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Introduction. The classical theory of the equilibrium distribution for the 
Newtonian kernel deals with the problem of finding and studying distributions 
of positive mass with a given tota l  mass, on a compact set F in n-dimensional Eu- 
clidean space (n > 2), which minimize the energy integral f f [ x  - y [~-~ d # (x) d+u (y) 

F F  

where I x - y l  is the Euclidean distance between the points x and y. M. RI•sz 
and FROSTmA~ have generalized this to the case of the "a-potent ia ls"  with the 
energy integral f f Ix - y ]~-~ d#  (x) d~  (y), (0 < a_< 2). I f  we want  to s tudy a similar 

F F  

problem for the "energy integral"  ] ~  I~-Yl~dt ,<x)  d~(y l  with 2 > 0 ,  we must  
F F  

evidently turn our interest to distributions tha t  maximize this integral. Let  us 
call such distributions maximal distributions. The purpose of this paper  is to 
investigate for which values of 2 > 0  there always exists a unique maximal  
distr ibution and to s tudy the properties of maximal  distributions. 

The value of the "energy integral" with arb i t ra ry  2 has been studied by  
P6LrA and SzrG5 [3]. They studied, in particular,  the special case when F is 
a sphere or a solid sphere. 

FROSTMA~ [1, p. 39] has proved that ,  in the case of the a-potentials,  t ha t  
distr ibution which minimizes the energy integral has certain other ex t remum 
properties. For maximal  distributions the corresponding properties do not  hold, 
as is shown in theorems 13-15. 

Our main results are the following: For  any  2 > 0, the potential  of a maximal  
distr ibution is constant in the support  of the distribution and less than  or 
equal to this constant  value in F. For any  2 > 0, the mass  of a maximal  dis- 
t r ibut ion lies on the boundary  of F. For 2 >  1, it is in the extreme points  of 
the  convex hull of F.  For  2 < 2, there is a unique maximal  distribution. For 
2 > 2, any maximal distribution consists entirely o[ point-masses, not more than 
(n + 1) in number. 

Notation and definitions. Let  F be a compact  set in the n-dimensional 
Euclidean space R= with n > 1. Denote the points of R~ b y  x, y, etc. Let  sub- 
scripts indicate different points and superscripts the coordinates of any  one 

1 2 n point,  e.g. y~ = (y~, y+ . . . . .  y~ ). Denote by  I x -  y [ the Euclidean distance, so tha t  
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I x -  y l 2 = ~ (x k _yk)2. Let  ~ =  'my be the class of all non-negative mass dis- 
k ~ l  

t r ibutions on F with to ta l  mass equal to unity,  tha t  is, the class of all com- 
pletely additive set-functions # which take non-negative values on all Borel 
subsets of Rn and which satisfy # (F) = 1 and/~  (R~ - F) = 0. Let  2 be a positive 
number.  For  any  pair (jUl, #2) of mass distributions on F, and for any  mass 
distribution ~ on F,  define, as follows, the functionals I ( # 1 , / ~ 2 ) a n d  I ( # ) ,  
respectively: 

± ( ~ ,  ~ )  = H I x -  y r d ~  (x) d ~  (y), X (,) = I (~, ~). 

The potential pz (x) of a distribution # is defined as 

Evidently,  

p,(x)= f I~-ytXd/~(y). 
F 

I (~1, ~ )  = f p., (x) d ~  (~) = ~ p., (z) d~ ,  (x). 
F 

The non-negative number  M = M F  is defined as 

M = s u p  I (#). 
/Jem 

A maximal distribution is defined as a distr ibution #, such tha t  

# E ~  and I ( # ) = M .  

The distribution consisting of the unit  mass in the point  x is denoted by c$~. 

T h e o r e m  I .  For every F and every ~[ > 0 there exists a maximal distribution. 

P roo f :  Let  {#n} be a sequence such t h a t / l ,  E ~ and I (ju,)->M. Select from 
this sequence a sub-sequence {#hi} , converging weakly to a distribution #* 

(i.e. S 1 (Y) d#~, (y) --> [ ] (y) d#* (y) for every continuous /). Since I x -  y I ~ is con- 
F 

tinuous in x and in y, we get I (#,~)--> 1 (#*) (see e.g. FROSTMAN [1, p. 17]). 
Hence I ( # * ) = M .  But  /~*, being a weak limit of elements of ~ ,  mus t  belong 
to ~ .  Hence ~u* is maxima],  which completes the proof. 

T h e o r e m  2. I f  f~ is a maximal distribution with support Fx, then p~, (y)= M 
/or y EF t ,  and p~(y) <_M /or y EF.  

