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Compactness-like operator properties 
preserved by complex interpolation 

Karen Saxe 

S o m e  history 

The well-known Riesz Thorin interpolation theorem states tha t  if T is a bound- 
ed linear operator from L TM (#) to Lq0(~) with norm M0 and if T is a bounded 

linear operator from L pl (#) to L ql (y) with norm M1 (where the four exponents are 
contained in the closed interval [1, ~ ] ) ,  then T is a bounded linear operator from 
LP(#) to La( . )  with norm M < M I - ~  ~ provided that  0 < 0 < 1  and 

1 1 - 0  0 1 1 - 0  0 
- - - 4  - - - 4  

P P0 Pl ' q q0 ql " 

In the early 1960's Calder6n [6] extended the ideas of Thorin 's  1938 proof of this 
theorem, creating, for any pair of Banach spaces satisfying certain conditions, a 
continuous scale of intermediate spaces. Let us denote the endpoint spaces by X0 
and X1, and the so constructed intermediate spaces by Xt, for tE (0, 1). Calder6n 
showed, among other things, that  if T is a bounded linear operator on X0 and T 
is a bounded linear operator  on X1 then T is a bounded linear operator on Xt 
for all rE(0, 1). Boundedness is thus a two-sided interpolation property. What  fur- 
ther properties of bounded linear operators are two-sided interpolation properties? 
What  properties are one-sided interpolation properties? One-sided interpolation 
properties are properties such tha t  if T has the proper ty  on Xo, then T has the 
property on Xt for all tE [0, 1); generally, these properties do not extend to the en- 
tire closed interval [0, 1]. Of course, these questions are also interesting when asked 
about  the operators on the spaces constructed via other interpolation methods. One 
positive answer that  is of interest here is due to Cwikel. In 1992 [8] he proved that  
compactness is a one-sided interpolation property for the real method of Lions and 
Peetre [17]; this improved the 1969 result of Hayakawa [13] tha t  compactness is a 
two-sided interpolation property for the real method.  
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The starting point for this paper is: it is unknown as to whether or not com- 
pactness is a one-sided interpolation property for the complex method, or even 
whether or not it is a two-sided interpolation property for the complex method. 

This question has been studied by several authors, and positive partial results 
have been established. The first such result is due to Krasnosel'skfi [15] who proved 
that  compactness is a one-sided interpolation property if Xo=L p~ and X I = L  pl. 
More recently, MCCarthy [19] has proved that  compactness is a one-sided interpo- 
lation property with the strong restriction that both endpoint spaces are separable 
Hilbert spaces. The way he does this is by showing that  the intermediate spaces that 
arise in this case via the complex method on the one hand, and via the real method 
(with second parameter set equal to 2) on the other hand, are in fact isomorphic; 
he then applies Cwikel's real method result. MCCarthy's result also follows from 
the work found in [20]. For an up to date account of what weaker conditions on the 
endpoint spaces lead to compactness being preserved under complex interpolation, 
we refer the reader to [9], [10] and [18]. Finally, we point out that Cwikel (again 
in [8]) has proved the related, and very interesting, complex extrapolation result 
which says that  if T acts compactly on any single intermediate space then T must 
act compactly on every intermediate space. 

The positive results about Calderdn interpolation of compact operators men- 
tioned in the preceding paragraph all have been established for Banach spaces sat- 
isfying certain conditions. One reason that  a compact operator is tractable, and 
hence appealing, is because of the nature of its spectrum; it is either finite or it is 
a sequence tending to zero. (This result about spectra is part of F. Riesz's clas- 
sical theory of compact operators; for a modern account see, for example, p. 301 
of [16].) We let the Banach spaces be general, and instead consider operators that 
have the spectral properties of compact operators (but are not necessarily compact). 
Our approach is to view questions of operator interpolation in a Banach algebraic 

setting. 
The author thanks the referee for a thoughtful reading of this paper, and for 

very useflfl suggestions for its improvement. 

T h e  c o m p l e x  i n t e r p o l a t i o n  a l g e b r a  

In this section we introduce what we refer to as the interpolation algebra 
:Z-[X0, X1]. The basic idea of this algebra is simple and natural and has been de- 
fined in the LP-space situation by Barnes in [3]. For the remainder of this paper, 
X0 and X1 will denote Banach spaces. Each of these is continuously embedded in 
the complex Hausdorff topological vector space X=-Xo+X1, when X is endowed 
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with the usual norm 

Ilmll+=--inf{llxllo+llxltl : x = x o + x l ,  xo~Xo ,  Zl EX1}. 

