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Relatively maximal function algebras generated by 
polynomials on compact sets in the complex plane 

By JAN-ERIK BJORK 

Introduction 

Wermer's maximality theorem states that  if J is a Jordan curve in the complex 
plane the function algebra P(J)  generated by polynomials on J is a maximal closed 
subalgebra of C(J), the algebra of complex-valued continuous functions on J .  
Wermer's theorem can also he stated in the following form: If  g E G(J) is such that  
the polynomials and g generate a proper function algebra of C(J) then g has an ana- 
lytic extension to the interior of J .  In  this paper we t ry to extend Wermer's maxi- 
reality theorem in the following way: Let J be a Jordan curve in the complex plane. 
We denote by H(J) the compact set bounded by J.  Let F be a closed subset of -~/(J) 
containing J .  Suppose g E C(F) is such that  g and the polynomials generate a proper 
function algebra of C(F). Now we wish to find out if g has an analytic extension from 
J into the interior of H(J), i.e. if there exists a function GEC(H(J)) such that  G=g 
on J and G is analytic in the interior of H(J). Of course we need some conditions on 
F to obtain such results. We say that  F satisfies (C) if the following holds: 

I. R(F)=C(F), where R(F) is the function algebra on F generated by rational 
functions with poles outside F. _ _  

2. H(J)- .F is connected and ( F - J )  N J #J .  
We show in Theorem 1 that  if F satisfies (C) and gEC(F) is such that  g and the 

polynomials generate a proper function algebra of C(F) then there exists an ana- 
lytic function G in H ( J ) - F  such that  lim G(z)=g(x) as zEH(J ) -F  tend to x6J. 
In  the final part  of this paper we apply theorems 1 and 2 to solve an approximation 
problem on the unit interval. Let /EC(I),  where I is the unit interval. Assume 
](¼) =/(~) while/(x)#/(y)  for all other pairs of distinct points x, y E I.  I f  g E C(I) is 
such that  g(¼)# g(~) we wish to find out if the function algebra on I generated by 
/, g and the constant functions is C(I). This problem has been discussed in several 
papers, see for example [1, 2 and 4]. The best result is contained in [2] where it is 
shown that  we get C(I) if / and g are continuously differentiable. A famous example 
in [3] indicates that  some smoothness on / and g is necessary. The example consists 
of a Jordan arc K in C a such that  K is not polynomially convex. This Jordan arc is 
used to construct a proper function algebra of C(I). Let us now put J = {](x) lz E I}. 
We see that  J has one of the following three forms: 

The case when J has the form (3) is easy, we get C(I) with no extra assumptions 
on / and g. Also case (2) can be easily reduced to case (1) so we only consider that  
case. To prove that  we now get C(I) we need some conditions on J .  Obviously J 
satisfies the condition (C) if R(J)= C(J). We do not know if this alone is sufficient 
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Fig. 1 Fig. 2 Fig. 3 

to guarantee  t h a t  we get C(I). I n  order to prove t h a t  we get C(I) we shall need some 
smoothness of the two J o r d a n  arcs a a n d  b in  Fig. 1. I t  is for example sufficient to 
have a and  b con t inuous ly  differentiable. Notice t ha t  we need  no extra  condi t ion 
on g. We shall  la ter  introduce a condi t ion on a a n d  b which guarantees  t h a t  we get 
C(I). This condi t ion  is related to difficult problems on analy t ic  extensions using 
reflection principles. 1 

Before we s ta te  the  following results we make  the  following useful remark:  Let E 
be a compact  set sat isfying (C). Now we can use a conformal  ma p  of H(J) onto the 
un i t  disc. l=[ence we m a y  assume t h a t  J is the  u n i t  circle T.  We point  out  t ha t  all 
extra  condit ions we make  are i nva r i an t  unde r  this  couformal map.  So when we now 
say t ha t  a compact  set satisfies (G) i t  is unders tood tha t  the  J o r d a n  curve J is T. 

