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A bounded domain in C N which 
embeds holomorphically into C N+I 

Josip Globevnik 

1. I n t r o d u c t i o n  a n d  t he  r e su l t s  

We say that a map from a complex manifold M to C N is a holomorphic em- 

bedding if it is a holomorphic immersion which is one to one and proper, i.e. the 

preimage of every compact set is compact. If f :  M---+C N is a holomorphic embed- 
ding then f(M) is a closed submanifold of C N. 

By a result of Eliashberg and Gromov lEG] every p-dimensional Stein manifold 

can be holomorphically embedded into C q where q> �89 and this is sharp for 
even p. It is a natural question whether there are large classes of p-dimensional Stein 

manifolds which embed holomorphica]ly into C q where q< �89 For instance, 

does every pseudoconvex domain in C N embed holomorphically into c N + I ?  This 

does not seem to be an easy question. While there are trivial examples of such 
domains, e.g. C N, c N - I •  A where A is the open unit disc in C it seems already 

difficult to provide bounded domains in C N which embed holomorphically into 
C N+I. There are such domains. 

T h e o r e m  1.1. For every N EN there are arbitrarily small Cl-perturbations of 
the polydisc /kN which embed holomorphically into C N+I. 

This means that  for each j, I<j<N,  there is an arbitrarily small CLper - 
turbation Pj of the surface {zeCN:lzyl=l} such that the domain ~ bounded by 

I~l ,... , I~N embeds holomorphically into C N+I. 

We describe the idea of the proof. Denote by I' I the Euclidean norm on C N 
and by I1"11 the sup norm on C N. We write B={zeCN:lzl<l}.  

One of two essential ingredients of the proof of the embedding theorem for 

finitely connected domains [GS] is to use a sequence of holomorphic automorphisms 
of C 2 in the following way: For each n E N  let '~j (z, w)= (z, w+TjzNj), ~j (z, w)= 
(z+Sjw Mj , w) where Tj, Sj are large positive numbers and Mj, Nj are large positive 

integers. Write Oj=~jo~Sj and F n = O n o O n _ l  . . . . .  01, n E N  and look at the limit 
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F of the sequence Fn. One can show, for instance, that  if Tj, Sj, My, Nj are chosen 
in the right way then F(~, 0) converges for all ~ belonging to a domain f~ which 
is a slight per turbat ion of A and, moreover, @-+F(~, 0) embeds ~ holomorphically 
into C 2. 

In the first known way of embedding A holomorphically into C 2, [St], [KN] 
one takes a Fatou Bieberbach domain D (i.e. a proper subset of C 2 for which there 
is a biholomorphic map F mapping D onto C 2) which is a Rmlge domain. One 
intersects D with a complex line A which meets D and C 2 \ D .  A component P 
of AND is simply connected and thus biholomorphically equivalent to A, and F 

embeds P holomorphically into C 2. 

Write A = C  x {0}. In the construction above Fn converges uniformly on com- 
pacta  in f t x  {0}. I t  is natural  to ask whether the construction can be performed in 
such a way that  ~ • {0}=AAD where D is the domain of (uniform on compacta) 
convergence of F,~ or, more generally, in such a way that  F embeds D holomorphi- 
cally into C 2, that  is, so that  F maps D biholomorphically onto C 2. Berit StensOnes 
proved that  if one chooses S~, T~, M~ and N~ in the right way then D is a Fatou 
Bieberbach domain with boundary of class C ~ which F maps biholomorphically 

onto C 2 [S]. 

It  is also natural  to ask whether the method of embedding a domain close to 
A holomorphically into C 2 with the limit of a sequence of composition maps F~ 

as above can be generalized to several variables to get holomorphic embeddings of 
bounded domains in C N into C N+I. This is possible and the result is Theorem 1.1. 
In fact, it turns out that  to prove Theorem 1.1 is not much easier than  to prove the 
following, more general theorem. 

T h e o r e m  1.2. Let N>_2 and let R > 0  be arbitrarily large. There are domains 
G1,G2 ,... ,GN-1 with boundaries of class C 1 such that for each j ,  I<_j<_N-1, 
G jNRB is an arbitrarily small Cl-perturbation of { zECN: l z j l<I}NRB and such 

N - 1  that there is a map F mapping G = N j = I  Gj biholomorphically onto C N 

This means that  for each j, I<_j<_N-1, (bGj)n(RB) is an arbitrarily small 
e l -per tu rba t ion  of the surface {zECN:]z j I=I}nRB.  

