3(N~) 2 +  1 - - 0  ( m o d 8 )  

is impossible. Hence  N i  is odd and N~ even, and we get f rom (10) 

pn N~ ++_ 1 3 ~ s = "2  N s ,  p a N ,  T_ 1 = 2, '~N~, 

which gives 
_+ 2 = 3 . 2 ~ N ~ - -  2flN~. (11) 

We have  either a = 1, /3 = 5 ,  or a =  5, /3 = 1. "Hence we get f rom (11) the  
two equations 

+_ 1 = 3 N ~ - - 1 6 N ~ ,  (12) 

_ I = 4 8 N ~ -  N~. (13) 

F rom (12) we get the congruences 

3(N~) 2 + 1 ------ 0 (rood 8), 

so t h a t  this equat ion is impossible. The upper  sign of (13) is impossible 
modulo 3. (13) m a y  be wri t ten 

(4N]  + 1) a -  ( 4 N ~ - - 1 )  3 = 2 N ] ,  

but ,  as is well known, the Diophant ine  equat ion 

u 3 + v 3 = 2 w 3 

has the  only solution u 3 =  v a =  w 3 when w 4 = 0. Hence  the impossibil i ty of 
the equation. 

2) p is odd or even, / =  1 and g = pn. 

(9) takes  the form 
1 = N~ - -  3p2nj)(~,  (14) 

o r  

(pnN~ + 1)a ~ a --(p N~--I) a=2N~, 

and we can see t ha t  (14) is impossible. 

3) p = 2 ,  / - - 2  ~ and g = 1. 

(9) takes  the form 
1 = 22 ~ N~ 3 N s 

- -  2 .  
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I f  n = 2 ,  we get 
1 - - 1 6 N ,  ~ - -  3 N ~ ;  

but this equation is impossible since (12) is impossible. I f  n = 1, we get 

1 = 4 (N~) 3 - -  3 (N~) 3 . 

The Diophantine equation 4x  3 -  3 y 3 =  1 has the only solution x = y  = 1. 
This gives I N I I = I N 2 1 = I  and (Cp. [4], p. 263) a = 2 ,  b = e = d = l , N = 2 ,  
M = I ,  or a = 2 ,  b = 4 1 ,  c = d = l ,  N = 2 ,  M = - - I .  

The former solution corresponds to the equation 

2 x a § ya = 3, 

which we do not take into consideration. The latter solution corresponds to 
the equation 

2x  a + 41ya = 3, 

which has the solution x = - - 5 2 ,  y = 19. However, the number 

3 ~ 3 

1 ( - -  52 V2 + 19 V ~ )  s = (329 + 22 V1-64 - 30 V3362) 2 

is not a biquadrate of the field K(V164).  I f  it were, system (7) would have 
a solution in integers X, Y, and Z. In  this case the system may  be written 

{ 41Z ~ + X Y  = - -  I, 

y2 + 4 X Z  = 1, (15) 

X ~ + 8 2 Y Z = - - 2 ,  
which gives 

82Z ~ +  2 X Y - - X  ~ - 8 2 Y Z = O ,  

41Z 2 + X Y  + Y~ + 4 X Z  = 0 .  

X Y 
From the third equation of (15) we get Z ~ 0 .  I f  we put  ~ = u , ~ - = v ,  and 

eliminate u, we get 

v 4 +  30v a §  2 + 3 2 8 v +  1 2 3 = 0 .  (16) 

If  (15) had a solution in integers, then v would be a rational number. However, 
(16) has no r . ~ l  solution. 

w  

We shall prove the following proposition: 

Theorem 2. Let a, b, c, and d denote positive integers, relatively prime in 
pairs, and possessing no square /aetors. I] the equation 

A x  a + B y  a = 3, 
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where A B  is not divisible by 3 and where A = a c  ~ and B = b d  2 have at most 
two distinct prime /actors each, has a solution in integers x and y, then 

3 3 

v = ~ (z V ~  + u VB)  3 

3 

is the /undamental unit  o/ the /ield K (Vac2 b2 d), or the square o/ this unit. 

