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Distributions of positive mass, which maximize a certain
generalized energy integral

By Gorax Biorck

Introduction. The classical theory of the equilibrium distribution for the
Newtonian kernel deals with the problem of finding and studying distributions
of positive mass with a given total mass, on a compact set F in n-dimensional Eu-

clidean space (n>2), which minimize the energy integral ff |z—y* " du(x)du(y)
F F

where |z—y| is the Euclidean distance between the points z and y. M. Rimsz
and FrosTMAN have generalized this to the case of the “a-potentials” with the

energy integral ff lz—y|* " du(x) du(y), (0<a<2). If we want to study a similar
FF

problem for the “energy integral” f f |z—y*du(x) dpu(y) with 1>0, we must
FF

evidently turn our interest to distributions that maximize this integral. Let us
call such distributions maximal distributions. The purpose of this paper is to
investigate for which values of A>0 there always exists a wnigue maximal
distribution and to study the properties of maximal distributions.

The value of the “energy integral” with arbitrary A has been studied by
PéLyAa and Szead [3). They studied, in particular, the special case when F is
a sphere or a solid sphere.

Frost™MaN (1, p. 39] has proved that, in the case of the a-potentials, that
distribution which minimizes the energy integral has certain other extremum
properties. For maximal distributions the corresponding properties do not hold,
as is shown in theorems 13-15.

Our main results are the following: For any 1> 0, the potential of a maximal
distribution is constant in the support of the distribution and less than or
equal to this constant value in F. For any A>0, the mass of a maximal dis-
tribution lies on the boundary of F. For 1:>1, it is in the extreme points of
the convex hull of F. For A<2, there is a unique maximal distribution. For
A>2, any maximal distribulion consists entirely of poini-masses, not more than
{(n+1) in number.

Notation and definitions. Let F be a compact set in the n-dimensional
Euclidean space R, with n>1. Denote the points of B, by z, y, etc. Let sub-
scripts indicate different points and superseripts the coordinates of any one
point, e.g. y;=(yi, ¥i, ..., y'). Denote by |x—y| the Euclidean distance, so that
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G. BJORCK, Distributions of positive mass

n
|z —y[? =k21(x"—y")2. Let M =M; be the class of all non-negative mass dis-

tributions on F with total mass equal to unity, that is, the class of all com-
pletely additive set-functions yx which take non-negative values on all Borel
subsets of R, and which satisfy u (F)=1 and u (B, — F)=0. Let A be a positive
number. For any pair (u,, p,) of mass distributions on F, and for any mass
distribution y on F, define, as follows, the functionals I (x,,u,) and I (u),
respectively :

I(pp po)= [[le—yFdm @ dm@), I@w=1p.
FF
The potential p,(z) of a distribution u is defined as

Pu@)=[|z—ylduy).

F

Evidently,
Iy, o) = f P (%) d s (2) = J Pu, (%) d py (2).

The non-negative number M =My is defined as

M= sup I (u).

Hem

A maximal distribution is defined as a distribution u, such that
weM and I(u)=M.
The distribution consisting of the unit mass in the point z is denoted by J..
Theorem 1. For every F and every A>0 there exists a maximal distribution.

Proof: Let {u,} be a sequence such that u, € M and I (u,)—>M. Select from
this sequence a sub-sequence {u,}, converging weakly to a distribution u*

(i.e. f (@) d i, (y)»_ff(y)d,u* (y) for every continuous f). Since |z—y|* is con-

tinuous in z and in y, we get I(,u,,,)—>1(,u*) (see e.g. FrosTmax [1, p. 17]).

Hence I(u*)=M. But u*, being a weak limit of elements of M, must belong
to M. Hence u* is maximal, which completes the proof.

Theorem 2. If u is a maximal distribution with support F,, then p,(y)=M
for ye F,, and p,(y)<M for yeF.

Proof: Let v be a mass distribution on F, satisfying:
v (F)=0
u+e-v=0 for every ¢ in the interval 0<¢<1 ;- (1)

(u is the given maximal distribution)
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It follows that (u+¢e-v) €M, and hence
M=I(utev)=I(u+EI@)+2el(u,v)=M+E I +2e1(u,v).
Thus, for every & with 0<e<1,

0=e-(21(p,v)te-I{»),
which implies
I (u,»)<0. (2)

Suppose now that the theorem does not hold, even if M is replaced by some
other constant C. There is then a point yfe F, and a point y, € F, such that

a=pu(Y2) > Pu(y,) =b.