Let F map G biholomorphically onto C N. Let H={zECN:ZN=O}.  Then 
the component of GNH that  contains the origin is a domain in C N-1 that  is a 
slight per turbat ion of the ( N - 1 ) - d i s c  A N-1 and which F embeds holomorphieally 
into C N. Thus Theorem 1.1 follows from Theorem 1.2. 

Let us describe briefly the maps F~ that  we will use to prove Theorem 1.2. 

Given h E N ,  let P n l  , . . .  , P n , N - - 1 ,  qn2 , . . .  , q n N  be positive numbers and let N n l  , . . .  , 
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N n , N - 1 , - ~ n 2 , . . .  , MnN be positive integers. Let 

pnj(~)=qnj( ~--~ M~j (2_<j_<N), r - - -  ( I < j _ < N - 1 )  
\ P n , j - 1  / 

and, for nEN,  

(I)n (Z) ---~ (Z1, Z2-F~Pn2(Z1),... , Zn-F~DnN(ZN--1)), 

~n(Z)---- (ZI-F~)nl(Z2),... ,ZN--1-F~n,N--I(ZN),ZN). 

Clearly (I)~ and ~ are holomorphic automorphisms of C N. Put  O~ = ~n ~ (I)n and let 
F~=(9~o(~_  1 . . . . .  O1 (nEN).  We shall show that  if the numbers pnj, q~j, N,~j, Mnj 
are chosen in the right way then the domain of (uniform on compacta) convergence 
of the sequence Fn is a domain G of the form described in Theorem 1.2, and the 
map F = l i m  F~ maps G biholomorphically onto C N. 

2. T w o  p e r t u r b a t i o n  l e m m a s  

Let D c R  '~ be a bounded open set and let K=bA x D. We denote by E 1 ( / ( )  the 
Banach space of all real continuous functions on K such that  the partial derivatives 
of the function (0, x)~-+f(e ~~ x) exist on R x D and extend continously to R x D 
with norm 

I l f l l= sup  I f (w)l+ sup f(ei~ + E  sup (w) .  
wEK OCR,xCD k--l WEbA• 

If r > 0  we write D(r)={zECX:lzkl<r (l<k<_N)} and, given j, I<_j<_N, we 
write P~(r)={zcCN:l~jl=l, Izkl<_r (l_<k_<N, keN)}. Suppose that  ~cgS(pj(r)) 
is a positive function. Then we call the domain 

{ZE C N :z j  = t s ,  0 ~ _ t < ~ ( z 1  ,... , Z j _ I , 8 ,  Zj_F1,... ,ZN) , sEbA, Iz~l < r  

( l < k < N ,  kCj)} 
the standard domain over Pj(r) given by ~ or the standard domain over Pj(r) 
bounded by F~; we also say that  qz is associated with this domain. Here 

r q D = { z E C  N : z j  = ~ ( Z l , . . .  , z j _ a , s ,  Zj+l , . . .  ,ZN)8 , s~bA, I kl _<r 
( l < k < N ,  k C j ) }  

is called the smooth graph over Pj(r) given by ~. If e > 0  then the e-neighbourhood 
of F~ is the set of all smooth graphs Fr over Pj(r) given by functions ~ECl(pj(r)) 
such that  I1r Let D~ and D~ be two standard domains over Pj(r) given 
by ~, ~ respectively. We shall write D~,<Dr if p ( w ) < ~ ( w )  for each wEPj(r). 

