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Relatively maximal function algebras generated by
polynomials on compact sets in the complex plane

By Jan-Erix BJorx

Introduction

Wermer’s maximality theorem states that if J is a Jordan curve in the complex
plane the function algebra P(J) generated by polynomials on .J is a maximal closed
subalgebra of C(J), the algebra of complex-valued continuous functions on J.
‘Wermer’s theorem can also be stated in the following form: If ¢ € O(J) is such that
the polynomials and g generate a proper function algebra of C(J) then ¢ has an ana-
lytic extension to the interior of J. In this paper we try to extend Wermer’s maxi-
mality theorem in the following way: Let J be a Jordan curve in the complex plane.
We denote by H(J) the compact set bounded by J. Let ¥ be a closed subset of H(J)
containing J. Suppose g € C(F) is such that g and the polynomials generate a proper
function algebra of C(F). Now we wish to find out if ¢ has an analytic extension from
J into the interior of H(J), i.e. if there exists a function G € C(H(J)) such that G=g
on J and @ is analytic in the interior of H(J). Of course we need some conditions on
F to obtain such results. We say that F satisfies (C) if the following holds:

1. R(F)y=C(F), where R(F) is the function algebra on F generated by rational
functions with poles outside F.

2. H(J)—F is connected and (F—J)NJ#J.

We show in Theorem 1 that if F satisfies (C) and g€ C(F) is such that g and the
polynomials generate a proper function algebra of C(F) then there exists an ana-
Iytic function @ in H(J)—~F such that lim G(z)=g(z) as z€H(J)—F tend to z€J.
In the final part of this paper we apply theorems 1 and 2 to solve an approximation
problem on the unit interval. Let f€C(I), where [ is the unit interval. Assume
() =Ff(2) while f(x)# f(y) for all other pairs of distinct points =, y€I. If g€C(]) is
such that g(})#¢(3) we wish to find out if the function algebra on I generated by
f» ¢ and the constant functions is C(I). This problem has been discussed in several
papers, see for example [1, 2 and 4]. The best result is contained in [2] where it is
shown that we get C(I) if f and ¢ are continuously differentiable. A famous example
in [3] indicates that some smoothness on f and ¢ is necessary. The example consists
of a Jordan arc K in C® such that K is not polynomially convex. This Jordan arc is
used to construet a proper function algebra of C(I). Let us now put J = {f(z)|z€I}.
We see that J has one of the following three forms:

The case when J has the form (3) is easy, we get C{I) with no extra assumptions
on f and g. Also case (2) can be easily reduced to case (1) so we only consider that
case. To prove that we now get O(I) we need some conditions on J. Obviously J
satisfies the condition (C) if R(J)=C(J). We do not know if this alone is sufficient
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to guarantee that we get C(I). In order to prove that we get () we shall need some
smoothness of the two Jordan arcs ¢ and b in Fig. 1. It is for example sufficient to
have @ and b continuously differentiable. Notice that we need no extra condition
on g. We shall later introduce a condition on @ and b which guarantees that we get
C(I). This condition is related to difficult problems on analytic extensions using
reflection principles.t

Before we state the following results we make the following useful remark: Let F
be a compact set satisfying (C). Now we can use a conformal map of H(J) onto the
unit disc. Hence we may assume that J is the unit circle 7. We point out that all
extra conditions we make are invariant under this conformal map. So when we now
say that a compact set satisfies (C) it is understood that the Jordan curve J is T'.

Theorem 1. Let K be a compact set of the unit disc D containing T and satisfying (C).
Let g€C(K) be such that g and the polynomials, generate a proper function algebra B of
C(K). If now m s a non zero measure on K annihilating B then

_ [ g(x)dm(x) dm(x)
G(z)—f z—2 /fx—z
s o bounded analytic function in D — K with

sup {|G(z)|[€ D— K}< sup {|g(x)|[zEK}.
Also lim G(z) =g(e™) ewists uniformly as z€ D— K tend to e“€T.

Before we prove Theorem 1 we wish to state Theorem 2. Let G(z) be as in Theorem
1, hence ((z) is an analytic function in D — K. If z,€K is such that there exists a
Jordan are J < D with J N K ={z,} and lim G(z) =a exists as z€J tend to z,, then we
say that G has the asymptotic value a at zy. If 2, €K is such that lim G(z) =a exists
as 2€D— K tend to z,, then we say that G has the unrestricted limit value @ at z,.

