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On weak and strong extensions of partial differential
operators with constant coefficients

By STEPHAN SCHWARZ

Introduction

Let QO be a bounded domain in R’. We denote by €™ (Q) the set of infinitely
differentiable functions defined in (, and by C¢°(Q2) the set of those functions
in C*(Q) which have compact support in Q.

With the notations of Hérmander [1], there is a one to one correspondence
between the partial differential operators on the functions in R’

P(D)zzaa,...xk:_l 0 1 3

tox 1 0x"k

= ga“D,, {c= (o1 - . - o))
and the polynomials in the dual space C,

P(g) =‘12a“""°‘" ay oo by = ga“fa-
The algebraic adjoint of P(D) is P (D)= a*D,.

Definition. (Cf. [1] p. 168 and p. 241.) The closure P, of the operator in L2
with domain COF (Q) defined by P (D) is called the minimal operator defined by P (D).

The adjoint P, (Q) of the minimal operator P,(Q) defined by P (D) is called the
maximal operator defined by P (D) or the weak extension of P (D).

The closure P;(Q) of the operator P (D) defined in the set {u|u€C™ (Q), u€ L2 (Q),

P(D)u€L2(Q)} is called the strong extension of P (D).

It is natural to suppose that the weak and strong extensions should generally
be equal. A result confirming this hypothesis was given by Hérmander ([1],
Theorem 3.12) who proved that it is true when P(D) is of local type and Q is
any domain. Another result of the same author [3] secures the assertion for any
operator with constant coefficients as soon as the boundary of the domain
satisfies certain regularity properties.

It seems likely that, unless P (D) is of local type, it is necessary to impose
some condition on ) in order that P, {Q)=P,(Q). It is the aim of this paper
to prove this under the additional assumption that P (D) is homogeneous. This
will be done by modifying an unpublished example given by L. Hormander for
P(Dy=¢2*/0x0y (Theorem 1 below).

I want to take the opportunity to thank my teacher, Professor Lars Hérman-
der, for his constant interest and assistance.
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s. sScAWARZ, Euxtensions of partial differential operators

1. Algebraic lemmas
Lemma 1. The integral

1
d& d
ff1+£%+£%+|P(£1,£z>\ f1dh
is convergent if and only if the degree n of the polynomial P (&,,&,) exceeds two.

Proof: First consider a sector between a characteristic of the polynomial P (&, &,)
and a half-ray from the origin, leaving the sector free from other characteristics.
We may assume that these lines are £,=0 and I(&,,&,)=0. Consider a curve
E=r"*(E3+ =7, a>1) and a circle (C) with radius r,, where « and r, will be
chosen in (III) below. We now get the following estimate for the denominator
N (&,,&,) of the integrand in the sector:

(I) Inside the circle (C) we have N>=1.

(II) Outside the circle, between the line &,=0 and the curve &,=ry, we
have N =72 If (r,p) are polar coordinates of a point on the curve we
get, setting (1—a™!)=¢, that p=arcsin r*=0(r"°).

(IIT) Between the line !(,,&,)=0 and the curve &=7"" we have N>(C yn0
where we can make 6 arbitrarily small if we choose ¢ small enough.
In fact, let the principal part of P(£,,&,) be p (&, &) = &8 q (&, &,), (m=> 1),
where ¢(£;,&,) is a homogeneous polynomial of degree (n—m), ¢#0 in
and on the boundary of the sector except at the origin. Let min
|g(£,,&)|=u when the point (£,,&,) moves on the part of the unit
circle lying in the sector. Then for a point in the sector with coordi-
nates (r,p) we have |g(&,&,)|>pr"™. Within the domain (IIT) we have
&,=rM . Thus in (II) we get |p(&,,&,)|=Cr"™°. Choosing « so that
d=me<1 we now conclude

N>|P(&,&)|=Cr?1-0@ ) =07
when r>r,. (C and C’ denote different constants.)

