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In the study of p-groups the chief difficulty lies in the fact that the number of such
groups is very large. It is therefore of interest to study certain classes of p-groups, and
the present paper is devoted to such a topic.

Let @ be a group and let z, y be elements of G. We define the commutator [z, y] and
the transform a¥ by the formulae:

[, yl =ty lzy, ¥ ==z[z,y]l =y zy.
For subsets U, V of G, [U, V] denotes the group generated by all commutators [u, v],
where u €U, v€V. We define the lower' central series

GZy,(Q) Zp3(@) = ... 2y (G) 2 9(F) =...

of @ inductively as follows:

72(@) =[G, Gl, (@) =[y1(G), G] (1=3,4,...).
If there exists an integer k such that 3, (G) =1, then G is said to be nilpotent, and if k is
the smallest such integer, k£ — 1 is called the class of G.

p is to denote a prime number and a p-group is a group of order a power of p. It is
well known that all p-groups are nilpotent, and we may therefore speak of the class of a
p-group. If m, n are integers and 3 < m < n, it is convenient to denote by CF (m,n,p) the
set of all groups ¢ of order p* and class m — 1 in which

(@) :n@)=p (=3,4,...m).
Similarly ECF (m, n, p) denotes the set of those groups G of CF (m, n, p) in which G/y,(G)
is elementary Abelian. These two classes of groups are to be investigated. Many of our
earlier results can also be stated for another class of groups which we denote by NCF (m),
and which consists of all nilpotent groups @ of class m — 1 in which each of the groups
y11(@)/7(G) (:=38,4,...,m) is an infinite cyclic group. The general considerations on
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which our investigation of these groups is founded are based on a paper of P. Hall [3]
together with a few remarks which are developed in § 1.

Perhaps the most interesting groups considered are the p-groups of maximal class,
that is, the p-groups of the greatest class which is compatible with their order. In § 2 we
begin by discussing the most elementary properties of these groups and their generaliza-
tions to the classes of groups considered. Two characteristic subgroups are then intro-
duced and these play a fiindamental part in the discussion which follows. Our aim is to
find what we call the degree of commutativity of our groups and, in particular, to find
whether or not this is greater than 0. The main result is Theorem 2.11 which asserts that
a considerable proportion of the groups in question have degree of commutativity greater
than 0. We conclude § 2 by a result (Theorem 2.16) on the maximal number of generators
of the derived group of a group of CF (m,n,p).

In §3 we consider the groups of ECF(m,n,p) and show that their study reduces
essentially to that of p-groups of maximal class. The problem of finding the degree of
commutativity is continued and results in this direction are Theorems 3.8, 3.10, 3.12, 3.13
and 3.14. The power-structure of these groups is also investigated. In §4 all groups of
order p® and class 5 and all 3-groups of maximal class are found.

Apart from their intrinsic interest p-groups of maximal class are also of interest on
account of certain applications. Thus it is sometimes the case that in characterizing all
p-groups with a given simple property, we find that these groups generally have a simple
structure but that exceptionally certain p-groups of maximal class also have the given
property. The best-known instance of this is the problem of finding all p-groups with just
1 subgroup of order p: such a group is either cyclic or is a generalized quaternion group
(which is a 2-group of maximal class). The consideration of such problems tends to take
us outside the scope of the present work and is accordingly not discussed here. The author
hopes, however, to return to this question in a later paper.

A paper on p-groups of maximal class has already appeared, namely by A. Wiman [12].
The discussion given in the present work is to some extent based on Wiman’s ideas, and
we wish to express our indebtedness to this author. Unfortunately the conclusions that
we have reached do not coincide with those of Wiman, and so we have made the present
work independent of [12]. A detailed comparison will not be made, but it may be said
that it is in IT and III of [12] that statements are made which seem to us to be in general
untrue.

The author also wishes to express his deep gratitude to Prof. P. Hall, of King’s College,
Cambridge, whose suggestions and encouragement were of the greatest value to him when

he was working on the material of this work.
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1. We begin by stating some of the known results which are of fundamental impor-
tance for our purpose. Amongst these the following theorem plays an important part in
the construction of nilpotent groups.

THEOREM 1.1. Let G be a group generated by a set X of elements. If Y is a set of ele-
ments which together with y, ., (G) generate y;(G), then y,.,(G) is generated by y,.,(G) together
with all commutators [x,y], where x,y run through X, Y respectively. This is true for i =1,
2, ..., provided that y,(G) is interpreted to mean G.

For the proof we refer the reader to P. Hall [3], Theorem 2.81.

The following result is due to L. Kaloujnine [7] and [8].

THEOREM 1.2. Let G be a group, and let
H=H,>H,>H,>..>H>..

be a series of normal subgroups of G. If L is any subgroup of G such that [L, H, ] < H|
(t=1,2,..), then
L), HY<Hyy; (1=0,1,..;7=2,3,..).

We shall need an application of this involving another characteristic subgroup. For
any group @, we define #,(G) to be that subgroup of G for which 7,(&)/y;(G) is the centre
of @/y,(G) (1 =2,3,...). Thus 7,(G) = G, and for i > 2 ,(G) = yi(G).

If in Theorem 1.2 we put L = @, H =,(@), and define the subgroups H, inductively
by the rules H,=H, and H,., =[H,, G] for k> 0, we find that [y,(G), H,] < H;,,. But
by the definition of 7, H; <y,(&); hence, H; < y;.;_, (&), for j = 1. Thus,

[ys(G), n(@)] = [p(@), Hol < Hy< 1,54 (G).
CoROLLARY 1. In any group G, [y{(@), m(M] <yiy1(G) (,5=2,3,...).
Using (@) <#,,(G) we obtain the well known result:

CorOLLARY 2. In any group G, (@), (D] <yiy(G) 5,7 =2,3,...).
We shall also need the upper central series,

1=0(@) <LH) <. L@ <L) <.,

of a group G, which is defined inductively by the rules: £,(G) =1, {,(G)/Li_, (@) is the
centre of G/f;_,(@) (¢=1,2,...). Then G is nilpotent of class m — 1 if and only if {,_,(G)
=G, Ln_o(@)# G, and in such a group y(Q) <L, (), but ,(G) £ {m_ (G). It follows
that for:=1,2, ...,m —1,

[G, i (D] < V£+1(G) <Lmaa (),
and 80 7,4, (G) < (i (G).
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In Theorem 1.2 we may put L=G, H;=(,_,(G) (=01, .., k) and H,=1 (I > k).
We find that for 0 <j +1<k,
[5(@)s Cxmt(G)] < Liyi(G),
or, putting : =k —1I:
CoroLLARY 3. In any group G, [y,(3), Li(G)] <&4(@) (2<j<q).
Further, for any group G we denote by

GzG@2@"2..2Q-V=q"> .,
the derived series of G, which is defined inductively by
@ = (6, 6] =y (@), G =[G4V, GU-1] (i=2,3,..);

also we denote by @ (G) the Frattini subgroup of G.
If z,, z,, ..., z, are elements of G we define the simple commutator [2,, %, ..., ¥,] by

induction on n; for n =2 it is already defined, and for n > 2 we put
[-’171, 372, (L] xn] = [[271, 212, ooy xn-—l]: xn]'

In the sequel we shall only be concerned with one of the subgroups %, (), namely
73(G), and we shall therefore put #(G) =17;(@). This subgroup possesses the following
property.

TrEOREM 1.3, Suppose that G is a nilpotent group and that H is a subgroup of G with
the property that H n ()= G. Then H is normal in G and y;(H) =y(Q), for i =2, 3, ... .