P r o o f :  Let  v be a mass distribution on F, satisfying: 

v (F) = 0 

/~ + e. v >_ 0 for every ~ in the interval  0_< e-< 1 

(/~ is the given maximal  distribution) 

(1) 
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I t  follows t h a t  (# + e.  ~) 6 ~ ,  and  hence 

M >  I ( ~ + e . v ) = I  (~)+e2 I (v)+ 2e I (# ,~)=M + e2 I (v)+ 2 e I  (#,v). 

Thus,  for every e wi th  0_<e_< 1, 

which implies 
0 >_ ~- (21  (/~, v) + ~. I (v)), 

I (/~, v)_< 0. (2) 

Suppose now t h a t  the  theorem does no t  hold, even if M is replaced by  some 
other  cons tant  C. There  is then a point  y [E  F 1 and  a point  y2 E F ,  such t h a t  

a = p., (y~) > p ,  (y~) = b. 

Le t  K be a solid sphere 1 with centre Yl and so small t h a t  y2~K and  the  

of p ,  in K is less t han  or equal to  ~ - ~ .  Since Yi EF1,  m - - # ( K ) > 0 .  oscillation 

Define, as follows, the  dis t r ibut ion v which "moves  the  mass f rom K to  y~": 

(e) = m .  6y, (e) --/z (e N K). 

Ev iden t ly  v satisfies (1), and hence (2) is true. Bu t  

I (~,, ~) = f p .  (x) d~ (~) = p .  ( y~ ) . .~ -  f p .  (x) d ~  (~) 
F K 

a - b  
- -  - - ' r e > O ,  

2 

which is con t ra ry  to  (2). Hence p ,  (y) is constant  = C for y ~ F1, and  p~ (y) _< C 
for y E F.  Consequently,  

M = I (/z) = f p~ (x) d #  (x) = f p~ (x) d #  (x) = C f d #  (x) = C, 
F F~ F~ 

which completes the  proof. 

C o r o l l a r y .  I /  2= 2, F 1 is a subset ~ o/ a sphere. 

We have 

n n ~ n 

p , , (y )=  f , ~ (x ' - y ' ) ed#(x )=  ~l(y')'+ f , ~ ( x ' ) e d # ( x ) - 2 ~ y  ~ f x ' d # ( x )  

and if y E F1, we get  p, (y)=M, which is the equat ion  of a sphere. 

(3) 

x We call the set of points x which satisfy [ x - Yl [ = R a sphere, and the set of points which 
satisfy Ix -  Yl[ < R a solid sphere. 

2 The inc|usion sign and the concept of subset are used in the broad sense (equality not ex- 
cluded). 
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T h e o r e m  3. For any ~ > 0  and n >  1, the sttpport o[ any maxima.l distribu- 
tion is a subset o/ the boundary o/ F. 

Proof :  As remarked by  1)6LYA and SZEG6 [3, p. 20], simple calculation shows 
tha t  for fixed y, I x - y  Ix is a subharmonic function of x, and we see tha t  it is 

even strictly subharmonic. Hence p~ (x) = f I x - y r d/x (y) is strictly subharmonic. 

Bu t  then if x is an inner point  of F,  p ,  (x) is strictly less than  the mean value 
of p ,  on a sphere in F with centre x. According to theorem 2, this mean 
value is less than  or equal to M. Hence, again according to theorem 2, x cannot  
belong to the  support  of /x. This completes the proof. 

T h e o r e m  4. I f  0 < 2 < 2, the maximal distribution is unique. 

Proof :  Suppose tha t  # and /z I are two maximal  distributions. Let  v = / ~ l - # .  
Then v satisfies the conditions (1). Hence, as in the proof of theorem 2, 
satisfies (2). But  

M = I ( #  + v ) = I ( # ) +  I (v)+ 2. I (/~, v ) = M  + I (v)+ 2.  I(Ix, v). 

Hence I (v) = - 21  (g, v) > 0. 

To complete the proof, i t  is sufficient to prove the following lemma 1. The 
above v, in fact,  satisfies the assumptions of the lemma, and hence is identical 
to zero, tha t  is g l  ~-g- 

L e m m a  I .  I /  0 < ~ < 2 and i] v is a distribution on F with total algebraic 
mass equal to zero and a non-negative energy integral, that is, i/ 

I (v) _> 0 

then v vanishes identically. 

Proof :  I f  n = 1, replace n by  2, tha t  is, imbed R 1 in R~. According to :FROST- 
[2, p. 6], the formula (2) of [2] is valid for 0 < ~ ÷ f l < m + 2 ,  ~ + f l # m .  

n + 2  
Apply this formula with m = n  (modified as indicated), ~ = - f l = - - 2 - - ,  and/x =v .  

We get 

f , 
(U~) ~ dz  = Hn (n + 2)" I (v). 