We have to consider the equat ion 

1 = f N ~  - -  3 9 2 ~ ,  (17) 

where / g  = A (or / g  = B), and we distinguish three cases: 

1) / g  is even and / = 2h.  

h cannot  be even, for then 

3(gN])  2 + 1 ~ 0 (rood 8), 

which is impossible. Hence h is odd, and for the same reason N1 is odd. I t  
is easily seen tha t  g is odd. F rom (17) we get 

1 = 4 h 2 N  6, - -  392N~. (18) 

Since / g  = 2 h g is supposed to contain a t  most  two distinct prime factors, and 
since (h, g) = 1 according to (18), we have either h = 1, or g = 1. 

If  we pu t  h = 1, the equation (18) m a y  be writ ten 

(gN~ + 1) ~ -  ( g N ~ -  1) ~ = (2N~) ~. 

However,  the Diophantine equation 

x a + ya = z a 

has integral solutions only when x y z  = 0. Thus we get the only solution 
[NI[ = IN2/ = 1, / = 2, and g = 1. As is shown in w 2, this solution corresponds 
to the equations 

2x a + y a  = 3 and 2x  3 + 41.y a = 3. 

We do not  take the former equation into consideration. The lat ter  equation 
satisfies the conditions of the theorem. 

I f  we put  g = 1, we get from (18) 

1 = 4 h 2 N ~ - -  3N~,  
which gives 

2 h N ~ +  1 = 3 N ~ ,  2 h N ~ T  I = N ~ ,  
and 

+ 2  = 3 N ~ - - N ~ ,  

where the lower sign is impossible modulo 3. The equation m a y  be writ ten 

(N]) 3 = 3 (N]): - -  2. 
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However ,  as was shown b y  T. NAGELL [5], the  equat ion 

x a = 3 y2 __ 2 

has the only integral  solutions x = 1, y = + 1. We thus get ]Nal = [ N 3 ]  = 
= ]N21 = IN1 ! = 1 and h = 1, and again  the above-ment ioned  equations.  

2) ]g is even and g = 2h. 

Le t  us first suppose t h a t  h is odd. (17) m a y  be wri t ten 

1 = f l N ~ - -  3 . 4 h 2 N ~ .  (19) 

I t  is immedia te ly  evident  t ha t  N 1 and / are odd integers. Fur the r  we have  
/ ~  1, because if / = 1, (19) could be wri t ten 

(2hN~ + 1) 3 -  ( 2 h N ~ - -  1) 3 = 2(N~)a; 

bu t  this equat ion is impossible. Since / g  = 2 ] h is supposed to contain a t  most  
two dist inct  pr ime factors,  and since (/, h ) =  1 according to (19), we have  
h = 1. Hence  (19) m a y  be wri t ten 

which gives 
/N~_+l=3.2N~, / N ~ I = 2 N ~ ,  

and 
_ + 1  6 6 = 3 N3 - -  N4, 

where the upper  sign is impossible modulo 3. The equat ion m a y  be wri t ten 

(N] + 1) 3 - -  (N~ - -  1) 3 = 2 (N~) 3. 

Hence the impossibil i ty of (19) when h is odd. 
Le t  us now suppose t ha t  h is even. Then g = 4 h l ,  where hi is odd, since 

A and B possess no cubic factors. (17) m a y  be wri t ten 

1 = /2  N~ -- 3 2'h~ N~. (20) 

As before, i t  is clear t ha t  ] is odd and =~ 1. B y  (20) we have  (], hi) = 1, and  
thus we get hi = 1. (20) gives 

which gives 
/ N~ + 1 = 3 . 2'~ N~, / N~ ~ 1 = 2~ N~, 

+ 2 = 3 .  ')~ ~78 _ 2~N~. 