Let K be a solid sphere! with centre y, and so small that y,¢ K and the
—b
oscillation of p, in K is less than or equal to a—z—. Since y, € F,, m=pu (K)>0.

Define, as follows, the distribution » which “moves the mass from K to y,”:
»(e)=m-3,,(e) — (e N K).
Evidently » satisfies (1), and hence (2) is true. But

I(p,v)= f Pu(@) dv (2) =Py (y) -0 — Kf Pu (%) d (%)

- —b
Za-m—(6+ g—2——12)-m=aT-m>0,

which is contrary to (2). Hence p,(y) is constant = C for y ¢ F,, and p,(y)<C
for ye F. Consequently,

M=I(u)= [ pu(z)dp(x)= fpy(x)d/t(x)=0Ffdu(w)=0,

which completes the proof.
Corollary. If A=2, F, is a subset® of a sphere.

We have
)= [ 3@ -yPiu@=301+ [ Setdu-250 [ddue  ©

and if yeF,, we get p.(y)=2M, which is the equation of a sphere.

1 We call the set of points = which satisfy |z —y,|=R a sphere, and the set of points which
satisfy |z—y,| < R a solid sphere.

2 The inclusion sign and the concept of subset are used in the broad sense {equality not ex-
claded).
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Theorem 3. For any A>0 and n>1, the support of any maximal distribu-
tion is a subsel of the boundary of F.

Proof: As remarked by PéLya and Szeco [3, p. 20], simple calculation shows
that for fixed y, |x—y|* is a subharmonic function of x, and we see that it is

even strictly subharmonic. Hence p,(z)= [|2—y[*du (y) is strictly subharmonic.

F
But then if z is an inner point of F, p,(z) is strictly less than the mean value
of p, on a sphere in F with centre z. According to theorem 2, this mean
value is less than or equal to M. Hence, again according to theorem 2, x cannot
belong to the support of u. This completes the proof.

Theorem 4. If 0<1<2, the maximal distribution s unique.

Proof: Suppose that x and u, are two maximal distributions. Let v=u, — u.
Then » satisfies the conditions (1). Hence, as in the proof of theorem 2, »
satisfies (2). But

M=I(u+v)=I(u)+I@)+2-I(u,)=M+I1(»)+2-1(u,v).
Hence I(»)=—21(u,»)=0.
To complete the proof, it is sufficient to prove the following lemma 1. The

above », in fact, satisfies the assumptions of the lemma, and hence is identical
to zero, that is u,=pu.

Lemma 1. If 0<A<2 and if v is o distribution on F with total algebraic
mass equal to zero and a mon-negalive energy integral, that is. if

f dv=0
F b
I(v)=0
then v vanishes tdentically.
Proof: If n=1, replace n by 2, that is, imbed R, in R,. According to FrosT-
MAN [2, p. 6], the formula (2) of [2] is valid for O<oa-+f<m+2, a+f+m.
Apply this formula with m=n (modified as indicated), a=pf= Z—t—z, and g =y.

2
We get

U T S
f(U) dz= g L0

Here dz is the element of volume,

A-n

U* = const. x J' |lx—y| 2 dv(y),
F
and
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ﬂg. gn+i. p (’M)
Hn(n“'ﬂ.): 2 .

But I (— %) <0, and hence H,(n+A)<0. Since I(»)=0, this implies that

U*=0 almost everywhere in R,. Hence y=0 (see M. Riesz [4, no. 10]). This
completes the proof of the lemma and of theorem 4.

Theorem 5. If A==2, and if F is a solid sphere with radius r and boundary S,
then M =217, and a distribution is maximal if and only if its support is a subset
of 8 and its centre of gravity is the centre of F.

Proof: Let yu be a maximal distribution with support F,, and let yeF,.
Multiplying (3) by du(y) and integrating over F, we obtain

n n 2
I(/t)=2f (_Z (z’)z) dp@) -2 3, (fx'du(x)) :
S i=1 i=1 4
We suppose now that the coordinate system is chosen with its origin in the
centre of F. Then the first term of I(u) is maximal = 2+% if and only if
F,c 8. The modulus of the second term is minimal = 0, if and only if

[#dp(x)=0, (=1,2,..,%).
F,

Hence I(u) is maximal = 2+* if and only if F,c§ and the origin is the centre
of gravity of u, which completes the proof.