Theorem 2. If G has an asymptotic value at some point zy€ K which is different from
g(zy) then there exists an open meighborhood V of z, such that the restriction of B to
K —V generates a proper function algebra of C(K — V). There exists a smallest closed
subset F of K such that the restriction of B to F generates a proper function algebra of
C(F). The function @ is analytic in D—F and if G has an asymptotic value af some
point zg€ F then G has an unrestricted limit value at z, which equals g(z).

Since the proofs are not very short we shall first give some preliminary results.
Let M5 be the maximal ideal space of B. As usual we identify K with a closed sub-

1 In a forthcoming paper by H. S. Shapiro and Shields it is shown that we get C(I) without
any extra conditions on f and g. We also remark here that Mergelyan’s Theorem shows that
R(J)=C(J) is always verified. In a forthcoming paper ‘“‘Analyticity in the maximal ideal space
of a function algebra” by the present author essentiell improvements have been obtained which
indicate that f and g generate C(I) in the case where J is only assumed to be a curve with fi
nitely many self-intersections.
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set of My and then K contains the Shilov boundary of B. If x€M; there exists a
point 7(z) €D such that P(z)=P(n(z)) for every polynomial P. We say that z lies
above n(x) and that z(x) lies below z. If V is a subset of D we put z~(V)={x € M|

z) € V}. The set w~1(V) is called the fiber of ¥ in M. The correspondence between
points z€ D and the fibers n~!(2) is continuous in the following way: Let W be an
open neighborhood of #~1(z) in M, then there exists an open neighborhood V of 2
in D such that z~1(V) is contained in W. Since R(K)=C(K) and D — K is connected
we see that if zy€ D — K then the element P =z —z, in B cannot be invertible. Hence
there exists a point £ € M, such that P(z) =z, and it follows that x lies above z,. We
have now proved that the fibers n—1(z) are not empty when z€.D — K. We shall later
prove that the fiber 7-1(z) is reduced to a single point when z€D— K. If z€ K the
fiber 1-1(z) contains a trivial point, namely z itself. If z€ K and if z—(z) only consists
of this trivial point we say that m~(z) is a trivial fiber. If 2€ 7 is is easily seen that
7~Y(z) is a trivial fiber. For suppose that x€n1(z). Now we can find a positive meas-
ure v on K such that g(z)=[gdv for all g€ B. In particular P(z) = Pdv for every
polynomial. It follows that v is the unit point mass at z and hence g{x) =g(z) for all
g € B which proves that x=2. Assume now that we have proved that z~!(z) consists
of one point x(z) when z€ D — K. The function G(z) =g(x(z)) is then well defined in
D~ K. We shall later prove that

Ge) = f dm(x /J‘dm x)

if m is an arbitrary non zero measure on K annihilating B. It follows that G i 1s ana-
lytic in D — K. Since K contains the Shilov boundary of B in M, we have |g(x(2)| <
sup {|g(x)| |2 €K} =|g|x when 2z€ D~ K. If 26 D— K and lim z=¢“€T we see tha,t
lim «(z) =¢* holds in M too, because n~1(e®) is a trivial fiber. Hence lim G(z) =lim
g(z(z)) =g¢(e*) as z€D — K tend to e®. If 2z€ K — T the fiber n~1(z) may be non trivial
and then we get troubles. An important result which we shall prove is the following:
If G has an asymptotic value at z,€ K — T which is different from g¢(z,) then 7—(z,)
contains exactly two points. Let x; be the non trivial point in 7(z,). We shall later
prove that lim G(z)=g(z,) as z€ D— K tend to z,, hence G has an unrestricted
limit value at z;,. We can use this to prove that the point z,€ M ; has an open neigh-
borhood W in My such that n(W) is contained in K. Let then V be an open neigh-
borhood of z, in D such that 7(W) is contained in K N V. We can use this fact to
prove that the restriction of B to F= K — V generates a proper function algebra of
C(F). If G has an asymptotic value at z,€ K which equals g(z,) we can prove that
7Y(zy) is trivial. It follows that if z€ D~ K tend to 2z, in D then z(z) tend to 2, in
M 5. Hence lim G(z) =lim ¢g(2(2)) =¢(z,), i.e. G has an unrestricted limit value at z,.
We shall freely use results about function algebras. We refer to [5] and [6] for a dis-
cussion about these. Here we state some results which are used in the following proofs.
Let 4 be a function algebra with the maximal ideal space M , and the Shilov bound-
ary S, The set D,=M,—S, is called the interior of M,. The Local Maximum
Principle is here used in the following form: Let W be a subset of D, and let bW be
the topological boundary of W in M,, then |f(z)| < sup {|/(y)|y€bW} for every
x€W. In particular there exists a positive measure m, carried on D, for each point
€D, such that f(x) = f fdm, for all f€ A. It follows from this that if D, is not empty
then the restriction of 4 to bD, generates a proper function algebra of C(bD,). A
closed subset F of M, is A-convex if for every point x€ M, — F there exists f€4
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such that f(z)> sup {|f(y)|yE€F}. If F is an A-convex subset of M, the function
algebra Ar on F generated by restricting 4 to ¥ has ¥ as its maximal ideal space.