We now estimate the integral in the sector, using that n>2.

o0 O(r— &
1 1 1
fJN—‘(EI’EZ)d§1d§2<0(ffd§ld§2+rl q);[) ;drdcp + ff—“r"‘l“’drd(p) < o0,

r<r, (IID)

In the remaining sectors, i.e. those which are not bounded by characteristies,
we get the estimates:
N=C  when r<r,

N=Cr" when r>r
Now the convergence follows in the whole plane.
From [1] we adopt the notation 15(5)2=§|P<“>(5) 2.
Lemma 2. If P (&) is a complete polynomial of two variables &, and &,, the integral
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[
Peptt

18 convergent unless with suitable coordinates
PE)=C[(&+iay)+ &+ Ta,)?], (a and o, denote real constants).

Proof. 1f the principal part of P(£) is complete we know from Lemma 2.13
in [1] that the set

{Re P®(&); Im P (&)} (la|=n—1)

contains two real linearly independent linear forms I, and l,, We may assume
the coordinates so chosen that I, =&, I,=¢,. This gives the estimate

PP>C(+E+E8+]|P(&, &) P).

Thus in this case the integral converges according to Lemma 1. '
If the principal part of P(£) is not complete we can set, with coordinates

conveniently chosen,
P(E) = cfg + Q(El) 62),

where ¢ is a polynomial of degree < n not independent of &, and ¢ is a con-
stant. Now

p

a1 =a,(é,+a,) (2,#0 and a, are constants),
2

and for some « we get P (£)=a,(& + R (&,)), (a;#0). With S(&,)=Re R(&,) we
get the estimate

PP>C(1+8+|&+8E&) [+ PEDP.
We now set m=E&+8(&) D(&,&) 1

=& D(my,me)
We get from the above inequality
P> C L+t +nd+ | P (g, — 8 (1), m2) ).

Now if the degree of the polynomial P (1, — S (n,),7,) is > two, the integral will
converge according to Lemma 1.
If this is not the case we have

P(np,—8(n).m)=An,+Bn,+E (4, B, E are constants).
This gives P(&,8)=A(&+8(&)+B&+E.

Since P (£) is complete we conclude that A30. Now if S(&,) is of degree ex-
ceeding two we have

2 B E % B
Pz>c(1+£§+|£1+S(52)+Re(%“—)12+|6—5;S(52)+Re2|2).
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The non-singular transformation

cl=51+3(52)+Re(
Z:2=£2

now gives P01+ 8+ 8+T (),

B§2+E)
A

where T denotes a positive polynomial of degree > 4. So the integral converges.
Finally if the degree of S(&,) is two we have the exceptional case.
It is easily verified that the integral diverges in this case. We get
P<C(1+ G+ 81 +8).
The transformation 7, =&, + &5, 7, =&, gives
Pr<C+ni+nd).

Thus we have logarithmical divergence.

Lemma 3. If P(&) s a homogeneous polynomial in C, where & and &, occur
with total degree m=>2, and if the lineality space A (P) is defined by & =§&,= - =
£,=0, the function 1/ P is uniformly square integrable in the varieties X parallel
to the & &y-plane, t.e. f 1/P~2dfld§2< Cp, where the constant Cp depends on P but
s independent of (&,...&).

Proof: Suppose the degree of P(£) is = n. In view of the fact that P(§)=
P& ... &) is complete and homogeneous in the variables (£, ...¢&,) we infer
from Lemma 2.13 in [1] that the set

{Re P9(8),Im POE)} (la|=n—1)

contains 2 linearly independent linear homogeneous forms (};...1) of the
variables (£; ... ¢&,). Hence there are constants ;>0 and C,>0 so that

Se
i=1
> &
i=1

Ci< < C,.