We have  either a = 1,  f l  = 3 ,  o r a  = 3 ,  f l  = 1.  Hence we get the two equations 

+ 1  = 3 N ~ - - 4 N ~ ,  (21) 

+ 1 = 1 2 N ~ - - N ~ ,  ( 2 2 )  



P. H.~GGMARK, The Diophantine equation A x 3 + B y  3 = C 

where the upper signs are impossible modulo 3. (22) may  be written 

(2  2v~ + 1) 3 - (2 N ]  - 1) 3 = 2 ( N ] )  3 

so tha t  this equation is impossible. (21) may  be written 

4 (N~) 3 - -  3 (N~) 3 = 1, 

and since the equation 4x 3 - - 3 y  a = 1 has the only solution x = y = 1, we get 
INal = I N 3 t = I N 2 1  = t N 1 ]  = 1 and f = 7. This gives a = 7 ,  b =  11, c = 2 ,  
d = l ,  M = I ,  N = 2 ,  or a = 7 ,  b = 571, c = 2 ,  d = l ,  M = - - 1 ,  N = 2 .  

The former solution corresponds to the equation 

28x 3 + l l y  3 = 3, 

which has the solution x = 52, y = - - 7 1 .  However, the number 

$ 3 
1 (52  V ~  7 ]  V i i )  3 3 

8 
is not a biquadrate of the field K(V~7.11~) .  I f  i t  were, system (7 )wou ld  
have a solution in integers X, Y, and Z. In  this case, (7) may be written 

[ 77Z * + 2 X Y  = 2, (23) 

Y~ + 2 8 X Z  = 1, 

2 X  ~ + 2 2 Y Z = - 4 .  (24) 

I t  follows from (23) tha t  Z is divisible by  2. I f  we put  Z = 2 Z 1 ,  we may  
write (24) 

X ~ + 2 2 Y Z 1  = - - 2 ,  

so tha t  X is divisible by 2. I f  we put  X = 2 X I ,  we get from (23) 

77 .2Z~  + 2 X 1 Y  = 1; 

but  this equation is impossible in integers XI ,  Y, and Z1. 
The latter solution corresponds to the equation 

28x 3 + 571y3 = 3, 

which has the solution x = - -724 ,  y = 265. However, the number 

3 8 
:~ ( "  724 V28 + 265V571) 3 

is not a biquadrate of the field K ( V ~ .  5712). If  it were, system (7) would 
have a solution in integers X, Y, and Z. In this case the system may  be 
written 
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[ 7 . 5 7 1 Z  ~ + 2 X Y  = - - 2 ,  

y2 + 2 8 X Z  = l ,  

2 X  2 + 2 . 5 7 1 Y Z  = - - 4 .  

I t  follows from (25) tha t  Z, and from (26) tha t  X is divisible by  2. 
put  Z = 2 Z  1 and X = 2X1,  we get from (25) 

7. 5 7 1 . 2 Z ~ + 2 X x Y =  - - 1 ;  

but  this equation is impossible in integers X1, Y, and Z1. 

3) [g is odd. 

I f  we put  [ = 1 in (17), it may  be written 

(gN~ + 1) 3 3 - (gN~ - 1 )  3 = 2 (N~) 3, 

and we can see tha t  this equation is impossible. Hence ] 4 = 1. 
(17); otherwise we would get from (17) the congruence 

3(gNU) 2 +  1----0 (rood8), 

which is impossible. Hence N2 is an even integer, and we get 

which gives 
/N~ +_ I = 3. 2 ~h:N~, /N~ u 1 = 2~ ~k 2N~, 

• 2 = 3 . 2  ~h 2N~-21 ~k 2N~. 

We h a v e  either a = l ,  f l = 5 ,  or a = 5 ,  f l = l .  
In  the former case we get 

+ 1 = 3h2N~- -  16k2N~, 

which is impossible modulo 8. 
In  the latter, we get 

+_ 1 = 3.16h2NSa--  k2NS4, 

(25) 

(26) 

I f  we 

N1 is odd in 

(27) 

(2s) 

where the upper sign is impossible modulo 3. I f  k = 1, (28) may be written 

( 4 h N ~  + 1) 3 -  ( 4 h N ~ -  1) 3 = 2 (N~)3; 

but  this equation has no integral solution when N a and N4 are 4 = 0. Hence 
k # 1. Since ]g is supposed to contain a t  most two distinct prime factors and 
since (f, g) = 1, / =~ 1, and g = h k # 1, g evidently contains only prime factors 
of the same kind, and we may  put  g = p n ,  where p is an odd primo and 
n = 1, or n = 2 .  According to (28), we have (h,k) = 1, which implies h =  1. 
Hence the equation (28) may  be written 

