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On the Hellinger integrals and interpolation of

g-variate stationary stochastic processes

By HaBiB SaLEHI

Introduction

Let (X,)®, be a g-variate continuous parameter, mean continuous, weakly
stationary stochastic process (SP) with the spectral distribution measure F de-
fined on B the Borel family of subsets of the real line; cf. [1]. It is known [10] that for
matrix-valued measures M and N the Hellinger integral (M, N)= =, ({MdN*/dF)
(*=conjugate) may be defined in such a way that H,  the space of all matrix-
valued measures. M for which (M, M)p= [*,, (IMdM*/dF) exist becomes a Hil-
bert space under the inner product (M, N)p (v =trace). The significance of these
integrals when M and N are complex-valued measures and F is a non-negative
real-valued measure has been pointed out by H. Cramér [2, p. 487] and U.
Grenander [3, p. 207; 4, p. 195] in relation to unvariate SP’s. The importance
of Hellinger integrals with regard to the theory of interpolation of a g-variate
weakly stationary SP with discrete time has been discussed by the author in
{11]. In this paper we propose to use the Hellinger integrals and obtain similar
results concerning the interpolability of a ¢g-variate continuous parameter, mean con-
tinous, weakly stationary SP. The question of interpolability of a univariate SP
with continuous time has been looked at by K. Karhunen [6). Our results extend
his work in a natural way.

Let K be any bounded measurable subset of the real line. K’ will denote
the complement of K in the set of the real numbers. My and Mg will denote
the (closed) subspaces spanned by X;,t€K and X, ¢€ K’ respectively, i.e., M=
B{X, teK} and Me=8{X,t€K'}. M., will denote B{X,, ¢ real} and finally Ny
will denote . N Mk, where M denotes the orthogonal complement of Mg
in a fixed Hilbert space H? containing the SP (X,)%..

Deﬁnf'{tion 1. We say that (a) K is interpolable with respect to (w.r.t.) (X;)%
if Ne=1{0}.

(b) (X,)% is interpolable if each bounded measurable subset K of the real
line is interpolable w.r.t. (X,)%..

For each X€M., (X,X,) is a continuous function on (— oo, c0). Moreover,
(X, X,)=0 iff t€K'. Thus the following definition makes sense.
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Definition 2. For each X €Ny, we let

P(d) = f T e, X)de

-0

= f e" (X, X,)dt.
K

The properties of Py are given in the next lemma.

Lemma 1. (a) The entries of the matriz-valued function Py are integrable w.r.t.
Lebesgue measure. Hence for each BEB, the integral [z Px(A)dA exisis.
(b) If for each BEB we define

Mpy(B)= fBPx(}.)dﬂ,

then MPerz,p-

Proof. (a) Let X€Hg and ¥ be in Ly ; such that V¥ =X, where V is the
isomorphism on Ly r onto M., [9, pp. 279-98]. Then

i 1
(X: Xt) = (V‘{” Ve_“u) =§;(‘F: e—itA)F

f ¥(2)dF(1) e =§% f - AP (A)dF(A). (1)

1 -
27 ) o
Also by definition of Py

Px(d)= fw e (X, X)dt. @)

-0

By (1) and (2) it follows that for each BEB
f Px(ﬂ)dl=f P (A)dF(A). 3)
B B

Thus (a) follows from (3).

(b) Since by (a) for each BEB, {5 Px(1)di exists, therefore Mpy is a matrix-
valued measure on B. By the definition of M»y, (3) and [10, Theorem 2] (b) follows.
(Q.E.D)

Thus the following definition makes sense.

Definition 3. We define the operator Ty on Ny into Hy p as follows: for
each X €Ny

1
TKX =EMP}.

The important properties of 7T, are given in the following theorem.
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Theorem 1. (a) Let X€Hgz and WELy r such that V¥ =X, where V is the
j‘somorphism on Ly z onto Mo [9, pp. 297-98). Then for each BEB, Mpx(B)=
s VdF.

(b) T'x is an isometry on Nz into Hp p. In fact for all X and Y in Hg

(X: Y)= (TKX, TKY)F'

(c) The range of Tx is a closed subspace of the Hilbert space Hp, r.

Proof. (a} follows from the proof of Lemma 1.
(b) Let X and Y be in Mg, and let ® and ¥ be in L,  such that VO=X
and V¥=1Y. Then by (a) and [10, Theorem 1]

20(Tx, Ty)r= (@, ¥)p. (1)
Also by (9, p. 297]
27X, Y)= (D, V). (2)

From (1) and (2), (b) follows.

{(c) Since Mg is a (closed) subspace and since by (b) T¢ is an isometry on
Ny into H, 7, therefore range of T is a closed subspace of H, r. (Q.E.D.)

It is convenient at this point to introduce the following definition.

Definition 4. (a) A ¢ x ¢ matrix-valued function P on (— oo, <o) is called time-
limited if

(i) The entries of P are integrable w.r.t. Lebesgue measure.
(i) P(}) = f e~ G (t)dt,
-

where ! is a ¢ x ¢ matrix-valued function whose entries have bounded supports
and are square-integrable w.r.t. Lebesgue measure.