Now select in P(£) one term, where & and &, occur with maximal total degree
m=2, say

a-g-ep- [T e
i=3
We study instead of P (&) the weaker polynomial
*® ( 0 liP 5
Q(E)—I;I 8—5,) (é)-
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We set @(&)=Qy(&E)+Q;(&)+ -+ + @, (£), where @, (&) is homogeneous of degree
i in (&,&,) and of degree (m—i) in (&;--- &,).
After these remarks we get the estimate:

B©>0(Q@k+ 3 8 +1).

We use the notation £34£Z4 .- +E&=¢2 Let 1:-’% (£) denote the restriction of
P2(&) to Z.
If t>1 we transform by the formulas &=t-2,(i=1...x). Setting #i+ni=1"
we get
P%(8)= O (| Bym-1 (1, 1) + @ (7 ma) [F] 27 + (7° + 1) 22 + 1),

Here Rsm-1(#1,72) denotes a real polynomial of degree 2m—1 at most, the co-
efficients depending on 7, ...7, We now get the estimates:

1 1
AT <CJ - L dnd
JPgE (61, &5) Sty £ l)le(m—1)+|Qm|2|+7‘2+1+t 24T e

1
< 0f|32m-1+|Qm‘2|+72+ 1 & a0,

We now use the method of proof of Lemma 1. We can determine constants C'
and r, and an arbitrarily small fixed number § such that, if »>r, the term

|Bom—1+|@Qul?| will be >Cs*™7°
except in narrow domains enclosing the characteristics of the polynomial @, (n;,7,)-
The constants in these inequalities can be determined independently of (&;. .. ¢&,)
because the coefficients of R;,_; are bounded when inf= 1, while the coeffi-
=5

cients of @, are independent of (7, ...7,). In the narrow domains just referred
to we replace the denominator by the smaller quantity 2 and inside the circle
r<r, by +1. In this way we get the estimate

1 ’
- d&,dé, <C t>=1).
-[P%(f) £ dE<Cr (t>1)

z

Now suppose t<1. We get

PL(E)> O Bomo1 (£, 60) +| Qn (£, ED P+ 2+ £+ 1),

Here we can apply the same method as before without any preliminary trans-
formation getting the estimate

1 "
_d£dE, <Oy (t<1).
! P T

Combining these results, the proof is complete.
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2. Homogeneous operators of two variables

Let Q denote a bounded domain containing the origin and () the same domain
with the origin left out.

Theorem 1. P (Q)# P, (Q) if P(D)=282/dz1da2.
Proof: We are going to prove the equivalent assertion
PI(Q)# Py (Q) =P, (Q)

by indicating an example of a function uEDP:‘,u¢'D};o.
From direct computation or Lemma 2 or 3 we get

f;l df< co,
P&y

Applying [1] Theorem 2.6 with @(&)=1 we realize that, after correction on a
null set, every function vEDFo is continuous and vanishes on the boundary of
Q, thus in particular at the origin. Accordingly the theorem follows from the
following

Lemma 4. If 4€C{ (ﬁ) and 4 =constant=c#0 in a neighbourhood w of the
origin, and if u is the restriction of 4 to Q, we have u € Dp*.

Proof: We have to prove the relation
(P(D)u,v)q— (v, P(D)v)g=0 for every v€Dp.
In view of the definition of P (Q) it is sufficient to show this for any » € C* (Q),

satisfying the conditions v€ L2(Q) and P (D)v€L?(Q). In the present case the
relation can be written

o2 &5
g |dardat=0.
ff(axlaxz v axlaxZ) Fdat=0
Q

Let Q¢ denote the domain obtained from Q by excluding the rectangle |21 < } ¢,
|#2|< 10 and let R! be the boundary of this rectangle. Suppose that the quan-
tities ¢ and & are small enough to make R? lie entirely inside w. Set

?u D
s _ P 14 22
L ff(6x13x2 v 8x13x2)dx dat.
a

Rewriting and integrating by parts we get

d i % 5 i a9 12— ilf = d ol ﬂ)__ 2
I ff[axz 5l Ui 54 % py dxtdax?= Py vdat+u axzdx
oK

RO
3
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since #ECF (f)) and hence vanishes in a neighbourhood of the boundary of 0.
If we now introduce the condition u(z)=c¢#0 in v we get:

D= —¢[5(,0)~ (e, ~8) + 5 (—¢, — ) —F(—¢,0)]
We finally use that v€C*(Q), which gives, with ¢ fixed,

lim I’ =
30

Since Q—Qf is a null set and IJ is absolutely convergent we get

lim I = 0= (P (D)u,v)— (u, P (D))

>0

which completes the proof.