1 = p2 n N~ - -  48  N~,  
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which gives 
:pn~7~ -~- 1 = 3 '  2~'~V 6, :pn~743 ~- 1 = 2e~W66, 

and 
• 2 = 3.2: 'N~ - 2~N~. (29) 

We have either ? = 1, s = 3, or 9 /=  3, s = 1. 
two equations 

+ 1 =3N~--4N~,  

Hence we get from (29) the 

(30) 

+ 1 = 1 2 N ~ - - N ~ ,  (31) 

where the upper signs are impossible modulo 3. The equation (31) is identical 
with the equation (22) and thus impossible. (30) is identical with (21)and has 
Che only solution IN  6[ = ] N ~ ]  = 1, which gives ]N 4[ = l / a [  = 1, [Nz[ = 2, 
]Nz] = 1, g =  7, and ] = 97. We get a = 679, b = 2131, c = d  = M  = 1, 
N = 4 ,  or a = 6 7 9 ,  b =  110771, c = d =  1, M = - - I ,  N = 4 .  

The former solution corresponds to the equation 

6 7 9 x 3 +  2131ya = 3, 

which has the solution x = 20168, y = -  13775. However, the number 

3 8 
(20168 V~-9 - 13775 V2131) 3 

8 
is not a biquadrate of the field K(V679 .  21313). 
have a 
written 

I f  it were, system (7)would 
solution in integers X ,  Y ,  and Z. In this case, the system may  be 

679- 2131Z 2 + 2 X Y  = 4, 

y2 + 2. 6 7 9 X Z  = 1, 

X 2 +  2 . 2 1 3 1 Y Z = - - 8 .  

(32) 

(33) 
(34) 

From (32) and (34) we see tha t  Z and X, respectively, are even. I t  follows 
from (33) that  Y is odd. We put  Z = 2 Z  z and X = 2 X  1 and get from (32) 
and (34) 

679. 2131 Z~ 4- Xz Y = 1, (35) 

X~ + 2131 Y Z 1  = - -  2. (36) 

Le t  us suppose that  X 1 is odd. From (35) we get that  Z z is even, and from 
(36) tha t  Xz is even, which contradicts our postulate. Hence X1 is even, and 
from (36) we get that  Z x is even. We put X 1 = 2X2 and Zz = 2Z~, and get 
from (35) 

679- 2 1 3 1 . 4 Z ] + 2 X 2 Y =  1; 

but  this equation is impossible in integers X ~ ,  Y ,  and Z~. 
The latter solution corresponds to the equation 

679x a + 110771ya = 3, 
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which has the solution x = --280904,  y = 51409. ~[owever, the number 

( - -  280904 V679 + 51409 Vi10771) 3 

3 

is not a biquadrate of the field K ( V ~ .  1107713). If  it were, system (7)would 
have a solution in integers X, Y, and Z. In this case, the system may  be 
written 

679. 110771Z 2 + 2 X Y  = - - 4 ,  (37) 

Y~ + 2. 6 7 9 X Z  - 1, (38) 

X 2 + 2. 110771 Y Z  = - -  8. (39) 

From (37) and (39) we see tha t  Z and X, respectively, are even. I t  follows 
from (38) that  Y is odd. We put  Z = 2 Z  1 and X = 2X1, and get from (37) 
and (39) 

679- 110771 Z~ + X1 Y = - -  1, (40) 

X~ + 110771 Y Z 1  = - -  2. (41) 

Let  us suppose tha t  X1 is odd. From (40) we get that  Z1 is even, and from 
(41) tha t  X1 is even, which contradicts our postulate. Hence X1 is even, and 
from (41) we get tha t  Z1 is even. We put X1 = 22/2 and Z1 = 2Z2, and get 
from (40) 

679. 110771.4Z~ + 2 X 2 Y  = 1; 

but this equation is impossible in integers X2, Y, and Z2. 

w  

Let us suppose tha t  equation (3) has a solution in integers and tha t  ~] is 
the biquadrate of a unit in R when C =  1, and in K when C =  3. Then 
equations (6) and (8), respectively, have a solution in integers/ ,  g, N1, and N2. 
Further,  system (7) has a solution in integers X, Y, and Z. We know tha t  
N = 2 N 1 N2 and tha t  (M, N) = 1. M is thus odd. The system may  be written 

a b Z  2 + 2 X Y  = 2 N 1 N ~ M ,  (42) 

d Y  2 -~ 2 a c X Z  = d M  ~, 

c X  2 + 2 b d Y Z = - 2 c N ~ N ~ .  

