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A bounded domain in CV which
embeds holomorphically into CV+1

Josip Globevnik

1. Introduction and the results

We say that a map from a complex manifold M to C¥ is a holomorphic em-
bedding if it is a holomorphic immersion which is one to one and proper, i.e. the
preimage of every compact set is compact. If f: M —C¥ is a holomorphic embed-
ding then f(M) is a closed submanifold of C¥.

By a result of Eliashberg and Gromov [EG] every p-dimensional Stein manifold
can be holomorphically embedded into C? where ¢> %(3p—l— 1), and this is sharp for
even p. It is a natural question whether there are large classes of p-dimensional Stein
manifolds which embed holomorphically into C? where g< %(3p+ 1). For instance,
does every pseudoconvex domain in CV embed holomorphically into C¥*+? This
does not seem to be an easy question. While there are trivial examples of such
domains, e.g. CV, CV~1x A where A is the open unit disc in C it seems already
difficult to provide bounded domains in C¥ which embed holomorphically into
CN+1, There are such domains.

Theorem 1.1. For every NeN there are arbitrarily small C'-perturbations of
the polydisc AN which embed holomorphically into CN*tL,

This means that for each j, 1<j<N, there is an arbitrarily small C!-per-
turbation T'; of the surface {z€C¥:|z;|=1} such that the domain Q bounded by
I'y,..., 'y embeds holomorphically into CN*1.

We describe the idea of the proof. Denote by || the Euclidean norm on CV¥
and by ||| the sup norm on CV. We write B={2eC":|z|<1}.

One of two essential ingredients of the proof of the embedding theorem for
finitely connected domains [GS] is to use a sequence of holomorphic automorphisms
of C? in the following way: For each n€N let ®;(z, w)=(z,w+T;2"7), ¥;(2,w)=
(z+S;wMi w) where Tj, S; are large positive numbers and M;, N; are large positive
integers. Write ©,;=W¥;®; and F;,=0,°0,_1°...001, n€N and look at the limit
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F of the sequence F,,. One can show, for instance, that if T}, S;, M;, N; are chosen
in the right way then F({,0) converges for all { belonging to a domain € which
is a slight perturbation of A and, moreover, (+— F((,0) embeds 2 holomorphically
into C2.

In the first known way of embedding A holomorphically into C2, [St], [KN]
one takes a Fatou-Bieberbach domain D (i.e. a proper subset of C? for which there
is a biholomorphic map F mapping D onto C?) which is a Runge domain. One
intersects D with a complex line A which meets D and C?\D. A component P
of AND is simply connected and thus biholomorphically equivalent to A, and F
embeds P holomorphically into C2.

Write A=Cx{0}. In the construction above F, converges uniformly on com-
pacta in x {0}. Tt is natural to ask whether the construction can be performed in
such a way that Qx{0}=AND where D is the domain of (uniform on compacta)
convergence of F,, or, more generally, in such a way that F' embeds D holomorphi-
cally into C?, that is, so that F' maps D biholomorphically onto C?. Berit Stensgnes
proved that if one chooses S,,, T,,, M, and N,, in the right way then D is a Fatou-
Bieberbach domain with boundary of class C°° which ¥ maps biholomorphically
onto C2 [S].

It is also natural to ask whether the method of embedding a domain close to
A holomorphically into C? with the limit of a sequence of composition maps F,
as above can be generalized to several variables to get holomorphic embeddings of
bounded domains in C¥ into CN*!. This is possible and the result is Theorem 1.1.
In fact, it turns out that to prove Theorem 1.1 is not much easier than to prove the
following, more general theorem.

Theorem 1.2. Let N>2 and let R>0 be arbitrarily large. There are domains
G1,Gs,... ,Gn_1 with boundaries of class C' such that for each j, 1<j<N-1,
G;NRB is an arbitrarily small C'-perturbation of {z€CN:|z;|<1}NRB and such
that there is @ map F mapping G:ﬂj\]:_ll G; biholomorphically onto cN

This means that for each j, 1<j<N-—1, (bG;)N(RB) is an arbitrarily small
Cl-perturbation of the surface {z€C¥:|z;|=1}NRB.

Let F map G biholomorphically onto CV. Let H={z€C":zy=0}. Then
the component of GNH that contains the origin is a domain in C¥~! that is a
slight perturbation of the (N —1)-disc AV~! and which F embeds holomorphically
into CV. Thus Theorem 1.1 follows from Theorem 1.2.