It is obvious that y,(H) <y,(G). Let m — 1 be the class of G: we prove that y,(H) =
(@) by induction on m —i. For i =m it is trivial, since y;(H), ¥,(¢) are then both
equal to the unit subgroup. For 7 <m it follows from the inductive hypothesis that
Vi+1 (H) =94, (G). Now by hypothesis, G is generated by the elements of %(G) and H;
hence by Theorem 1.1, (@) is generated by y;.,(G) and all commutators

Y=y Y3 -5 %1,

where each component y; of y is either an element of #(G) or of H. But by Theorem 1.2

Corollary 1, [7(G), Y] <542 (@) (=2, 3, ..., m —2), and so any commutator y, one of

whose components is an element of 7 (@), is an element of y;., (G). Hence y,(G) is generated

by 1:+1(G) =%:,1(H) and all commutators of the form of y, where y, € H. Since each of

these commutators belongs to y,;(H), it follows that y,(G) < y;(H), and therefore y,(G) =

yi(H), as required. In particular H = y,(H) = y,(Q), and so H is a normal subgroup of G.
In the manipulation of commutators the following formulae are largely used:

[zy, 2] =[x, 2V [y, 2), [z, y2] =[x, 2] [=, 9T, (1)
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where z, ¥, z are any elements of any group. We also note that
Lyl=[y,2F, [zy'=[y 2} (2)

By (1), it follows that if one of the components z or y is multiplied by an element of the
centre of the group in which they lie, then the value of [z, ¥] remains unaltered.

We shall also require results on the powers of a product of elements, of which the
simplest is the following.

THEOREM 1.4. If G is a group, x€G and y €y,(G), then for any integer n,
" yl=[z, y"1=[z,y]" (mod y,..(G)),
@yr=2"y"lz, 4] &) (mod y,..(@).

This is true for r=1,2, ..., if v, (G) is interpreted to mean G.
This is proved by a simple induction on =, using (1) and (2).

We shall require the following consequences of Theorem 1.4.

THEOREM 1.5. Let G be a p-group.

(i) If ny, ny, ..., n, are the invariants of the Abelian p-group G/y,(@), and n, >n, >
-+ 2n,, then the exponent of y,(Q)/y4(G) is at most p™.

(ii) If for some ¢ =2 y,(@) /i1, (Q) is of exponent p™, then the exponent of 1,1 (@) /pi+ 5 (G)
18 at most p™.

(iii) If @/y,(Q) is an Abelian group with two invariants A, u, where A = y, theny,(G)/ y5(@)
18 a cyclic group of order at most p".

To prove (i), suppose that G/y,(G) is the direct product of the cyclic groups generated
by the elements x,p,(G) (i =1, 2, ..., r), where p™ is the order of z; modulo y,(&). Then
@ is generated by z,, ,, ..., 2, together with the elements of y, (@), and it is easily deduced
from Theorem 1.1 that y,(G) is generated by y,(G@) and all the commutators [z;, 2]
(1<i<j<r). In such a commutator j>2 and so 7, <n,; hence x}’"’Eyz(G), and by
Theorem 1.4

[z & =[x, 2] "]=1 (mod s (@)).

95 (G)/75(G) is therefore of exponent at most p™.
The proof of (ii) is very similar: if @ is generated by y, ¥, ..., ¥s and ¥, (@) is generated

by 2z, 2, ...,z and y,,,(G), so that by hypothesis 2" €%+, (G), then by Theorem 1.1
y1+1(@) is generated by all commutators [y, z,] and ¥,.,(@), whilst by Theorem 1.4,

(g6 %" =y 2} 1=1 (mod y;45(G)).
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To prove (iii), we observe as in (i) that if , y and y,(G) generate @, then [z, y] and v;(G)
generate y, (@), so that y,(G)/y,(G) is cyclic. The bound on the order of this group follows
from (i).

We conclude the present paragraph by a remark on a formula of P. Hall for a power
of a product (see [3], § 3). If z, y are elements of a group, we define elements ¢, (x, y) of
this group inductively by the rules.

61 (.’17, y) = 3/, Gi(x’ y) = [ai—l (x: y)’ .’L‘] (l = 2’ 3, )

Also, if @ is a p-group, we denote by P,(@) (: =0, 1, ...) the subgroup of G generated by
all p*-th powers of elements of Q. In this notation we have the following result.

THEOREM 1.6. Let G be a p-group, and let x, y be elements of G. Denote by Y the group
generated by y and y,(G). Then

)  (F) Tt

(xyy=aPoioz ...0y ...0p, (mod P, (Y"N]Y, ypa (G)]Dz[yi (@), yp_i (D)),

where o, = oy(x, y). (For p =2 we interpret v,_, (G) to mean y,(G)).

For p =2 this is trivial, since
(zy)? = x%0,20,[0,, 01],

and so we need only consider the case when p is odd. The proof in this case is a slight
modification of the proof given by Hall for his formula. According to this proof, it is
necessary first of all to arrange the various distinct commutators of # and y in an order.
Let €1, Cugy «--» Cuq, e the commutators of z and y of weight w, other than o,. The order
that we take is

G35 O35 Ca1y + - C3g,5 +++» G Cuogy Cuozs =5 Cuogypy +++ +

If G is of class m — 1, all commutators of weight m are equal to 1, and we only consider
those o, ¢,; for which w <m.

The proof proceeds by stages, each stage being attained by a number of steps. At the
Oth stage, we have

(xy)’ =x0,20, ... 20y,

and the only point at which we wish to refine the procedure of Hall is in passing to the
1st stage. This is done by collecting all the elements x in the expression xo;x0; ... 20y over
on the left. To do this we may begin with the following steps:
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(x0,)" = %20, [0}, %]0y20, ... Ty
= z2g, [0,,%]x0, [0y, %]0y ... TOy
= z2g,z[0y,2] [0y, %, %] 0y [0y, 2] 0y ... TOy

= 230, [6,,7]? [0,,%,%] 0, [0y, 2] 0y ... 20,

Here we have collected the first three elements 2 and obtained
(z?/)p = x3010g263010201 .o X0,

Suppose that after collecting the first ¢ elements z, where 1 < ¢ < p, we have an expression

of the form
(xy)? =2'd\d, ... d; x6,20, ... 20y, (3)

in which n, (¢} of the d; are equal to g, for w=1,2,..., m — 1. Then
n {1y =1 n,(1)=0(w=2,3,...,m —1). (4)
If ¢ <p we can collect another x over on the left, and obtain from (3)
(xy)® ==2'"1d, [d,, 2]dy[dy, 2] ... di[dy, 2] 0y 20, ... ZG,.
Therefore e +1)=n,0)+1 (¢=12,...,p—1), (3)
n,(t+1)=n,08)+n,,0) (=12,..,p—1; w=2,3,...,m—1). (6)

By induction on 17, (4), (5) and (6) show that
7y () =(;) G=1,2,....,p; w=1,2,...,m—1).

Thus at the end of the first stage, that is, when all the p elements x have been collected
on the left, we have an equation of the form

(xy)? =2x%e 6, ... ¢, (7)

where ( g ) of the ¢, are equal to o,. In particular, just one of the ¢, is equal to o,

The next stage is to collect the elements o; which occur in (7), then the elements
gy, and go on. At each step in each stage a new commutator is introduced, which can be
written as a commutator in o;, oy, ..., 0,. All commutators of weight less than m are
collected after a finite number of stages, and this is the end of the process. The expo-

nent with which each of the commutators appears is calculated by Hall, and using his
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result, we find that

p ? » n
2) (3) e "3q (w) w1 s c Wy, (8)

() (
(xyY =20l 0r a3 i C3q . 0w Cyyl Caop -vCug o -

where, for 3 <w < p, n,, is divisible by p.

Now since each commutator ¢, which occurs with positive exponent in (8) can be
written as a commutator of weight greater than 1 in gy, 0y, ..., 0,, it follows that such a
€y lies in Y’ and so, for 3 <w < p,

i €P (Y').