Let us suppose tha t  A = ac e and B = 
get tha t  Z is even, from (43) tha t  Y is 
We put  X = 2 X  1 and Z = 2Z1, and get 

2 a b Z ~  + 2 X  1 Y 

Thus we have either N 1 or N2 divisible by 2. If  N 1 is even, we get from (6) 
the congruence 

3(3gN~) 2 + 1 ~ 0 (mod 8), 

(43) 

(44) 

bd 2 are odd integers. F rom (42) we 
odd, and from (44) tha t  X is even. 
from (42) 

= N 1 N ~ M .  
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and f rom (8) the congruence 

3(gNa)  2 +  1 ~ 0  (mod8) ,  

which are bo th  impossible, so t h a t  N 1 mus t  be odd and N2 even. We put  
N2 = 2 N a and  can write the  sys tem 

a bZ~ + X 1 Y = N1 Na M, 

d Y~ + 8 a c X 1 Z 1 = d M 2, 

c X ~  + bd  Y Z  1 = - -  2 c N ~ N ] .  

(45) 

(46) 

Le t  us suppose t ha t  N s is odd. I f  X1 is odd it follows f rom (45) t h a t  Z 1 is 
even, and  f rom (46) t h a t  X 1 is even, which contradicts  our postulate.  Hence  
X1 is even, and f rom (46) we get  t h a t  Z1 is even, bu t  this is impossible 
according to (45). Hence  Na is an even integer, Na = 2 N4,  and we conclude 
t ha t  a necessary condit ion for ~1 being a b iquadra te  of R when C = 1 and of 
K when C = 3 is t h a t  the  following equat ions have  a solution in integers 
/, g, N1, and  N2: 

1 = f l N ~  - -  27.2~"g2N~, (47) 

and 
1 = / 2  N? - -  a .  2 ~ N L  (48) 

respectively,  where ] g = A or ] g = B. 
Le t  us consider the equat ion (48). I f  ] = 1, (48) m a y  be wr i t ten  

(9~gN]  + 1) 8 - -  ( 2 6 g N ~ -  1) 3 = 2 (N~)3; 

but  this equat ion is impossible. Hence  / #  1, and we get  f rom (48) 

which gives 
] N a +_ 1 = 2" fl~ N~, / N a -+ 1 = 3 . 2,~ ~ N~, 

+ 2 = 2 ~ ' ~ N ~ -  3.2~3g~N~. (49) 

We have  either a = 1, f l =  11, or a = l l ,  fl = 1. H e n c e  we get f rom (49) the 
two equat ions 

+ 1 f i N ~  3 21~ ~ ~ (50) _ = - -  �9 g l  N 6 ,  

+ 1 = 2 1 ~  3 ~ N L  (51) 

where the 
gruence 

lower signs are impossible modulo 3. F r o m  (51) we get the con- 

3 (g lN] )  2 + 1 ~ 0 (mod 8), 

so t h a t  this equat ion is impossible.  
I f  the equat ion (48) has a solution in integers, so has equat ion (50). We 

have / l g l  = g, and as before we can see t h a t  /1 4= 1. which imp]ies g q= 1. 
Since (/, g) = 1, / g  contains a t  least  two dist inct  pr ime factors.  
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Continuing this process, we arrive a t  the equations 

= / ~ . ~ ' ~  - 3 . 2  ~ g~ N~,  

(52) 

where /2 g2 = gl, /3 g3 = 92, and /4 ga = ga- Fur ther  we have /2 4 = 1, /3 # 1, 
and  /4 ~ 1, which implies g l #  1, 9 2 # 1 ,  and g 3 ~ 1 -  Since ( / 1 , g l ) - 1 ,  
(/2, g2) = l, and (/3, ga) = 1, it follows tha t  

