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On the division of distributions by polynomials

By Lars HORMANDER

1. Introduction

The division problem for distributions is, given a distribution 7' in an open set
Qin R’ and an infinitely differentiable function ¢ in Q, to find a distribution § in
Q so that

T =g8. (1.1)

(Cf. Schwartz [4]: Chap. V, pp. 121-126, Chap. VII, p. 154.) One may then also
call § a “partie finie”” of 7/p. When » =1 the division is possible for every 7' if and
only if ¢ has only isolated zeros of finite order (Schwartz [4], Chap. V, p. 123). When
v > 1, however, the situation is not equally simple. It is the purpose of this paper to
prove that the division by a polynomial (not identically zero) is always possible. This
was conjectured by Schwartz [4], t. II, p. 154. As indicated there, this also implies
that if 7' is a tempered distribution one can find a tempered ‘‘partie {inie” S—our
proof will be arranged so as to give this result directly. By applying the Fourier
transformation it follows that every partial differential equation (for notations ef.
Hormander [1])

P(D)u~f (1.2)

with constant coefficients has a tempered solution u for every tempered f. In particular,
the equation has a tempered fundamental solution.

By other means, Malgrange [3] and later Hérmander [1] have proved the existence
of non tempered fundamental solutions having certain local regularity properties.
Such fundamental solutions were called proper by Hérmander [1], and it was also
proved in that paper that there are differential equations with no fundamental solu-
tion that is both proper and tempered. This shows that the results of this paper are
of a character rather different from the earlier ones of Malgrange and Hérmander,
and so are the methods of proof.

Let § be the space of infinitely differentiable functions f in R’ such that

sup |6, DPf(&)] < o0 (1.3)

for all & and 8. § is a locally convex topological vector space with the topology de-
fined by the semi-norms that are finite according to (1.3) (cf. Schwartz [4]). Our
main result is the following.
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Theorem 1. If P is a polynomial that does not vanish identically, the muliiplication

mapping
S f—~>PfeS (L.4)
has a continuous inverse.

It may be remarked that the proof remains valid if, instead of being a polynomial,
P is any function such that (4.2) and (4.10) are valid.

The essential point in the proof is an application of Whitney’s extension theorem
for differentiable functions. Since we need certain uniform estimates of the extended
functions, which are contained but not explicitly stated in Whitney [6], we shall
recall what is needed here in section 3. Thus the present paper is self-contained in
this respect. ‘

While preparing the manuseript, the author has noticed the fact that Lojasiewicz
[2] has recently announced a solution of the division problem even for analytic
functions instead of polynomials. However, the publication of this paper may still
be justified by the differences which seem to exist between his methods and ours. In
particular, it seems as though Lojasiewicz’ method requires a much more detailed
and complicated study of the set of zeros of P than our method does.

2. Algebraic lemmas
If A is a set in R’, we denote by d (£, 4) the distance from & to 4,
d(£, A)=inf |E—7|
ned

Obviously |d(£,4) —d(&,4)| <|£—&'|, hence d(£,4) is a continuous function of &.
Let @ be a polynomial and N the set of real zeros of Q. Assume that N contains
some point with [£| <1. Then we have

Lemma 1. There are positive constants ¢ and p such that
|Q(&)| = cd (&, NY, €] <1. 2.1

Proof. The lemma follows from a result of Seidenberg and Tarski (cf. Seidenberg
[8]). The shortest proof would be to use the results indicated after Theorem 3 in that
paper, but sinee they are not proved in detail we prefer to use only Theorem 3.
(Note that the restriction in the quoted thorem that the coefficients in all polynomials
involved shall be rational was removed on p. 372.)