Proof of Theorem 1. Let m be a non zero measure on K annihilating B. Let us put
W(z)=f g(x)dm(z)jx—2 and R(z)=fdm(x)/z—z. Obviously W and R are analytic
functions in D— K. Because m annihilates B we get [Zg(z)dm(z)/1—2x=0 for
z€D—K and hence W(z)=f(1—|z|?)g(x)dm(z)/(x —2)(1 —Zx) when z€D— K. Let
us put K, =(K—7). By assumption there exists a closed arc L={e*|a<i<b} such
that K, N L is empty. Hence there exists r,<<1 such that if »>r, and a <{<b then
re’* ¢K,. From now on we always assume that r>r,. We also put K—~7'=28.

b
Lemma 1. Em f [ W(re't)|dé< oo as r tends to 1.
a

Proof. We have f3|W(re®)|dt<[’dt fs|g(x)||dm(z)]|(1—r2)/|x—re¥|[1—re” ]
+§r]9(@)| |[dm(z)] §5 (L —r2) |/(z —re'*{Pdt = A(r) + B(r). Obviously lim A(r\=0 as r
tends to 1 because K, N L is empty, also B(r) <2nf|g(x)||dm(z)| holds.

Using Lemma 1 we can now choose two different rays {re*} and {re*} where
a<c<d<b such that lim W(re®), lim W(re*), lim R(e¥) and lim R(e®) all exist fi-
nitely as r tends to 1. We shall need the following elementary result:

Lemma 2. Let J be a Jordan curve in D such that J N T ={e|c<i<d}=J,. diso
J approaches T along the two rays {re*} and {re¥}, i.e. J contains the two sets {re®|
7y <r<1} and {re®|r, <r<1} for some r,<1. Let z be a point in the interior of J. Let
v be the unique positive measure on J such that P(z)= | Pdv for every polynomial P.
Then dv(e®)=h(e®)dx when c<x<d. Here dx is the Haar measure on T and h is
bounded on (c, d).

Lemma 3. With J and v as in Lemma 2 we have lim O(r) =lim [ | R(re')g (e%) -
W (re't)|dv(e*) =0 as r tends to 1.

Proof. We have

dm(z)|/|x—re'|| 1 — zre™¥|

d
o< f l dv(e”)lfs lg(re’) — g(@)| (1 —7%)
+ f |dm(=) |fd g(re’®) — g(@)| (1 — r*) h(e") /| w — re* [*dt = A(r) + B(r).
T c

As in Lemma 1 we see that A(r) tends to zero as r tends to 1 and B(r) tends to zero
because k{e") is bounded on (c¢,d) and ¢ is a continuos function.

Let M be the maximal ideal space of B. Let 26 D— K and choose z(z) En~1(z)
in Mz Now we have:

Lemma 4. R(z)g(z(z)) =W (z).

Proof. Choose a Jordan curve J as in Lemma 2 which contains 2z in its interior.
This is possible since D — K is connected. If <1 is sufficiently close to 1 the func-
tions W,(2)=W(rz) and R,(z)=R(rz) are analytic in a neighborhood of the closed
set H(J) bounded by J. Hence Runge’s theorem shows that we can approximate
W, and R, uniformly by polynomials on H(J). Let us put J=a—Y(H(J)). If x€S
then 7(z) €H(J). We define W ,(x) =W (n(x)) and R,(x) =R, (n(z)) on J. If {P,} are
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polynomials such that lim |P,—W,|zy, =0 then we see that lim|Pn—W,]} =0,
Hence we can approximate W, and R, uniformly on J by functions from B. Assume
now that the lemma is false. Then we can find d>0 such that lim | R(rz)g(x(z)) —
W(rz)| >d. Let M > sup {|W,|;¢r+ | R,|s—s|7o<r<1}. We can find M here because
lim W{re¥®),... exist finitely. Choose now a polynomial @ such that @(z)=1 while
[@lr—r<d[2(|g|g+1)M. Let us consider 7~1(J). Obviously z—1(J) contains the topo-
logical boundary of J in Mj. Because J —n~1(J) lies off the Shilov boundary the
Local Maximum Principle shows that |f(z(z))| < sup {|f(z)| [x€x(J)} for all fEB.
Hence we can also find a positive measure 4 on 7~1(J) such that f(z(z)) = [fdA for
all f€ B. In particular P(z) = [PdA for every polynomial P and since 7~1(z) is trivial
when 2 €7 it follows that the restriction of A to a~%(J) N T is identical to the measure
v considered in Lemma 2. It follows from Lemma 3 that