/ g = / / 1 / ~ / ~ / ,  g~ 

must  have at  least five distinct prime factors if (48) is to have a solution in 
integers�9 We have thus proved 

Theorem 3. L e t  a, b, c, and d denote positive integers, relatively prime in 
pairs, and possessing no square /actors. I /  the equation 

I 

A x a + B y  a = 3, 

where A = a c 2 and B = b d 2 are odd integers not divisible by 3, containing at 
most /our distinct prime /actors each, has a solution in integers x and y, then 

3 3 

= 1 (x V / +  y V ~ )  ~ 

3 

is the /undamental unit  o/ t he / i e ld  K ( V ~ b  2 d), or the square o/ this unit. 

The reasoning will be quite analogous if we star t  f rom equat ion (47). We 
have only to substi tute the coefficient 27 for 3 everywhere. (52) m a y  then be 
writ ten 

1 ;2 ~76 = / 4  ~, n - -  27 �9 24 g~ N~2, 
which gives 

and 
/4N~:_+ 1 = 2 ~ N ~ 3 ,  /4N~: T 1 = 2 7 . 2  ~g52N:46' 

+ 2 = 2~' 2 6 _ 2 ~ ]5N13 27.  g~N164. 

We have either 7 = 1, e = 3, or 7 = 3, e = 1. 
In  the former case, we get 

+ 1 ~2 N6 __ 27 2 6 = �9 4 g~ N14, (53) - -  ] 5  1 3  

where the lower sign is impossible modulo 3. I f  /5 = 1, (53) m a y  be writ ten 

(6 gsN~, + 1) 3 - -  (6 gsN~4 - -  1) 3 = 2 (N~3)3; 

bu t  this equation is impossible. Hence /5 4 = 1, and we get from (53) 

]5N~3_+ 1 = 2~N~5, /sN~3T- 1 = 2 . 2 7 ~ N ~ 6 ,  
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which gives 
+ 1 fl~N~5-- ~ = 27 g6 N16, 

where the lower sign is impossible modulo 3. However, as was shown by  
T. 5TAGELL [6], this equation has no solution in integers when the number of 
distinct prime factors in g5 = / 6  g6 is < 2. 

In  the latter case, we get 

+ 1 = 4 ~ N[3 - -  27 ~ N~4, (54) 

where the lower sign is impossible modulo 3. If  [5 = 1, (54) may  be written 

1 4 N ~ 3 - - 2 7  ~" ~" = g5 N14,  

but this equation is impossible modulo 9. Hence /5 ~= 1, and we get from (54) 

which gives 
2]5N~3+ 1 =~NlSs,  2/5N~3+ 1 =  27962N~ss, 

+ 2 = ~ N[5 - -  27 g62 N~Ss. (55) 

In  (55) we have /6 ~ 1, otherwise we would get 

+ 2 N~5 ~ 6 = - -  27 g6 N16, 

which is impossible modulo 9. 
Hence we have /5 g5 = g4, /6 g6 = gs , /5  # 1, and /8  # 1, which implies g4 =V 1, 

and gs=V1. Since (/4, g4) = 1 and (/5, g5) = 1, 

/ g =/ /1  h/3/4/5/~ g~ 

must have at  least seven distinct prime factors if (47) is to have a solution 
in integers. We have thus proved 

Theorem 4. Let a, b, c, and d denote positive integers, relatively prime in 
pairs, and possessing no square ]actors. I /  the equation 

A x  3 + B y  3 = 1, 

where A = ac 2 and B = bd ~ are odd integers > 1, containing at most six distinct 
prime /actors each, has a solution in  integers x and y, then 

3 3 

is the ]undamental unit  o/ the ring R (1, Vac  ~ b 2 d, ~a~cb-~),  or the square o/ 
this unit. 

w  

Let  us now suppose that  A = a c 2, or B = b d 2, is even and divisible by 4. 
Let us further suppose tha t  equation (3) has an integral solution and that  

is a biquadrate of R when C =  1, and of K when C =  3. Let  A b e e v e n a n d  
divisible by 4. Then c = 2 Cl, where c 1 is odd. 
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We first consider the case C = 1. 
If ~ is a square of R, the following equation has a solution in integers Xl, 