We first look for the conditions on £ in order that

d(£N) <86, (2.2)

where § is a positive number. (2.2) means that there exists a real 9 so that the follow-
ing equation and inequality hold

Q(n) =0, |&§—n|2<é (2.2

According to Theorem 3 of Seidenberg [5] one can find a finite number of sets G, (£,0),
..., G,(&,8), each composed by a finite number of polynomial equations and inequali-
ties in & and J, so that (2.2') can be fulfilled if and only if (£,8) satisfies G;(£,6) for

556



ARKIV FOR MATEMATIK. Bd 3 nr 53

atleastonei =1, ...,7. Let H, (£,6), ..., H (£,0) be the sets composed by the negation
of one condition in each G(&,6). Then the negation of (2.2),

d(E,N) =6, (2.3)

is true if and only if H, is fulfilled for at least one j =1, ..., s.
Next we consider the range of values of |Q(£)| when d(£,N) =>4, |£] <1. Clearly
|@(&)| = for some such £ if and only if there is a real £ so that

2 =|Q(&)|%7>0, |£]2<1,H;(£,0) holdsforsomej=1,...,s. (2.4)

Again, we have a system of real equations and inequalities to which Seidenberg’s
theorem applies. Thus we get a finite number of sets K;(7,68), I =1, ..., t, of polynomial
equations and inequalities so that (2.4) can be satisfied if and only if K;(z,0) is ful-
filled for at least one i.

Let T'(6) be the infimum value of T when ¢ is fixed, that is, 7'() is the infimum of
|@(&)| in the compact set |[&| <1, d(£ V) >4, which is not empty for small 4.
Hence the infimum is attained and > 0. When 7 = 7'(8) some system K, (,6) must be
satisfied and cannot involve only strict inequalities since all 7 near 7'(d) would then
also satisfy K (t,6), and T'(6) would not be the infimum value. Hence T'(§) always
satisfies some of a finite number of algebraic equations in 7' and §, and since 7'(5)
is decreasing it must therefore be piecewise algebraic because two different algebraic
curves have only a finite number of interesections. In particular, 7'(J) is algebraic
for small 6. Hence it has a Puiseux expansion for small §, and we get

T©)>c,8", 0<d<5,

Hence (2.1) holds with ¢ = ¢; when 0 < d(£,N) < §;. It is trivially valid when d(§,N) =
0, and since 7'(d) > 7'(d,) when 8 > §, we have only to take ¢ somewhat smaller than
¢; to make (2.1) valid without any additional restrictions on &. The proof is complete.

In proving Theorem 1 it is convenient—though not necessary—to have an exten-
sion of Lemma 1 where the assumption |£| <1 has been dropped.

Lemma 2. Let Q be a polynomial and N the set of its real zeros. Then either N is empty
and

|Q&)| = (1 + €|, Ereal, (2.5)
or else QB =1+ || " d(&,NY, &real, (2.6)

where ¢ >0, u’ and p'’ are constants.
Proof. Tt only remains to study the case |£| > 1. To do so we make an inversion

Er=g/|E|2 E=E/|8
and write, if m is the degree of @,
Q*(f*) — lf*l2mQ(£) - l£*|2mQ(§*/I§*12)
It is obvious that @* is a polynomial. Let N* be the set defined by
Q" (£") =0.
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It is clear that a vector £*# 0 is in N* if and only if the corresponding & is in N.
Applying Lemma 1 to @* we obtain
|Q" (E")| = c"d @™, Ny, E'eN*, |£]<1
where ¢* and u* are positive constants. This means that
|€]2"]Q(&)| = * d(E™. N7y, €] > 1. (2.7)

Now note that for the inversion we have

ln—&l/In" ~ & =Inl €],
hence (&%, V%) =ind |n* — & | = inf | —&|/|n|[¢]
where we shall permit 7 to be infinite when taking the infimum. We have
ln—&|/Inl1&|>d(&N)/2]E| if [n|<2|¢] and nel,
and In—&llIn] €] >1/2(¢] it |n|>2]¢].

Since for [£] =1 we always have d(&,N) < C|£| for some constant C, if N is not
empty, it follows that

d(f,N)gallélzd(é*,N*)’ |§I>15

and (2.7) therefore implies (2.6). On the other hand, if N is empty the only point in
N* is 0, hence d(£*,N*) =[£*| =1/|£| and we obtain (2.5).

