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Some connections between ergodic theory and the iteration
of polynomials

By Tom S. PitcHER and JorN R. KiNNEY

I. Introduction

In a recent paper [1] Brolin has shown some connections between the theory of the
iteration of polynomials in the complex plane and the ergodic transformations in-
duced by the polynomials. [1] contains an exposition of the classical theory of
iteration and a bibliography of the subject.

Consider a polynomial P of degree V and its iterates P, given by P, (z) = P(P,_1(2)).
The fixpoints of P, i.e., solutions of P, (z) =z are classified as repulsive if | P, (2)| > 1,
indifferent if |P,(z)|=1 and attractive if |P,(z)| <1. Primary interest centers on
the set F' of points where (P,) is not a normal family. F can also be characterized
as the closure of the set of repulsive fixpoints. Replacing P by LoPoL ™! with L
a linear function only subjects the fixpoints to a linear transformation so we can
assume that

N-2
P)y=2"+ > a,7"
i=0

It can be shown that F is compact, contains no open set and is completely in-
variant under P, i.e., F=P(F)= P }(F).

II. The equilibrium measure for F

In [1] Brolin defines a natural probability measure on F as follows. Choose any
point z, in the plane with at most two exceptions and let u, be the atomic measure
assigning weight N ™" to each root of P,(z) =2, The y, converge weakly to a prob-
ability measure y supported on F, independent of the starting point z,. u is invariant
under the transformation P and in fact, P is an ergodic transformation of F into
itself under this measure.

It also turns out that w is the equilibrium measure for F, that is, it minimizes
the energy integral

I{(v)= Jflog E:L";I v(dz) v(dw)

among all Borel probability measures » supported on F.
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Let ¢y, ...,cc be the critical points of the inverses of P and for each 0<0<2x
let 7,(6) be the half line [¢,+ Ae'®, 0 <A< oo]. We can find a 6 for which the half
lines are all distinct and a 6>0 such that any two half lines },(8,), /;(6,) with

—3d<0,, 0;,<8,+ 9 intersect in a point outside T if at all. Thus the sets AB)y=
F N {6) U ... UL(8) are disjoint for 0 in this mterval so we can choose one, say 6
with ,u(A(G))— 0. If we make the cuts % (), ..., L () the inverses g,, ..., gy of P are
defined on F — A(). It is easily seen that

§ X [1aen s = [10 i
and hence that ]lv % f f(g: () p(dz) = J‘f (dz).

It follows that u(P,(A(6))=0 for all » and hence that

—F- § P.(a(d)

has p-measure 1.
Now the g;’s are defined in a neighborhood of each point of F, and since each g,
takes F, into itself, all the inverses g,, © g,, © ... © g, of P, are defined in a neigh-

borhood of each point of F,. This does not imply that there are neighborhoods in
which the inverses of all the P, are defined.
We can now define the integer valued function «,(z) for z in F, to be the solu-
tion of
Ja, (Pp(2))=Pr-1(2).

It is easily seen that
@ © G © --- © gat,‘(z)(Pn (2))==

and that «,(P(2)) = op+1(2). We will write
LBy s B)=[2| () =1 i=1,...,n]
and I, (2)=1,(0(2), ..., o, (2))-

The transformation z—[z(2), ay(z),...] maps F into a sequence space and, as
the following theorem shows. it takes g into the “Bernoulli trial” measure.

Theorem 2.1. Under u the «, are independent random variables with distribution
| =k = H (k=1 N)
izl om@=k)= 5 (k=1,...,N).

Proof. The set I,(f,.....H,) contains all the points gg o ... o gs (w) where

P, (w) =z, and no other solutions of P, .(z) =2, Hence, the set has u,,, measure
N™" and thus also y measure N 7",
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In connection with the next theorem it should be remarked that in the case
P(z)=2%, F is the unit circle, u is Lebesgue measure and the P, are of course tri-
gonometric functions and that in the case P(z) =22 —2, F=[—2,2], u=Cdz/V4 —2?
and the Py are a subsequence of the Chebycheff polynomials.