For w > p, we can write ¢,; = [, b] say, where a and b are also commutatorsin gy, 6,, ... 0.
If a is of weight ¢ in = and y, then b is of weight at least p —¢ in 2 and y. Thus if 2 <i <
P—2, a€y(G), b€y, _,(G), and

ot €[71(G), ¥p-1(G)].

If ¢ =1, thenea is either = or y, and since it can be expressed as a commutator in ¢, gy,

..., Gp, it follows that @ =y = ¢, and so a €Y. Also b€y,_, (&), since p is odd, and

Cuy € [ Y! Yp1 (G)]

If i>p—1, then a€y,_ (), and b is a commutator in oy, gy, ..., 0y, and therefore lies

in Y. Thus we again obtain
Copj € [ Y’ Vo1 (G)]

Since P (Y'), | Y, y,1(@)] and all [y,(G), y,4(G)] (¢=2,3,..., p—2) are normal sub-
groups of G, the theorem follows from (8).

2. We begin by finding the maximal class of a p-group of given order. For this we
need the following remark.

LemMma 2.1, If G is a group and N is a normal subgroup of G for which G/N is cyclic,
then G =[G, N. |

It is obvious that [, N] < @', and so in order to prove the lengma we may assume
that [@, N] =1, that is, that N is contained in the centre of G. But then it follows that
G is Abelian, since G/N is cyclic (see [13], Kap. IV, p. 104), and so ¢’ =1 as required.

Now in a non-Abelian nilpotent group G, y,(@) =G’ and y;(G) cannot coincide, and
so by taking N =,(@) in Lemma 2.1, we see that G/y,(Q) cannot be cyclic. In particular,
in a non-Abelian p-group G, y,(G) is of index greater than p, and if G/y,(G) is of order
p?, then it is elcmentary Abelian. Also, if @ is a p-group of class m — 1 where m >3, then
each of the groups y;_, (@)/y;(G) is of order at least p (i =3, 4, ..., m), and so G is of order

at least p™. Thus a group of order p™ is of class at most m — 1.
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We shall refer to groups of order p™ and class m — 1 for some m > 3 as p-groups of
mazximal class. If @ is such a group,

(G : '}’2(0)) = pZ! (7’1—1 (G) : 71 (G)) = 1’ (i = 37 4, ey m)-

Thus ¢ has just p + 1 maximal subgroups, and these are all normal in G. The remaining

normal subgroups are determined in the simple result:

LemMma 2.2, If G is a p-group of maximal class and N is a normal subgroup of G of
index p" where r 2 2, then N =y, (G).
The group G/N is of order p’, and therefore of class at most » — 1; that is, y,(G/N)=1.
But
7(G/N)=p,(@)N/N (j=2,3,..),
and so y,(G) < N. But
Gy (@) =p"=(G: N),

and so y,(G) and N, being both of the same order, are equal.
As stated in the introduction we shall consider more general classes of groups. For

CF(m, n, p) we may generalize Lemma 2.2 as follows:

Lemma 2.3. If GECF (m, n, p) and N is a normal subgroup of G of order p' which is
contained in y,(@), then N =y, _(G).

Obviously, y,(@) is of order p™’. Thus if ¢ =m — 2, the result is obvious, and for
m —1>2 we may use induction on m —i. Since N <y,(G), there exists a normal sub-

group M of @ of order p**?, such that
N <M <y, (@),

(see [13], Kap. IV, p. 104), and by the inductive hypothesis, M =y,,_,_, (G). But M/N is
a normal subgroup of G/N of order p, and is therefore contained in the centre of G/N,
that is, [@, M] < N. Hence

N 2[G, yps-1(G)] = yui(G)-

But N and y,,_;(G) are both of order p‘, and are therefore equal.

Lemma 2.2 shows that in a p-group of maximal class the terms of the upper central
series are the same as those of the lower central series, but in the reverse order. We now
state the corresponding result for the groups of CF(m, =, p) and NCF (m).

THEOREM 24. If GECF (m, n, p) or GENCF (m), then

GG Ny (G) =yma(@) (1=0,1,...,m—2).
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In the case when G €CF (m, n, p), this is most easily proved as follows. By a remark
made in §1, {{(G) = v,_(G), but {;(G) # yu_i_4(G). Hence {;(G) Nyy(F) = y,_4(G), since
i <m~2. But if £(G)Ny,(G) were of greater order than y,,_;(@), it would follow from
Lemma 2.3 that (@) N y,(G) contains y,,_;_, (&), and this is not possible.

If @ENCF (m), we must adopt a different procedure, for Lemma 2.3 has no direct
analogue for these groups. In this case we proceed by induction on i: for ¢ = 0 it is trivial.
For ¢ >0, we observe first that {,(G) N y3(G) = ¥ (G), just as above. Now suppose that
the theorem is not true: then there exists an element a of {;(G) N y,(G), which does not
belong to y, ((G). If 1 <m —3, there exists an integer », such that a is an element of
v, (@), but not of y,., (@), where 2 <r <m —1— 1. Since y,(G)/y,+1(G) is cyclic, we may
choose an element = which together with y,,,(() generates y, (@), and since a does not lie
in v,,,(G), there exists a non-zero integer, «, such that a =%y, where y €y,,,(G). Now

let z be any element of . By Theorem 1.4, using (1),
[z, @] = [z, *yl =1z, y1 [z, 2*F =2, x]* (mod py.,(GF)).

But a €,(G), and so [z, a] € {;_,(G) N »,(G). By the inductive hypothesis {; ; (G) N 3. (GF) =
VYm_i11(G). Since m — ¢ +1 = r + 2, it follows that [z, @] € y, ,,(GF), and so

[z, 2" =1 (mod y,,:(G).

But by Theorem 1.1, y,,, (@) is generated by ¥, ,,(G) and all elements [2, z] as z runs through
@. Hence p,.,(G)/y,+5(@) is a group of exponent at most «. Since r +1<m —1, this
contradicts the definition of NCF (m), and so the theorem is proved for ¢ <m — 3. For
1 =m ~— 2, it is, of course, trivial.

For the groups under consideration, the case m = 3 is not without interest: for example,
O. Schreier [9] determined all types of groups in ECF (3, n, p). However the considerations
of the present work do not apply to this case, and we shall henceforth assume that m > 3.
In this case the basic step is the introduction of another characteristic subgroup which we
shall denote by y,(@) (ef. Wiman [12]). This is defined for a group @ of CF (m, n, p) or
NCF (m), where m > 3, by the property that y,(@)/y,(G) is the centraliser in G/y,(G) of
v5(G)/y4(Q); that is, p, (@) is the largest subgroup of G such that

Y1(@), yo(@)] <94 (@)

Thus it is clear that y, (@) is a characteristic proper subgroup of @ which contains y,(G).
In order to see how y, (G) is situated in @, we prove the following.

LEMMA 2.5. Let G be a nilpotent group of class m — 1, where m > 3, and suppose that
or £ =3,4,...,m, 1_1(G)/v:(Q) ts cyclic. For i =3,4,...,m — 1, let K, be the subgroup of
4 I4 Y
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G defined by the fact that K /y,1(G) is the centraliser in G/yy.1(G) of yi_(@)/yi:1(G). Then
G/K, is a cyclic group of the same order as y(G)/y,4,(G).

To prove this suppose that @ is an element which together with y,(G) generates
71.1(@), and that b is an element which together with ., (G) generates y,(G). If x is any
element of G, then [a, z] lies in y,(@), and so there exists an integer & such that

[a, 2] =b* (mod yy,, (&),
or a*=abt (mod y,,,(G)).