Let us describe briefly the maps F,, that we will use to prove Theorem 1.2.
Given neN, let pp1,... ,PnN—1, Gn2, ... , gnN be positive numbers and let Ny, ... ,
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Np,N-1, M2, ..., Mpn be positive integers. Let

Pni(€) =any (L

Pnj—1
and, for neN,

>M”j (2<j<N), wnj(C)=pnj< )NM (1<j<N-1)

n,j+1

@, (2) = (21, 22+ Pn2(21) 5 oo 2n+@nn(2v-1)),

U (2) = (21+¥n1(22) 5 o, 2N 1+ Un N—1(2n), 2).
Clearly ®,, and ¥,, are holomorphic automorphisms of CV. Put ©,,=%,,®,, and let
Fr,=0,00,_10...001 (n€N). We shall show that if the numbers p,,;, gn;, Npj, My,
are chosen in the right way then the domain of (uniform on compacta) convergence
of the sequence F), is a domain G of the form described in Theorem 1.2, and the
map F=lim F,, maps G biholomorphically onto C*.

2. Two perturbation lemmas

Let DCR™ be a bounded open set and let K=bA x D. We denote by C1(K) the
Banach space of all real continuous functions on K such that the partial derivatives
of the function (6, z)— f(e®, ) exist on Rx D and extend continously to RxD
with norm
=Y )|+ su =
5‘0 Zjl webAXD 5mk )l

If r>0 we write D(r)={2€C":|z;|<r (1<k<N)} and, given j, 1<j<N, we
write P;(r)={z€CN:|z;|=1, |z|<r (1<k<N, k#j)}. Suppose that peC!(P;(r))
is a positive function. Then we call the domain

I£l= sup |f(w)l+ sup
wek €R,z€D

{2€CN izj=ts, 0<t<@(21 0 ,25_1,8, 25415 ,2N), SEDA, |z| <7
(1<k<N, k#j)}

the standard domain over Pj(r) given by ¢ or the standard domain over P;(r)
bounded by I',; we also say that ¢ is associated with this domain. Here

={2€CY 1z =0(21, . ,2j_1,8,2j11, - ,2N)$, SEDA, |zx| <7
(1<k<N, k#5))

is called the smooth graph over P;(r) given by ¢. If ¢>0 then the e-neighbourhood
of I'y, is the set of all smooth graphs Iy, over P;(r) given by functions ¢ €C!(P;(r))
such that ||¢Y—¢l|/<e. Let D, and Dy be two standard domains over P;(r) given
by ¢, 1 respectively. We shall write D, <Dy, if o(w)<t(w) for each we P;(r).

The following lemma is elementary. It is not stated in full generality but rather
in a form suitable for our applications.
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Lemma 2.1. Let 7>0. Let ® be a holomorphic automorphism of CVN and
let R>0 be so large that ®(D(r))CCD(R). Let 1<k,j<N. Let 0<a<R, let S=
{2€D(R):|zj|=a} and assume that ®~1(S)ND(r) is a graph over Py(r). Given
e>0 there is a 6>0 such that if T is a graph over P;(R) in the 6-neighbourhood
of S then ®=Y(T)ND(r) is a graph over Py(r) belonging to the e-neighbourhood of
o~1(S)ND(r).

Proof. The conditions imply that for each (21,... , 21,8, Zk+1,... , 2n) Such
that [s|=1 and |z;|=r for at least one £k, 1<I<N, ®~1(SNInt D(r)), a closed sub-
manifold of ®~!(Int D(R)), is transverse to the ray {(21, ... , 2Zk—1,£8, Zk 41, - ,2N):

t>0}. By compactness it follows that there is a slightly larger v’ >r, ®(D(r'))CC
D(R), such that ®~1(S)ND(r’) is still a smooth graph over Py(r’). Thus a suf-
ficiently small C!-perturbation of ®1(S) will intersect D(r) in a set of the form
LND(r) where L is a small Cl-perturbation of ®1(S)ND(r'). Provided that this
perturbation is small enough LND(r) is a graph over Py(r) arbitrarily close to
®~1(S)ND(r). The details are left to the reader.