The functions 1,z,2% ... are continuous and bounded on F, hence are square in-
tegrable with respect to u. Let Qy=1, @, ... be the corresponding sequence of
orthonormal polynomials having positive leading coefficients.

Theorem 2.2.
-3
Qun= U]zlzy(dz)] P, n=0,1,2,...).

Proof. P, has degree N and leading coefficient 1. Also

fl P, (2)|* u(dz) = f|z|2,u(dz).

For n=0, taking Py(z)=2, we have

fQo 2) Py (2) u(dz) = fz,u dz) =Zl\/' z f ul(dz)=0,

since >¥.19.(z) is the coefficient of 2! in P which is 0. For n>1 and k< N"® we
have

f 2P(2) pldz)

=N 3 f (o © .- © g ()P (g © ... © G, (2) 1l d2)

N
=NT"|Z 2 (g © ... © gq ()" ulde).
&1 one =1

But the summation is > w* extended over the roots of P,{w)=2z and this sym-
metric function depends only on the first k coefficients in

P,(w)—z=w"+c,u™ 14 ...+ oyn

and hence is a constant 4 independent of z. Thus,

f 2P, (z) w(dz) = AN~" Jmélu(dz) =

II. The polynomials z*— p for p>2

In this section we deal with a special class of P’s. We assume that there exists
a simply connected domain D containing F and containing none of the critical
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points of the functions P, nor any limit points of them. It is known (see [1]) that
in this case the set of inverses

[92,0 ... 094 |1 <0< N, 1<n< 00]

forms a normal family in D having only constant limiting functions. We can extend
the «; to all of F in this case and we write

Gn(zy w) =g¢1(z) ° ga:(z) °...0 ga,,(z) (w)'

Theorem 3.1. For fized z, G, (2, w) converges to z uniformly on compact subsets of D.
The convergence is uniform on F x F.

Proof. To prove the first assertion we have only to show that the constant limit
is z but this is obvious since G, (2, P, (z)) =z for each n. For each z € F we can find
an n such that |G, (z,w)—z|<e/2 for all w€F and m>n. Then for 2’ €,(2) N
[2'||z—2'| < &/2] we have

6 (e, 0) =2 |=1Ga (2 a, 118, © -+ © Gy, () =2 | <8/2+ [z =2 <.
The I,,(2) are open, in this special case, so this gives an open covering of F and the

proof is now completed in the usual way.
We now choose a w€ F which is not a fix point and set

0n(2) = G (2, w).
By Theorem 3.1 &, =max |g,(z) — 2|
er

Z

goes to zero as n goes to oco. None of the numbers
92,© -+ ° G, (W) —9a,0 ... 0 ga ()

vanishes since P(w) =+ w so, setting o, = o (2), we can write

1
~log |@n+1(2) = 0n(2)]

1 nl o ga,(@n+1—lc (Pk (z))) —gak(gn—k(Pk(z)))
N k=1 & Onr1-{Pr(2)) — on—i (Pr(2)

+ 2108 |g1s1 (Pas(2) ~ 0u(Pa @)

Using the facts that g, ¢/, ¢/ and (g/)"" are bounded on F we can easily show that

G, (O s1-1 (P (@) ~ e, (@n -1 (Px(2)))
On+1-k (Pr(2)) — @n-i (P (2))

log —10g |ga, (Pe(2)| < Cep-y.

28



ARKIV FOR MATEMATIK. Bd 8§ nr 4

1 172 ,
Thus - log fg,,+1(z)—g,,(z)[=; >, log |ga (Pe(2))]+0(e)+ 4
K1

1 1
where [ Al=; [log {@i+1(Pn-i (2) = @:(Pn-1(2))|| = 0 (ﬁ)
Theorem 3.2. Wiih u-probability one

Lim —log[@nﬂ —0,(2)|=—H

and lim sup %log lon(z) —2|= —H,
-1 N
where H=— > {log |gi (2)] u(dz).
i=1

Proof. The a, form a stationary ergodic sequence and log |g; (Px(2))] is bounded
so the ergodic theorem applies to