(b) £ will denote the class of all time-limited ¢ x ¢ matrix-valued functions
on (— oo, o).

(c) for each P€ L the matrix-valued measure M, is defined on B as follows;
for each BEB

Mp(B)= f P(A)dA.

B

We note that if X €Mz and Pg(d)=[“,e *(X, X,)dt, then by Lemma 1 (a),
PreL.

Lemma 2, Let X€ NN H,. Then

TeX=T,Y.
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Proof. It is clear that Mz N Ny = Ngqr. Hence TpX=Tg,  X=T,X. (Q.E.E.)
Making use of this lemma, Tx’s may be put together to introduce a well-
defined operator with a bigger domain. This is done in the following theorem.

Theorem 2. Let H= U Hg, where K is a bounded measurable subset of (— oo, o).
Define the operator T om N by

TX_—-TKX, 'I:f Xeng.

Then

(a) N is a linear manifold in Mu, t.6., X, YEN and A, B mairices = AX +
BYE€nR.

(b)Y T is a single-valued linear operator on N, ie., if X, YEN and 4, B are
matrices, then

A(AX+BY)=ATX+ BTY.
(¢) T is an isometry on N into Hy r. In fact for X, YEN

(X, Y)=(TX,TY).

(d) The range of T consists of all mairiz-valued measures Mp for which the
Hellinger integrals [%. (dMpdM3/df) exist where PEL, £ is as in definition 4(b)
and M, is related to P as in definition 4 (c).

Proof. (a) follows from the fact that HgU ;< Hgruz.

(b) and (c) are consequences of Lemma 1 and Theorem 1.

(d) Let X€MN. Then X € Hx for some K. It then follows from the definition
of T that

TX = TKX=MP1, (1)

where for each BEB, Mrr(B)=[aPx(A)dA and Pyl)= [ e *(X, X,)dt. Since
by Theorem 1 (a) the entries of Py are integrable w.r.t. Lebesgue measure,
hence Py€L. From (1) and (c) it follows that (X,X)=(Mpy, Mrs)r and hence
{Mpz, Mpy) is Hellinger integrable w.r.t. F.

Conversely let Mp be a matrix-valued measure such that for each BEB

Mp(B)= J;P(l) da,

where P€L and [%,(dMrdM}/df) exists. Then by [10, Theorem 1 (c)], ®=
(dM;/du) (dF/du)” € Ly, , where u is any o-finite non-negative real-valued meas-
ure w.r.t. which M, and F are a.c. {(dF/du)” denotes the generalized inverse of
dF/du; cf. [8]}. If X€M, such that V®=X, where V is as in Theorem 1,
then by [9, p. 297] and [10, Theorem 2]
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1 ,
X, Xy = é; (@, e—m)za

- % J‘:Q (dMp/dy) (dF/du)~ (AF /du) emd,u

=~2}7—t eiZi(de/dy)dM
I 2 DY LN Dy
—27!]-006 dMP_2nf_me P(A)dA. 1)

Since P€ L then

P() = f e,

-0

where the entries of G have bounded supports and are square-integrable w.r.t.
Lebesgue measure. It then follows that

G(t) =% f f e P(2)dA. 2)

By (1) and (2) we conclude that
(X, X,)=G(¢) a.e.

Therefore the entries of (X, X,) have bounded supports and hence their supports
are contained in [—e¢, ¢] for some £>0. Since X is in M. it follows that
X €N and therefore XEN= U g Ng. It is clear that Mp,= M, and the re-
sult follows. (Q.E.D.)

We are now ready to give a characterization for the interpolability of a SP.

Theorem 3. (X,)7,, is interpolable iff for any time-limited matriz-valued function
P for which Mp is not a null-point in Hy g, (Mp, M) is not Hellinger w.rt. F.

Proof. (<) If K is any bounded measurable subset of {— co, o), it is a
consequence of Lemma 1 (b) and Theorem 2 (d) that #z={0}. Hence by de-
finition 1 (a) K is interpolable w.r.t. (X,)%.. Since K is arbitrary it follows
that = U g={0} so that by definition 1 (b), (X,)*, is interpolable.

(=) It follows that #={0}. Hence by Theorem 2 (d) range of 7'={0}. The
result follows from Theorem 2 (¢). (Q.E.D.)

Remark 1. Since U ,MWi-s.q= U zNz=N and since by [7, Theorem 10} P is a
time-limited matrix-valued function in the form P(1)= [¢ e *'G(t)d¢ if the en-
tries of P(1) are integrable as well as square-integrable w.r.t. Lebesgue measure
and P(z)=o(°!*!), where P(z) is the unique analytic extension of P(), we im-
mediately obtain the following theorem, which generalizes the corresponding
result for the unvariate case due to Karhunen [6).
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Theorem 4. (X,)%, s interpolable iff for any analytic matriz-valued funciion

P(z) of the form P(z)=o(e"'?") such that the entries of P(A) are infegrable as well

as

square-integrable w.r.t. Lebesque measure if Mp is not o null-point in H r,

then (Mp, Mp) is not Hellinger integrable w.ri. F.
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