Theorem 6. If 1=2 and F is contained in a solid sphere K with radius r
and boundary S, and if r 1s the minimum radius possible under these conditions,
then M =21, the support of any maximal distribution is a subset of SnF, and
there exists a maximal distribuiion the swpport of which consists of not more than
(r+1) points.

Proof: Since Fc K, MrcMx. Hence M=M<Mz=2r% If we can find a
distribution g €My with I(u)=27% such that its support consists of not more
than (n+1) points, then the theorem is proved. Indeed the existence of such
a distribution implies that M =2+% Hence every maximal distribution for F
is also a maximal distribution for K. According to theorem 5, its support is
then a subset of 8.

Suppose that the centre ¢ of K is an outer point of the convex hull of
Fn8. Then some half-sphere H of § does not meet F. Hence, since F
and H are compact sets, they must have a positive distance. It is then possible,
by moving ¢ towards F and then shrinking the translated K, to construct a
solid sphere containing ¥ and with radius less than ». This is contrary to the
assumptions of the theorem. Hence ¢ belongs to the convex hull of F n S and
consequently is an inner point of a k-dimensional simplex with vertices
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Yor Y15 > Y I FNS, (1<k<n). The barycentric coordinates of ¢ in this sim-
plex are consequently positive and are denoted by m,,m,, ..., m;. We shall
now prove that the required distribution is given by

k
=z my 61/1'

From the properties of barycentric coordinates we know that Zm,—l and that

¢ is the centre of gravity of u. The first of these facts, together with the in-
equalities m,>0, shows that u€Mg. The other, together with the fact that
the support of u is a subset of S, then ensures, by theorem 5, that I (u)=21%,
which completes the proof.

Theorem 7. If A>2 and if F is a solid sphere with radius r, then M =2~ 1,
and a distribution is maximal if and only if it comsists of two point-masses, each
with the mass %, placed in the two end points of a diameter.

Proof: For any u €M,
Lw=[[lz—yldp@duw)=[[lo—y[|a-yFdp @ duw)
<@ [[le-yPdp@dn@=@ry* sup [[la—yfdu@duty) &)
=2} 2=
Hence M<2471 44

But a distribution y* consisting of the mass } in each of the two end points
of a diameter, gives:

I(p*y=2-}-3-@ri=2"14,
and consequently,
M=2""1/

Either the first inequality sign of (4) gives a strict inequality, or |z —y|=2r for
all pairs of elements of mass that contribute to the integral j f |lz—yPdu(x)duly),

that is, for all pairs such that |x—y|+0. Hence the only type of distribution
that gives equality instead of the first inequality of (4) is the u*-type. This
completes the proof.

Corollary. Suppose that A>2 and that F has a diameter (that is a segment
of maximum length with its end poinis in F) of length 2r such that F is con-
tained in the solid sphere with this diameter. Then M =2*"'r* and the distribu-
tion consisting of the mass L in each of the end points of the diameter, is maximal.
In particular, this is true for any F that is centrally symmetrie. If, in addition,
we assume that F has no other diameter, we obtain the result that the maxi-
mal distribution is unique.
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Remark 1 (of. P6Lya and Szrc6 [3, p. 42]). We now know all the maximal
distributions for any A>0, when F is a solid sphere (or a sphere). In fact, it
follows from theorems 3 and 4, by reasons of symmetry, that, for 0 <1<2,
the unique maximal distribution is the homogeneous distribution on the boundary.
Further, for 1>2 the mass of a maximal distribution is concentrated in two
diametrically opposite points, and for A=2 both these types of distributions
and, in addition, a great variety of intermediate forms are maximal, as specified
in theorem 5. This tendency of the mass to concentrate in points when A in-
creases, together with the last result of theorem 6, suggests a hypothesis, stated
and proved in theorem 12,

Remark 2. From theorems 5 and 7 it is clear that, for 1=>2, the maximal
distribution is not necessarily unique. In fact, the solid sphere is an example
of a set F with an infinity of maximal distributions. However, for 1>2 all
these are congruent. An example of a set F with two non-congruent maximal
distributions is given in remark 2 to theorem 10.