Theorem 1. Let K be a compact set o/ the unit disc D containing T and satis/ying ( C). 
Let g E C(K) be such that g and the polynomials, generate a proper/unction algebra B of 
C(K). I / n o w  m is a non zero measure on K annihilating B then 

f dm(x) 
j x - - z  / j  x - - z  

is a bounded analytic/unction in D -  K with 

sup {la(~)llzeD- K} <<. sup {lg(x)ll~eg}. 

Also lim G(z)=g(e ~) exists uni/ormly as ze  D -  K tend to e~e T. 

Before we prove Theorem 1 we wish to s tate  Theorem 2. Let  G(z) be as in  Theorem 
1, hence G(z) is a n  ana ly t ic  func t ion  in D - K .  If  zoEK is such tha t  there exists a 
Jo rdan  arc J c D with J N K = {zo} a nd  lira G(z) = a exists as z E J t end  to z 0, then  we 
say t ha t  G has the  asymptot ic  value a a t  z 0. I f  zoEK is such tha t  lira G(z)=a exists 
as z E D - K t e n d  to z0, t hen  we say t ha t  G has the unres t r ic ted  l imit  value a a t  %. 

Theorem 2. I /  G has an asymptotic value at some point z o E K which is di//erent /rom 
g(zo) then there exists an open neighborhood V o/ z o such that the restriction o/ B to 
K -  V generates a proper/unction algebra o/ C ( K -  V). There exists a smallest closed 
subset F o / K  ~ c h  that the restriction o / B  to F generates a proper/unction algebra o/ 
C( F). The/unction G is analytic in D - F  and i / G  has an asymptotic value at some 
point z o E F then G has an unrestricted limit value at z o which equals g(zo). 

Since the proofs are no t  very  short  we shall first give some pre l iminary  results. 
Let  M s  be the  max imal  ideal space of B. As usual  we ident i fy  K with a closed sub- 

i In a forthcoming paper by H. S. Shapiro and Shields it is shown that we get C(I) without 
any extra conditions on ] and g. We also remark here that Mergelyan's Theorem shows that 
R(J) = C(J) is always verified. In a forthcoming paper "Analyticity in the maximal ideal space 
of a function algebra" by the present author essentlell improvements have been obtained which 
indicate that f and g generate C(I) in the case where J is only assumed to be a curve with fi 
nitely many self-intersections. 
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set  of M s  a n d  t hen  K contains  the  Shi lov b o u n d a r y  of B. I f  x ~ M s  t he re  exists  a 
po in t  :~(x) ED such t h a t  P(x)=P(u(x))  for eve ry  po lynomia l  P .  W e  say  t h a t  x lies 
above  ~(x) a n d  t h a t  ~(x) lies below x. I f  V is a subse t  of D we p u t  u - l ( V )  = {x E M s  I 
~(x) E V}. The  set ~ - I (V)  is called the  f iber  of V in Ms .  The correspondence  be tween  
poin ts  z E D a n d  the  f ibers  u- l (z)  is cont inuous  in the  following way:  Le t  W be an  
open ne ighborhood  of ~- l (z)  in Ms ,  t h e n  there  exists  an  open ne ighborhood  V of z 
in D such t h a t  u-x(V) is conta ined  in W. Since R(K) = C(K) a n d  D - K is connec ted  
we see t h a t  if z 0 E D - K then  the  e lement  P = z -  z o in  B canno t  be inver t ib le .  Hence  
there  exis ts  a po in t  x E MB such t h a t  P(x) = z o a n d  i t  follows t h a t  x lies above  z 0. We  
have  now p roved  t h a t  t he  f ibers ~- l (z)  are  no t  e m p t y  when z E D - K.  W e  shall  l a te r  
prove  t h a t  t he  f iber  ~- l (z)  is r educed  to a single po in t  when z E D - K .  I f  z E K  the  
f iber  u-~(z) conta ins  a t r iv ia l  point ,  n a m e l y  z itself. I f  z E K  a n d  if ~-l(z)  on ly  consists 
of th is  t r iv ia l  po in t  we say  t h a t  ~- l (z)  is a t r iv ia l  f iber.  I f  z E T is is eas i ly  seen t h a t  
u- l (z)  is a t r iv ia l  f iber.  F o r  suppose  t h a t  x E~-l(z) .  N o w  we can  f ind  a pos i t ive  meas-  
ure  v on K such t h a t  g(x)= ~gdv for all  g G B. I n  pa r t i c u l a r  P(z)=.~Pdv for eve ry  
polynomia l .  I t  follows t h a t  v is the  un i t  po in t  mass  a t  z a n d  hence g(x) = g(z) for al l  
g E B which proves  t h a t  x =z. Assume now t h a t  we have  p roved  t h a t  z - l ( z )  consists 
of one po in t  x(z) when z e D - K .  The funct ion  G(z)=g(x(z)) is t hen  well def ined in 
D - K .  W e  shaft l a t e r  p rove  t h a t  