Remark. Lojasiewicz [2] states that Lemma 1 still holds if ¢ is only analytic in the
closed unit sphere. If one admits this result, the rest of our arguments still applies
with obvious modifications to proving that division by any analytic function is
possible.

3. Whitney’s extension theorem

Whitney [6] has given necessary and sufficient conditions on the array of functions
%, |«| <m, defined in a closed set 4 in R’, for the existence of a function geC™(R")
such that D*g = f* in 4 when |«| <m. (Here « stands for a sequence of indices (o,
..., a;) between 1 and », the dimension of the space of &; |a| = j; D* = 8/9&,,...0/9&a,.)
We shall here use his construction of the extension as an approximation method.
Thus we shall, given a function f €0™(R’), find another function g € C™( R") satistying

Dg=D*find, |x]<m, (3.1)

8o that, which is the important point, it is possible to estimate the derivatives of
g of order <m in the whole of R’ in terms of quantities involving only those of f
of order <m in 4.

For the convenience of the reader we shall reproduce the part of Whitney’s argument
which is needed. No new idea is added, but we modify his argument slightly so that
it suits our purposes.

The following fundamental lemma is contained in Whitney [6], pp. 67-69.
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Lemma 3. Given a closed set A in R’, one can find a sequence of functions ;€ C§ (G A)
with the following properties:

(®) $;(€) =0; §¢i(§)=1, £¢A.

(i) A compact set in §A intersects only a finite number of the supports of the func-
tions ¢;.

(i) S04 (@) <C(d (5, 4)1+1),

where C, is a constant.
(iv) There is a constant C —independent of §j and even of A—such that the diameter
of the support of ¢; is < C times its distance to A.

Proof. Divide R’ into a net of cubes of side 1. Let K, be the set of those cubes with

distance to A at least Vv, the length of the diagonal. Divide the remaining cubes
into 2" cubes of side 1/2 and let K, be the set of those with distance to A4 at least
equal to the diagonal. With repeated subdivisions we get in this way sets of cubes
K,, K, ...; the union of all cubes is CA. If a cube C in K, and another C' in K; have a

point in common, we have |i — j| < 1. For the distance from C'to 4 is >27* V', hence
a cube with side 27" having some point in common with C has distance at least

Vv27*-1 to A, which proves that § <4+ 1. In view of the symmetry we also have
t <j + 1, which proves the assertion.

We order all cubes in a sequence C,,C,, ...; the centres are denoted 7, %2, ... and
the sides s, 8, .... Let 0 <¢(£) <1 be a function in C® which vanishes outside a
compact subset of the cube

|&| <1/2+1/8, i=1,...,»,
and equals 1 in the smaller cube
& <12, i=1,...,.
We shall prove that the functions
$: ()= (E=n)/5)/ 2 (&~ 7)/50) (3.2)

have the properties stated in the lemma.

First note that ¢ ((§ —5*)/sx) is 0 except in Cy and the incident cubes, because these
have at least the side length s,/2. Hence

IS¢~/ <, £¢4, (3.3)

since at each point at most 4” terms are # 0 and at least one equals 1. This proves
that ¢;€C¢°(C4) and that (i) and (ii) are valid is obvious. To prove (iv) we note
that ¢; =0 outside the cube with side s,(1 +1/4) with centre at 7’; the distance
from that cube to 4 is at least

Vvs,—Vvs,/8=17Vvs/8
and its diameter is 5 l/;si/éi‘ Hence (iv) holds with ¢ =10/7.
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Finally, in proving (iii) we note that, with ¢ = D*¢,
D (& (E=n)/ ) =57 1@ ((E—17)/3))-

The distance from the support of ¢ ((& —#,)/s,) to 4 is at most 3s, Vv it s;<1.
For otherwise the cube with side 2¢; containing C, in the preceding decomposition

would have distance at least 2s; Vv from A, which contradicts the construction.
Hence

d (£, A)< 55 Vrif s;< 1 and $@ (£ —%") /8) 0.
If s;=1 we have on the other hand
d(E, A)2TVy/8>1 i $ ((E—n)/s)+0.
Summing up, we obtain if d(£,4) <1
| D*¢ (6 —') /sp] < (sup |6 ]) (5 Vo)l =ld (&, )7, j=1,2, ...
and if d(£,4)>1 we get, since the only non vanishing functions have s,>1/5 V;,

| D= (E—n))/s)| < (sup|¢@]) (B V), j=1,2, ...