Theorem 8. If A>1 and if P is an inner point of a k-dimensional simplex
(1<k<mn), then a positive point-mass in P can be replaced by positive poini-
masses in the wvertices of the simplex, with the same lotal mass, in such a way
that the potential strictly increases in every point of R, .

Proof: Let the vertices be z,, x,, ..., zx, and let the barycentric coordinates
of P in the simplex be m,, m,, ..., mx. Since P is an inner point they are all
positive. We lose no generality if we assume that the original mass in P is
unity, that is, thkat the original distribution is §,. We want to prove that the

distribution p= > m;d,, solves the problem, that is, that in every point y of R,
i=0
Puly) > Psp (Y)
k k
or izomi ly—zift>]y— Zom; z; |
< i<

k
But since m;>0 and > m; =1, this follows from the fact that for fixed y, |z — y|*
55

is a strictly convex function of x. This in turn is a consequence of the facts
that |x—y| is a non-negative convex function of , not constant on any segment,
and that #* is a monotonously increasing, strictly convex function of the non-
negative real variable ¢ (1>1). This completes the proof.

Theorem 9. If 1>1, the support of any maximal distribution consists only
of extreme points of the convex hull of F. (An extreme point of a convex set is
a point which is not an inner point of any segment with end points in the set.)

Proof: Suppose that the theorem does not hold. Then there exists a maxi-
mal distribution x such that the interior § of some k-dimensional simplex
(1=<k<mn), with its vertices x,,x,, ..., z; in F, carries mass. We then ‘“‘integrate
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the procedure of theorem 8 over S, that is, we replace the part of u which
L3

lies in § by the distribution > m,d.,, where
i=0

my= [ & (y) dp(y)
S

with & (y) = the barycentric coordinates of y in § (5=0,1, ..., k). If the new
distribution obtained from g in this way is denoted by p;, theorem 8 assures
that in any point of R,,

Pu, = Dpe-
Hence,
I(u) = [ pu, (@) Ay (@) > [ po(@) dpty (@) =1I (1, ty)
= [pu @) dp@)> [ pul@) dp(@) =1 (u)=

which is a contradiction, since u, € 1. This completes the proof.

Theorem 10. Suppose that A>2 and that S is a finite set of more than (n+1)
points, all carrying point-masses of the distribuiton w€ M. Then it is possible,
just by moving mass between the points of S, to construct a distribution u' €M
such that not more than (n-+ 1) points of S carry masses, and such that I (u') > I (u).

For the proof of this theorem we will need the following two lemmas:

Lemma 2. Let y,,y;, ..., Yn be distinct points of B, and let 0<a<2. Then
the quadratic form

= 2 (o—wl*+lyo— |~ v~ wl) it
18 positive definite.
This was proved by SCHOENBERG [6, theorem 2] Another proof is obtained

from lemma 1 with A=o and v= Zti Oy, where Et, 0. Using the latter rela-

tion to eliminate ¢,, we get:
Iy=2> >ttelyi—yel|*= Zti(ztk fyt—ykl“) -k (Ztklyo—ykl")
i=0 K=o i1 M=o =1 2o
=St (Stlu—ul— 3t lv—yol*— 3t |y —9el?) = —1.
i=1 k=1 K=1 k=0

Hence f<0 implies 7(»)>0. By lemma 1, this gives =0 (z=0,1,...,m),
which completes the proof of lemma 2.

Lemma 3. Let ax=ay (1+k;1,k=0,1,...,m) be ym(m+1) given positive
numbers. Then a mecessary and sufficient condition that there exist in R, , but not
in BR,_y, (m+1) points xy, 2,, ..., %Tm, sSuch that |x;—xy|=au, (i+k), is that the
quadratic form
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M3

(a3: + age —aly) bty (with a;=0)

i, k=1

18 non-negative and of rank r.

This result was obtained by MENGER. A simple proof is given by SCHOEN-
BERG [5, theorem 1].