In other words, [Xo, Xl] is an interpolation pair in the sense of Calderdn (see [6]). 
Since the embeddings into X are continuous, there are positive constants M0 and 

M1 such that  II  IIx_<M011. IIx0 and II-IIx_<MaII. 1121. We assume that XonX1 
is dense in Xj,  j = 0 ,  1. For an arbitrary Banach space Y, let B(Y) denote the 
Banach algebra of all bounded linear operators on Y. We say that  an operator is 
j-continuous if it is continuous in the norm on Xj. Notice that  XonX1 is a Banach 
space with respect to the norm 

I[xlrn =max{llxllxo, Ilxllxl}- 

Let I[X0,X1] denote the set of all linear operators T: XoAXI--~XoNX1 that  are 
both 0-continuous and 1-continuous. If T is an element of Z[Xo,X1] then T has 
unique extensions To eB(X0) and T1 EB(X1). Let Xt = [X0, X1]t be the interpolation 
space obtained by Calderdn's complex method. Then TC2-[X0, X1] induces TtE 
13(Xt) with 

l - t  IITtll~(xt) _< IITolIB(xo)IITIlI~(x1), t c (0, 1). 

Our first observation is one about the structure of the collection of interpolation 
operators; it says that  it forms a Banach algebra. This algebra first appeared in 
the context of our study of the function t~--~cr(Tt) (see [4] and [14]). For example, 
as we shall see, it leads to a nice bound for the intermediate operators' spectra in 
terms of the endpoint operators'  spectra. This problem, of finding bounds for the 
intermediate spectra in terms of the endpoint spectra, has been studied by several 
authors; see, for example, [21] and [23]. 

P r o p o s i t i o n  1. The set Z[X0, X1] is a Banach algebra in the norm 

IITllz[xo,xl] -- max{lIToll~(xo), IITllIB(xl)}. 

Proof. The proof is elementary. To show some work, we prove that  the norm 
T oc Cauchy sequence in I[X0,  X1]. Then, for is complete. Suppose that  { ~}n=l is a 

C>0, 

IITn-Tm IIz[xo,x1] = ma~{ll (Tn)o- (T.do liB(No>, II (Tn)l - (fm)l  II~(x1)} < 

for sufficiently large n and m. Thus there exist TE13(Xo) and SEI3(X1) such that  

II(Tn)o-TIIB(xo) <~ and II(T.)I-SlIBcx1) <~ 
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for sufficiently large n. Let xEXoNX1. Then Tx and Sx both make sense and, 

since X0 and X1 are each continuously embedded in X,  

IITx- S=IIx <<_ IIT~- T~IIx + IITn=- S~IIx 
< M0 IITx- T~x II ~o +M1 IITnx- Sxllx~ 
<_ Mo llxllxoC + Ml Ilxllxlc 

for sufficiently large n. Since e was arbitrary, Tx=Sx. We conclude that  T =  
S: XoNX1---~Xor-IX1 is both  0-continuous and 1-continuous, hence is in Z[X0,X1], 

and that  IlTn-Tllz[xo,xl] ~ 0  as n ~ o c .  [] 

For TcZ[Xo,XI] let ~(T)-c~z[Xo,Xl](T) and o(Tt)=~s(xd(Tt). Also, To,1 
will denote the operator considered as an element of •(X0NX1), and cr(T0,1)-- 
~B(x0nxl) (T0,1). 

For a compact  set/CC_C, we let K ^ denote its polynomially convex hull. Tha t  

is, 

K A = { z  ~ c :  Ip(z)l <_ sup Ip(~)l for all polynomials p} .  
~CK 

This set is exactly the complement of the (unique) unbounded component of C \ / s  
that  is, K ^ is K together with all of its 'holes'. Note tha t  if K and J are compact 
subsets of C with OKCJCIC, then K ^ = J  ̂ . For a discussion of basic properties of 

polynomially convex hulls one can read [11], start ing on p. 39. 

T h e o r e m  2. For TEI[Xo,X1], 

(1) U g(Tt)C_~r(T)=o(To)Ug(T1)U~r(ToA). 
tc[o,1] 

Further, 

(2) Oo-(To,J C_ o-(To)Uo-(T1) 

and hence 

(3) [tEU[o,1] (7(Tt ) ] ̂ : (7(T)^ = [c~( T~ ) u(r(T1)]̂ " 

Proof. Since Z[Xo, Xl] c a n  be viewed as a subalgebra of B(Xt), c~(Tt)C_cr(T) 
for all tE[0, 1]. Next we show that  a(T)=a(To)Ucr(T1)Ua(To,1). This fact and the 
following proof of it are generalizations of what is found in [3, Theorem 5.1]. Assume 
that  A~cr(T). We assume further that  I = 0 .  Then T has an inverse T -1EZ[Xo, XJ 
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with extensions (T-1)oE13(Xo) and (T-1)IEB(X1). For xEXoNX1, ToxEXoNX1 
and so 

(T-1)oTox = T-1Tx = x. 