Theorem 2. P,(Q)+# P,(Q) if the corresponding polynomial P (&,,&,) is complete,
homogeneous and non-elliptic.

Proof: We again prove PF(Q)# P¥ (Q)=P,(Q).

Since the polynomial has at least one real characteristic we can, with suitable
coordinates write

P(E)=£-Q() and P(D)=:--2 QD)

1 ot

Application of Lemma 2 or 3 combined with [1] Theorem 2.6 shows as in the
proof of Theorem 1 that we need only prove Lemma 4 for the present opera-
tor P (D).

Let ¢ and w satisfy the conditions of Lemma 4. Let v be any function in
C* (Q) satisfying v € L2 (Q) and P (D)v€ L2(Q). We are going to show the equation

(P (D)u,v)— (u, P (D)v)=0

. 10
1.e. ff[( ;%’iu) ’l’-’l,l,';—a‘*:‘v'iQ(D)’I)] dxldaz?=0.

We use the same notations Q) and R? as in the proof of Theorem 1. We have

ff( )——u) vdxldxz—JJ——-u QD) Q(D)vdatda?

for (1/%) (au/axl)ECé” (Q) in view of the fact that #€C§ (Q) and is constant
in a neighbourhood @ of the origin enclosing R and this means that the bound-
ary integrals which arise all vanish.

If we make another partial integration we get

fJ(Q(D);a—lu) deldx2=J%u -Q(D)vdm2+fju . %E%Q(D)v-dxldxz.
s s

Rs Q

£
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Since v€C*(Q) the function |Q(D)v| is bounded on R:. Let M, denote the
maximal value on the sides parallel to the a2-direction. Then the curve integral
in the last equation is bounded by the quantity 2|c|-6-My— 0 if 6 — O with
¢ fixed. We now set

I=[[(P(D)u-5—u-P(D)v)da'da
]

Since Q—Qf is a null set and the integral I§ is absolutely convergent
according to the assumptions, we get when  — 0 with ¢ fixed

lim I¢ = 0= (P (D) u,v) — (u, P(D)v)

d>0

and the proof is complete.
Let Q be defined as before. As a supplement to the results of Theorems 1-2
we prove

Theorem 3. Let the polynomial P (&,,&,) be complete, homogeneous and non-elliptic.
If E is any proper fundamental solution (cf. [2]) of the operator P (D) and if e is
the restriction of E to Q, then ¢€Dp (Q),e¢Dp (Q).

Proof: According to [2] Theorem 2.2 we have E €L, if and only if

1
= dE< oo,
.[Pz(é“)

In view of Lemma 2 this condition is satisfied. Now since P (D)E =4, by de-
finition, we have P(D)E=0 in Q, and consequently P (D)e belongs to L2{(Q).
Therefore e € Dy (Q).

Since 4€C¢ (Q) we get in the sense of distribution theory

fe-P(Dyu-dz=[E-P(D)d-de=( P(D)E,&>={6y,4>=%(0)=c#0.
Q R
On the other hand we know from Lemma 4 that u€Dz* so that
[e-P(Dyudz=[e-Pfu-da.
0 a
Now if it were true that e€Dp (Q) we would get
fe-P:udx=fPse-ﬁdx=wae-ﬂ,dx=0
0 Q Q
because the integrand equals zero. This gives a contradiction, i.e.

eG'DPw(Q.) but e Dp (Q).
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3. Homogeneous operators of » variables
We shall now extend Theorem 2.