Proof of theorem 10: We prove the following statement, which is clearly
equivalent to theorem 10: Suppose that the (m-+1) points Yy, Yy, --r Ym CATTY
point-masses of a distribution u, € M. Suppose further that it is not possible, just
by moving mass between the y;, to construct a distribution u, € M such that at
least one of the y; is free from mass and such that I(us)>1I(uy). Then m<n.

m
Let t,,t,....,tn be a set of real numbers with sum zero: D #;=0, and denote
=0
by p: the potential of u, at the point y; (i1=0,1, ..., m): p;=p,(y). Define
the distribution u, as follows:

m
U=y + iZOti Oy, -
We get

I (ua)=1 (py) + 2i§0ti Iy, 6zf,~) + t;o I\‘Z:Dti e I (5?15 > 6yk)

m m m
=T (u)+2> tipit+ > Ztitkl?/i‘?/k‘l~
i=0 i=0 k=0
Hence, using t{,= — > #;, we get (as in the proof of lemma 2)
i1

I(u)—I(p)=L+@,

where the linear form L and the quadratic form @ are as follows:

L= 2;& (po— 1),

)

, Uvo—w: P+ 19— w P =y —we ')t ti.

1

We shall now prove that ¢ is non-negative. Suppose that this is not true.
Then there exists a set of t-values, =7, (:=1, 2, ..., m), giving @ a negative
value. If k is a real number which is not zero, then € is negative for the set
k-T;. By restricting k either to positive or to negative values we can assure
that L is non-positive for the considered set. Hence I (u,)> I (u,) for all posi-
tive or for all negative values of k. If |k is sufficiently small, the corresponding
Us €M (u, has no negative masses). If, according to the restriction, k increases
or decreases from zero, it will reach a first value for which the mass of u,
in one of the points y; is zero, and still u, €M and 7 (u,) > I (¢,)- This is con-
trary to our assumptions. Hence we have proved that @ is non-negative.
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2
We now apply lemma 3 to au=|yi—yx|>
As a result, in some R, there exist (m+1) points z,, z,. ..., Tm,such that

2
,xi—xkl = lys—yklz.

4
We then apply lemma 2 to the points z,, #,, ..., 2, of E, with a= 1

As a result, the form

4

m t . s
él(lxo—xi|’1+|x0—xk|1—|xi—xk|’1) tttkz

L,k

m
= 2 (=l +lvo—vel ~ v~y titi
is positive definite. Hence its rank is m.

We finally apply lemma 3 again, but this time to ai=|y:—yi|.

As a result, there do not exist in R,_;, (m+1) points z,,z,, ..., 2m, such
that |z;—z;|=au (¢+k). However, in R, such points do exist, for instance
z;=vy;. Hence n>m—1, which completes the proof of theorem 10.

Applying theorem 10 to a maximal distribution, we get the following

Corollary. For 1>2, no mazximal distribution contains more than (n+ 1) poini-
masses.

Remark 1. Theorem 10 is the best possible in the sense that no smaller
number can be substituted for (n+1). This is shown by the following example.
Let F be the (n+1) vertices of a regular n-simplex and let x be a maximal
distribution on F. By theorem 2, the potential takes equal values at two points
carrying mass. But, due to the symmetry, the contributions from the mass in
any third point to the potential at these two points are equal. Hence the
masses in the two considered points must be equal. If some vertex should carry
no mass, then it would be possible to increase I (u), for example by moving a
half of one of the point-masses to the empty vertex. But this contradicts the
fact that u is maximal. Hence this special F has, for any 1>0, a unique
maximal distribution, viz. the mass 1/(n+1) in each vertex.

Remark 2. With the aid of theorem 10, we can easily show that theorem 4
fails completely for 1>2, if #>1. For A=2, this follows from theorem 5, and
for 1>2 we shall now give an example of a set F with two maximal distribu-
tions, one consisting of two point-masses and the other of (n+ 1) point-masses.

Let x4, x,, ..., z, be the vertices of a regular n-simplex with edges of unit
length and let ¢ be its centre of gravity. Let y be a point on the straight

. 2
line z,c, such that |xo—y|:(nf1

Let F consist of the (n+2) points y, xy, ;, ..., ¥». According to theorem 10,
any maximal distribution x on F will leave at least one of the points free
from mass.

1
)5, and such that ¢ lies between z, and .
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Suppose first that y is free from mass. Then y is a maximal distribution
on the vertices of a regular n-simplex, and hence, by remark 1, each
(¢=0,1, ..., n) carries the mass 1/(n-+1), and

_nlarl) »
=G ip ~ns1

Suppose next that some z; (150) is free from mass. By the same argument
of symmetry as in remark 1, every z; (4=0) is then free from mass. The
support of u thus consists of y and #,, and hence x must have the mass } in
each of these two points, and I (u)=2-%-}-|2o—yl*=n/(n+1).