hmf IQ”RTg*WTId2'=O
n‘l(])nT

as r tends to 1. We also have

f IQHRTQ_Wr[dA<d/2‘
a~Yn-1
Now we obtain a contradiction since

|Q(R,g— W) (x(2))| >d.

Lemma 4 shows that if 26 D~ K is such that R(z)#0 then g(z(z))=W(z)/R(z)
for all 2(z) En—(z). It follows that #~1(z) consists of one point denoted by z(z). Since
g(z(2)) is bounded when z€D— K it follows that the meromorphie function G{(z)=
W(z)/ B(z) is analytic in D — K. Now it is also easy to prove that evenif z€D— K is
such that R(z)=0 then n~1(z) consists of one point x(z) and g(x(z)) =G(z). Theorem 1
is proved.

Before we prove Theorem 2 we need the following lemma.

Lemma 5. Let F be o compact subset of (D—J)U {0} where J is a Jordan arc in D
having 0 and 1 as endpoints. If now v is a positive measure on F such that P(0)=
§ Pdv for every polynomial, th.n v is the unit point mass at 0.

Proof of Theorem 2. Suppose that G has an asymptotic value at some point z,€K,
then we shall prove that @ has an unrestricted I'mit value at z,. We may assume that
2y €K — T since if 2,€ T we have already proved that lim G(z) =lim g(z(z)) =g(z,) as
2€D— K tends to z,. By assumption there exists a Jordan arc J such that J N K=
{20} and lim G(2) exists as z€J — {z,} tends to z,. Let us tirst assume that the asymp-
totic value is different from g(z,). Because g(x(z)) =G(z) when z€ D — K we see that
lim %(z) ==, exists in My as 2€J —{z,} tends to z, in D. Let z, be the trivial point
in w~Y(zy). Now 2, # 2, because g(z,) is assumed. to be different from g(z,) here. Sup-
pose now that x, €x~1(z) is such that x,5x, and z,. Let us put F=(Z—-J) U {2} if
Z is a closed disc around z, in D such that J intersects the boundary of Z. Now we
choose Z so small that |g(x,) —g(x(2)) | >d >0 when z€(Z N J)—{z,}. Now we choose
a closed neighborhood W of z, in M such that W lies off the Shilov boundary and
W is contained in z—(F). Let bW be the topological boundary of W in Mjp. It fol-
lows that f(x,) = [fdv for all f€ B, where v is a positive measure on bW. In particular
P(z)) = Pdv for every polynomial. Because bW is contained in 7~'(¥F) Lemma 5
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shows that the support of » is contained in 7~1(z,). It follows that x, cannot be a
peak point of the function algebra B(z,) on 7-1(z,) generated by the restriction of B
to m1(zy). Hence the Shilov boundary of B(z,) only contains z;, and z, It follows
that 7~1(z,) only consists of 2, and z,. We now investigate the neighborhoods of z,
in Mp. Let W be a closed B-convex neighborhood of #; such that W lies off the Shilov
boundary and z,¢W. Suppose now that there exist y,€.D— K such that y, tend to
zo in D while W Nn-1(y,) are empty. For every » we consider the function f,=
(z—y,) on W. We see that f,€ By, where By, is the function algebra on W generated
by restricting B to W. Because W is B-convex we know that W is the maximal ideal
space of By. Now f, is different from zero on W and hence there exists g,€ B such
that lim,|g,f,—1ly=0. Let bW be the topological boundary of W in My Let
S=n-1(bW), obviously S is a closed subset of D and since 7z'(zy) only consists of
x, and z, we see that z,¢S. Because y, tends to z, in D we may assume that |f,(2)]
>inf {|z—y,| [2€S}>d >0 when z€bW. We may also assume that |gnts—1lw<1
for all n. It follows that |g,|,w <2/d and hence also |g,|,<2/d for every n. Now we
get a contradiction since lim, f,(#;)g,(%;) =0 follows while lim, | f,(#)ga(%,) —1| =0
also holds. This shows that there exists a neighborhood V of z, in D such that =z~
(V — K) is contained in W. Since n~1(z) contains only one point when z€D— K it
follows that the trivial point z, of m~1(2,) has a neighborhood U in Mp such that
7(U) is contained in K. If now y,€ D — K tend to z, in D it follows that z(y,)€x™*
(y,) must converge to z; in My Hence lim G(y,)=1lim g(x(y,)) =g(x;) which proves
that G has an unrestricted limit value at z,. We must finally consider the case when
@ has an asymptotic value at z, which equals g(z,). This case is simpler than the
previous and we can prove that m—1(z,} is trivial. It follows as above that G has an
unrestricted limit value at z, in this case too. Now we complete the proof of Theo-
rem 2. Let S; be the Shilov boundary of B. Let us put W;={z€K —T|G has an
analytic extension to a neighborhood of x and G(x)# g(x)}. Clearly W, is a relatively
open subset of K. If 2,€ W, we can choose a neighborhood U of z, in D such that
UN K is contained in W,. Now the previous results show that n(U N K)=U N K
and since R(K)=C(K) it follows easily that U N K lies in the interior of Sz. Then
the local maximum principle implies that the restriction of B to the set K; = K- W,
generates a proper function algebra B, of C(K,). From now on we work with B;
instead of B. We can define @ with respect to B, and clearly ¢ is the same function
as that defined with respect to B, i.e. we can represent G with a non zero measure on
K, which annihilates B,. If we now define W,=W,(B,) with respect to B, i.e. we
put W,(B,)={x€K,~T|@ has an analytic extension to a neighborhood of z and
G(x)#9g(z)}, then W,(B,) is empty. So now we assume that B and K are such that
W, is empty. Let us now put W,={z€K — T'| @ has an analytic extension to a neigh-
borhood of z}. Clearly x€ W, implies that G(z)=g(x) (since W, is empty) and it
follows easily that W, N S is empty. It follows that the restriction of B to the set
K,=K W, generates a proper function algebra of C(K,). Since we can represent
@ with any non-zero measure on K annihilating B we see that K, is the smallest
subset of K such that the restriction of B to K, generates a proper function algebra
of O(K,). '