Rn 

Here dz is the element of volume, 

) . - n  

v = const. × f I x -  y I d ,  (y), 
F 

and 
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n~- 2 ~+a. F 
H~ (n + ~) = 

But  F ( - ~ ) < 0 ,  and hence H ~ ( n + 2 ) < 0 .  Since I(v)>_O, this implies tha t  
\ - - /  

U ~ = 0  almost  everywhere in Rn. Hence v - - 0  (see M. RIESZ [4, no. 10]). This 
completes the proof of the lemma and of theorem 4. 

T h e o r e m  5. I f  2 ~- 2, and i t F is a solid sphere with radius r and boundary S, 
then M = 2  r ~, and a distribution is maximal i/ and only if its support is a subset 
o/ S and its centre o/ gravity is the centre o/ F. 

Proof :  Let  # be a maximal  distribution with support  F1, and let yEF~.  
Multiplying (3) b y  dl~(y ) and integrating over F 1 we obtain 

n 2 

FI FL 

We suppose now tha t  the coordinate system is chosen with its origin in the 
centre of F. Then the first t e rm of I ( ~ )  is m a x i m a l = 2 r  2, if and only if 
F 1 = S. The modulus of the second te rm is minimal = 0, if and only if 

f x  t d # ( x ) = 0 ,  ( i = l ,  2, . . . ,  n ) .  
FL 

Hence I (#) is maximal  = 2 r 2 if and only if F 1 c 2 and the origin is the centre 
of gravi ty  of /~, which completes the proof. 

T h e o r e m  6. I /  ~ 2 and F is contained in a solid sphere K with radius r 
and boundary S, and if r is the minimum radius possible under these conditions, 
then M ~  2 r 2, the support o/ any maximal distribution is a subset o/ S N F, and 
there exists a maximal distribution the support of which consists o/ not more than 
(n + 1) points. 

Proof :  Since F c K ,  7~IFC~K. Hence M = M F < _ M K = 2 r  2. I f  we can find a 
distribution # E ~ F  with I ( # ) =  2 r 2, such tha t  its support  consists of not more 
than  (n + 1) points, then the theorem is proved. Indeed the existence of such 
a distribution implies tha t  M =  2 r ~. Hence every maximal  distribution for F 
is also a maximal  distribution for K. According to theorem 5, its support  is 
then a subset of S. 

Suppose tha t  the centre c of K is an outer point  of the convex hull of 
F N S. Then some half-sphere H of S does not meet  F. Hence, since F 
and H are compact  sets, they  mus t  have a positive distance. I t  is then possible, 
by  moving c towards F and then shrinking the t ranslated K,  to construct a 
solid sphere containing F and with radius less than  r. This is contrary to the 
assumptions of the theorem. Hence c belongs to the convex hull of F N S and 
consequently is an inner point of a It-dimensional simplex with vertices 
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Yo, Yl,  " " ,  yk in F N  S, ( l < k < n ) .  The baryeentrie coordinates of c in this sim- 
plex are consequently positive and are denoted by  m0, ml, ..., ink. We shall 
now prove tha t  the required distribution is given by  

k 

g =  ~ m , ~ .  
i = 0  

k 

From the properties of barycentric coordinates we know that  ~ m i = l ,  and that  
i = 0  

c is the centre of gravi ty of ft. The first of these facts, together with the in- 
equalities m~ > 0, shows that  ft E ~ K .  The other, together with the fact tha t  
the support  of /~ is a subset of S, then ensures, by  theorem 5, tha t  I (#) = 2 r ~, 
which completes the proof. 

T h e o r e m  7. I f  ~ > 2 and i/ F is a solid sphere with radius r, then M = 2 ~'-~ r ~, 
and a distribution is max imal  i/  and only i/  it consists of two point-masses, each 
with the mass ½, plazed in the two end points of a diameter. 

Proof :  For  any ft 6 ~ ,  

I (~) = f f  I x -  y I ~ dft (x) rift (y) = f f  I x -  y I ~-2 l x -  y I ~ dft (=) d~ (y) 
F F  F F  

_< (2 r)~-~ f f  I x - y l  ~ dft(x) dt,(y) <- (2r) ' -~ sup f f I x - y l  2 dft (x) d~ (y) 
F F ] ~ ¢ ~  F F 

= (2 r) ~-2- 2 r ~ = 2'-' r'. 

Hence M _< 2 x-1 r a. 

(4) 

But  a distribution #* consisting of the mass ½ in each of the two end points 
of a diameter, gives: 

I (#*)= 2-½-½-(2 r) a=  2 ~-1 r a, 
and consequently, 

M = 2 ~ -1  r ~. 

Either the first, inequality sign of (4) gives a strict inequality, or I x -  y] = 2 r for 
all pairs of elements of mass tha t  contribute to the integral ; f  I x -  y]~ d #  (x )d#  (y), 

py 
that  is, for all pairs such that  I x - Y l  =i=0. Hence the only type  of distribution 
that  gives equality instead of the first inequality of (4) is the #*-type. This 
completes the proof. 