The following lemma is elementary. It is not stated in full generality but rather 
in a form suitable for our applications. 
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L e m m a  2.1. Let r > 0 .  Let �9 be a holomorphic automorphism of C N and 
let R > 0  be so large that ~(D(r))CCD(R).  Let l<k, j<_N. Let 0 < ~ < R ,  let S= 
{zeD(R): lzy l=a } and assume that q~-l(S)AD(r) is a graph over Pk(r). Given 
~>0 there is a 5>0 such that if T is a graph over Pj(R) in the 5-neighbourhood 
of S then ~- I (T)AD(r)  is a graph over Pk(r) belonging to the ~-neighbourhood of 
 -l(S)nD(r) 

Proof. The conditions imply that  for each ( z l , . . . ,  zk-1, s, zk+l , . . . ,  ZN) such 
that  Isl = 1 and Izll=r for at least one l•k, 1 <l ~ N ,  ~-1 (SAint D(r)), a closed sub- 
manifold of ~-1  (Int D(R)), is transverse to the ray {(zl , . . . ,  zk-1, ts, zk+l,... , ZN): 
t>0}.  By compactness it follows that  there is a slightly larger r'>r, (P(D(r'))CC 
D(R), such that  ~-I(S)ND(r ' )  is still a smooth graph over Pk(r'). Thus a suf- 
ficiently small Cl-perturbation of ~)-~(S) will intersect D(r) in a set of the form 
LND(r) where L is a small CLperturbat ion of (I) -~ (S)ND(r'). Provided that  this 
perturbation is small enough LnD(r)  is a graph over Pk(r) arbitrarily close to 
~-I(S)AD(r) .  The details are left to the reader. 

L e m m a  2.2. Let O<R<c~. Given ~>0 there is an (~o>0 such that for every 
m e N  and for every (~, 0<o~<~o, there is a function r . . . .  EC~(DAx(Rh))  such 
that 

and such that I1r 

Note that  the equality in the lemma implies that  {(z, w)EC2:]zm+awl<l,  
Iwl<R}={(t~,w):O<t<~,~,~(~,w), CcbA, ]wl<R }. It will be important that s0 
depends only on R and c and not on m. 

Proof. Fix m E N .  Assume that  aR<~- where 1>3~ -2. This implies that  for 
each w, Iwl<R, and each F c R  there is a mfique r=r(p,w)>O such that  z=re ~ 
satisfies I z m + a w l = l .  Indeed, ]rmei '~+awl2=l gives (rm)2+Arm+B=O where 
A=ei '~a~+e-im~t~w,  B = a e w w - 1 .  If Iw]< R then 

(2.1) [A]<2T, A 2 - 4 B > 4 ( 1 - 2 ~  -2 )>0  

so (Ae-4B)X/~-[A[>_2(1-2T~)~/~-2~->O. Since we must have 2 r ' ~ = - A •  ~-  
4B) x/2 it follows that  r=[( -A•  1/m is the unique r > 0  such that 

z=re ~ satisfies Iz'~+c~wl=l. Now, 

2mrm_ 1Or _ O A •  O_O~_A 2 OB~ 

Or OA• 2 0 B )  
2 m r m - l o w -  Ow \ o w -  ~ w )  
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and 

__OA = m(ia,veim~ o_iawe_im~) ' OB = O, OA = a e _ , , ~  ' OB = c~2~" 
O~ O~ Ow Ow 

Let Iwl<R. We have 

(2.2) OA <_ 2mr, OA <_ a, <_ at .  

Moreover, ]z'~+c~wl=l implies that 1 - r < r ' ~ < l + r  so 

(2.3) 1 - r  < r  "~-1 < l + r .  

Now, (2.1), (2.2) and (2.3) imply that 

(2.4) 

(2.5) 

~ <  l_~r r ( 1 + r ( 1 -  2r2)- 1/2), 

Or = Or <_ c~+2(1-2r2) 1/~ . 

Moreover, (2.3) implies that 1 - r < r < l + r .  This, together with (2.4) and (2.5) 
proves that if r=r then the CLnorm of r is arbitrarily small provided 
that r and a are small enough. This estimate is independent of m. This completes 
the proof. 

3. T h e  induct ion  l e m m a  

If O: cN--->C N is a holomorphic map then we denote by JO the Jacobian 
matrix of O. 