Using these two estimates and (3.3) in (3.2), taking into account that no point & is
in the support of more than 4” terms ¢ ((& —%*)/sx), we obtain the inequality (iii).

For every j we choose a point £ €4 such that the distance from the support of
¢, to A equals the distance to £. Given a function feC™(R") we now set (Whitney
[6, p. 69])

g&)=2"¢: (O fu (&), E¢4; gé)=[(£),E€A4, (3.4)

where (@) =2 D} () (£ =)o/ | ]! (3.5)

is the Taylor expansion for f of order m at 7. We are going to prove that (3.1) is
valid for the function g defined by (3.4) and then estimate g and its derivatives.
The notation X* in (3.4) means that we only sum over those § with s, < 1. This changes
nothing near 4 but may improve the behaviour of g at infinity; we get g(&)} =0 if
d(&,A)>5 V/2.

Before studying ¢ we introduce some more notations. By R, (£; ) we denote the
remainder in Taylor’s formula,

F(&) =fn(&n) + Ry(&5m); (3.6)
with the notation F” = D*F we obtain by differentiating
f@E) =R (&) + B9 (& ), (3.6")

where the differentiations act on the first variable in f, and in R,
Let £* €4 be a point with minimal distance to &,

| —&| =d(£,4), £¢4.
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We shall compare g* (&) with & (£;£*). Assuming that d (£, 4) < 1 we have Z*¢,(&)=1
and hence

g (&) =Fn(&; E*)+§* 5 () (fn (&3 &) — [ (&5 £7)).
Differentiating we get using Leibniz’ formula
00 =1 EE)F 3 3P O UREE) 10 (EE). (3.7)
y=a i

If & is in the support of ¢,, the distance from this support to 4 is at most |& — & I.’
hence the diameter is < C | E—& | in virtue of (iv) and, in view of the definition of &/,

|§ =8| <(C+D)|E—E"|=(C+1)d(&,A4). (3.8)
Hence also |87 —&*| <(O+2)|£ - & =(C +2)d(5,A). (3.9)
Introducing remainder terms in (3.7) we obtain

9(“’(§)=f(“’(§)—R5§>(§;5*)+p+2 JZ* P& (BP(EE-RBP (5 E).  (B.T)

y=a

When £ and 7 belong to a fixed compact set, the classical expressions for the remainder
term give

| R (& m)| < |E—n|""e(jE—9])

where ¢(¢) decreases to 0 with t. With d =|& —£*| =d(£,4) and d, = (C + 1)d, we
get using condition (iil) of Lemma 3 and (3.8)

|9 (&)~ f= (&) | <dm*lg (d)%;e S 2Cd P (7 Mg (dy)+ d™ 1 e (d)—0
+y=a

when d—0 since m — || —|y| =m —|«|>0. Let h=f—g. Then =0 in 4 and
heC™(CA), the derivatives of order <m tending to 0 when £—>A. An elementary
argument which we do not elaborate shows that % is then in O™ (R*) and that its deriv-
atives vanish in 4. This proves that geC™(R*) and satisfies (3.1).

It remains for us to obtain an estimate for g which only involves the values of f
and its derivatives in 4.