Coro l la ry .  Suppose that A > 2 and that F has a diameter (that is a segment 
of maximum length with its end points in F)  of length 2 r such that F is con- 
tainerl in the solid sphere with this diameter. Then M = 2  ~-1 r ~, and the distribu- 
tion consisting o/ the mass  ½ in each o/ the end points of the diameter, is maximal .  
In particular, this is t rue for any F that  is centrally symmetric. If, in addition, 
we assume tha t  F has no other diameter, we obtain the result tha t  the maxi- 
mal distribution is unique. 
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R e m a r k  t (cf. P6LY.~ and SzEG5 [3, p. 42]). We now know all the maximal 
distributions for any 2 > 0, when F is a solid sphere (or a sphere). In  fact, it 
follows from theorems 3 and 4, by  reasons of symmetry, that,  for 0 < ~ < 2 ,  
the unique maximal distribution is the homogeneous distribution on the boundary. 
Further, for 2 > 2 the mass of a maximal distribution is concentrated in two 
diametrically opposite points, and for 2 =  2 both these types of distributions 
and, in addition, a great variety of intermediate forms are maximal, as specified 
in theorem 5. This tendency of the mass to concentrate in points when ~t in- 
creases, together with the last result of theorem 6, suggests a hypothesis, stated 
and proved in theorem 12. 

R e m a r k  2. From theorems 5 and 7 it is clear that,  for 2-> 2, the maximal 
distribution is not necessarily unique. In  fact, the solid sphere is an example 
of a set F with an infinity of maximal distributions. However, for 2 > 2  all 
these are congruent. An example of a set F with two non-congruent maximal 
distributions is given in remark 2 to theorem 10. 

T h e o r e m  8. I f  2 > 1 and if P is an inner point o/ a k-dimensional simplex 
( l_<k<n) ,  then a positive point-mass in P can be replaced by positive point- 
masses in the vertices of the simplex, with the same total mass, in such a way 
that the potential strictly increases in every point of R~. 

P r o o f :  Let the vertices be xo, xl ,  ..., xk, and let the barycentric coordinates 
of .P in the simplex be too, ml, ..., ink. Since P is an inner point they are all 
positive. We lose no generality if we assume that  the original mass in P is 
unity, tha t  is, that  the original distribution is ~p. We want to prove that  the 

k 

distribution ,u = ~ m~ ~x~ solves the problem, tha t  is, that  in every point y of R~, 

P/, (Y) > P~p (Y) 

o r  

k k 

t = 0  f=O 

k 

But since m~ > 0 and ~ m~ = 1, this follows from the fact that  for fixed y, I x - y I ~ 
t = 0  

is a strictly convex function of x. This in turn is a consequence of the facts 
tha t  I x - y l  is a non-negative convex function of x, not constant on any segment, 
and that  t a is a monotonously increasing, strictly convex function of the non- 
negative real variable t (2> 1). This completes the proof. 

Theorem 9. I /  2 > 1, the support o/ any maximal distribution consists only 
o/ extreme points of the convex hull o/ F. (An extreme point of a convex set is 
a point which is not an inner point of any segment with end points in the set.) 

P r o o f :  Suppose that  the theorem does not hold. Then there exists a maxi- 
mal distribution /~ such that  the interior S of some k-dimensional simplex 
(1 _<_ k < n ) ,  with its vertices x0, xl, ..., x~ in F, carries mass. We then "integrate 
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the procedure of theorem 8 over S", that  is, we replace the part of # which 
k 

lies in S by the distribution ~ mi d~,, where 

m, = f $, (y) d #  (y) 
S 

with } , (y )=  the barycentrie coordinates of y in S (i=O, 1, . . . ,k).  If the new 
distribution obtained from /x in this way is denoted by #, ,  theorem 8 assures 
tha t  in any point of R~, 

Pu, > P~" 
Hence, 

I (#1) = f P,, (x) d# ,  (x) > f p,  (x) d# ,  (x) = I (/x,/~1) 

= f p , , (x)d#(x)  > fp~,(x) d#(x )=I (Fe  ) = M ,  

which is a contradiction, since ~, E ~ .  This completes the proof. 

T h e o r e m  t_0. Suppose that 2 > 2 and that S is a / in i te  set o/more than (n + l.) 
points, all carrying point-masses o/ the distribution # E T?L Then it is possible, 
just by moving mass between the points of 0, to construct a distribution / t 'E 7~ 
such that not more than (n + 1) points o / S  carry masses, and such that I (# ' )  > I (#) .  

For the proof of this theorem we will need the following two lemmas: 

Lenanaa 2. Let Yo, Y ~ , ' " ,  ym be distinct points o/ Rn and let 0 < ~ < 2. 
the quadratic ]orm 

/ =  ~ (lyo--y~l~+lYo--Ykl~--IYi--Ykl~)t~tk 
Lk=l 

is positive de/inite. 