If n is the order of ¥,(@)/yi+, (G), and we map z into the residue class of integers modulo
n containing &, we obtain a homomorphism of @ into the additive group of residue classes
modulo . K, is the kernel of this homomorphism. The image is the whole group of residue
classes, for as  runs through G, by Theorem 1.1 the elements [a, ] and y,,,(G) generate
(@), and so the elements b* together with y;,,(G) generate y,(G). Hence G/K, is cyclic
of order n.

It follows from Lemma 2.5 that if G €CF (m, n, p) (m > 3), then y,(G) is of index p,
whilst if G ENCF (m) (m > 3), then G/y,(G) is an infinite cyclic group.

THEOREM 2.6. If GECK (m,n,p) or GENCF(m) (m > 3), then the derived group
y1(Q) of y1(G) is contained in v,(G).

To prove this we may argue modulo y,(G), and may therefore assume that m =4.
y1(@) is generated by all elements [u, v], as u, v run through (@), and so we have to
prove that [u, v] € y3(G). By the above remarks, there exists an element s of G which
together with y, (G) generates G. If [u, s] =z, [v, s] =y, then

[u, v}’ = [, v*] = [uz, vy].

But z, y are elements of 7, (¢), and it follows from the definition of y, (&) that they com-
mute with «, v. Since also y,(G) is Abelian, we find, using (1), that

[uz, vy] =[x, v].

Thus [, v] commutes with s. But again [, v], being an element of y, (@), commutes with
each element of y,(G), and so [u, v] lies in the centre of G. It follows from Theorem 2.4
that [u, v] € (@), a8 required.

Next we discuss the position of % (G) =#;(G), as defined in § 1.

TaeEorEM 2.7. If GECF (m, n, p) (m > 3), then 7(G) is a subgroup of y,(G) of index
p. If GENCF (m) (m > 3), then 5(G) is a subgroup of y,(G), and y,(@)/n(Q) is an infinite
cyclic group.
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In both cases we prove that y,(G@)/7(G) is cyclic as follows. If s is as defined in the
proof of Theorem 2.6, we deduce from Theorem 1.1 that y,(() is generated by y;(@) to-
gether with the elements [, s] and [, v], as u, v run through y,(G). By Theorem 2.6 the
elements [u, v] lie in y,(@), and may therefore be disregarded. Let a be an element which
together with y,4(G) generates y,(G). Then there exists a finite set of elements %, u,, ...,
4, of y, (@), such that

a= l-ITI [ub S]Ai (mOd V3(G)),

where A;, 4,, ..., 4, are suitable integers. Let
8 =ubub ... uk,

so that if [s,,s] = &,, then by (1) and Theorem 1.4, s,=a (mod y;(#)). Thus y,(F) is gen-
erated by y;(G) and s,.

For any element u of y, (G), we may therefore write [u, s]=s5; we then define # =us;
Thus y, (@) is generated by s, and the elements @. Now @€ y;(G), and so by Theorem 2.6

% commutes modulo y,(G) with each element of y,(G). But also @ commutes modulo

y3(@) with s, for

[%, 8] = {ust *, s]=[u, s] [s1%, s] =6 “=1 (mod y;(7)),

and so 4 lies in the centre of G modulo y,;(@), that is, @ € 7(G). By Theorem 1.2, Corollary
1, [7(G), p.(G)] <y,(@), and so 7(G) <y,(G). Hence y,(G) is generated by s, and 7(G),
and y,(@)/n(Q) is cyclic.

To find the order of y,(G)/n(G), we use the fact that according to Theorem 1.4, for
any integer r

[s1,8]=s2 (mod y,(()).

By Theorem 2.6 sj commutes modulo y, (@) with each element of y, (@), and so s1 € 7(G)
if and only if s] and s commute modulo y,(G), that is, if s; €y(@). If G €CF (m, n, p), it
follows that ¥ €n(G), s; ¢ #(G), and therefore y,(@)/n(Q) is of order p. If G ENCF (m), it
follows that no positive power of s, lies in % (), and so y,(G)/9(Q) is infinite.

CoroLLARY. If @ECF(m, n, p) or GENCF (m), then n(Q) ={,_.(G).

By a remark in § 1, (@) <{,_;(G). Also, by Theorem 1.2, Corollary 3 and Theorem

24, for m > 3,
(Ln2(G), 2(@)] < En_yg(G) N 72(F) = y4(G)

and 8o {,_,(Q) <y,(@). Suppose that {,_,(G) >7(G); then {,_,(G) is of finite index r in
y1(@). Hence si € {,_,(&), and by Theorem 2.4

[51, 81 € Lmg (G) Ny (G) = v3(G).
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But by Theorem 1.4 [s], s]=s; (mod y4(@)), and s0 8; € ,(G). If G€ NCF (m) this is im-
possible since 7 is finite, and if G €CF (m, n, p) this implies that r > p. In both cases, we
have a contradiction, and so {,_,(G) =#(&). For m =3 the corollary is trivial.

In future, instead of %(G) we shall speak of the more familiar group ,,_,(@). We are
now therefore considering groups with the following series of characteristic subgroups.

G >91(G) > {ng(@) 2 y5(@) > y3(G) > ... >y y(G) > pn(G) =1

In this series all factor groups of successive terms are cyclic of equal order, except for
{m-2(@)/y2(G). This group is arbitrary, as is seen by considering the direct product of a
group in which it is the unit subgroup with an arbitrary Abelian group.

Now according to Theorem 1.2, Corollary 2, in any group G,

(@), y( A <y45(Q) (,7=2,3,...).

This is in general the best possible result, as, for example, the Sylow p-subgroups of the
symmetric groups show (see [6]). In a particular group however, it may happen that a
much stronger commutation law holds. Thus, if G@€CF(m, n, p) or GENCF(m) (m > 3),
and

(@ m( @] <yrsen(@) (G,5=1,2,...),
we say that G has degree of commutativity k. (We do not assume that k is the greatest
such number).

The aim of the present paragraph is to find conditions under which a group G has
degree of commutativity greater than 0, that is, .

[}'i (G)’ )’i(G)] < 7:+;+1(G) ('i’ 7 = 1: 2, . )
In particular, this requires that
(@) v @] S yiee(@) (=1,2,...,m —2). (9)

For i+ =1 this is always true by Theorem 2.6, and for ¢ =2 it is always true on account
of the definition of y,(@). For 2 <i<m — 2, (9) simply asserts that p,(G)/yi+2(G) is the
centraliser of y;(@)/y+5(Q) in G/y,.5(G), for, in the case of the p-groups this centraliser
cannot be larger than a maximal subgroup, and in the case of the groups of NCF(m) this
centraliser must have infinite index by Lemma 2.5. Our next result shows that whether
(9) holds or not is the crux of the matter.

TarorEM 2.8. If GECF(m,n, p) or GENCF(m) (m >8), and
[yl (G)1 Vﬂ(G)] <71+2(G) (i = 1, 2: R (2 2)1

then G has degree of commutativity greater than 0.