Lemma 2.2. Let 0<R<o0. Given €>0 there is an ag>0 such that for every
meN and for every o, 0<a<ag, there is a function ¢m, oECH{BAX(RA)) such
that

{(va) eC?: (Zm+0(w| =1, 1w| < R} = {(¢m,a(<7w)C7w) :CEDA, ;w‘ SR}
and such that ||¢m.q—1| <e.

Note that the equality in the lemma implies that {(z,w)€C?:[z™+aw|<]1,
|w|<R}={(t¢,w):0<t<pm o((,w), €bA, |w|<R}. It will be important that aq
depends only on R and ¢ and not on m.

Proof. Fix meN. Assume that «R<7 where 1>372. This implies that for
each w, |w|<R, and each €R there is a unique r=r(p,w)>0 such that z=re*?
satisfies |z™+aw|=1. Indeed, |r™e?™? +aw|?=1 gives (r™)?+Ar™+B=0 where
A=e"™?qii+e "™ qw, B=aww—1. If |[w|<R then

(2.1) |A| <21, A?—4B>4(1-27%)>0

so (A2—4B)'/2—|A|>2(1-272)"/2-27r>0. Since we must have 2r™=—A+(A%—
4B)'/? it follows that r=[(—A-+(A%2—4B)Y2)/2]'/™ is the unique r>0 such that
z=re'¥ satisfies |z +aw|=1. Now,
or 0A 0A _0B
omrm Tl = = 4 (A2—4B) V2 AL —2—
mr Op 8<p+( ) dp “Op )’
or 0A

0A _0B
m-1 97 _ 04 2_ 172 494,90
2mr o D0 +(A*—4B) (A 50 2 3w>
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and
%:m(iaweim“’—iaweqmw), %g:o, g—i:ae_im"’, %ZQQE.
Let |w|< R. We have
A 0A OB
. bl PG i< — < .
22) [3@ <2mr, \aw'—a’ ‘aw‘—“

Moreover, |2 +ow|=1 implies that 1—7<r™<1+7 so0
(2.3) -7 <r™ <147

Now, (2.1), (2.2) and (2.3) imply that

or T
ori . _T_ 6.2y—1/2
(2.4) 95| = 1_7_(1—i—7'(1 27%) ),
ar or 1 2ra+27w
. — =< .
(2:5) ow|  |ow|= 2(1—7) <a+2(1—272)1/2>

Moreover, (2.3) implies that 1—7<r<1+7. This, together with (2.4) and (2.5)
proves that if 7=¢., o then the Cl-norm of ¢,, ,—1 is arbitrarily small provided
that 7 and « are small enough. This estimate is independent of m. This completes
the proof.

3. The induction lemma

If ©:CYN —-CV is a holomorphic map then we denote by JO the Jacobian
matrix of ©.

Lemma 3.1. Let 0<g+37<p; <Q<R (1<j<N) where 7>0. Let £>0, v>0.
Define K={z€C¥:|z;|<p;—7 (1<j<N)}. There are 5;,>Q (1<j<N-1) and a
holomorphic automorphism ©=(01,... ,0x) of CN such that

(i) for each j=1,2,... ,N—1 the set D(R)N{2€C":|0;(z)|=s;} is a smooth
graph over P;(R) which belongs to the y-neighbourhood of D(R)N{z€C¥:|z;|=p;},

(i) |1©(z)—z|<e (2€K),

(iii) 1©(z)[2q (2¢K),

(iv) det((JO)(z))=1 (2eCV),

(v) Kc{zeCNsl0;(2)|<s; (1<j<N-1)}.



318 Josip Globevnik

Proof. Part 1. With no loss of generality assume that e<r. We show that
there are g¢a, ... ,qn>Q and Ms,... ,My€eN such that if &=(®q,...,®x) is the
holomorphic automorphism of CV given by

N\NMi
v =m 4@=zte(I2) @<iz)
Pj—1

then

(a) for each j=2,... , N the set D(R)N{z€C:|®;(z)|=g;} is a smooth graph
over P;_;(R) which belongs to the 2y-neighbourhood of D(R)N{zeCN:|z;_1|=
Pi-1}

(b) [0()—z|<de (:€K),

(¢) if 2¢ K then at least one of the inequalities |®;(z)|>p; —27, 1<j< N, holds,

(d) KC{zeCN:|®;(2)|<g; 2<j<N)}.