L e m m a  3.1. Let O < q + 3 r < p j < Q < R  (I_<j_<N) where r>O. Let c>O, 7>0. 
Define K={zECN:Iz j I<_pj- -r  (I_<j_<N)}. There are s j>Q ( I_< j<N-1)  and a 
holomorphic automorphism 0 = ( 0 1  ,... , ON) of C N such that 

(i) for each j=1 ,2 , . .  , N - 1  the set D ( R ) n { z e C N : l O j ( z ) l = s j }  is a s nooth 
graph over Pj(R)  which belongs to the ~/-neighbourhood of D ( R ) N { z E C N :  Izj[=pj}, 

(ii) ](~(z)-z]<c ( zEK) ,  
(iii) ]]@(z)II>q ( z~K) ,  
(iv) de t ( ( J0) (z ) )= l  (zECN),  

(v) K c { z e C N : l O j ( z ) l < s j  ( I_<j<N-1)} .  



318 Josip Globevnik 

Proof. Part 1. With no loss of generality assume that  c<~-. We show that  
there are q2,... ,qN>Q and M2,. . .  ,MNEN such that  if (I)=((I)l ,... , (I)N) is the 
holomorphic automorphism of C N given by 

(zJ---l~ Mj ( 2 < j  < N )  �9 l ( Z ) = ~ ,  ~ ( ~ ) = z j + q ~ \ p j _ ~ /  _ _  

then 
(a) for each j--2,..., N the set D(R)N{zECN:I~)j(z)I=qj} is a smooth graph 

over P~_I(R) which belongs to the �89 of D(R)n{zcCN:I~j_II = 

Pj-1}, 
(b) I ~ ( z ) - z l <  1~c (z~K) ,  
(c) if z ~ K then at least one of the inequalities I~j (z) l>_pj- 2~-, 1 <_j <_ N, holds, 
(d) KC{zeCN:I~j(z)I<qj (2_<j<_N)}. 

Part 2. Assume that  we have proved Part 1. Choose P>qj (2<_j<_N) and 
then R ' > 0  so large that  02(D(R))ccD(R'). Let r]>0 be very small. Choose q l > Q  
so large that  I~l(z)l<ql  (zEK) and then choose ~, 0<~<~- so small that 0~(K)c~2 
where 

I~={z:lzjl<_qj-~ (l<_j_< N)}. 

By Part 1 there are Sl, ... , SN-1 >P and N1, ... , NN-1EN such that if r  ..., 
~X) is the holomorphic automorphism of C x given by 

(I<j<N-1) 
\ qj+l ) 

then 
(a') for each j = l , . . .  , N - 1  the set D(RI)A{zcCN:IqJj(z)I=sj} is a graph 

over Pj+I(R') which belongs to the rl-neighbourhood of D ( R ' ) n { z ~ C N : l z j §  = 
qj+l}, 

(b') Iq~(z)-zl <1 i f z c K ,  ~c 

(c') if z ~ K  then at least one of the inequalities Iq, j(z)l>_qj-2~- (I_<j_<N) 
holds, 

(d') KC{zECN:I~j(z)I<sj (I_<N_<N-1)}. 
Put  O=~o(I). By Lemma 2.1 one can choose rl>0 so small that (i) will hold 

whenever �9 satisfies (a'). Let zEK. Since O2(K)CB2 it follows by (b) and (b') 
that  IO(z)-zl=lgJ(OP(zD)-O2(z)+qS(z)-zl< 1 1 5 e + s e = e  which proves (ii). Further, 

if z E K then �9 (z)E-K and by (d') (v) follows. Part (iv) is obviously satisfied. Finally, 
let z~K. By (c), II~(z)ll>q+~ -. If~(z)cK then (b')implies that  Iq~(O(z))-(I)(z)l < 
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c<~-  so II0(z)ll>q. If (I)(z)~_K then (c') implies that [t~(~2(z))[[>Q-2~>q since 
~<7- which proves (iii). 