1 n-1 ,
o 2 log |ge, (Pu(2))]
k=1

and this plus the estimates above proves the first assertion. For any positive ¢ and
large enough =,

o o0 e—n(H-e)
lgn(z) —z{ <k=zllgn+k(z) —gn(z)l <§ R H-9 {—=ao»
) 1
80 lim sup;log{gn(z)—z[< -
On the other hand
max (|0, (2) = 2|, |@n+1(2) —2]) >} | 0ns1(2) — 0. (2)],

so the opposite inequality also obtains.
The polynomials P(z)=2*~p for p>2 satisfy the specml requirements of this

section. It can be shown [1] that inthis case Fc[— — Vitp, 3+ 3+ p] and the
critical points are —p, P(—p), Py(— p), ete. Computatlon shows that

—p<—}—Vitpand }+Vi+p<P(—p)<Py(—p)<

so we can take D to be the plane with the intervals (— oo, —p] and [P(—p), o°)
removed.
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Brolin {1] has given an upper bound for the Hausdorff dimension of F for
p>2+V2. We are now in a position to give a lower bound for p> 2.

Theorem 3.3. Let F, be the F set for 2*—p, p>2 and u, the associated measure.
Then

1

flog (x+ p) p, (dr)
2 log 2

dim (F,) >

1+

Proof. In this case g,(z)= + Va+ p and the right hand side is equal to log 2/H.
We are going to make use of Lemma 2 of [2] (or, more accurately, of the second
half of the proof). It is proved there that if D, () is the dyadic interval of order n
containing # and if 4 is a subset of

[a: llirﬂn_’ilp % log, u(D, (%)) < — ac]

with u(A4)>0 then dim (4)>«.
It is easily seen that the sets I,(z) are contained in disjoint intervals for this
case (see [1], p. 126). If we write

[1|= sup |z—y]
z,yel
and set An, &)=[z| | I (x)| = e ™7*? for all m>n],

then (2] {om+1(Z) — on(@)| = e ¥ for all m>n]<A(n,e),

so u(A(n, g))~>1 as n— oo for any positive ¢.
Take n so large that u(A(n, ¢)} >0 and % so large that

—klog2

< —n.
H+¢ +1 "

If my is the largest integer such that

-k - H+e)
27k < gmmr(HtS)

then —(m,+1)(H+¢)< ~—k log 2 so that

At most two sets of the form [, (x) for € A(n, ¢} can intersect a dyadic interval
of order k and u([,, (x))=2""* so
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—klog 2

+2.
H+¢

log, (1 Dy () N A(m, &))< —mpe + 1<

w(Bn A(n, )
u(A(n, &)

in the result quoted above we see that dim (A(n, &)) > (log 2)/(H + ¢) for all » with
U(A(n, &))>0. Since U,4(n,e)<F

Replacing u by u,, pn(B) =

dim (F) > (log 2)/(H + &)

and the proof is completed by letting ¢—0.
We wish to estimate the integral in the above theorem.

4= flog (x4 )ty (d) = B (log (p-l— , Vm)) ,
when the 0, are independent and are + 1 with equal probability. Thus
4,=3[log (p+ Vm) +log (p—Vp+6,V)]
= 4log (g2 —p— 0,V p+6,/.")
— tlog (p*~p)*—p— 6,V p+6,V..))
=277 (log (Bu(p) — 001V p + 012 Vo22),

where By(p)=p and B, .(p)=B:(p)—p. Since B,(p) t o and 0n+1V'p+ Oniz V...
is in F, and hence is bounded, we have

4,=lim 27" log B, (p).

Now
27@*D log B, . (p)=2""* log (B2 (p)—p)
=2""log B,(p)+ 2"V log (1 -~ sz(p)) <27 " log B, (p),
so that 4,< 4 log B, (p)=1} log (p* — ).

Combining this with Brolin’s result we have

log,l’mv—l)]‘1 . [ 10g(p—%—V%+p)]_l
[H 2logz | SdmPps|l+—510 ’

where the left hand inequality holds for p > 2 and the right hand one for p>2 + V2.
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