Part 2. Assume that we have proved Part 1. Choose P>g¢; (2<j<N) and
then R'>0 so large that ®(D(R))CCD(R'). Let 7>0 be very small. Choose ¢:>Q
so large that |®1(2)|<q; (2€ K) and then choose 7, 0<7 <7 so small that ®(K)CK
where

K={z:|z|<q;—7 (1<j<N)}.

By Part 1 there are s , ... ,sy_1>P and Ny, ... , Ny_1 €N such that if ¥=(¥,, ...,
¥ y) is the holomorphic automorphism of CV given by

) N;
Uy =ax, W) =zrs( 2] a<j<N-)

then

(a’) for each j=1,..,N—1 the set D(R)N{zeCY:|¥;(z)|=s;} is a graph
over Pj,1(R') which belongs to the n-neighbourhood of D(R)N{zeCN:|zj11|=
Qj+1}, "

(b)) |¥(2)—z|< 3¢ if z€K,

(') if z¢ K then at least one of the inequalities |W;(z)|>gq;—27 (1<j<N)
holds,

(@) Kc{zeCN:|¥;(z)|<s; (1<j<N-1)}.

Put ©=V¥-®. By Lemma 2.1 one can choose 17>0 so small that (i) will hold
whenever ¥ satisfies (a’). Let z€ K. Since ®(K )CK it follows by (b) and (1)
that |©(z)—z|=|¥(®(2))—®(2)+P(z) —z| < e+1e=e which proves (ii). Further,
if 2€ K then ®(z)€ K and by (d') (v) follows. Part (iv) is obviously satisfied. Finally,
let z¢ K. By (c), |®(2)||>g¢+T. If &(z) € K then (b') implies that |¥(®(2))—®(z)|<
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e<T 50 |0(2)]|>q. If ®(z)¢K then (¢) implies that || ¥(®(2))||>Q—27>q since
7 <7 which proves (iii).

Part 3. It remains to prove Part 1. For each j, 1<j<N —1, one uses Lemma 2.2
to choose g;>@Q so large that for any M;eN
M.
- 1}

()
q; Pj-1

is a graph over P;_1(R) which belongs to the 1~-neighbourhood of D(R)n{zeCN:
|zj—1]=pj_1}. Now, choose My, ... , My €N so large that

D(R)ﬂ{zECN:

o \Mi
(3.1) q; (M) <min{e/2N, 7}
Pj-1

Define & as in Part 1. Part (a) is clearly satisfied. Since ®;(z)=2; and ®;(2)—z,;=
qi(zj—1/pj—1)Mi (b) follows by (3.1). Let z¢ K. Then |z;|>p;—7 for at least one
J, 1<j<N. If |z1|>p; —7 then we have |®1(z)|=|z1]|>p1—27. Suppose that |z1]|<
p1—7. Then there is some j, 2<j<N, such that |z;_1|<p;_1—7 and |z;|>p; —7.
It follows that

|®;(2)| = |2+a;(2-1/Pj—1) ™| 2 pj —7—q; (pj—1—7)/pj—1)*" >p;—27.
This proves (c). Finally, let z€ K. Then, if 2<j <N we have
1@ (2)| < |25]+1a5(25-1/pj—1) ™| <pj—T+q5((pjm1—T) /Pj—1)""
<pi—TH+T=p; <gj

which proves (d). This completes the proof.

4. Proof of Theorem 1.2

Part 1. Suppose that (), is an increasing sequence of positive numbers con-
verging to +o0o and that $,1, ... , S,n are sequences, so; =1 (1<j<N—1) such that

(A1) Qn<$nj <Qui1—1 (neN, 1<j<N),

and that ©, is a sequence of holomorphic automorphisms of CV. Put Fy=Id,
Fp,=0,°0, 10..001=(Fp1, Fpa, ... ,Fn) (n€N). For each n€N and each j, 1<
j<N-—1, consider the unbounded domain

Grj={2€ CN :|Fo;(2)] < snj}
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whose boundary is the real hypersurface
Ty ={z2€CN :|Fpj(2)| = 8p5}-

Our goal is to choose the constants s,; and the automorphisms 6, in such a way
that, as n—oo, for each j, 1<j<N—1, the domains G,; converge to a domain
G; and the surfaces I'y; converge to a surface T'; of class C* such that I';=bG;;
moreover, we want to do this in such a way that F'=lim F,, maps ﬂi::ll G'; biholo-
morphically onto CV.