Part 3. It remains to prove Part  1. For each j ,  1-<j-<N-1, one uses Lemma 2.2 
to choose qj > Q so large that  for any Mj �9 N 

D ( R ) N { z E C N :  z J + ( Z J - l ~  j = 1 }  
qj \Pj-1 ,/ ] 

is a graph over Pj-I(R) which belongs to the �89 of D(R)n{zeCN:  
]zj-1]=pj-1}. Now, choose M2 ,... , M N e N  so large that 

< (3.1) qj \. ~ / 

Define ~5 as in Part  1. Part  (a) is clearly satisfied. Since ~51(z)=z~ and ~ j ( z ) - z j =  
qj(z~_~/pj_~)M~ (b) follows by (3.1). Let z~K. Then Iz~l>Pj-~- for at least one 
j, I<_j-<N. If Izal>p~-T then we have I~l(Z)l=lz~[>pl-2r. Suppose that  IZll-< 
p~-T .  Then there is some j, 2<_j<_N, such that  Izj_tl<_pj_l-T and Izjl>pj-~-. 
It follows that  

I~j (z) l = Izj § (zj-1/Pj-1)M~I >>- Pj --~---qj ( (Pj-1 --T)/Pj-1) M~ > Pj --2T. 

This proves (c). Finally, let z � 9  Then, if 2<_j-<N we have 

I~j (z)l _< I~jl+ Iqj (zj_~/p~_~)M~ I -< pj --~-+q~ ((PN-1 --~-)/Pj-1) M~ 
<pj--T+T =pj < qj 

which proves (d). This completes the proof. 

4. P r o o f  o f  T h e o r e m  1.2 

Part 1. Suppose that  Q~ is an increasing sequence of positive numbers con- 
verging to +oc and that  s~,l ,... , SnN are sequences, s 0 j = l  (1 -< j -<N-1)  such that  

(A1) Q ~ < s n j < Q n + l - 1  ( n C N ,  1-<j<_N), 

and that  On is a sequence of holomorphic automorphisms of C N. Put  F0=Id,  
F n = 0 ~ ~  . . . . .  OI=(F~I ,  Fn2,.. . ,  FnN) ( n � 9  For each n E N  and each j ,  1< 
j-< N -  1, consider the unbounded domain 

c.~ = {z �9 c N :  IFnj(z)l < .~,~ } 
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whose boundary  is the real hypersurface 

= {z �9 o N :  IFnj(z)l = , n j } .  

Our goal is to choose the constants shy and the automorphisms O~ in such a way 
that ,  as n--+oo, for each j, I<_j<_N-1, the domains Gnj converge to a domain 
Gj and the surfaces P~j converge to a surface Pj of class C 1 such that  Fj=bGj; 

N--1 
moreover, we want to do this in such a way that  F = l i m F n  maps n n = l  Gj biholo- 
morphically onto C N. 

Part 2. Note that  in the definition of Gnj and P~j the constants SnN play no 
role. They come into play when we define, for each nCNU{0},  the compact sets 

K,~ = { z  �9 C ~  : Izjl < s~j (l_<j_< N)},  

= = {z �9 c N :  IF j(z)I < snj (1 _<j _< N)}.  

Our wish is to choose s~ i and 0~  in such a way that  f = l i m F n  m a p s  Un~176 
oo K - - (" IN-1  G" biholomorphically onto C N and that  [-J,~=l ~ - ,  ~j=l a' To this end we assume 

first that  for each n � 9  

(B1) Kn-1  c c K n ,  

(B2) l e n ( ~ ) - < < 2  -n  (WCl~ 'n_ l )  , 

(B3) IIO ( )lL>_On_, 
(B4) d e t ( ( J O ) ( z ) ) = l  ( z � 9  

G Define = U n = l  K~. We show that  (B1)-(B4) imply that  Fn converges uniformly 
on compacta  in G to a limit F which maps G biholomorphically onto C N. 

If zEK~ then Fn(z) E~2n so by (B2), ]On+l(Fn(z))-F,~(z)]<2-(n+l) which 
implies that  