Definition. If B is a set in R’ and f€C™(R’), we denote by |f|m, 5 the least upper
bound of the quantities

[, |a|<m, &eB, (3.10)
and [BREmI/1E ="', |a|<m, E+5; &neB. (3.11)

If B s empty we define |f| 5 =0, and if B consists of the point & only we write | f|m,¢
instead of |f|m,s, thus

Hlne = sup 11 @],

Let A, be the set of points in 4 with distance at most R = (C +1)5 V;/ 2 from £.
We shall prove that there is a constant X, independent of f and &, so that for the
function g defined by (3.4) we have

561



L. HORMANDER, On the division of distributions by polynomials
|9lme <Kilflma,, EER. (3.12)

This inequality is obvious if d(&,4) =5 V;/Z for then all terms in (3.4) are 0. Next

note that if d(£,4) <5 V;/2 we have &* €4, and &' € 4, if £ is in the support of ¢;. This
follows from (3.8).

When 1 <d(£,4)<5 V;:/Z, the equation (3.7) does not necessarily hold but we
have
9@ = 2 TP O &) (3.7)
Bry=a §
For all j with ¢ (£) # 0 we can estimate
&&= 5 [P E)E-Ep/|B!
1Blsm—|yl

by a constant multiple of |f|m, 4, because £'€4; and |£ — &| < R. If we then apply
property (iii) in Lemma 3, noting that d(é,4) > 1, inequality (3.12) follows in this
case.

When 0 <d(£,4) <1, the only remaining case to study, we can use (3.7). The
term f3(£,£") can obviously be estimated by a multiple of |f|m 4 ¢ What we need is

thus only an estimate of the difference
[ (& &)~ 1D (& &)
when & and £* € 4,. We have

&= > Ml‘”‘” (&) (E-E)/| B!

1Bl<m—~

S (P )+ RO (E8) (E— ) /| B!

=Iﬂl<m—|rl
=&+ 3 BIPEE)E-/18]!
m—|y
Hence
|2 E) — 1P (&8 | = | ZRIP (&%) (6 -8 /|81
< lmag 2| & =g m -G BIE < By | flm,ap d (£, 47

in virtue of (3.8) and (3.9); K, is a constant. But using this estimate and condition
(iii) of Lemma 3 in (3.7) we get the desired result since d (&, 4) will occur in the power

m=|y| =|B| =m—|a| >0. _ ,
We collect as a theorem the results of Whitney given in this section.

Theorem 2. The linear operator f—g defined by (3.4) maps C™(R") into itself-so thai
(3.1) and (3.12) are valid.
4. Proof of Theorem 1

Let P be a polynomial = 0. Since Theorem 1 is trivial if P is a constant, we assume
that it is of positive degree u. By N* we denote the set of all real £ where P has a
zero of order k at least. Thus N* is the closed set defined by the equations
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P@Ey=0, |a|l<k, E€R. (4.1)

Since P = constant # 0 for some « with |a| =u, we have N**!' =4, thus
R =N'o>N'5N!>--- N =4, 4.2)

The idea of the proof of Theorem 1 consists in estimating f in terms of Pf first in
N¥, then in N*°! and so on. Thus we shall prove successively for decreasing k the
following statement, which is equivalent to Theorem 1 when k=0 and is trivial
when k=p + 1.

To all non negative integers n, m and k <y there are non negalive infegers n’, m’
and a constant K such that

Sup (14| £1)" {1, v <K sup L+ D" | Pflwss fECT(R).  (43)

In proving this result we may of course assume that the corresponding statement
with % replaced by % + 1 is already established.

We start by giving some formulas for the quantities oceurring in the definition
of |f|m, wk, (cf. section 3). With

PEOHE =F (&) (4.4)
we get in view of (4.1) by applying to (4.4) the differential operator D, || = k, that
PPE)f(§)=FP(&), EeNk, || =k (4.5)

In order to obtain a similar formula for f(£) we write

H&) =F(&)/P ()

when P(£) 5 0, apply the differential operator D* to both sides and multiply by
P(&)**! afterwards. This gives, for all {e R”,

P (&)= D (&)= L1y (&, F), (4.6)

if we use the convention that L, denotes a differential operator acting on F of order ¢

with coefficients that are polynomials in &. Applying the differential operator D?,
|B] =(|a| + 1)k, we get