This is proved by means of the following lemma.
5 — 583801. Acta mathematica 100. Imprimé le 26 septembre 1958.
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LEMMA 2.9. Suppose that G €CF (m, n, p) or @ ENCF (m) (m > 4), and that G /y,_,(G)
has degree of commutativity greater than 0. Let elements s, s, of G be defined by the properties
that s and y,(G) generate G, s, and {,_,(G) generate y,(G). Write s,=0,(8,8,) ¢=1,2,...,
m —2). Then for 1 =2,3,...,m —2, s; and y,.,(G) generate y;(G), and

1

= m—1
[81, 'gm_z] = [82, sm_s]—l = e = [Si’ sm—i—l](_l) = aes =— [sm_2’ 81](_1)

Note that there is no ambiguity in the definition of s;. By Theorem 1.1 y,(@Q) is
generated by y;(G), [8y, 8] = s,, and certain other commutators, one of whose components
lies in {, ,(@), for G is generated by s, s, and {,,_,(@). Since {,_,(G) =7(G), these other
commutators already lie in y, (@), and so for ¢ =2, s, and y,,, (G) generate y,(G). For ¢ > 2
we prove this by induction on ¢: thus by the inductive hypothesis s,_, and y,(G) generate
y1-1(G). Hence by Theorem 1.1 y,(G) is generated by y;., (@), [si_;, ] =8, and certain
other commutators, one of whose components lies in y, (@). But since G/y,,_, (@) has degree
of commutativity greater than 0 and ¢ <m — 2,

121 (@), Y1 ()] <y144(G),

and so these other commutators already lie in y,,, (G), and the result is proved.
For2<i<m -2,

Sty Sp—i_ =Si_lsfm—i—1 =81_1 8 ,ssm—i lzst_1 ssm-—i—ly Ssm--l-l]_
1 i—1 i1

Since G/ym_, (@) has degree of commutativity greater than 0, [s;_y, Sm 4] € Ym_1(G), and

so sjm-i-1 i3 the product of s, , and an element of the centre of G. Also s'm-i-1 = 8Smlii,

and so
(8, Sm—t—a] = 87 ' [8_1, 88m>4].

Working out the right-hand side by means of (1) and (2), and using the fact that [s;_;, 8, ]
lies in the centre of @, we obtain
(8> Sm_t1] = [8i1, Sm_i]™",
as required.
Theorem 2.8 is trivial for m =4, and we prove it for m > 4 by induction on m. Apply-
ing the inductive hypothesis to G/y,,_, (@), we find that G¢/y,_, (@) has degree of commu-
tativity greater than 0. Thus we have only to prove that [y;(@), yn_i1 ()] =1 (:=1,2,

..., m —2). The conditions of Lemma 2.9 are satisfied, and so in the notation there adopted,

i-1
[Sb 'gm—l—l] = [81, 3m—2](_1) .

But by hypothesis, [y,(®), yn_o(G)] =1, and so s; and s,_;_, commute. It is clear from
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Theorem 1.2, Corollary 2 that s, commutes with all s, for which § = m — ¢, and that s, ;_;
commutes with all s; for which j>¢ +1, and <o [y4(Q), Ym_i_; ()] =1, as required.

Lemma 2.9 also has the following consequence.

THEOREM 2.10. Suppose that G E€CF (m,n,p) or GENCF(m) (m =5), and that
G/ym_1(G) has degree of commutativity greater than 0. Then
(1) if m is odd, G has degree of commutativity greater than 0;
(i) if m is even, G has degree of commutativity greater than 0 if and only tf v, m_; (G)

78 Abelian.

By Theorem 2.8 @ has degree of commutativity greater than 0 if and only if
[¥1(G), Ym_2(@)] =1, and in the notation of Lemma 2.9 this is equivalent to [s, s,_,] = 1. By
Lemma 2.9 this is so if and only if [$},_;, $4m] =1 when m is even, or [$y(m_1), Szm-ny] =1
when m is odd. This condition is always satisfied when m is odd, and when m is even it is
satisfied if and only if [yyn_; (&), ¥3m(@)] =1, which is the condition for y;, ,(G) to be
Abelian, according to Lemma 2.1.

CoroLLARY. If GECK (m, n, p) or G ENCF (m) (m = 5), and y,(G) is Abelian, then G
has degree of commutativity greater than 0.
This follows by a very simple induction on m.

We now reach the main result of this paragraph.

TrEOREM 2.11. If GECF(m,n,p), where m is odd and 5<m <2p+1, or if
G ENCEF (m), where m is odd and m =5, then Q has degree of commutativity greater than 0.
For m =5, this is a direct consequence of Theorem 2.10 (i), for G/y,(Q) necessarily
has degree of commutativity greater than 0. For m > 5 we proceed by induction on m.
Applying the inductive hypothesis to G/y,_,(G) we see that this group has degree of
commutativity greater than 0. Hence we may apply Lemma 2.9 to G/y,,_,(@), and de-

fining s, 8,, Sy, ..., Sp_s as in this lemma we find that
(56 81€ Y14s2 (@) (G +j<m—3), (10)
(8 Smte] =[5, $m_g] ™0 (mod yp (@) (i=1,2,...,m —3). (11)

Now if G/v,,_, (@) has degree of commutativity greater than 0, we can apply Theorem
2.10, and since m is odd, we obtain at once the required result. We shall therefore assume
that G/y,_, (&) does not have degree of commutativity greater than 0 and obtain a contra-
diction. By Theorem 2.8 it follows from this assumption that (9) does not hold for ¢ = m — 3,
and thus that y,(G)/ynm_1(G) is not the centraliser of y,_3(G)/Ym_1(G). But y,(G) is gene-
rated by s, and {,_,(@): thus s, cannot lie in this centraliser, since {,_,(G) certainly does
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lie in it. And since y,,_3(G) is generated by s,,_, and y,,_, (&) it follows that [s,_3, 8,] =8,
say lies in y,, (@) but not in y,_, (&).

By (11) [S2, 8m—-4] = 8m_g (mod Ym-1 (G)),
and so [Sm—2s 811 = {85, Sm_g]™ [85, Sm_a]™
But (82, Sm_a]” = [82', sni—a] = [55182, 81, Sm—4[8m—4» 8:])

Also [8,, 8] lies in y,(G) and thus commutes with any element of y,,_;(G): hence by (1)
[%25 8m—a)" = [S25 Sm—a[8m_g 811
Similarly [s,_4, 8;]1 €Ym_s(G) and thus commutes with s,. Hence
(82 8m-al™ = [83, 8m_al,
and [8n_a 811 = L. (12)

Since s, and {,_,(G) generate y,{Q), it follows that s,_, commutes with all elements of
71(@). Now s,_, lies in 9, (@) but not in y,,_, (@), and so by Theorem 2.4 s,,_, does not lie
in {,(G). Hence s,_, cannot commute with s, and the element s,,_; = [s,_q, 8] is not the
unit element.

Next we prove by induction on ¢ that

I8 Smoig] =8 T¢D (5=2,3,...,m—3). (13)
For i =2 we have .

(82, 8m_g) = 828" ™ = 53[5, 8™ 3 = 55 {812, 6™ %} = 53[5, [8y, 8ms)s S[8, 8ag]). (14)
Now [s, sy_g] lies in y,,_4 (&) and thus commutes with s, and all elements of y, (@) by (12).
By (1) and (2) it follows from (14) that

(2> Sm—s] = 83" [$15m~2, 8] = 8m>1,

as required. For ¢ >2 we have by the inductive hypothesis

i
_ (-D'¢-2)
[8i-1> Sm—t]=9m-1 .

Now
[si: 8m—l-—1] = 31_1 s;’mul« 1= 81—1 [8,_1, g]xm ~1--1 =s‘i'1 [S:Tfi_li ssm—i—l]

- -1 -pi-1 -1
_: S ! [81—1 ['91—1’ Sm—L—l]’ 8 [8; sm—-f—l]] =8 [sl—l S(YIIPZ y $Sm i

by (11). Using (1) and (2) it follows that
-1 851._3); ‘1(1-1)’

[8', 8m-l—1] = [s!—lv 'gm—l]-l [sm—z; ’g](—l)

as required.
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Putting ¢ =%(m — 1) in (13) we obtain s}™"® =1, and from above s,_, + 1. This is
impossible if G ENCF (m). If G €CF(m,n, p), it implies that }(m —3)=0 (mod p), and
since m >3, we have m > 2p + 3. This contradicts the hypothesis of the theorem and so

the result is proved.

CoroOLLARY. If GECF (m, n, p), where m i3 even and 6 < m < 2p + 2, or if GENCF (m)
where m i3 even and m > 6, then G has degree of commutativity greater than 0 if and only if
Yim-1(G) 18 Abelian.