(4.1) IFn+~(z)-Fn(z)l < 2  -('~+1) (z�9 

so by (B1), Fn converges uniformly on compacta  in G to a map F.  By (B4), 
d e t ( ( J F ) ( z ) ) = l  (z�9 so F is regular on G. To show that  F is one to one on 
G we use a classical argument also used by StensCnes in [S]: It is easy to see that  
given r > 0  and M < o o  there is a p > 0  such that  whenever ~: rB- -+~( rB)  is a bi- 
holomorphic map such that  ~ (0 )=0 ,  d e t ( ( J ~ ) ( 0 ) ) = l  and I ~ ( z ) ] < M  ( z � 9  we 
have p B C ~ ( r B )  [BM, p. 51]. Suppose tha t  there are u,w�9 u#w, such that  
F(u)=F(w). Let U, WcG be disjoint closed balls centered at u, w, respectively. 
The preceding discussion implies that  there is a t~>0 such that  for each n � 9  
F,~(u)+oBcF,~(U) and Fn(W)+pBcFn(W). Since Fn(u) and Fn(W) have the 
same limit it follows that  for n large enough F~(U)OFn(W) is nonempty which 
contradicts the fact that  F~ is one to one. This proves that  F is one to one on G. 
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Suppose that  ze / s  \ / (n .  Then F~(z) ~B2~ so by (B3), II On+l (Fn(z))II > Q~, 
that  is, [[Fn+l(Z)II >Qn. By (B1), z CKn+I n/(n+2N...  SO (B2)implies that  IlF(z)II >- 
[[Fn+l(z) l l - H F n + 2 ( z ) - f n + l ( z ) l l - . . . > Q n - 2 - ( n + 2 ) - 2 - ( n + 3 ) - . . . > Q n - 1 .  Since 
Qn~+Oo it follows that  F: G--*C N is a proper map. Thus F: G--*C N is an em- 
bedding and so F(G) is a closed submanifold of C N. It follows that  F(G)=C N, 
that  is, F maps G biholomorphieally onto C N. 

Part 3. To get the convergence of Gnj t o  Gj, of Fnj t o  F j ,  and to show that  
N--1 G = N j = I  Gj we first describe what we mean by convergence. 

We shall choose a sequence of compact sets DoCCD1Cc..., U ~ Dk=C N, k = l  
and we will, for each k, study the convergence of DkMGnj, DknF~j. To simplify 
the geometry, each Dk will be a polydisc, however, not in the original coordinate 
system on C g but in the coordinate system given by the automorphism Fk. Let us 
describe this. 

Fix nEN.  The map F~ defines new coordinates o n  C N that  we denote by 
z~, ... , ~ :  

z2(z)=F~j(z) ( l < j  < N ) .  

In this coordinate system, for p>0,  we define 

D~(p) = {(z[*,... ,z~v): Iz}*t _< g (1 < j  < N ) }  

and, for I<_j<_N, 

Pj~(Q) ={ (z~ , . . .  ,z~v):lz~l = 1, Iz~l_< p ( l < k < N ,  h e  j)}.  

If r is a positive function then, again, we call the set 

r~ = {(zr ,... , z~ ) :  z2 = ~ ( z ;  , . . . ,  ~_1 ,  s, z2+1 , . . . ,  z})s, ~ e bzx, Iz;I _<~ 

( l < k < N ,  k r  

the graph over P~(p) given by ~. It is clear what we mean by the 7-neighbourhood 
of such a graph. Further, we again call the domain 

{(Z~,... ,Z~v ) :Z~=t8, 0__~t<)9(Z~,... ,2;~_1,8, Z~+1,... ,Z~v), sEbA, Iz~t < p 
( l < k < N ,  k r  

the standard domain over P~(p) given by ~ or bounded by F~. 
Assume that  there is a sequence Rn, Ro=R, such that  for each n E N ,  
(C1) D~-I(R~_I)CCD~'(R~), nBcD~(R~), 
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(C2) for each j, I<_j<_N-1, and for each k, 0 < k < n ,  GnjnIntDk(Rk) is 
a standard domain over P~(Rk) bounded by rnjnDk(Rk),  a smooth graph over 

(C3) for each j, I<j<N-1, and for each k, 0 < k < n - 1 ,  Gn_l,jnIntDk(Rk)< 
G~y hin t  D k (Rk). 

Our next assumption tells, for each j, I<j<N-1, how far apart Fn-l,j and 
Fnj are as graphs over P~(Rk), 0 < k < n - 1 .  It implies, in particular, that  each of 
the sequences of associated functions converges in all-sense. 