{DP (P (&Y} [ (&)= Lieya s rriar (& F), EEN* |B]=(|a|+ Dk (4.7

We also need a formula for the Taylor remainder terms RS (&; %) with &, % € N*.
By definition we have

BR@&m=i0®~ 3 [P E-n/Ipl-

18l<m—|
Multiplying by P (&)!*!** P ()™ ** we get using (4.6)
P (&)=L P )"+ BY (&)
=P Ly (6 )= P @ 5 P @) Ly O, F) ﬁ—;ﬁ—)"
=L|o:|, m (E: s -F)' (48)

563



L. HORMANDER, On the division of distributions by polynomials

Here and in what follows we understand by L, (£,7, F) a linear combination of
the derivatives of F at £ and at 7 of order < s and <1 respectively, with coefficients
that are polynomials in £ and %. For later purposes we note that all derivatives of
Ly (&, F) = P(E)*11) P()" 1 RP(£;7) with respect to & and # of total order
<}'c([oc| +1) +}c(m+ 1) +m — || vanish if £ =n€N*. In fact, to get a non zero
term in the expression for a derivative given by Leibniz’ formula one has to differen-
tiate at least k(| a| + 1) times on the factor P(£)!*!**, k(m + 1) times on the next factor
P(n)™*' and m — |«| times on the factor Ry (&9 )

Applying the differential operator D? with respect to & and D¥ with respect to ¢
in (4.8), we obtain in view of (4.1)

{Dﬁ (P(f)lml+1 )} {DV(P(U)MH)} R(rff)(f;"])=Lk|u|+k+|a|.km+k+m (5777, F);
EneN’, [Bl=(l«|+DE |y|=(m+1)k (4.9)

From a remark made above it follows that the function Liq|+k+|xl km+k+m (£,77, F),
which is the right hand side of (4.9), vanishes of order m — | «| if  is fixed in N* and
&—n (without necessarily belonging to N*). This will be important in establishing
a favourable estimate of R% by means of Taylor’s formula.

We are now going to prove that m' and n’ can be found so that (4.3) is valid under
the additional assumption that f vanishes of order m’' in N*+1. (If N¥*+1 =¢ this is of
course no restriction.) The proof will follow in this case from the formulas (4.7) and
(4.9) and application of Lemma 2. Using Whitney’s theorem and the hypothesis
that a result of the form (4.3) is valid when k is replaced by &k + 1, we will then be
able to complete the proof.

We assume that N*+! is not empty—the opposite case is simpler and is covered
by the following arguments with obvious modifications. Lemma 2 applied to the

polynomial
Q@)= 2 IDPPENF

which vanishes precisely in N*+! then shows that there are positive constants c,
u', u'’ such that

> | DP(PEY)E=cd (&, NP (L+| &)™, EEN® (4.10)

Bl=jk
(Note that the derivatives of P’ of order < j% all vanish in N*.) The constants depend
on j. (Actually it is easy to prove that one can choose x” and y’ proportlonal to 7)
We shall denote by um and un two constants so large that (4.10) holds with x’ = = Um,

@' =pn and some ¢ >0 for all j <(m +1).
Let m’ be an integer so large that

m' > pm + k|| +l+|af. (4.11)
We shall prove that for suitable constants »’ and K, independent of { and &,
28| <K A+|ENY | Flm s EENK, (4.12)

where S(£) is the sphere with centre at £ and fixed radius = 1, provided that f vanishes
of order m’ in N*+1, This will follow from (4.7) and (4.10) when we have proved the
following estimate of the right hand side of (4.7):
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| Lyt kaiat (&6 F) | < By (L |E]) d (g, NFHYyw-Rlzl=klel Bl s, EERY, (4.13)

where K, and n, are constants. (4.13) is obvious if d(£,N*)>1 because m’ >
Ic]oc} +k+|o|. If d(E N¥H1) <1 there is a point £*€N*+ such that |&" —&| =
(5 Nk, hence E*e8(&). At & the function Lijajsn+iag(§, F) vanishes of order
m’ —k|o| —k —|«| at least since F = Pf vanishes of order m’. Hence by Taylor’s
theorem apphed to the Taylor expansion of the function Ly|s s+« (&, F) at £*

| Ly piesi ey (€ F) | < 0| £ = £y 11 Ly st (0 F) | ek g ==, 560

which proves (4.13). Squaring and adding the equations (4.7) with absolute values
taken on both sides, we now get in view of (4.13), if £eN¥,