Then 

This was proved by SC~OENBERG [6, theorem 2]. Another proof is obtained 
m 

from lemma 1 with ~ = ~  and v=  ~ tt~yi, where ~ t i=0.  Using the latter rela- 
~ 0  i •O 

tion to eliminate to, we get: 

t ~ 0  kffiO 

__~ltt 

o ) 
i=1 \k=O "ffi 

) ]yt--ykla--k~=ltk l y , - - yo I  c~- Z tk lYo- -yk]  a : - - / .  
= k=O 

Hence /-<0 implies I(v)_>0. By lemma 1, this gives t~=0 ( i=0 ,  1 . . . .  ,m), 
which completes the proof of lemma 2. 

Lenarna 3. Let atk = ak~ (i :~ k; i, k = O, 1 . . . . .  m) be ½ m ( m + l ) g i v e n  positive 
numbers. Then a necessary and su]/icient condition that there exist in Rr, but not 
in Rr_l, ( m + l )  points Xo,Xl, ...,xm, such that [ x ~ - x k l = a ~ ,  ( i~k ) ,  is that the 
quadratic /orm 
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(a2~ + a~z a ~ - -  ~ )  t~ t~ 
i , k ~ l  

is non-negative and o/ ranl¢ r. 

(with a~ = 0) 

This result was obtained by M~NGER. A simple proof is given by SCHOE~- 
~ R O  [5, theorem 1]. 

P r o o f  of t h e o r e m  iO: We prove the following statement, which is clearly 
equivalent to theorem 10: Suppose that the ( r e+ l )  points Yo, Y~, " ' ,  Y,, carry 
point-masses o~ a distribution gl  E ~ .  Suppose /urther that it is not possible, :ust 
by moving mass between the y~, to construct a distribution 1~2 E ~ such that at 
least one o/ the y~ is /tee /tom mass and such that I (#2) > I (#x). Then m <  n. 

Let to, t 1 . . . .  ,tm be a set of real numbers with sum zero : ~ t, = 0, and denote 

by p~ the potential of /-~1 at the point y~ ( i=0 ,  1 . . . . .  m): p~ = p . ,  (y~). Define 
the distribution #9 as follows: 

rn 

a~ =/~1 + ~gt~ du~. 

We get 

f = 0  t = 0  k = 0  

i = 0  t = 0  k ~ 0  

m 

Hence, using t 0 = -  ~t~, we get (as in the proof of lemma 2) 
g = l  

I (#1) - I (#8) = L + Q, 

where the linear form L and the quadratic form Q are as follows: 

L = 2 ~ tt (Po - P~), 

Q= ~. ( ] y a - y ~ l a + l y o - y ~ l ~ - I y ~ - y k l ~ ) t t t k .  
i , k = l  

We shall now prove that  Q is non-negative. Suppose that  this is not  true. 
Then there exists a set of t-values, t~=Ti ( i=  1, 2, ..., m), giving Q a negative 
value. If  k is a real number which is not zero, then Q is negative for the set 
]c. T~. By  restricting k either to positive or to negative values we can assure 
that  L is non-positive for the considered set. Hence I (#2) > I(#a) for all posi- 
tive or for all negative values of ]~. If I k I is sufficiently small, the corresponding 
/~e E ~ (f~2 has no negative masses). If, according to the restriction, k increases 
or decreases from zero, it will reach a first value for which the mass of [~2 
in one of the points y, is zero, and still #8 E ~ and I (/~2)>I (#1)" This is con- 
t rary  to our assumptions. Hence we have proved that  Q is non-negative. 
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We now apply lemma 3 to aik = [ y i -  yk I ~. 
As a result, in some R~ there exist (m+ 1) points x0, x 1 . . . .  , Xm,SUch that  

2 

Ix,-  l = ly,-y l . 

4 
We then apply lemma 2 to the points x 0' x I . . . .  , Xm of R~ with ~ =  ~- 

As a result, the form 

(l o - x ,  l -4-1Xo- I x ,  - t, = 
i , k = l  

= (I Uo - y, I + l y o -  I -ly,-u  I t, 

is positive de/inite. Hence its rank is m. 
We finally apply lemma 3 again, but this time to a~k = [y~ =-Ykl. 
As a result, there do not exist in Rm-l, ( r e + l )  points Zo,Z 1 . . . .  ,zm, such 

tha t  I z ~ - z z l = a ~ k  ( i :#k) .  However, in R~ such points do exist, for instance 
z~=y~. Hence n > m - 1 ,  which completes the proof of theorem 10. 

Applying theorem 10 to a maximal distribution, we get the following 

(::orollary. For ,~ > 2, no max imal  distribution contains more than (n + 1) point- 
masses. 