Assume that  there is a decreasing sequence "Yn of positive numbers such that  
for each n E N  

(C4) for each j, I<j<N 1, 
(C4.1) FnjnD~-I(R~_I) is contained in the (~n_l/2)-neighbourhood of 

Fn_l,jNDn-l(Rn-1), 
(C4.2) r~r is contained in the (~_2/22)-neighbourhood of 

Fn--l,j ND n-2 (Rn-2), 

(C4. (n-l)) rn j  n D  1 (R1) is in the (~/1/2~-l)-neighbourhood of F~-I, j  NO 1 (R1), 
(C4.n) Fnj nD~ is in the (~/0/2~)-neighbourhood of F~-I, j  ND~ 

Finally, we assume that  for each nENU{0} the constant S~N is SO large that Kn 
("IN--1 G " covers the part of I ij=l ~ contained in D~(Rn): 

(C5) for each nENU{0} 

N 1 

(IntKn)nIntDn(Rn)=(jnl Gnj)NIntD~(Rn) �9 

Part 4. Parts (C3) and (C4) imply that  for each kENU{0} and each j ,  l_<j_< 
N - l ,  

Ekj = LJ [G~j h in t  D k (Rk)] 
n = k  

is a standard domain over Pf(Rk) bounded by Sky, a graph over Pf(Rk) which is 
the limit of the sequence FnjnDk(Rk),  n>_k, as n ~ o c .  Suppose that  l<_k. Note 
that  Dl(R1)cDk(Rk). So for each j, I<_j<_N-1, we have 

Eli = U [GnjAInt Dl(Rl)] = [ J  [GnjNInt Dz(Rl)] 
n = l  n = k  

o o  

= U [anj n~nt D ~ (Rt) h in t  D k (Rk)] = Ekj n ln t  D z (Rz). 
n = k  
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E In particular, EljCEkj (l<k). For each j, I<j<N-1, define Gj=Uz=0 zj. Then 

Gj NInt Dk(R~)= 0 Gzj NInt Dk(RI~)= 0 Ekj = Ekj. 
l=k  l=k  

Further, for each k e N  (C5) implies that  

- -  n = k  " j = l  

N - 1  oc 

= N U anj  nt 
j = l  n = k  

N - 1  N - 1  

= A Ekj= ~ ajnIntOk(Rk). 
j=l j=l 

By (C1) U~=oIntDk(Rk)=cN so it follows by (B1) t h a t  U n C C = l [ ( n : N ~ - l l a j .  

Since Uk~=oIntDk(Rk)=C N it follows also that  for each j, I<_j<_N-1, bGj= 
Uk~=0[(Int Dk(Rk))rnbGj]. Since Int Dk(Rk) is open it follows that  (Int Dk(Rk))N 
bGj consists of those boundary points of (IntDk(Rk))AGj=Ekj which are con- 
tained in Int Dk(Rk), that  is, (Int Dk(Rk))NbGj=(Int Dk(Rk))NSkj. This shows 
that  for each j, I<_j<N-1, bGj is of class g 1 and such that  for each kcNU{0} ,  
bGjNDk(Rk) is a smooth graph over Pf(Rk). Moreover, by (C4), bGjND~ is 

in the 3`0-neighbourhood of {z~CN:lzjl=l}nD~ Provided that  3'o is small 
enough this completes the proof of Theorem 1.2. 

5. P r o o f  o f  t h e  i n d u c t i o n  s t ep  a n d  t h e  
c o m p l e t i o n  o f  t h e  p r o o f  o f  T h e o r e m  1.2 

To complete the proof of Theorem 1.2 we shall show that  there are 
- an increasing sequence Qn converging to +ec,  

sequences 8 n j  , 

a sequence Rn, 
- a decreasing sequence 3`n, 

such that  (A1), (B1) (84) and (C1)-(C5) are satisfied. We shall do this by in- 
duction, using Lemma 3.1. We first make a simple remark. Suppose that  f is a 
holomorphic function on C N whose gradient is everywhere different from zero. As- 
sume that F={zeCN:lf(z)l=a}AD(R) is a graph over Pj(R) for some j, I<_j<_N. 
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Then {zE CN: If(z)[ <c~} hint  D(R) is the standard domain over rj  (R) bounded 
by F. This is a simple consequence of the maximum principle. 