Part 2. Note that in the definition of G,; and I'y; the constants s, x play no
role. They come into play when we define, for each neNU{0}, the compact sets

Kn={2€C":|z|<sn; (1< <N},
K= F (Kp) ={2€ CV:|Fpj(2)| <spy (1<G< N}

Our wish is to choose s,; and O, in such a way that f=Ilim F,, maps Uzo:l K,
biholomorphically onto CV and that |5, Kn:ﬂj.v:—ll G;. To this end we assume
first that for each neN

(Bl) K,_1CCK,,

(B2) [0 (w)—u] <27 (weRn-1),

(B3) [|On(w)l 2Qn-1 (wWEKn_1),

(B4) det((JO)(z))=1 (zeC™).
Define G=J,, K,,. We show that (B1)-(B4) imply that F,, converges uniformly
on compacta in G to a limit F which maps G biholomorphically onto CV.

If €K, then F,(2)€K, so by (B2), |Oni1(Fn(2))=Fn(z)|<2= D which
implies that

(4.1) |Fg1(2)—Fn(2)| <2~ "D (z€K,)

so by (B1), F,, converges uniformly on compacta in G to a map F. By (B4),
det((JF)(2))=1 (2€G) so F is regular on G. To show that F' is one to one on
G we use a classical argument also used by Stensgnes in [S]: It is easy to see that
given r>0 and M <oo there is a p>0 such that whenever ®:rB—®(rB) is a bi-
holomorphic map such that ®(0)=0, det((J®)(0))=1 and |®(z)|<M (z€rB) we
have oBC®(rB) [BM, p. 51]. Suppose that there are u,weG, u#w, such that
F(u)=F(w). Let U, WCG be disjoint closed balls centered at u, w, respectively.
The preceding discussion implies that there is a ¢>0 such that for each neN,
Fo(u)+¢BCF,(U) and F,(w)+9BCF,(W). Since F,(uv) and F,(w) have the
same limit it follows that for n large enough F,(U)NF, (W) is nonempty which
contradicts the fact that F;, is one to one. This proves that F' is one to one on G.
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Suppose that 2€ K, 41\ K,. Then F,(2)¢ K, so by (B3), [|Ons1(Fa(z))|>Qn,
that is, || Frt1(2)||>@n. By (Bl), 2€ K, 11 NKp42N... so (B2) implies that || F(z)]|>
[ Fns1(2) | =1 Fs2(2) = Fuyr ()| = > Q=272 279 > Q. —1.  Since
Qn—+oo it follows that F: G—CYV is a proper map. Thus F: G—CV is an em-
bedding and so F(G) is a closed submanifold of CV. Tt follows that F(G)=C",
that is, F' maps G biholomorphically onto C*.

Part 3. To get the convergence of G; to Gy, of I'y; to I';, and to show that
G zﬂ?]:_ll G; we first describe what we mean by convergence.

We shall choose a sequence of compact sets DyCCD;CC..., Ugo:l Dp=CV,
and we will, for each k, study the convergence of DyNG,;, DixNI'y;. To simplify
the geometry, each Dy will be a polydisc, however, not in the original coordinate
system on CV but in the coordinate system given by the automorphism Fj,. Let us
describe this.

Fix n€N. The map F,, defines new coordinates on CV that we denote by
27, 2R

7 (7)=IFni(z) (1<j<N).

In this coordinate system, for ¢>0, we define
D™M(@)={(21's -, 28) 27 <0 (1< < N)}
and, for 1<j<N,
Pi@)={C1 1, 2R) 0271 =1, |2 <e (1<SE <N, k#5)}.