R e m a r k  1. Theorem 10 is the best possible in the sense that  no smaller 
number  can be substituted for (n + 1). This is shown by the following example. 
Let F be the ( n + l )  vertices of a regular n-simplex and let /x be a maximal 
distribution on F. By  theorem 2, the potential takes equal values at  two points 
carrying mass. But, due to the symmetry, the contributions from the mass in 
any third point to the potential at these two points are equal. Hence the 
masses in the two considered points must be equal. I f  some vertex should carry 
no mass, then it would be possible to increase I (/~), for example by  moving a 
half  of one of the point-masses to the empty vertex. But  this contradicts the 
fact that  /~ is maximal. Hence this special F has, for any 2 > 0 ,  a unique 
maximal distribution, viz. the mass 1 / ( n + l )  in each vertex. 

R e m a r k  2. With the aid of theorem 10, we can easily show that  theorem 4 
fails completely for 2 >_ 2, if n > 1. For 2 =  2, this follows from theorem 5, and 
for 2 > 2 we shall now give an example of a set F with two maximal distribu- 
tions, one consisting of two point-masses and the other of (n+  1)point-masses. 

Let  x0, xl, ..., xn be the vertices of a regular n-simplex with edges of unit 
length and let c be its centre of gravity. Let y be a point on the straight 

line Xoe, such that  I xo-yl= k n +  1 ] '  and such that  c lies between x 0 and y. 

Let  F consist of the (n + 2) points y, x o, x l ,  . . . ,  xn .  According to theorem 10, 
any maximal distribution /z on F will leave at least one of the points free 
from mass. 
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Suppose first tha t  y is free f rom mass. Then # is a maximal  dis t r ibut ion 
on the  vertices of a regular n-simplex, and hence, b y  remark  1, each x~ 
( i = 0 , 1 ,  . . . , n )  carries the mass 1 / ( n + l ) ,  and 

n ( n + l )  _ n 
i ( ~ ) =  - -  

( n +  1) 2 n +  I 

Suppose next  t h a t  some x~ ( i # 0 )  is free f rom mass. By  the  same a rgumen t  
of s y m m e t r y  as in r emark  1, every  xi ( i # 0 )  is then  free f rom mass. The 
suppor t  of # thus  consists of y and x0, and hence # mus t  have the mass  ½ in 
each of these two points,  and I ( # ) = 2 - ½ - ½ .  I x o - y l a = n / ( n  + 1). 

Suppose finally t h a t  y carries mass bu t  x o does not .  Then /~  is no t  maximal .  
I n  fact ,  the distance from a ver tex  of a regular  n-simplex with edges of uni t  

(1 + n ~  1 1 
= > ~ ' 2 - ,  and Ix0-yl length  to  the opposite ( n - 1 ) - d i m e n s i o n a l  face is \-2-n-n ] 

= ( 2 n  ~ <  ( 2 n ] 1 < 2  -~. Hence is nearer  to the face opposite to  x 0 than  
\ ~ - 1 ]  \ ~ - + 1 ]  Y 

x 0 is, which means  tha t  lY-X~l < [ x 0 - x ~ ]  ( i = l ,  2, ..., n). Then I ( # )  will in- 
crease if the mass of y is moved  to  x o. 

To sum up, we know tha t  a max imal  distr ibution does exist, and  we know 
t h a t  the  only  two distr ibutions which m a y  be maximal ,  have the s a m e / - v a l u e .  
Hence  they  are bo th  maximal.  

T h e o r e m  1 t .  For 2> 2, let # be a maximal distribution and K a compact 
subset o I F. Then there exists a maximal distribution tt* which in K has only 
point-masses and which outside o/ K is equal to ts. 

P r o o f :  Since K is compact ,  we can cover i t  wi th a finite set of solid spheres 
C 1 . . . . .  Cp with radius e and with their  centres belonging to  K. Then we con- 
s t ruc t  p pair-wise disjoint  Borel sets B 1 . . . .  , By as follows: 

B I = C 1 N K 

B~=C~ N K - C ~  N ((J Bj) (1 < i_<p) .  
i < i  

Denote  by  #0 the  pa r t  of # in F - K ,  by  ms the mass of ft in B~, and by  
~i the dis tr ibut ion consisting of the  uni t  mass  in the  centre of C~. We then  
define a dis tr ibut ion #~ E ~ as follows: 

~ = # 0 +  ~ mi6, ,  
~=1 

t h a t  is, we concentra te  into p points  of K the mass of /z in K.  Since no mass 
is m o v e d  a longer distance than  e, I x - y l  a does no t  change more  than  by  the  
a m o u n t  /c-e, where k is a constant ,  depending only on F and  2, for  since t ~ is 
an increasing convex funct ion for t > 0, the change of I x - y [  a is less t han  
( d +  e) a -  ( d -  e)a < 2 (2 d) z-1. 2e, where d is the diameter  of F .  Hence the  value 
of I does not  change more than  b y  the amoun t  k .e ,  t h a t  is, 

I (/,~) _> M - k .e .  (5) 
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We now t a k e  as the  set  S and  the  dis t r ibut ion /~ of theorem 10, t he  y 
centres  of the  solid spheres C~ and the  d is t r ibut ion /x~, respect ively.  B y  theo-  
r e m  10, there  is then  a d is t r ibut ion  ft: E ~ of the  fo rm 

t I 

4 = 1  

with not  more  t h a n  (n + 1) of the  non-negat ive  number s  m[ different  f rom zero,  
and  such t h a t  

' > 
I (/~) _ I (tt~). 