So To is invertible; that  is, A~r(T0).  Likewise, A~a(T1). Also, T -1 is a set inverse 

for T0,1 and so we just need to see that  it is continuous with respect to the norm 

on XoNX1. Well, 

Nr-lxllxonx1-max{ll(T-1)ox]lxo, II(T-1)lXI[x1} 

_<max{ll(T-1)oll Ilxllxo, II(T-1)lll Ilxllx~} 
_<max{ll(T-1)oH, II(T-1)lll}max{llxlIxo, IIxllx~} 
-liT-11111xllxooxl. 

Thus T -1 is continuous with respect to the norm on XoAX1 and hence A~a(To,1). 

This shows one inclusion. 
To see the other inclusion, assume that  To, T1, and T0,1 have inverses. Then 

for each x cX0 NX1, 
(T0)-lx = (r~)-lx = (T0,1)-~x. 

So (T0,1) -1 is a map from XoAX1 into itself that  is 0-continuous and 1-continuous 
and is therefore the inverse of T in :Z-[X0, X~]. This completes the proof of (1). 

It  is a s tandard result that  0r is contained in the approximate point 
spectrum of T0,1 (see [16, Theorem 4.1] for example). Now assume that  /~ is an 
element of the approximate point spectrum of T0,1. Then there exists a sequence 

{Xn}~_I in XoNX1 such that  IlxnllXonXl =1 and [](A-To,1)xnllXonX~---+0 as n- -+~.  
We may assume that  Ilxnllxo=l for all n (since either [IXnllxo=l for an infinite 
number  of n's,  or Ilx~llx~ =1 for an infinite number of n's). Then 

II(A-To)xnllxo = II(A-To,1)x~llXo <_ II(A-ro,~)xnllxonx~ -~0, 

as n--*oe, showing that  ,k is an element of the approximate point spectrum of To 
and hence is an element of ~ (To) C_ ~ (To) U ~ (2/"1). This proves (9,). 

From (2) and (1) we see that  

o~(T) C~(To)U~(T~)C U ~(T~)C~(T) 
t~[0,1] 

and, from the note directly preceding the s ta tement  of the theorem, (3) follows. [] 

We end this section by pointing out that  in 

U a(Tt)c_o-(T)=a(To)Ua(T1)Uo(To,1), 
re[o,1] 
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the set if(T0,1) is necessary. There are several examples in the literature which show 

this; for example we direct the reader's attention to the now classic Cesaro example 

of Boyd given in [5]. 

Applications of the interpolation algebra to operator interpolation 

As stated before, it is unknown whether or not compactness is a two-sided 
interpolation property for the complex method. However, as our next result will 
show, it does follow from Theorem 2, that  if To and T1 are compact  operators then 

the spectrum of Tt for all values of t E [0, 1] has the same properties that  the spectrum 
of a compact operator is known to have; it is either finite or it is a sequence tending 
to zero. 

Theorem 3. Suppose that To and T1 are operators in B(Xo) and B(X1) re- 
spectively, and that each of these operators has spectrum that is either finite or is 
a sequence tending to zero. Then the spectrum of the operator Tt in B(Xt), for all 
values of tc[0,  1], is also of this type (is either finite or is a sequence tending to 
zero). 

Proof. Because a(To) and i ( T i )  are both  countable, so by (2) is 0~r(r0,1). 
Consequently, Oa(To,1)=i(To,1) and thus 

i(To, ) C 

The first part  of Theorem 2 in turn implies that  

U 
rE[0,1] 

The result is now immediate.  [] 

The same reasoning of proof of Theorem 3 clearly shows that quasi-nilpotency 

(T is quasi-nilpotent if l lTnll I/n--+O as n-+oo) is a two-sided interpolation property; 

Corollary 5 will improve on this. 

The next theorem was first proved for /P-spaces by Halberg [12] in 1956. We 

make minor modifications to Halberg's proof and present this theorem for any in- 

terpolation couple of Banaeh spaces. 