For we may apply Theorem 2.11 to G/y,_,(G), which shows that this group has
degree of commutativity greater than 0. The result therefore follows by Theorem 2.10.

We mention the following consequences of Theorem 2.11.

TEEOREM 2.12. Suppose that G is a p-group and that there exists an even inleger m
satisfying 4 <m < 2p, such that G/y,, (@) ECF (m, n, p) for some n. Then (5, (G): Ym:1(F)) <p.

TaEOREM 2.13. Suppose that G is a nilpotent group, and that there exists an even integer
m = 4, such that Gy, (G)ENCF (m). If T /ypmi1(G) is the torsion subgroup of yu(R)/vmi1 (),
then v, (@)/T is cyclic.

Let s, 8, be defined in the usual way, and let = be an element defined by the property
that = and y,,(G) generate y,_, (@). By Theorem 1.1 and Theorem 1.2, Corollary 1, y, (&)
is generated by y,.,(G) and the elements [z, s], [, s,]. Let N be the subgroup of G genera-
ted by [z, 8] and y,.;(@). Then y,(GF)/N is cyclic.

If G is a p-group, suppose that y,(@)/N is of order p. Then G/N €CF(m + 1, n + 1, p),
and by Theorem 2.11 @/N has degree of commutativity greater than 0. Thus [z, ,]€EN,
which is a contradiction. Hence N = y,, (@), that is, y,, (@) is generated by [z, s] and y,,., (G).
The result now follows at once from Theorem 1.5 (ii).

Similarly, for Theorem 2.13, we obtain a contradiction if we assume that y,(G)/N
is infinite, and 80 Y, (G)/¥n+1 (@) is an extension of a cyclic group by a finite cyclic group.
Hence the result.

We shall not investigate further the conditions under which a general group of
CF (m, n, p) has degree of commutativity greater than 0, but it will be proved later that
the groups of ECF (m, n, p) for which m > p + 1 have this property. We now wish to con-
struct examples which show that nothing more can be proved in this direction; that is,
we construct a p-group of maximal class of order %', where 6 <2 r < p + 1, which does not
have degree of commutativity greater than 0. Thus, for p >3 and 3<r<}(p +1), let E
be an elementary Abelian group of order p’, with generators e, e,,...e,. Let 4 be the
subgroup of the holomorph of E consisting of all elements which induce in E an auto-
morphism of the form
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e—>eedt (1=1,2,...,7r~1), e,—~e,.
Let a,, a,, ..., a,_; be the automorphisms in 4 defined by
reio1(T7771
e =, eV +-1("7177) (=12, ...,r—1;j=1,2, ..., r—1),

ei=e, (j=1,2,..,r—1)

Now if b is any automorphism in 4 other than 1 and e/ =¢;e* (1 =1,2, ..., r — 1), define
k to be the greatest of the integers 1, 2, ..., 7 - 1 such that ¢, =0 (mod p); then baﬁ‘_l,‘"”"k
leaves invariant all ¢; for which ¢ > k. It follows that the automorphism group 4/E is

generated by a,, a,, ..., a,_;. We have

[a, a]=1 (I<i<j<r—1),

af=1 (=1,2,..,r—1).
It is easily verified that 4 possesses an automorphism « for which

a -1 . -1
a; =a; ;41 (1= 1, 2’ rey 7_2): a$—1=a‘r—1 €1,

a -1 -
€ =€;€1,1 (’L= 1, 2; LR 7_2)7 e:v-1=er—1a ei‘=e,.

o i8 of order p, and we may thus form an extension G of 4, such that G/4 is of order p,
and an element of G induces the automorphism « in 4 (see [13], Kap. III, § 7). @ is of
order p?" and class 2r—1, but does not have degree of commutativity greater than 0,
since e;_1=¢,_;.

The above considerations only make use essentially of relations between commutators
and it is therefore to be conjectured that the calculations can be applied more generally.
If for instance we consider nilpotent groups whose lower central factors are cyclic of
arbitrary order, generalizations of the above theorems can be obtained. The results are,
however, rather complicated; the price of generality is a very considerable loss of clarity,
and we have therefore been content to state the results in their simplest forms.

We conclude the present paragraph by obtaining a result on the maximal number
of generators of the derived group of a group of CF(m, n, p). With later aims in mind it
will be convenient to work under slightly more general hypotheses than are necessary for
this purpose. Thus we suppose that G €CF (m, n, p) (m > 3), and that if m > 5, G/y,_, (@)
has degree of commutativity greater than 0. By Lemma 2.5 the centraliser K of y,_,(G)
in @ is of index p and contains (,,_,(G). There are therefore at least p™ *(p — 1)2 elements
of G which belong neither to K nor to y, (G): let s be such an element, and let S be the cen-
traliser of s in @. Clearly y,_, (@) < 8, and we prove that S N y,(G) =y,_, (G). If in fact
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there exists an element x of § N y,(G) which does not belong to y,_; (¢), then there exists
an integer 7, with 2 <¢ <m — 2, such that z lies in y,(@) but not in y,,,(¢). Thus x and
y1:1(G) generate y,(Q); but s was chosen so that it does not belong to the centraliser of
yi(G) modulo y;.,(#), and so [z, s] cannot lie in y,.,(@). Since i <m—2, and x€S, this
is a contradiction. :

LEMma 2.14. Suppose that GECF (m, n, p) (m > 3) and that, if m > 5, Q/y,_,(G) has
degree of commutativity greater than 0. Let s be an element of G which belongs neither to y,(G)
nor to the centraliser of y,,_o (G), and let 8 be the centraliser of sin G. Then 8 Ny, (Q) = yp_1(G).

Next we show that we can proceed from y, (@) to {,_,(G) by adjoining elements of S.

THEOREM 2.15. Under the conditions of Lemma 2.14, a set T of elements of S can be
chosen, which together with y,(Q) generate Ly _o(G). If t, w €T, then [t, u] €ypn_; (G).

This may be proved by induction on m. Thus for m > 4, there exists a set T' of ele-
ments which together with y,(@) generate {,,_,(G), such that if €T, then [s, {]€Eyn_, (G),
as is seen by applying the inductive hypothesis to G/y,,_, (@). This is also true for m =4,
since £,_o (@) =1(G). Let = be an element which together with y,_, (G) generates y, ,(G),
so that by the definition of s, y =[x, s]= 1, that is, y generates y,_,(G@). Thus for each
element f €T, there exists an integer o such that [s, {] = y*; we put t = {z*, and denote by
T the set of all elements ¢ which arise in this way. Since m > 4, t €(,,_,(G), and so {,_, (&)
is generated by T’ and y,(&). Since also by (1) and Theorem 1.4

[s, 8] = [, %] = [s, 2%]y* =1,

we see that 7' is contained in S. Finally, if ¢, w €T, then [, u]€S N y,(Q), and so [t, 4] €
¥m-1(@), by Lemma 2.14.

We shall need one or two consequences of Theorem 2.15.

COROLLARY 1. Under the same conditions S is of order p"~ ™% and is of class at most 2.

First of all we show that 8 N {,_,(G) is generated by 7 and y,_, (&), and is of order
p" " I €8 N g (G), x can be written in the form yz, where y is a product of elements
of T, and z€y,(@), for {, ,(G) is generated by T and y,(@). Since T is contained in S,
it follows that y €8: thus z = y'xz €8. Hence z€y,,_, (¢) by Lemma 2.14. Also, if t€ T and
t is of order p* modulo y,(G), then #*"€y,(G) N 8 = yp_, (G). Thus, since {,_,(G)/7,(G) is
of order p" ™, it follows that 7' and y,,_, (@) generate a group of order p" ™ ™**, for [T, T'] <
Ym-1(G). This proves the assertions.