B y  (5), this  implies  
M >_I (l~:) > _ M - k .  e. (6) 

Those  m; which are posi t ive,  toge ther  wi th  a sufficient n u m b e r  of zeroes, 
are  now r e n a m e d  m~ *), m~*), . . . ,  m~ ). The  corresponding points ,  and,  in the  case 
of the  zeroes, some a r b i t r a r y  points  of K ,  are denoted b y  x~) ~), x({ ), . . . ,  x~ ). 

We  now choose a sequence of e, t ending  towards  zero. For  each e we con- 
s t ruc t  the  points  x~ *), x(1 *), . . . ,  x~ ) of K and  the  non-nega t ive  number s  m~) *), m({ ), 
. . . ,  m~ ) wi th  sum /x (K). Since bo th  K and  the  closed in te rva l  [0, # (K)] a re  
compact ,  i t  is possible to select a sub-sequence e, such t h a t  the  poin t  sequences 
{x~,)}, and  the  n u m b e r  sequences {m(~P}, all converge. The  l imit  e lements  a re  
denoted  b y  x~ and  m~* and  belong to K and [0, # (K)], respect ively.  W e  also 

n 

have  ~ m * = F t ( K  ). Of course some of the  m~ m a y  be zero. We  define t h e  
t = O  

dis t r ibut ion /z* as fol lows:  

We  have  jus t  p roved  t h a t  

n 

~* = ~0 + Y~ m* ~ * Z i • i=0 

#*E~. 

But  b y  choosing v sufficiently large, w e  can m a k e  ImT-ml  ' I and Ix -C ) I, 
( i = 0 ,  1 , . . . ,  n), a rb i t r a r i ly  small .  Hence ,  since I (#~) is a cont inuous func t ion  of  

t~) and  m~ ~), 1I (/~*) - I (/t~) ] can be m a d e  a rb i t ra r i ly  small .  B y  (6), the  var iables  x~ 
this implies  

I (tx*) = M.  

This comple tes  the  proof  t h a t  #* satisfies the  requ i rements  of the theorem.  

T h e o r e m  i2 .  I /  ~t > 2, every maximal 
masses, not more than ( n + l )  in number, 
the convex hull o/ F. 

distribution consists entirely o/ point- 
and all situated in extreme points of 

l~roof:  The  last  p a r t  of the  t heo rem is conta ined in t heo rem 9. All we h a v e  
to  p rove  is t h a t  the  suppor t  of a m a x i m a l  d is t r ibut ion  canno t  consist  of more  
t h a n  ( n + l )  points .  Suppose  t h a t  this is no t  t rue  and  t h a t  Xl, x~ . . . . .  xn+~ a re  
dis t inct  points  of the suppor t  of a m a x i m a l  d is t r ibut ion #. L e t  C~ (i = 1, 2 . . . . .  n + 2)  
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be  solid spheres with centres x, and so small tha t  they  are pair-wise disjoint. 
Define the compact  sets K~ as 

K~= C~ N F.  

iSince xi is in the support  of #, # (Ki)~=0. 
We now apply theorem 11 with K = K  1. We obtain a maximal  distribution 

#7 which is equal to # except in K I and which has a t  least one point-mass 
in K 1. 

We then apply theorem 11 to #7 instead of to ju and with K = K  s. We 
obtain  a maximal  distribution #~,  which, except in Ks ,  is equal to #~,  and 
which has a t  least one point-mass in K 1 and one in K s. 

We go on in this way and finally obtain a maximal  distribution/~*+~, which 
contains a t  least (n + 2) point-masses. This contradicts the corollary of theorem 10, 
which completes the proof. 

With theorem 12 we conclude the t rea tment  of our main subject. We now 
tu rn  our interest to the relations between the maximal  distributions and the 
distributions solving the two other ex t remum problems mentioned in the  in- 
troduction, name]y the distributions # E ~ for which 

m a x  p ,  (x) = min m a x  Pz (x) = M'  
x e F  ~ e ~  z e F  

o r  min p,  (x) = max  rain p~ (x) = M" .  
x e F  I ~  x e F  

Let  us call such distributions minmax  and maxmin  distributions, respectively. 
There evidently a l w a y s e x i s t s  at  least one maxmin  distribution and one minmax  
distribution, and M "  _< M. 