Theorem 4. If the polynomial P(£) is homogeneous and non-elliptic modulo the
lineality space A (P) there is an open set Q such thnt P (Q)# P, ().

Proof: Let the polynomial be defined in C,. According to the assumptions we
can find a real vector e,#0 not in A (P), such that

(1) P(te;)=0 for every real t.

In view of the definition of A(P) ([1], Definition 2.2) there exists a second
real vector e, so that

(2) Pe, +1te,)#Ple;) for some real t.

This shows that e, and e, are not proportional. We further conclude that
P& e,+&,¢,) has & as a factor and is not independent of &, hence is a com-
plete polynomial of the two variables & and §&,.

We now introduce a coordinate system such that the lineality space is defined

by the equations & =§&,=.--=£,=0 and with the £,- and £,-axes along e; and
€, respectively. In this system we write
(3) P (&)= Py (§)+ Py (§) + - + Pr(&).

Here P;(&) denotes a polynomial that is homogeneous of degree i in (&;,£,) and
of degree (m—1)in (&, ...&,). In particular we notice that P, (§)=P (&, ¢ +¢5¢,).

Let O denote a bounded domain in R’ containing the origin, and let Q be
the domain obtained by excluding from ) a cut T' defined by l=22=0,|'|< o
(¢=3, ..., ), where p is so small that the cut is enclosed in Q.

Applying [1] Theorem 2.8 and Lemma 3 above we conclude that if « €Dz, (£2)
is distinguished ([1] p. 195) the restriction of % to any variety I parallel to I'
is in L2(I") and converges strongly to zero when IV—I'. (We observe at this
stage that the cut need not always be taken of dimension (»—2). In fact it
is sufficient for our purpose that the function 1/P is uniformly square integrable
in the varieties % orthogonal to I'.) _ .

As before we are going to prove that Pi (Q)# Pj (Q) = P, (Q). To this end we
adapt Lemma 4 to the new situation:

Lemma 5. If 4€C (ﬁ) and d4=c#0 tn o neighbourhood w of the cut T, and
if w is the restriction of 4 to Q we have w€DpY.

Proof: As before we have to prove the equation
[(P(D)u-v—u-P(D)v)-dx=0
Q

for every v€C*>(Q) satisfying the conditions vE L2{Q) and P({D)v€L2{Q).

Let QJ, denote the domain obtained from Q by excluding the “parallelepiped”
R}, defined by |21|<}e,|22]|<}0d,]2*|<1¢ (i=3...v). We suppose the parame-
ters &,8 and o' >p are so determined as to let RJ, lie entirely in w.
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Consider the operator P (D)— P, (D)= P,(D)+ P, (D)+ -+ + Pp_1 (D)
corresponding to the decomposition of P(£) given by (3). An arbitrary term
may be written:

1612 10 o] =m ~1
Cfa—x’jﬂz?%:ofa—x’pz C = constant |-
l#1,2

We have G-D,liu -ﬁ-dx=J éli,u -Dyvdz
1o 10

s 3
oy oy

for (1/i)(@u/ax')€C§ (Ql,) in view of the fact that €0 (Q) and is constant
in a neighbourhood of the cut I'" containing RZ,. If we make another partial
Integration we get

f C’-l—a—,Duu -17-dx=f@lu-l)—,;da+fu-CliiDav-dx.
10% 7 10x

) A 3
Qeg’ ! Qeg'

The surface integral is here extended over the two faces A, of ng', orthogonal
to the z'-direction. The absolute value of this integral is thus bounded by the
quantity 2|¢|-|C |-£-8-0" % M,, where M, denotes the maximum of the function
|Dyv(z)| on A, and hence -0 when § — 0 with ¢ and o’ fixed.