If peC 1(PJ?’(Q)) is a positive function then, again, we call the set

Po={(21 s s2N) 2] =027, o 271,827 1 5 1 2N)8, SEDA, 27| <p
(I<k<N, k#j)}

the graph over P7*(o) given by ¢. It is clear what we mean by the y-neighbourhood
of such a graph. Further, we again call the domain

LG 2h) 2] =ts, 0<t<@(2] o, 27 1,8,2001 5, 2), SEDA, |27 <o
(1<k<N, k#j)}

the standard domain over PJ'(g) given by ¢ or bounded by T',,.
Assume that there is a sequence R,,, Rg=R, such that for each neN,
(C1) D" YR,_1)CCD™(R,), nBCD"(R,),
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(C2) for each j, 1<j<N-1, and for each k, 0<k<n, Gn;NInt D*(Ry) is
a standard domain over Pf(Ry) bounded by T'y; ND*(Ry), a smooth graph over
PJIC (Rk)a

(C3) for each j, 1<j<N -1, and for each k, 0<k<n—1, Gp_1,;NInt D*(Ry) <
GnjNInt D*(Ry).

Our next assumption tells, for each j, 1<j<N—1, how far apart [',_;; and
T',,; are as graphs over Pf(Rk), 0<k<n-—1. It implies, in particular, that each of
the sequences of associated functions converges in C!-sense.

Assume that there is a decreasing sequence <, of positive numbers such that
for each neN

(C4) for each j, 1<j<N-—1,

(C4.1) T,,;ND"Y(R,_1) is contained in the (v,_1/2)-neighbourhood of
1_‘n—l,j nDn_l (Rn—l)v

(C4.2) T,;ND""2(R,_2) is contained in the (v,—2/2?)-neighbourhood of
Loo1,;ND"2(Ry—2),

(C4.(n-1)) T,,;ADY(Ry) is in the (v1/2"~1)-neighbourhood of I',_1 ;ND*(Ry),
(C4.n) T;NDO(Ry) is in the (yo/2")-neighbourhood of I'n—1 ;N D°(Ry).
Finally, we assume that for each neNU{0} the constant s,n is so large that K,
covers the part of ﬂj\]:_ll Gp; contained in D™(Ry,):

(C5) for each neNU{0}

(Int Kp,)NInt D™(R,,) = ( ﬁ an> NInt D™ (R,).

=1

Part 4. Parts (C3) and (C4) imply that for each ke NU{0} and each j, 1<5<
N—1,

Eij= | [Gn;NInt D*(Ry)]
n=~k
is a standard domain over PF(Ry) bounded by S;, a graph over PF(Ry) which is
the limit of the sequence I',;ND*(Ry), n>k, as n—oo. Suppose that [<k. Note
that D'(R;)C D*(Ry). So for each j, 1<j<N-—1, we have

Ey;= | J[Gn;NInt D'(Ry)] U GpiNInt DY(RY)]
n=l n=k

= |J [GnjNInt D' (R))NInt D*(Ry)] = Eg; Nlnt D'(Ry).
n=k
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In particular, Ej; CEy; (I<k). For each j, 1<j<N-—1, define G;=J;2, Ei;. Then

G;NInt D*(R UGl,mIm D*(Ry) = UEk] Ey;.
=k =k

Further, for each k€N (C5) implies that

(6 Int Kn) MInt D*(Re) = G (N(j Gy it D&(Rk))

n==k n=k

N-1
N UGmﬂIntD (Ry)

.
I
T

ﬂ ;NInt D*(Ry).

5%

J

By (C1) UpZoInt D*(Ry,)=CY so it follows by (B1) that (J32, K=" G;.
Since |Jp—o Int D*(R)=CV it follows also that for each j, 1<j<N-—1, bG =
Ureol(Int D*(Ry))NbG;). Since Int D*(Ry) is open it follows that (Int D’c (Ric))ﬂ
bG; consists of those boundary points of (Int D*(Ry))NG;=Ey; which are con-
tained in Int D*(Ry), that is, (Int D¥(Ry))NbG,;=(Int D¥(Ry))NSk;. This shows
that for each j, 1<j<N-—1, bG; is of class C! and such that for each k€ NU{0},
bG;ND*(Ry) is a smooth graph over P¥(Ry). Moreover, by (C4), bG;ND°(Ry) is
in the yp-neighbourhood of {z€C¥:|z;|=1}ND°(Ry). Provided that 7o is small
enough this completes the proof of Theorem 1.2.