Next we show that SNy, (@) =8N {no(G). If €8 Ny, (G) and s, is an element of G
so defined that s, and {,,_,(G) generate y, (G), then we can write x = sfy where y €£,,_,(G)
for a suitable integer «. Thus
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1 =[s, 2] =[s, s1y] =[5, y] [s, s1]".

But [s, y]€y,(G), since {n (@) =75(G), and so [s, sf]€Ey;(G). Hence, modulo y,(&) st
commutes with every element of G; that is, sT€n(G) =(,_(G). Thus z €{,_,(G), as
required.

Finally, if €S8, we can write z = s*y where y €y, (G). Since z and s lie in S, we have
YES Ny (G) =8 N{p_o(G). Thus § is generated by s, T' and y,_; (GF). Also, since sP€S N
(@) =8N{n (@), Sis of order p* ™2 8 is of class 2, since [T, T'] < yp, (G).

COoROLLARY 2. Under the same conditions the conjugacy class of G containing s i8 the
coset sy, (G).

For by Corollary 1 s has p™~% distinct conjugates in @. Since s* = s[s, z] for any ele-
ment z of G, each of these conjugates is of the form sy where y €y,(G). And since y,(G)
has just p™ % elements, it follows that each element of this form must be a conjugate of s.

THEOREM 2.16. Suppose that G ECF (m, n, p) (m > 3), and that r is the smallest positive
integer such that there exists an element s of G, not belonging to v,(G), for which s*" lies in
ys(G). Then y,(G) can be generated by fewer than p" elements.

Suppose that this is not true. Then the index of the Frattini subgroup @(y,(G)) of
y2(@) in 9, (@) is at least p*", and so there exists a normal subgroup N of G, such that
D (y3(Q)) < N <p,(G), and y,(GF)/N is elementary Abelian of order p*". By considering
@/ N we see that without loss of generality, it may be assumed that y,(G) is an elementary
Abelian group of order p*", for by Lemma 2.3 G/N €CF (p" + 2, ', p) for some n’. By
Theorem 2.10, Corollary, G has degree of commutativity greater than 0. Hence Lemma
2.14 may be applied, and since s*" €8 N y,(G), it follows that s*" €y,_; (G).

If s, is an element which together with {,,_, (@) generates y, (¢), we define s; = g; (3, 8,)
(t=2,3,...,m — 1), so that as in Lemma 2.9, s, and y,, (&) generate y,(G) (: =2, 3,
...,m —1). We prove by induction on k that

sk

k (2) (1)
8] =8,8283° -+ 8 8y (B=1,2,,m—2).

For k =1 this is clear; for £ > 1 we assume the corresponding result for k¥ — 1 and trans-
form by s, using s} = 8;84,. Since y,(G) is Abelian, we may deduce the stated result at

once. Putting k = p" =m — 2, and using the fact that y,(G) is of exponent p, we obtain

7
8 =88n 1
Thus s*" cannot belong to the centre of G. But we have shown that s*” €y, , () and so

we have a contradiction. Thus Theorem 2.16 is proved.
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It is very easy to show that Theorem 2.16 is the best possible result. Thus let E be
an elementary Abelian group of order p* generated by elements s,, 85, ..., 8. Let o be
the automorphism of E defined by sf =884, 1 =1,2,...,p"—1) and s5r =8 . Then ¢
is of order p” and we may form an extension @ of E, such that G/ E is cyclic of order p’
and an element s of G induces the automorphism ¢ in E. Then G€CF(p" + 1, 2r, p), and
72(G) cannot be generated by fewer than p™ — 1 elements. It is to be observed that in the
case r =1 the group that we have constructed is the Sylow p-subgroup of the symmetric
group of degree p2.

We mention two particular cases of Theorem 2.16.

CoroLLARY 1. If GECF (m, n, 2), and there exists an element s of G which does not
belong to y, (Q), such that s2€y,(G), then y,(G) is cyclic.

CoROLLARY 2. If GECF(m, n, 3), and there extsts an element s of G which does not
belong to y, (Q), such that s® €y, (G), then v, (G) 1s an Abelian group with at most two generators.
The first corollary is obvious. To prove the second we observe first that y,(G) can
be generated by 2 elements, by Theorem 2.16. It follows that [y, (@), y3(&)] =1 (see [1],
Theorem 2). Since y,(G)/y;3(G) is cyclic, it follows from Lemma 2.1 that y,(G) is Abelian.

3. The corollaries of Theorem 2.16 suggest that far deeper results will be obtainable
if some condition is imposed on G/y,(@), and we shall therefore assume henceforth that
this group is elementary Abelian, that is, that G € ECF (m, n, p). For m > 3 such a group
always possesses a subgroup of order p™ and class m —1 with the same lower central
series as G. For by the results of the previous paragraph @ can be generated by two ele-
ments , ¥y and 7 (G). Thus, if H is the group generated by z,y, Hn(G) =G, and so by
Theorem 1.3, y,(H) =y;(G). By hypothesis, z°, y* are elements of y,(G) = y,(H), and so
H is of order p™, as required. Thus the study of the groups of ECF(m, n, p) reduces
essentially to that of p-groups of maximal class, at least so far as the properties of the
lower central series are concerned. The following lemma shows that the groups of

ECF (m, n, p) possess other subgroups which are p-groups of maximal class.

Lemma 3.1. Suppose that G €ECF (m, n, p) (m > 3) and that, when m > 5, G /y,_1(G)
has degree of commutativity greater than 0. Then G possesses a subgroup K which is of order
p” land class m — 2, and p(K) =y,.,(@) 6=1,2,...,m —2).

One of our principal aims is to prove that if G €ECF (m, n, p) and m > p + 1, then @
has degree of commutativity greater than 0 (Theorem 3.8). This will be proved by indue-
tion on m and so, in Lemma 3.1 and a number of the following results, we shall work under
the hypothesis that @/y,_,(G) has degree of commutativity greater than 0. This hypo-
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thesis is of course shown to be unnecessary by Theorems 2.11 and 3.8. In such a group
our notation will be as follows. s denotes an element which belongs neither to y, (¢) nor
to the centraliser of y,, ,(@). s, denotes an element which belongs to y,(G) but not to
Lmo(G). For 1=2,3,...,m—1 we write s,=0,(s,5,). By Lemma 2.9 s and y;,,(®)
generate (@) if 2 <4 <m — 2. This is also true if s = m — 1. For s,,_, and y,,_, () generate
Vm—g (@), and s commutes with every element of y,,_, (¢) but does not belong to the cen-
traliser of y,,_,(@): thus s and s,_, do not commute, that is, s,_, += 1. It is also important
to observe that s?€y,_,(G). For since G/y,(G) is elementary Abelian, s” € y,(@); also s?
certainly belongs to the centraliser of s, and so by Lemma 2.14, s* € y,,_, (G).

To prove Lemma 3.1 we define K to be the group generated by s and y,(@&). Since
2 (@) is of order p™ % and s? € y,,_,(G) <¥,(G), K is of order p" 1. Also s, and s are both
elements of K and o,,_,(8, 33) = 85_; # 1; thus K has class at least m — 2. Since m — 2 is
the maximal class of a group of order p™}, K is a p-group of maximal class and y,(K) is
of order p" ' (t=1,2,...,m —2). Since K >y,(G), K is a normal subgroup of G, and
80 v;(K) is normal in Q. For ¢ =22 9,(K) <y,(G), and so by Lemma 2.3, »;(K) =y, (G).
Also

[2(@), Y2 (K)] = [y2(G), ys(@)] < y5(G) = y4(K),

and 8o v,(G) <y,(K). But these groups have the same order, and are therefore equal:
thus the result is proved.
We observe that any such subgroup K has degree of commutativity greater than 0,

for
[}’t (K)1 Vi (K)= [’}’tﬂ(a)a ‘}’jﬂ(G)] < ‘Vt+;+z(G) = Yi+i+1 (K).