d x - z  I J  x - z  

if qn is a n  a r b i t r a r y  non zero measure  on K ann ih i l a t ing  B. I t  follows t h a t  G is ana-  
ly t ic  in  D - K .  Since K contains  the  Shflov b o u n d a r y  of B in M s  we have  ]g(x(z) I'<~ 
sup {I t (x)[  [ x E g } =  IgIK when z E D - K .  If  z E D - K  and  l im z=e~aET we see t h a t  
l ira x(z) =e ~ holds  in M s  too, because  ~-l(e(a) is a t r iv ia l  f iber.  Hence  l im G(z)=lira 
g(x(z)) =g(e ~'~) as z E D - K t end  to  e% I f  z E K  - T the  f iber  ~- l (z)  m a y  be non t r iv ia l  
and  t h e n  we ge t  t roubles .  A n  i m p o r t a n t  resul t  which we shal l  p rove  i s the  following: 
I f  G has  an  a s y m p t o t i c  va lue  a t  z o E K - T  which is d i f ferent  f rom g(zo) t hen  rc-l(z0) 
conta ins  e x a c t l y  two points .  Le t  x 1 be the  non t r iv ia l  po in t  in ~-l(z0). W e  shall  l a t e r  
p rove  t h a t  l ira G(z)=g(xl) as z E D - K  t e n d  to  z o, hence G has  an  unres t r i c t ed  
l imi t  va lue  a t  z 0. W e  can  use this  to  p rove  t h a t  the  po in t  z 0 E MB has  an  open neigh- 
borhood W in M s  such t h a t  u(W) is con ta ined  in  K .  Le t  t h e n  V be an  open neigh- 
borhood  of z o in D such t h a t  ~(W) is con ta ined  in K N V. W e  can use th is  fac t  to  
prove  t h a t  the  res t r i c t ion  of B to F = K -  V genera tes  a p r o p e r  func t ion  a lgebra  of 
C(F). I f  G has  an  a sympto t i c  va lue  a t  zoEK which equals  g(zo) we can prove  t h a t  
z-X(Zo) is t r ivial .  I t  follows t h a t  if z E D - K t e n d  to  z o in D then  x(z) t e n d  to  z 0 in 
MB. Hence  l im G(z) = l i r a  g(x(z)) =g(zo), i.e. G has  a n  unres t r i c t ed  l imi t  va lue  a t  z 0. 
W e  shal l  f ree ly  use resul ts  abou t  funct ion  algebras .  W e  refer  to  [5] and  [6] for a dis- 
cussion a b o u t  these.  Here  we s ta te  some resul ts  which are  used  in the  following proofs.  
Le t  A be a func t ion  a lgebra  wi th  the  m a x i m a l  ideal  space MA a n d  the  Shi lov bound-  
a r y  SA. The  set  D.4 =M.4-SA is cal led the  in ter ior  of M~. The Local  M a x imum 
Pr inciple  is here  used  in the  following form: Le t  W be a subse t  of DA a n d  le t  bW be 
the  topologica l  b o u n d a r y  of W in MA, then  [/(x)] < sup {[](y)]yEbW} for every  
x E W. I n  pa r t i cu l a r  there  exists  a posi t ive  measure  mx carr ied  on bDA for each po in t  
x E D A such t h a t / ( x )  = ~/dmx for all  / e  A.  I t  follows f rom this  t h a t  if D~ is no t  e m p t y  
then  the  res t r ic t ion  of A to bDA genera tes  a p rope r  funct ion  a lgebra  of C(bDA). A 
closed subse t  F of MA is A-convex  if for eve ry  po in t  x E M A - F  there  exists  ] E A  
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such t h a t / ( x ) >  sup {[/(y)lyeF}. If F is an  A-convex  subset of Ma the function 
algebra A~ on F generated by restricting A to F has F as its maximal ideal space. 