From theorem 8 it follows that ,  for 2 > 1, a maxmin  distribution mus t  have 
all its mass  in the extreme points of the convex hull of F. Otherwise the 
potential  a t  every point of Rn,  and hence also its minimum value on F,  could 
be increased by  moving the masses. 

We might  thus suspect tha t  every maximal  distribution is also maxmin,  or 
conversely. However, this is not  true for any  2 > 0, as is shown by  the f o l -  
lowing theorems and examples, which also rule out the corresponding hypothesis 
for the minmax  distributions. 

T h e o r e m  i3 .  When .F is a sphere, the potential o/ any  minmax  or maxmin  
distribution is constant on F.  

P r o o f  for the maxmin  case: 

Consider for every maxmin  distribution /~ the set ~ .  of all points x ~ F such 
t ha t  p ~ ( x ) = M " .  These F~ are closed. The intersection of any  finite number  of 
sets F ,  is non-empty.  In  fact, if there is no point where pz . . . . . .  P,n are all 

1 n 
equal to their minimum value M" ,  then the distribution n,-~ #* has a minimum 

potential  greater than  M " ,  which is impossible. Hence, since F is compact ,  
there is a point belonging to every F t .  Then, by  reasons of symmetry ,  every 

267 



G. BJORCK, Distributions of positive mass 

point  of F belongs to  every F , ,  which completes the proof. Hence, when ~ > 2 
and F is a sphere, t he  maximal  and the  maxmin  distr ibutions are different. 

To deal with the  maxmin  distr ibutions for 0 <~_<2,  we consider a set F 
consisting of a sphere S and a point  y inside S, bu t  no t  its centre. A max ima l  
dis t r ibut ion # mus t  have its min imum potent ia l  on F at  y (since p ,  is sub- 
harmonic) ,  and  this m i n i m u m  is s tr ict ly less t han  the  cons tant  value of the  
potent ia l  on S. Hence  b y  moving the  masses on S in a direction a w a y  f rom y, 
we can increase the  min imum potent ia l  on F,  and  so # is no t  maxmin .  

To deal with the  minmax  distr ibutions for any  2 > 0, we consider as F a 
solid sphere wi th  centre  c. A maximal  dis tr ibut ion F has all its mass  on the  
boundary ,  and  hence p~,(c)= r ~. But  this value is s t r ic t ly  less t han  the  mean  
value of the  potent ia l  on the  boundary .  Hence,  m a x  p~(x)>r  ~. On the  other  

hand,  for the dis t r ibut ion ~c we have m a x  P~c ( x ) = r  ~. Hence the  minmax  and  
x~p 

the  maximal  dis tr ibut ions are  different. 

Final ly  we give a certain p roper ty  of minmax  distr ibut ions and  of a related 
class of dis t r ibut ions:  

T h e o r e m  14. When ~ > 1 and F is convex, any minmax distribution consists 
of one point-mass. This follows f rom theorem 8. I n  fact,  the  potent ia l  in every  
point  of Rn will s t r ict ly decrease, if the  dis t r ibut ion is replaced b y  the  un i t  
mass in its centre of gravi ty .  

Le t  us denote  as "free minmax  dis t r ibut ion"  a dis t r ibut ion such t h a t  

m a x  p ,  (x) = min max  p ,  (x), 
x e F  I ~ O  x E F  

Rn 

t h a t  is, a dis t r ibut ion which solves the  minmax  problem where /~ is no t  re- 
str icted to  lie on F.  Such distr ibutions are the  "Endver te i lungen  fiir R (~)'', 
considered by  P6LYA and SZEG5 [3, p. 42]. There, the  following result  is s t a t ed  
in the  special case when F is a sphere or a closed sphere. 

T h e o r e m  15. I /  ~ > 1, any free minmax distribution consists o/one Toint-mass. 

P r o o f :  By  the  preceding result ,  it  is sufficient to prove t h a t  a n y  free min- 
ma x  dis t r ibut ion # is a m inmax  dis t r ibut ion,  for the  convex hull H (F) of F .  
As remarked  b y  P6LYA and SzEc5 [3, footnote  14], the  suppor t  of F is a subset  
of H (F). All we have  to prove then,  is t h a t  there  is a point  z E F such t h a t  

max  p~ (y) = p ,  (z). (7) 
Y e H ( F )  

But  this is t rue  for a ny  dis t r ibut ion #>_0,  when 2 >  1. I n  fact,  sinc e I x - y l  ~ 
is a convex funct ion of x ( theorem 8), so is p~ , ( x )= f ]x -y ]adF(y ) ,  and  hence 

R n 

there  is an  extreme point  z of H(F) ,  such t h a t  ( 7 ) i s  true.  This completes  
the  proof. 
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