Yl, and zi (Cp. NAGELL [4], p. 253): 

x~a2c + y~b2d + z~ac2bd2--  3 x l y i z i a b c d  = 1. (56) 

Further, we have either 

2 x~i = + N~ ' y~ = T- M ~, z i =  M N,  (57) 
c - d 

o r  

x l =  + N 2  ' 2 y i  = ~ M 2  ' z i = M N .  (58) 
c - d 

When ~ is a biquadrate of R, it follows from (56) and (57) that  N is even, 
and that  the following equation has a solution in integers /, g, Ni ,  and N2: 

1 = ]2 N [  - -  27 g2 N~, (59) 

where / g  = A,  and 2 N i N  2 = N;  it follows from (56) and (58) that  M iseven 
and that  equation (59) has a solution in integers /, g, Ni ,  and N2, where 
]g = B ,  and 2N1N2 = M .  

Let  us regard the relations (58). Since M is even, Yi and Zl are even. 
Since c is even, xi is even; but  this is impossible according to (56). In the 
present case we can thus only use relations (56) and (57). I t  is hence sufficient 
to consider (59) when ]g = A = 4ac~. 

Since ~ is supposed to be a biquadrate of R, system (7) has a solution in 
integers X, Y, and Z. The system may be written 

a b Z  2 +  2 X Y  = 2 N i N 2 M ,  (60) 

d Y  e + 4 a c i X Z  = d M  2, (61) 

2c i X  ~ + 2 b d Y Z  = - -4c lN~N~.  (62) 

Since (M,N)  = 1, M is odd. Further a, b, Cl, and d are odd integers. I t  
follows from (60) that  Z is even, from (61) that  Y is odd, and from (62) that  
X is even. We put Z = 2 Z  i and X = 2 X 1 ,  and get from (60) 

2abZ~  + 2 X I Y  = N ~ N 2 M ,  

so that  Ni  or N 2 must be even. As before, we conclude that  Ni  is odd and 
N2 even. We put N~ = 2 N  a and may write (59) 

1 = / 8  N ~  - -  27 .2  n g2 N~. (63) 

I t  is easily seen that  ] is odd. Hence g = 4 gi, and (63) may be written 

1 = ]aN~ 27 ~0 2 ~,6 (64) 
- -  . }5 gl  ~u 

A 
where /g i  = ~  contains odd prime factors only. Equation (64) is  analogous 

to (50), and exactly the same reasoning as in w 4 may now be applied. We 
have thus proved 
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Theorem 5. Let a, b, c, and d denote positive integers, relatively prime in 
pairs, and possessing no square ]actors. I]  the equation 

A x  a + B y  a = 1, 

where A = a c 2 and B = b d 2 are ~ 1, and where one o/ the numbers A and B is 
divisible by 4, and contains at most /ive distinct odd prime ]actors, has a solu- 
tion in integers x and y, then 

3 3 

= (x V ~  + y VB) ~ 

3 3 

is the /undamental unit  o/ the ring R (1, ] / a c 2 ~ d ,  V ~ c b d ~ ) ,  or the square o/ 
this unit. 

We regard the case C = 3, and suppose tha t  ~1 is a biquadrate of K. The 
reasoning is altogether the same as before. We have only to substitute the 
number 9 for 1 in the right member of (56), and the coefficient 3 for 27 in 
(59), (63), and (64). We obtain the following result: 

Theorem 6. Let a, b, c, and d denote positive integers, relatively prime in 
pairs, and possessing no square /actors. I]  the equation 

A x a §  a = 3, 

where A B is not divisible by 3, and where one o] the numbers A = ac 2 and 
B = b d 2 is divisible by 4, and contains at most three distinct odd prime ]actors, 
has a solution in integers x and y, then 

3 

= ~ (x V ]  + y VB) 3 

3 

is the ]undamental unit  o/ the /ield K (~/ac2 b 2 d), or the square o/ this unit. 

Remark. Theorems 5 and 6 express a somewhat more general result than 
the one given in w 1. I t  is not necessary to postulate anything as to the 
number of distinct prime factors in the odd one of the integers A and B. 
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