Proo/ o/ Theorem 1. Let m be a non zero measure on K annihilating B. Let us put  
W(z) =~g(x)dm(x)/x-z and R(z)=~dm(x)/x-z.  Obviously W a n d / t  are analytic 
functions in D - K .  Because m annihilates B we get ~g(x)dm(x)/1-~x=O for 
z e D - K  and hence W(z)--~(1-Iz]2)g(x)dm(x)/ (x-z)(1-2x)  when z e D - K .  Let 
us put  K I = ( K - T  ). By assumption there exists a closed arc L={e~tla<~t<<.b } such 
that  K1 • L is empty. Hence there exists r 0 < 1 such that  if r >/r 0 and a ~ t ~< b then 
re ~t $K1. From now on we always assume that  r>~r o. We also put K - T  = S. 

Lemma 1. ~ f~  I W(rdt)ldt< co as r tends to 1. 

Proo/. We have [W(re") dt<  dt 
+ Jr[g(x)[ [dm(x)[~ ( 1 - r  a) I/(x-re't[~dt =A(r) + B!r). Obviously lira A(r~ =0 as r 
tends to 1 because K~ fl L is empty, also B(r) <~ 2~ f r[ g(x) [ [ dm(x) [ holds. 

Using Lemma 1 we can now choose two different rays {re e} and {re ~} where 
a<c<d<b such that  lira W(ref~), limW(re~), lim R(e ~) and lim R(e ~) all exist fi- 
nitely as r tends to 1. We shall need the following elementary result: 

Lemma 2. Let J be a Jordan curve in D such that J ~ T={e~t[e<~t<~d}=J~. A~o 
J approaches T along the two rays {re ~c} and {re~}, i.e. J contains the two sets {re e ] 
r~ <~r<l} and {re~lr~ <~r<l} /or some rx< l .  Let z be a point in the interior o/J .  Let 
v be the unique positive measure on J such that P(z)= ~Pdv/or every 1aolynomiaI P. 
Then dv(e~)=h(e~')dx when e<x<d. Here dx is the Haar measure on T and h is 
bounded on (c, d). 

Lemma 3. With J and v as in Lemma 2 we have lim C(r)=lim ]~ ]R(re~t)g(e~) - 
W(re i~) [dv(e te) =0 as r tends to 1. 

Proof. We have 

C(r) <~ ~ ]dv(e't)l f s lff(re'~)-g(x)l(1-r'~)ldm(x)Hx-re'tl[1-xre-~t[ 

~r Idm(z) ] ~ Ig(rett) - g(x) l (1 -  r2) h(e~t)/Ix- re'tl~dt= A(r) + B(r). + 

As in Lemma 1 we see that A(r) tends to zero as r tends to 1 and B(r) tends to zero 
because h(d t) is bounded on (c,d) and 9 is a eontinuos function. 

Let Ms be the maximal ideal space of B. Let z e D - K  and choose x(z)ez-l(z) 
in M s . Now we have: 

Lemma 4. R(z)g(x(z)) = W(z). 