Suppose finally that y carries mass but z, does not. Then u is not maximal.
In fact, the distance from a vertex of a regular n-simplex with edges of unit
1

2
_<2n %< in«%<2§‘ H i to the f ite to z, than
=\nr1 — ] . Hence y is nearer to the face oppos o
%y is, which means that |y—=|<|zy—x] (6=1,2,...,n). Then I (u) will in-
crease if the mass of y is moved to z,.

To sum up, we know that a maximal distribution does exist, and we know
that the only two distributions which may be maximal, have the same I-value.
Hence they are both maximal.

1 1
length to the opposite (n —1)-dimensional face is = (—22)2> 2%, and |z, —y]
n

Theorem 11. For A>2, let u be a maximal distribution and K a compact
subset of F. Then there exists a maximal distribution p* which in K has only
point-masses and which outside of K is equal to pu.

Proof: Since K is compact, we can cover it with a finite set of solid spheres
Oy, ..., Oy with radius ¢ and with their centres belonging to K. Then we con- .
struct p pair-wise disjoint Borel sets B,, ..., B, as follows:

B =C,nK
BizoinK_Oin(UiBj) (I<i=p).
i<
Denote by u, the part of 4 in F—K, by m; the mass of u in B;, and by

6; the distribution consisting of the unit mass in the centre of C;. We then
define a distribution u, €M as follows:

D
,Ue:,uo‘*‘i;mian

that is, we concentrate into p points of K the mass of x in K. Since no mass
is moved a longer distance than e, |x—y|' does not change more than by the
amount k-¢, where k is a constant, depending only on F and A, for since ¢* is
an increasing convex function for ¢{>0, the change of |x—y|* is less than
(d+e)'—(d—e)*<A(2d)* - 2¢, where d is the diameter of F. Hence the value
of I does not change more than by the amount k-¢, that is,

I(u)=M—Fk-e¢. (5)
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We now take as the set 8 and the distribution x of theorem 10, the g
centres of the solid spheres C; and the distribution u., respectively. By theo-
rem 10, there is then a distribution u, € M of the form

P
phe= o+ izlmg 0

with not more than (n+1) of the non-negative numbers m; different from zero,
and such that
I (o) =1 (1)
By (5), this implies
M=I(u)=M—k-c. (6)

Those m; which are positive, together with a sufficient number of zeroes,
are now renamed m{, m{®, ..., m. The corresponding points, and, in the case
of the zeroes, some arbitrary points of K, are denoted by z(°, 2, ..., 2.

We now choose a sequence of ¢, tending towards zero. For each ¢ we con-
struct the points x{, 2, ..., & of K and the non-negative numbers m{’, m{®,
..., my) with sum g (K). Since both K and the closed interval [0, u (K)] are
compact, it is possible to select a sub-sequence g, such that the point sequences
{{*}, and the number sequences {m{}, all converge. The limit elements are

denoted by a7 and m and belong to K and [0, u(K)], respectively. We also
have ‘Z mi =u (K). Of course some of the m; may be zero. We define the
=0

distribution x* as follows:

n
wt=pe+ ‘Zom;" Oq; .
i=

We have just proved that
u*eEm.

But by choosing » sufficiently large, we can make |m{—m| and |z —2&'|,
(¢=0,1, ...,n), arbitrarily small. Hence, since I ([u;) is a continuous function of
the variables z{” and m{”, |I (u*)—1I (u,)| can be made arbitrarily small. By (6),
this implies

I(w=M.

This completes the proof that u* satisfies the requirements of the theorem.

Theorem 12. If A>2, every maximal distribution consists entirely of point-
masses, not more than (n+1) in number, and all situated in extreme points of
the convex hull of F.

Proof: The last part of the theorem is contained in theorem 9. All we have
to prove is that the support of a maximal distribution cannot consist of more
than (n+1) points. Suppose that this is not true and that =z, z,, ..., z.o are
distinet points of the support of a maximal distribution u Let G (e=1,2, ..., n+2)
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be solid spheres with centres x; and so small that they are pair-wise disjoint.
Define the compact sets K; as

K;=C:nF.

Since z; is in the support of u, u(K;)=+0.