We recall the basics about  ' reiteration'  of interpolation. If O<_x<t<y<_l let 
a E [0, 1] be such that  t =  ( 1 - a ) z + a y .  The reiteration theorem states tha t  

= 
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with equali ty of norms. This theorem was proved by Calder6n [6] in 1964 with an 
assumption on the spaces; he required tha t  XoAX1 be dense in XxMX u. In 1978 
Cwikel [7] showed tha t  this hypothesis  was unnecessary. By  equali ty of norms, we 

have 

(4) IIT~IIB<x,> ~ IITxlI~<x~>IITyllax~>, r EZ[X0,X1], 

whenever  t, x, y and c~ are related as above. Then,  for each n, we have tha t  

(5) II(Tn)tll<ll(T~)~lll-~ll(T~)yll% T EZ[Xo,X1], 

and hence that 

(6) 1--a T a rax~)(Td_ (rB(x~)(Tx)) ( t a x i ) ( ~ ) )  �9 

In this paper,  rA(a) denotes the spectral  radius of an element a in a Banach  

algebra A. 

T h e o r e m  4. For TEZ[Xo,X1] the function tHru(xd(Tt) is continuous on 
the open interval (0, 1). 

Proof. Case 1. Suppose tha t  ru(xx)(Tx)=O for some xE[0,1] .  Let  tE (0 ,1 ) ,  
t r  be arbitrary.  We may assume tha t  x<t. Let y be such tha t  0 < t < y _ < l .  Let  
ctE(0, 1) be such tha t  t=(1-c~)x+c~y. By inequali ty (6) 

rB(xt  ) ( I t )  ~ (rB(x~) (Tx) ) l -c~(rB(xy) (Ty) )  c~ = O. 

We conclude tha t  if ru(x~)(T~)=O for some xE[0,  1] then  ru(xd(Tt) is cons tan t ly  
zero and hence continuous on (0, 1). 

Case 2. Now suppose tha t  rB(xd(Tt)r for all tE(0 ,  1). F ix  n and define 

1 
Cn(t)  --  -- log(ll (T~)~ l l~(x~) )  

n 

for rE(0,  1). From (5) we see tha t  Cn is convex. Since rB(xd(Tt)7~O for all rE(0,  1), 

r  - ~imoo r  = l o g ( r s ( x ~ ) ( T , ) )  

is finite valued for all tE (0, 1). It follows tha t  r is convex and hence continuous 
on (0, 1). This shows tha t  rs(xd(Tt)=er is continuous oi1 (0, 1). [] 
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Corollary 5. Quasi-nilpotentency is a one-sided interpolation property. In 
fact, a stronger result holds, that if Tx is quasi-nilpotent for some xE [0, 1] then Tt 
is quasi-nilpotent for all tE (0, 1). 

Proof. The corollary follows immediately from the proof of the first part of 
Theorem 4. [] 

This property of quasi-nilpotentency may be useful when considering interpo- 
lation of spectral operators. It also may be of interest for the connection between 
quasi-nilpotent operators and invariant subspace theorems on Banach lattices (as a 

good reference see [1]). 
We are interested in the still open question of continuity of the function t~-* 

~(Tt) from (0, 1) to the collection of all compact subsets of the plane endowed with 
the Hausdorff metric topology (see [14]). We thus include the following corollary to 

Theorem 4. 

Corollary 6. Assume that TE27[X0,X1] and that ~ - T  is invertible in the 
Banach algebra I[X0, X1] for some value of AEC. Then the function t ~ d (  l ,  a( Tt) ) 
is continuous on the open interval (0, 1). 

Proof. In any Banach algebra ,4 the spectral mapping theorem implies that 

1 
d(#, a A(a) ) -- rA[(#_a)_l]  

for any aE,4 and #~aA(a)  (see, for example, [2, Theorem 3.3.5]). By hypothesis 
and the fact that a ( T t ) C a ( T )  for all rE[0, 1], A~a(Tt)  for all tE(0, 1). Therefore, 
for tC(0, 1), 

1 
d(A,a(Tt))  = 

S i n c e  w e  h a v e  t h a t  

1 - 

where S - - ( A - T ) - I  in 2-[X0, X1]. Since tHrt3(x~)(St) is continuous (and never zero) 
on (0, 1), the result follows. [] 

We end with an observation related to a question in [23]. In that paper, in 
an effort to provide bounds for the intermediate operators' spectra in terms of the 
endpoint operators' spectra, Stafney defines the set 

H-= {A E C :  ()~-T0)  -1  C U(X0), (A-T]) -1 E ~(Xl) 

and (A-To)- l lxonX~ = (A-T1)-llxonX~}, 
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and shows tha t  each intermediate spectrum is contained in the complement of H.  
He further proves that  the complement of this set ( C \ H )  consists of a(To)Ua(T1)  

together with (perhaps) a subcollection of bounded components of the complement 
('holes') of a(T0)LJa(T]), and asks whether or not C \ H  is in fact always equal to 
a(T0)O~(T1). Our Theorem 2 gives information about C \ H .  First, it says that  
C \ H  is in fact a Banach algebra spectrum (of T in the Banach algebra 2:[X0, X1]); 
second, tha t  the missing holes are contained in the spectrum of the operator con- 
sidered as an element of B ( X o n X 1 ) .  As Boyd's example shows (see the comment 
following Theorem 2), the answer to Stafney's question is hence negative. 