Proo/. Choose a Jordan curve J as in Lemma 2 which contains z in its interior. 
This is possible since D -  K is connected. If  r < 1 is sufficiently close to 1 the func- 
tions W~(z)= W(rz) and R~(z)=R(rz) are analytic in a neighborhood of the closed 
set H(J) bounded by J. Hence Runge's theorem shows that  we can approximate 
Wr and R~ uniformly by polynomials on H(J). Let us put J=z-I(H(J)).  If  x E ]  

then ~(x)el l (J) .  We define VV~(x)= W~(z(x)) and R~(x)=R~(g(x)) on 3. If  (P~} are 
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polynomials such that lira ] P ~ -  W~ ] ~(,, = 0 then we see that lira [ P . -  W~[ ~ = 0. 
Hence we can approximate W~ and k r  uniformly on J by  functions from B. Assume 
now tha t  the lemma is false. Then we can find d>O such tha t  l im[R(rz)g(x(z))- 
W(r=) 1/> d. Let M >/sup { I W~l~_~ + I R, I ~-~ I r0 <r  < ~ }. We can find M here beeanse 
lira W(re ~) .... exist finitely. Choose now a polynomial Q such tha t  Q(z)=1 while 
[Q [~-r < d/2( [ gIK + 1)M. Let  us consider z~-t(J). Obviously ;z-l(J) contains the tope- 
logical boundary of J in Ma. Beeanse ] - ~ - ~ ( J )  lies off the Shilov boundary the 
Local Maximum Principle shows tha t  [/(x(z))] <~ sup {]/(x)] [x e~r-~(J)} for all / E B. 
Hence we can also find a positive measure ;t on ~ - l ( j )  such that / (x(z))  =S/dR for 
a l l / e B .  I n  particular P(z) =~Pd2 for every polynomial P and since ;z-l(z) is trivial 
when z E T it follows tha t  the restriction of )~ to ~-~(J) A T is identical to the measure 
v considered in Lemma 2. I t  follows from Lemma 3 tha t  

as r tends to 1. We also have 

f=-l<j)_~ Q[lk, g -  r~,ld~ < d/2. 

Now we obtain a contradiction since 

]Q(Rrg - ~rr)(x(z))] >1 d. 

Lemma 4 shows tha t  if z E D - K  is sueh tha t  /~(z)#O then g(x(z))=W(z)/R(z) 
for all x(z) E~-I(z). I t  follows tha t  ~-l(z) consists of one point denoted by  x(z). Since 
g(x(z)) is bounded when z E D - K  it follows tha t  the meromorphie function G(z)= 
W(z)/R(z) is analytic in D - K. Now it  is also easy to prove tha t  even if z E D - K is 
such tha t  R(z) =0 then ~-l(z) consists of one point x(z) and g(x(z)) =G(z). Theorem 1 
is proved. 

Before we prove Theorem 2 we need the following lemma. 

Lemma 5. Zet ~ be a compact subset o/ ( D - J )  U {0} where J is a Jordan arc in D 
having 0 and 1 as endlgoints, l.t now v is a positive measure on F such that P(O)= 
SPdv /or every polynomial, t,',m v is the unit point mass at O. 