5. Proof of the induction step and the
completion of the proof of Theorem 1.2

To complete the proof of Theorem 1.2 we shall show that there are

— an increasing sequence (), converging to +00,

— sequences Sp;,

— a sequence R,

— a decreasing sequence 7,
such that (Al), (B1)-(B4) and (C1)—(C5) are satisfied. We shall do this by in-
duction, using Lemma 3.1. We first make a simple remark. Suppose that f is a
holomorphic function on C whose gradient is everywhere different from zero. As-
sume that ['={2eC":|f(2)|=a}ND(R) is a graph over P;(R) for some j, I<j<N.
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Then {2€C¥:|f(z)|<a}nInt D(R) is the standard domain over Pj(R) bounded
by . This is a simple consequence of the maximum principle.

To begin the induction let 591 =...=s9, v—1=1. Let Ry=R and choose son5>1 so
large that (C5) holds for n=0. Let QO:% and choose >0 small. Choose ()1 with
Q1—1>801 yeer 3 SON- Set I/Zi’)/o. Lemma 3.1 gives s11, ... »Sl,N—1>Q1 and @1, a

holomorphic automorphism of CV¥ which satisfies (B2), (B3), (B4) for n=1, such
that if /4 =6, then for each j, 1<j<N—1, the set I';;ND°(Ry) is a smooth graph
over PY(Ro) which is in the Jv-neighbourhood of {z€CN:|z;|=s¢;+v}ND°(Ry).
This implies that (C2), (C3) and (C4) are satisfied for n=1. Choose R; >0 so that
(C1) holds for n=1 and then s;5>0 so large that (C5) and (B1) hold for n=1.
Finally, choose Q2 with Qs—1>811, 812, ... , s1v S0 that (A1) holds for n=1.

Let meN. Suppose that we have already constructed Q1 ,... , @m41 and sy;,
0<n<m, 1<j<N such that (Al) holds for 1<n<m, automorphisms O, ... ,0,,
of CV such that (B1)—(B4) hold for 1 <n<m, positive numbers Ry=R, R1,... , Rin
such that (C1) holds for 1<n<m, and Yo, ,Ym—1, Y0>V1>--->Ym—_1>0, such
that (C2)—(C5) hold for n=m.

Choose 7, 0<¥m <V¥m-1, and then choose v >0 so small that for each 7, 1<j <
N -1, {zeCN:|F;(2)|=8m;j+v}ND*(Ry) is in the (/2" *+1)-neighbourhood
of I';y;ND*(R) (0<k<m). This is possible by Lemma 2.1. Now, Lemma 3.1
together with Lemma 2.1 produces Sm41,1 ;- » Sm+1,N—1>@m+1 and a holomorphic
automorphism 6,11 such that (B2), (B3) and (B4) hold for n=m+1 and such
that, if F4+1=0Omi1°Fm, (C2) holds for n=m+1, and for each k, 0<k<m, and j,
1<j<N—1, Tpy1,;ND¥(Ry) is in the (/2" **!)-neighbourhood of {zeC¥:
|Ej (2)|=8mj+v}ND¥(Ry) and so close to {z€CN:|F,,;(2)|=sm;+v}ND*(Ry)
that (C3) is satisfied for n=m+1 (this choice implies also that (C4) is satisfied
for n=m-+1) and that K, C(\;" Grms1,j-

Choose R,,41>0 so large that (C1) holds for n=m+1 and then choose $p,4+1,n
so large that (C5) and (B1) hold for n=m+1. Finally, choose Q2 with Q.1 0—1>
Sm41,1 - > Sm+1,N 50 that (Al) holds for n=m+1. This completes the proof of the
induction step. Theorem 1.2 is proved.

6. Remarks

In the induction process we were able to choose the decreasing sequence 7,
arbitrarily. With a little extra care one can choose +,, decreasing to zero fast enough
to achieve that the surfaces I'y,... ,I'y_1 meet transversely in the sense that if
wel';,N...T';, then the (nonzero) perpendicular vectors to I';, ,... ,I';, at w are
linearly independent. In particular, in this case I'; and I'y, intersect transversely for
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every j, k, 1<, k<N, j#k.

Once we know that F' maps G onto C* then G must be the domain of (uniform
on compacta) convergence of F,. If there were an open set W, GCW, such that
F,, would converge uniformly on compacta in W then by the argument used in
Section 4, Part 2, F' would be one to one on W which, if WG, would contradict
the fact that F(G)=CN.

The author has no doubt that one could prove C*-versions of Theorems 1.1
and 1.2. This would complicate things considerably and we shall not attempt to do
this.

It does not seem that using the same method one could prove that AN embeds
holomorphically into CN+1,
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