We now apply theorem 11 with K=K,. We obtain a maximal distribution
pi which is equal to u except in K; and which has at least one point-mass
in K.

We then apply theorem 11 to uy instead of to y and with K=K,. We
obtain a maximal distribution ,u’z" , which, except in K,, is equal to uj, and
which has at least one point-mass in K, and one in K,.

We go on in this way and finally obtain a maximal distribution ,uZ+z, which
contains at least (% 4-2) point-masses. This contradicts the corollary of theorem 10,
which completes the proof.

With theorem 12 we conclude the treatment of our main subject. We now
turn our interest to the relations between the maximal distributions and the
distributions solving the two other extremum problems mentioned in the in-
troduction, namely the distributions €M for which

max p,(r) = min max p,(z)=M’
TeF trem zeF

or min p, () = max min p,(z)=M"".
reF pHem zeF

Let us call such distributions minmazr and maxmin distributions, respectively.
There evidently always exists at least one maxmin distribution and one minmax
distribution, and M < M.

From theorem 8 it follows that, for A>1, a maxmin distribution must have
all its mass in the extreme points of the convex hull of F. Otherwise the
potential at every point of R,, and hence also its minimum value on F, could
be increased by moving the masses.

We might thus suspect that every maximal distribution is also maxmin, or
conversely. However, this is not true for any A>0, as is shown by the fol-
lowing theorems and examples, which also rule out the corresponding hypothesis
for the minmax distributions.

Theorem 13. When F 1is a sphere, the potential of any minmax or maxmin
distribution is constant on F.

Proof for the maxmin case:

Consider for every maxmin distribution yx the set F, of all points = € F such
that p,(x)=M". These F, are closed. The intersection of any finite number of

sets F, is non-empty. In fact, if there is no point where p,, ..., p., are all
n

equal to their minimum value M", then the distribution — > u; has a minimum
Ny

potential greater than M”, which is impossible. Hence, since F is compact,
there is a point belonging to every F.. Then, by reasons of symmetry, every
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point of F belongs to every F,, which completes the proof. Hence, when 1> 2
and F is a sphere, the maximal and the maxmin distributions are different.

To deal with the maxmin distributions for 0<A<2, we consider a set F
consisting of a sphere § and a point y inside 8, but not its centre. A maximal
distribution g must have its minimum potential on F at y (since p, is sub-
harmonic), and this minimum. is strictly less than the constant value of the
potential on 8. Hence by moving the masses on S in a direction away from v,
we can increase the minimum potential on F, and so g is not maxmin.

To deal with the minmax distributions for any A>0, we consider as F a
solid sphere with centre c. A maximal distribution y has all its mass on the
boundary, and hence p,(c)=r*. But this value is strictly less than the mean
value of the potential on the boundary. Hence, max p, (x)>r* On the other

zT€

hand, for the distribution d. we have max p;, (x)=r". Hence the minmax and
zeF

the maximal distributions are different.

Finally we give a certain property of minmax distributions and of a related
class of distributions:

Theorem 14. When A>1 and F is convex, any minmax distribution consists
of one point-mass. This follows from theorem 8. In fact, the potential in every
point of R, will strictly decrease, if the distribution is replaced by the unit
mass in its centre of gravity.

Let us denote as “free minmax distribution’ a distribution such that

max p, (z) = min max p, (x),
TeF u=>0 zTeF

fou=1
A

that is, a distribution which solves the minmax problem where u is not re-
stricted to lie on F. Such distributions are the ‘“Endverteilungen fiir R®”,
considered by P6rva and Szred (3, p. 42]. There, the following result is stated
in the special case when F is a sphere or a closed sphere.

Theorem 15. If A>1, any free minmax distribution consists of one point-mass.

Proof: By the preceding result, it is sufficient to prove that any free min-
max distribution x4 is a minmax distribution.for the convex hull H (F) of F.
As remarked by P6rLya and Szrcé [3, footnote 14], the support of u is a subset
of H(F). All we have to prove then, is that there is a point z € F such that

max py (y) =pu (2)- (7)
yeH(F)
But this is true for any distribution x>0, when A>1. In fact, since |z —y[*

is a convex function of z (theorem 8), so is p, (:1:)~——f|x—y|"d u(y), and hence
Rn

there is an extreme point z of H (F), such that (7) is true. This completes

the proof.
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