R e f e r e n c e s  

1. ABRAMOVICH, Y. A., ALIPRANTIS, C. D. and BURKINSHAW, O., Invariant subspace 
theorems for positive operators, J. Funct. Anal. 124 (1994), 95-111. 

2. AUPETIT, B., A Primer on Spectral Theory, Springer-Verlag, Berlin-Heidelberg, 1991. 
3. BARNES, B. A., Interpolation of spectrum of bounded operators on Lebesgue spaces, 

Rocky Mountain J. Math. 20 (1987), 359 378. 
4. BARNES, B. A., Continuity properties of the spectrum of operators on Lebesgue 

spaces, Proe. Amer. Math. Soc. 106 (1989), 415 421. 
5. BOYD, D. W., The spectrum of a Cesaro operator, Acta Sci. Math. (Szeged) 29 

(1968), 31-34. 
6. CALDERON, A. P., Intermediate spaces and interpolation, the complex method, Stu- 

dia Math. 24 (1964), 113 190. 
7. CWIKEL, M., Complex interpolation spaces, a discrete definition and reiteration, In- 

diana Univ. Math. Y. 27 (1978), 1005-1009. 
8. CWIKEL, M., Real and complex interpolation and extrapolation of compact operators, 

Duke Math. J. 65 (1992), 333 343. 
9. CWIKEL, M. and KALTON, N. J., Interpolation of compact operators by the methods 

of CalderSn and Gustavsso~Peetre, Proc. Edinburgh Math. Soc. 38 (1995), 
261-276. 

10. CWIKEL, M., KRUGLJAK, N. and MASTYLO, M., On complex interpolation of com- 
pact operators, Illinois J. Math. 40 (1996), 353 364. 

11. GUNNING, R. C. and RossI, H., Analytic Functions of Several Complex Variables, 
Prentice-Hall, Englewood Cliffs, N. J., 1965. 

12. HALBERG, C. J. A., The spectra of bounded linear operators on the sequence spaces, 
Proc. Amer. Math. Soc. 8 (1956), 728 732. 

13. HAYAKAWA, K., Interpolation by the real method preserves compactness of operators, 
J. Math. Soc. Japan 21 (1969), 189-199. 

14. HERRERO, D. A. and SAXE WEBB, K., Spectral continuity in complex interpolation, 
Math. Balkanica 3 (1989), 325-336. 

15. KRASNOSEL'SKII, ~/i. n. ,  On a theorem of M. Riesz, Dokl. Akad. Nauk SSSR 131 
(1960), 246-248 (Russian). English transl.: Soviet Math. Dokl. I (1960), 229 
231. 



362 Karen Saxe: Compactness-like operator properties preserved by complex interpolation 

16. LAY, D. and TAYLOR, A.,  Introduction to Functional Analysis, Wiley, New Y o r ~  
Chichester Brisbane, 1980. 

17. LIONS, J. L. and PEETRE, J., Sur une classe d'6spaces d ' interpolation, Inst. Hautes 
t~tudes Sei. Publ. Math. 19 (1964), 5 68. 

18. MASTYLO, ~/i., On interpolation of compact operators,  Preprint.  
19. MCCARTHY, J. E., Geometric interpolation between Hilbert  spaces, Ark. Mat. 30 

(1992), 321-330. 
20. PEETRE, J., Sur la transformation de Fourier des fonctions h valeurs vectorielles, 

Rend. Sern. Mat. Univ. Padova 42 (1969), 15-26. 
21. RANSFORD, W. J., The spectrum of an interpolated operator and analytic multivalued 

functions, Pacific J. Math. 121 (1986), 445 466. 
22. SNEIBERG, I. YA., Spectral properties of linear operators in interpolation families of 

Banach spaces~ Mat. Issled. 9 (1974), 214-229. 
23. STAFNEY, J. D., Set approximation by lemniscates and the spectrum of an operator 

on an interpolation space, Pacific J. Math. 60 (1975), 253-265. 

Received April 15, 1996 Karen Saxe 
Department of Mathematics and Computer Science 
Macalester College 
1600 Grand Ave. 
St. Paul, MN 55105 
U.S.A. 
emaih saxe~macalester .edu 