When the method used in the proof of Theorem 2 is applied to the operator
P, (D)=(1/t) (8/02')Q(D) corresponding to P,(£)=£,Q (&), we get the result
that the absolute value of

[(Pn(D)uw)y5dz— [u-P,(D)vda
ol, al,
is smaller than 2|c|d-0""%- M, where M, denotes the greatest value of the

function |Q(D)wv(x)| on the faces of RZ, orthogonal to the zl-direction.
If we now set

Ly= [ (P(Dyu-5—u-PD)v)dz
oy
we get, since Q— QP2 is a null set and the integral I3, is absolutely convergent
according to the assumptions,

lim I3, = 0= (P (D)u,v)— (u, P (D)v)

d—>0

which completes the proof.

We finally generalize Theorem 3. Let the coordinate system be defined in
relation to P (&) as in Theorem 4 and let Q, Q and I' denote the same sets as
before. We set Q= —Q={z|—2€Q} and similarly, for the sake of symmetry

of notations, I'= —I'( =I'). We further denote by X’ the subspace of R’ defined
by the equations z1=22=0. Let p be a function in 3’ satisfying v € C¢° (I') and
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fy)da;éO, where do is the element of surface of X'. Denote by u the measure
wdo in B” with support in I'.

Theorem 5. Let P (&) be homogeneous and non-elliptic modulo the lineality space
A(P). If E is any proper fundamenial solution of P (D) and if e is the restriction
to Q of Ex pu, we have e€Dp (Q) and e¢ Dp, (Q).

Proof: We first prove that the restriction of E % u to Q is in L2 (ﬁ). This will
follow from a theorem of F. Riesz if we prove that < Ex u,u) is a linear

functional of u€ L2 (fl) or, equivalently, an inequality of the form
KE*pud|<Clupg if w€CF).

Let @ denote a function in O (Q) for which the restriction to X’ is =+1 in

I' and let u be any function in C§° (Q) We set % (x)=u(—=x). Applying Leib-
niz’ formula we get

P(D)(§ (E %)= 3, (P (D) (E %)) D, /| | .

o

Since E is proper we have (cf. [2] formula (1.11))
| P (D) (B % ) [| 22y < Cll % ey = C 9 | -
Hence with v=¢ (B %)
| P(Dyw |2 < Cllwll o

From Lemma 3 we know that the funetion 1 /132 is uniformly square integrable

in the varieties ¥ parallel to the £ &;,-plane. Since v= @ (& » %) €05’ (SYZ) ([4] VL,
Théoréme XI) we can apply [1] Theorem 2.8 getting

B % & llzeciy = |0l oty <119 2z SC NP (D) 0l 22y < O | %] 22>
Now we get by Schwarz’ inequality
|<E %L, i 5| <O B % |lzaciry

and making use of the associativity and commutativity of the convolution when
all but one of the components have compact support ([4] VI, Théorsme VII)

(E*pud=Exux%0)=E %1
Combining these results we get
[CE % p,uy | <Clullg.

Now we can reproduce the method of Theorem 3 almost word for word. We
infer from what was just proved that e€ L2 (Q). Since P(D)E % u=0% u=pu we
have P(D)E % =0 in Q and consequently P(D)e belongs to L2(Q). Therefore
we have e €Dp (Q).
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If 4eC¥ (ﬁ), i=¢#0 in a neighbourhood of I" we get in the sense of dis-
tribution theory

[e-P(Dyu-da=[(Exp)PD)idz=(PD)E % p,d)=
Q

Rn

55y

=(Sxpay=[yp-b-do=c[pdo#0.
r r

On the other hand we know from Lemma 5 that u€ 'Dp;k (Q) so that

fe'P(D)udx=fe-P—;"1_A,-dx.
Q I

Now if it were true that e€Dp (Q) we would get

fe-P—f;dx=J'Pse-ﬂ-dx=wae-'ddz=0
Q Q o)

because the integrand equals zero. This gives a contradiction, i.e.

EEDPW(Q) but e&Dps (Q)
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