Proo/ o/ Theorem 2. Suppose tha t  G has an ash-mptotie value at  some point zoEK, 
then we shall prove tha t  G has an unrestrictcd l!mit value at z 0. We may  assume tha t  
z o E K - T  since if zoET we have already proved that, lim G(z)=lira g(x(z))=g(z o) as 
z E D - K tends to z 0. By  assumption there exists a Jordan  arc J such tha t  J f3 K = 
{z0} and lim G(z) exists as z E J ,  {%} tends to %. Let  us first assume tha t  the asymp- 
totic value is different from g(zo). Because g(x(z))=G(z) when z E D - K  we see tha t  
lira x(z) =x  1 exists in Ms  as zEJ--{Zo} tends to z o in D. Let  zo be the trivial point 
in xrl(z0). Now x l # z  o because g(xl) is assumed to be different from g(zo) here. Sup- 
pose now tha t  x2E~-l(Zo) is such tha t  x~#x  1 and z0. Let  us put  F = ( Z - J )  U {z0} if 
Z is a closed disc around z 0 in D such tha t  J intersects the boundary of Z. Xow we 
choose Z so small tha t  Ig(x~)-g(x(z)) I ~>d > 0 when z E (Z (3 J ) -  {z0}. 5Tow we choose 
a closed neighborhood W of x~ in Ms  such tha t  W lies off the Shilov boundary and 
W is contained in 7r l (F) .  Let  bW be the topological boundary of W in Ms. I t  fol- 
lows that /(x2) = S/dv for all / E B, where v is a positive measure on b W. I n  particular 
P(zo)=SPdv for every polynomial. Because bW is contained in ~- l (F)  Lemma 5 
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shows t h a t  the  suppor t  of v is contained in ~r-l(z0). I t  follows tha t  x~ cannot  be a 
peak point  of the funct ion algebra B(%) on ~r-l(z0) generated b y  the restriction of B 
to ~r-l(z0). Hence  the  Shilov bounda ry  of B(zo) only contains x 1 and  z 0. I t  follows 
tha t  ~r-l(zo) only  consists of x i and  z o. We now investigate the neighborhoods of x 1 
in MB. Le t  W be a closed B-convex  neighborhood of xl such tha t  W lies off the  Shflov 
boundary  and  z 0 ~ W. Suppose now t h a t  there exist Ya 6 D - K  such t h a t  Ya tend to  
z o in D while W A ~r-l(ya) are empty .  For  every  n we consider the  funct ion /a = 
(z - y,) on W. We see t h a t / .  G Bw, where Bw is the function algebra on W generated 
by  restricting B to  W. Because W is B-convex we know tha t  W is the maximal  ideal 
space of B W. :Now/a  is different f rom zero on W and hence there exists gn 6 B such 
tha t  limalga/,~--llw=O. Let  bW be the topological bounda ry  of W in Ms.  Le t  
S=Tr-I(bW), obviously S is a closed subset of D and  since ~r-l(z0) only consists of 
x 1 and  z 0 we see t h a t  Zoq$S. Because y ,  tends to  z 0 in D we m a y  assume t h a t  l/a(x)l 
>~inf{]Z-ya] ]z6Si>>-d>O when x6bW. We m a y  also assume tha t  ] g , / a - 1 ] w < l  