We shall now discuss how Theorem 1 can be applied to the approximation problem
on the unit interval.

Definition. A Jordan arc J in the complex plane satisfies the reflection principle
if the following holds: If z,€J there exists an open disc Z around z, such that if ¢ is
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any bounded analytic function in Z -J with the property that & has an unrestricted
limit value at a point 2€J NZ when @ has an asymptotic value at 2, then it follows
that & has an analytic continuation to Z.

Definition. A Jordan arc is almost smooth if J satisfies the reflection principle and
if R{J)=0(J), i.e. the rational functions with poles outside J generate C{J).

We remark here that every smooth Jordan arc is almost smooth. We do not know
if the condition R(J)=0C(J) implies that J is almost smooth. Let us now consider
a function f€C(I) such that J = {f(x) |2 €I} is of the form in Fig. 1. Let us assume
that the two Jordan arcs ¢ and & in (1) are almost smooth. Now we can prove that
if g€C(I) is such that g(})#g(2) then the function algebra generated by f, g and the
constant functions is C(I). We may assume that f(})=/(3)=0 while g(})=1 and
g(3)=~1. Let us put f,=f, f,=¢% and fy=fg. On J we define f(z)=F,(x) where
x€1 is such that f(z)=z. Obviously f, are well defined on J. Suppose that the func-
tion algebra on J generated by f,, f,, f; and the constant functions is different from
C(J). Now our previous results show that f, and f; have analytic extensions from
dJ into the interior of J. Here &J is the outer boundary of J (see Fig. 1). Call these
extensions H, and H,. On &J we have the relation z*H,= H, and it follows that
H,/lz is a bounded analytic function in the interior of J. Now we can approach 0
along 0J in two different ways. We get lim H,/z =g(}) from one way and lim Hj/z
g(}) from the other way. Now Montel’s theorem (see [7], p. 170) gives a contradic-
tion. It follows that f,, /,, f; and the constant functions generate C(J) and then it is
clear that f, g and the constant functions generate C(I) too.
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