To begin the induction let s01 . . . . .  sO,N-X = 1. Let R0 = R  and choose soN > 1 so 
large that  (C5) holds for n=0.  Let Q0=�89 and choose 7o>0 small. Choose Q1 with 
Q l - l > s 0 1  ,... ,soN. Set ~=~70. Lemma 3.1 gives sll ,... ,Sl,N-I>Q1 and (~1, a 
holomorphic automorphism of C N which satisfies (B2), (B3), (B4) for n = l ,  such 
that if FI=O1 then for each j, I<_j<_N-1, the set F l jnD~ is a smooth graph 
over pO (R0) which is in the �89 ~-neighbourhood of {z E cN:  I zjl=Soj +~} nD ~ (R0). 
This implies that  (C2), (C3) and (C4) are satisfied for n = l .  Choose n l > 0  so that  
(C1) holds for n = l  and then SIN>0 so large that  (C5) and (B1) hold for n--1. 
Finally, choose Q2 with Q 2 - 1 > 8 1 1 , 8 1 2 , . . .  , 81N SO that  (A1) holds for n = l .  

Let mEN.  Suppose that we have already constructed Q1,... , Q,~+I and snj, 
0< n< r n ,  I<_j<N such that  (A1) holds for l < n < r n ,  automorphisms O1,... ,Ore 
of C N such that  (B1)-(B4) hold for l < n < m ,  positive numbers Ro=R, R1, . . . ,  R~  
such that (C1) holds for l < n < m ,  and 70,... ,7,~-1, ~0>71>.. .>%,~-1>0, such 
that  (C2) (C5) hold for n=rn. 

Choose %,, 0 < 7,~ < 7~-- 1, and then choose u > 0 so small that for each j ,  1 _< j _< 
N -  1, {z E CN: IF~,~j (Z)I=Sr~ j +U} ND ~ (Rk) is in the �89 (7k/2 n-k+l)-neighbourhood 
of r.~jnDk(Rk) (0<_k<_m). This is possible by Lemma 2.1. Now, Lemma 3.1 
together with Lemma 2.1 produces s,~+1,1 ,... , S m + l , N - 1  >Qrn+l and a holomorphic 
automorphism O,~+1 such that (B2), (B3) and (B4) hold for n = m + l  and such 
that, if F,~+1=(9,~+1 oF~n, (C2) holds for n = m + l ,  and for each k, 0<k<rn ,  and j ,  
I<_j<_N-1, r,~+~,jnDk(Rk) is in the �89 of {zECN: 
IF,~j(zD[=s~,~j+L,}nDk(Rk) and so close to {zECN:]frnj(Z)l=smj+~'}fflDk(_Rk) 
that (C3) is satisfied for n = m + l  (this choice implies also that (C4) is satisfied 

K ~ N - 1  for n = m + l )  and that  ,~cI ]j= 1 cim+l,j. 
Choose Rn+l >0 so large that (C1) holds for n = m + l  and then choose s,~+l,N 

so large that  (C5) and (B1) hold for n=rn+ 1. Finally, choose Qr~+2 with Q,~+2 - 1 > 
s,~+l,1 ,... , s~,~+l,N so that  (A1) holds for n = r n + l .  This completes the proof of the 
induction step. Theorem 1.2 is proved. 

6. R e m a r k s  

In the induction process we were able to choose the decreasing sequence 7~ 
arbitrarily. With a little extra care one can choose 7~ decreasing to zero fast enough 
to achieve that  the surfaces F1,.. .  ,FN-1 meet transversely in the sense that  if 
WEFjl N.,. Fjl then the (nonzero) perpendicular vectors to Fjl ,... , Fjz at w are 
linearly independent. In particular, in this case Fj and Fk intersect transversely for 
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every j ,  k, l<_j, k<N,  j~=k. 
Once we know that F maps G onto C N then G must be the domain of (uniform 

on compacta) convergence of F~. If there were an open set W, G c W ,  such that 

F~ would converge uniformly on compacta in W then by the argument used in 

Section 4, Part 2, F would be one to one on W which, if W:/:G, would contradict 

the fact that  F ( G ) = C  N. 
The author has no doubt that  one could prove C~-versions of Theorems 1.1 

and 1.2. This would complicate things considerably and we shall not at tempt to do 

this. 
It does not seem that using the same method one could prove that A N embeds 

holomorphically into C N+l. 
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