for all n. I t  follows t h a t  I galbw < 2/d and  hence also l ga ] w < 2/d for every  n. Now we 
get a contradict ion since l i ra, / , (xl)ga(xl)-=0 follows while lira a [/a(xl)ga(xl)- 1 1 = 0  
also holds. This shows t h a t  there exists a neighborhood V of z 0 in D such t h a t  g-1  
( V -  K) is conta ined in W. Since z~-l(z) contains only one point  when z E D - K it 
follows t h a t  the  trivial  point  z o of zt-l(zo) has a neighborhood U in M s  such tha t  
•(U) is contained in K.  I f  now y, G D - K  tend to z 0 in D it follows t h a t  x(ya)Ezr 1 
(Ya) mus t  converge to  x i in Ms.  Hence  lira G(y~)=lim g(x(ya))=g(xl) which proves 
tha t  G has  an unrestr ic ted limit value at  z 0. We must  finally consider the case when 
G has an  asympto t ic  value at  z 0 which equals g(zo). This case is simpler t h a n  the 
previous and  we can prove tha t  ~-l(z0) is trivial. I t  follows as above t h a t  G has an  
unrestr icted limit value at  z o in this case too. :Now we complete the proof of Theo- 
rem 2. Le t  Ss  be the  Shilov b o u n d a r y  of B. Le t  us pu t  W 1 = (x E K - T I G  has an  
analyt ic  extension to  a neighborhood of x and  G(x)~ g(x)}. Clearly W1 is a relat ively 
open subset of K.  I f  z o G W1 we can choose a neighborhood U of z 0 in D such tha t  
U A K is conta ined in W 1. Now the  previous results show t h a t  x~(U A K) = U A K 
and since R(K)= C(K) it follows easily t h a t  U A K lies in the  interior of $8. Then  
the local m a x i m u m  principle implies t h a t  the  restriction of B to the set K 1 = K - W1 
generates a proper  funct ion algebra B 1 of C(K1). From now on we work with B 1 
instead of B. We can define G with respect  to B 1 and clearly G is the same function 
as t ha t  defined with respect  to B, i.e. we can represent  G with a non  zero measure on 
K 1 which annihilates B r I f  we now define W 1 - W I ( B s )  with respect  to B1, i.e. we 
put WI(B1)= {xEK l -  T[ G has an  analyt ic  extension to a neighborhood of x and 
G(x)#g(x)}, then  WI(B1) is empty .  So now we assume t h a t  B and  K are such tha t  
W 1 is empty .  Le t  us now pu t  W~= {xEK - T[ G has an  analyt ic  extension to a neigh- 
borhood of x}. Clearly xE W2 implies t ha t  G(x)=9(x) (since W 1 is empty)  and it 
follows easily t ha t  W 2 ASs is empty .  I t  follows tha t  the restr ict ion of B to the set 
K S = K - W 2  generates  a proper  funct ion algebra of C(K~). Since we can represent  
G with a n y  non-zero measure on K annihilat ing B we see tha t  K~ is the smallest 
subset of K such t h a t  the restriction of B to K,. generates a proper  funct ion algebra 
of C(K2). 

We shall now discuss how Theorem 1 can be applied to the approximat ion  problem 
on the uni t  interval.  

Definition. A J o r d a n  arc J in the complex plane satisfies the reflection principle 
if the following holds: I f  z 0 E J there exists an  open disc Z around z 0 such  tha t  if G is 
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any  bounded analytic function in Z - J  with the property tha t  G has an unrestricted 
limit value a t  a point zEJ N Z when G has an asymptot ic  value a t  z, then it follows 
tha t  G has an analytic continuation to Z. 

De/inition. A Jordan are is almost smooth if J satisfies the reflection principle and 
if R(J)= C(J), i.e. the rational functions with poles outside J generate C(J). 

We remark here tha t  every smooth Jordan arc is almost smooth. We do not  know 
if the condition R(J)= C(J) implies tha t  J is almost smooth. Let  us now consider 
a f u n c t i o n / e C ( I )  such that  J=( / (x ) Ixe I )  is of the form in Fig. 1. Let  us assume 
tha t  the two Jordan  arcs a and b in (1) are almost smooth. Now we can prove tha t  
if g e C(I) is such tha t  g(~)# g(~) then the function algebra generated by  [, g and the 
constant functions is C(I). We may  assume tha t  /(~)=](~)=0 while g (~ )= l  and 
g ( ~ ) = - l .  Let  us put  / 1 = / , / 2 = g  ~ and /~=/g. On J we define ]j(z)=/j(x) where 
x E I  is such t ha t / (x )  =z. Obviously ~ are well defined on J .  Suppose tha t  the func- 
tion algebra on J generated by/1 ,  ]~,/3 and the constant functions is different from 
C(J). Now our previous results show tha t  ]~ and /3  have analytic extensions from 
~J  into the interior of J .  Here ~J  is ~he outer boundary of J (see Fig. 1). Call these 
extensions H2 and H a. On ~J  we have the relation z~H2 = H a and it follows tha t  
H3/z is a bounded analytic function in the interior of J .  Now we can approach 0 
along ~J  in two different ways. We get lim Ha/z=g(¼ ) from one way and lim H3/z 
g(~) from the other way. Now Montel's theorem (see [7], p. 170) gives a contradic- 
tion. I t  follows that /1 ,  ~ , /3  and the constant functions generate C(J) and then it is 
clear tha t  f, g and the constant functions generate C(I) too. 
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