Dﬁ P [oc|+1 PAR N ICH)
{lﬁl (|¢|+1)k| ( l: |f I

<K, (A +| &)™ d (& NEyw - Flel=ml | Pl s,
and applying (4.10) we get
|19 (&) | < Ky (L+| &)™ d (&, Nerlyw=wm-Rlel-k-lal | p| o, EENE  (4.12)

This implies (4.12) in virtue of (4.11).
We shall now establish an estimate of the form (4.12) for the quantities

R®(&n)/|E—q|m %, & neN~
In doing so we distinguish between two different cases.

Cask I: In this case we assume that the points & and 7 lie so far apart that
21& —n| = d(&N*1) +d(n, N*+1). (4.14)
(4.12)’ shows that if
m'Zm+ pn+ k| o|+E+ |l (4.11)
there exist constants n’ and K such that

O@OI<KEQ+[ED™ dE N | Pfluwse, EEN, (4.127)

if f vanishes of order m’ in N*+, Now R (£;7) is a linear combination of derivatives
of f at & and at # of order < m, multiplied by polynomials in & and %. If (4.14) holds
we can use the estimates d(£, N*1) <2|& —y| and d(y, N*) < 2|& — ]| in (4.12)",
which holds for all & with || <m provided that

m =m+ up +km +k + m. (4.117)

Hence we have with new constants K and »’ provided that (4.11)"" and (4.14) are
valid:

| B2 & <K A +[E]+ 9" [E=n]"| Pflw.sen, EmEN",  (415)
if §(&,9) =8(&)U S(5) and f vanishes of order m' in N*+1,
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Casg II: In this case our assumption, opposite to (4.14), is that the points £ and
are so close that

2]5—1;3! < d(& N1 4 d(n, N¥+), (4.16)
Since [d(&,N* 1) — d (g, N¥+1)| < [& — 7],
if follows that d(n, N*1) /3 < d (& N*¥+) <3d(n, N¥1), (4.17)

If £ is a point on the line segment joining & and % we also have

AL, N <|L — &| +d(E,N*) <[y —&[ +d(§,N*) <3d(§, N5,

} (4.18)
d(C, N¥+1) < 3d(n, N*+1),

We now use (4.9). As pointed out after that formula, the function
H () =Lk|z|+k+|a|,km+k+m ¢, ns F),

where ) is fixed in N*, vanishes of order m — |«| for { =#. If we denote by ¢ the unit
vector (£ —#)/|& —n| and by {(D,#> the differentiation in the direction ¢ with
respect to {, Taylor’s formula applied to the function H gives

|Lk|¢|+k+|¢|,km+k+m (fr 7]: F| <|E_nlm~|a] |< D!ﬁ >M—|cc| -H (C)l/(m—|“|) !7
n €N, (4.19)
for some { in the line segment from £ to%. Now (D,9>" *1 H({) is a combination with

uniformly bounded coefficients (products of coordinates for ) of polynomials in ¢
and n multiplied with derivatives of ¥ at { and at# of order not exceeding km + k + m.

If m' = 2up +km +k+m, (4.20)

and f vanishes of order m’ in N*+1, we get by arguing as in the proof of (4.13) since
all derivatives of F occurring in the right hand side of (4.19) vanish of order
m' —km—k —m>2u, in N¥

|D"j (P (f)lalﬂ) | |Dy (P (77)m+1) | IRS;‘) (5;7]) I = | Lk|u|+k+|ul,km+k+m (&, 7, F) I
<K &= =N d g, N+ d (g, NP m (L [+ F s
[Bl=(«|+ 1)k, |y|=(m+1)k, &neN* (4.21)
where 8, (&,7) is the set of points at distance at most 1 from the segment from £ to .
In the right hand side we can estimate (d(n, N*+) + d({, N*+1))2 by a constant times
d(n, N*)d (&, N*+1), in view of (4.17) and (4.18). Furthermore, 1 +|y| +|{| can
be estimated by a constant multiple of 1 + [£| + |5|. Finally, if we square and add

the inequalities (4.21) for all § and y with |8| = (|ec| + 1)k; |y| = (m + 1)k, and then
use (4.10) to estimate the left hand side of the resulting inequality from below, we get

| RD (&, p) | < K| E—n "1 A +|&|+ |9 D)™ | Flwsems EMEN.  (4.22)

Let m’ be an integer such that (4.11)" and (4.20) are fulfilled. Then all the estimates
(4.12), (4.15), (4.22) hold when |o| <m (possibly for different »’ and K). Hence ine-
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quality (4.3) is valid with some ' and K for all f vanishing of order m’ in N*¥1,
for |f|m, wk,+ is the least upper bound of the quantities

Ol BREm/1E=n"", |al<m
when &, neN* and |§-&'|<R, |n—-¢&|<R

It remains to show that (4.3) is valid without the restriction that | shall vanish of
order m’ in. N¥+1, To do so we apply Theorem 2 with 4 = N*+! and m replaced by
m’. From (3.4) we then get a function g€C™ (R’) such that, with h=f —g,

heC™ (R"), h =0 of order m' in N*+1,
We have f =h +g¢ and from (3.12) we get
lg]me <K1]flm,,,vk+1£. (4.23)
Hence, recalling that P(£) is of degree u, we get
sup (14| &) | Pglm.e< Ky sup (L+]£])"**|gms
<Ky sup (L+&| )| flm, wr1,.

Since we have assumed that (4.3) is true when k is replaced by k + 1, we get with
some n'’ and m'’

sup (L+ &)™ | Pg lm.e <Ky sup (1+[E))™ [ Pflne.e-
Since h=f—g and n”' 2n"; m"’ =m’, we get
sup (1+|&E)" | Phlm,e < (Ka+1) sup (1+]|E])" | Pflume- (4.24)
Now % vanishes of order m' in N*+! so we can apply (4.3) to k. This gives
Sup (1+|&])" ||, i <K sup (1+|€])" | Phlo,s. (4.25)

Combining (4.25) with (4.24) and estimating g by means of (4.23) and the induction
hypothesis again, we get with some »°, m° and K°

sup(l + &))" |f]m wx, < K°sup (L +|E])"| Pf|me.e- (4.26)

This completes the proof of (4.3) and thus of Theorem 1.

5. Applications of Theorem 1

We shall now show that the division problem can easily be studied by means of
Theorem 1.

Theorem 3. Let T be a tempered distribution and P a polynomial == 0. Then there is
a tempered distribution S such that T = PS8S.
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Theorem 4. If T is a distribution in an open set ), there is a distribution S in Q
such that T = P8, where P is a given polynomial = 0.
Proof of Theorem 3. Consider the linear form

Pf—>T(f)

which is defined in a subset P§ of §. It is continuous for if Pf—0 in § it follows that
/>0 in § (Theorem 1), hence T(f)—0. In view of the Hahn-Banach theorem we
can extend the linear form to a linear form ¢ — 8 (¢) on the whole of §. Then we have
S(Pf)=T{(f), that is, PS=1T.

The proof of Theorem 4 is exactly analogous and can be omitted.

Theorem 5. If P(D) is a partial differential operator with constant coefficients and
T a tempered distribution, there is a tempered distribution S such that

P(D)S=T. (5.1)

Proof. Applying the Fourier transformation in the sense of Schwartz [4], we
transform (5.1) into the equation

P(—i&)8 =T,

where 8 and 7' are the Fourier transforms of S and 7. Now this equation has a tem-
pered solution 8, hence inverting the Fourier transformation we obtain a solution of
(5.1). The proof is complete.
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