It is also to be observed that by repeated application of Lemma 3.1, if 2 <r<m —3,
we can construct a subgroup L of @ of order p™ "*! and class m —r, with degree of com-
mutativity » — 1, such that y,(L) =9,,5,(6¢) (j=1,2,...,m —r). This result is due to
Wiman ([12], § 4).

Our next aim is to investigate the ‘“power-structure’ of the groups of ECF (m, n, p).

For small values of m, we obtain the following result.

THEOREM 3.2. Suppose that GEECF (m, n, p), where p is odd and 4 <m <p+1.
Then G /yn_1(G) and y,(G) are of exponent p. If m < p, the elements of G of order at most
P form a characteristic subgroup of index at most p.

By Theorem 2.11 G/y,,_,(@) has degree of commutativity greater than 0, and so
there are at most 2 maximal subgroups of G which can be centralisers of the groups
(@) /yi42(F) (£=2,3,...,m—2). G has p+1 maximal subgroups containing {, (&),
and so, since p is odd, we may select two such subgroups, neither of which is the cen-
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traliser of any ¥;(G)/y:.+2(G). Let s, s’ be elements which together with £,_,(G) generate
these two subgroups: then G is generated by s, s’ and {,_,(G). Let 8, T be defined as in
Theorem 2.15. Thus G is generated by s, s’, T and y,((), and it follows that @ is generated
by s, s’ and T. Now s” and, for each t€T, t* are elements of S N y,(@), since G/y,(G) is
elementary Abelian. Hence by Lemma 2.14 s and ¢* lie in y,_, (). Similarly, by consi-
dering the centraliser of §', s'? lies in y,,_,(G). Hence G/y,,_,(G) is generated by a set of
elements of order p. But G/y,_,(G) is a regular p-group, since the class of this group is
m — 2, which is less than p (see [3], Corollary 4.13, p. 73). Hence G/y,,_, (&) is of exponent
p (see [3], Theorem 4.26, p. 76).

For m <p G is itself a regular p-group, since the class of G is less than p. It follows
that the elements of G of order at most p form a subgroup E,, the index of which in @
is equal to the order of P,(G). But since G/y,_,(G) is of exponent p, P (@) <y,_,(G),
and so E, is of index at most p in G. It follows that y,(G) < E,, and s0 y,(@) is of expo-
nent p.

For m =p+1 we observe that by Theorem 2.6 y,(y, (@) <y;(G). It follows that
Yi(y1(G)) < ;1 (@) by induction on 7. Hence y,(y,(@)) =1, and so y, (G) is regular. Thus
the elements of y, (() of order at most p form a subgroup F of index the order of P, (y, ().
But P, (y,(G)) S Py (@) < Yy (@), and so F is of index at most p in 9, (@), and at most
p? in G. Thus G/F is Abelian, and so y,(G) < F. Hence y,(G) is of exponent p.

The investigation of the power-structure in the case m > p + 1 rests upon the follow-
ing result.

LemMma 3.3. If GEECF(m, n, p) (m >p + 1), then 8,°s, lies in y,.(G).

Here we need not assume that G/y,_, (G) has degree of commutativity greater than
0, for the lemma is essentially a result about G/y,.,(@), and by Theorem 2.11 this group
has degree of commutativity greater than 0. It is on the basis of this fact that we may
use the notation described, so far as s, sy, s,, ..., s, are concerned.

For p odd we apply Theorem 1.6 to calculate (¢3,)°. Since the group generated by
8; and y,(G) is contained in y, (@), this yields

p) p-2

(57 =s"s,7...5) ... s, (mod P,(72(O) TT134(@). 74(E).

Since G/y,+,(G) has degree of commutativity greater than 0,

[Yi (G)’ Yot (G)] < ‘}’p+1(G) (1’ = 19 2; ey p— 2)

Also, by applying Theorem 3.2 to G/y,+,(G), we see that P, (y,(@)) < ¥p41(Q).

Thus (88,)P=8"s" ... s,(‘n) .o 8y (mod ypy, (GY).
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This is also true for p =2, for
(88,)% = 825,28, [8,, 5]

Now s and ss, are both elements of ¢ which do not lie in 7, (¢), and so, by an above re-

mark applied to @/y,.,(G), s and (ss,)® lie in p,,,(@). Also, for :=2,3,...,p~1,
r

Sf(‘ ) € P, (y2(@)) < v,+1(GF). Hence the equation reduces to

8,78,=1 (mod y,.,(G)),
as required.

Lemma 3.3 is not necessarily true if m = p+ 1, as the Sylow p-subgroup of the sym-
metric group of degree p2 shows (see below).
We deduce now a result on the power-structure which is most conveniently stated

for p-groups of maximal class.

TEEOREM 3.4. If G is a group of order p™ and class m — 1, where m > 3, then y,(Q)
18 a regular p-group. If m >p +1, and for each 1 = 1,2,...,m —p + 1, we write

m—i=@p—-1)g+r (0<r,<p-—1),

then y;(G) has r; invariants equal fo ¢, + 1, and p — r, — 1 invariants equal fo q,.

Again the second sentence of this theorem is not true if m = p +1. For if p is odd
and G is the Sylow p-subgroup of the symmetric group of degree p2, then y,(G) is an
elementary Abelian group of order p®, as may be seen from the defining relations given
for this group in § 2. Thus y,(G) has p invariants, all of which are equal to 1. Thus Theo-
rem 3.4 shows that if p 7s odd, the Sylow p-subgroup of the symmetric group of degree p*
cannot be a factor group of a p-group of mazximal class of order greater than p**1. In contrast,
the Sylow 2-subgroup of the symmetric group of degree 4 (that is, the dihedral group
of order 8) is always a factor group of a 2-group of maximal class of order greater than 8.

To prove Theorem 3.4 we observe first that since any p-group of order less than p”*1
is regular, it is clear that y, (G} is regular if m < p -+ 1. For m > p + 1 we consider P, (y;(&)),
which is a characteristic subgroup of G. By Lemma 2.2 P, (y,(G)) = y1(G), for some 4.
By Theorem 3.2 applied to G/y,.1(G), Py(», (&) <y,(G), or A>p. But by Lemma 3.3
8 does not belong to y,.,(G), and so A cannot be greater than p, for s{ €P, (y,(G)). Thus
A=p, and P, (y,(@)) =y,(G). Hence P,(y,(@)) is of index p** in 3, (@), and so y,(G) is
regular (see [4], Theorem 2.3, p. 477).

If X is any regular p-group, we denote by E,(X) the subgroup of X consisting of
all elements of X of order at most pf; thus

(Bi(X) : 1) = (X : P(X)).
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If p <j <m, we apply this equality with ¢ =1 to the group y,(G)/y,(&). Thus

(By (1 (@) /75(G)) : 1) = (1 (G) 1y, () = p"~ .

Hence by applying Lemma 2.2 to v, (Q)/y;(G)

Ex(n (@) /(@) = y1_p+1(A)/71(&)
We deduce by induction on ¢ that if m —1>¢(p — 1),
E(i(D) = Ym-1(5-1)(G)- (15)
For ¢ =1, this follows at once by putting j =m. For 1+ > 1, we need only observe that

E(», (G))/Et—x (@) = Ey(y, (G)/El—l (@)
=E n (G)/Vm—(t—l) -1 (@)
= Ym—i(p-1) (G)/El—l (7 (G))-

If i(p — 1) =m, then E,(y,(G)) =,(R), as is seen by the same argument, using the fact
that y,(@)/v,(G) is of exponent p.

It follows from (15) that if 1<j<m —i(p—1), then y,(Q) > E(y,(G)), and so
E\(y)(G)) = Ymaio-0(@), for i=1,2, ..., g Again Bo.1(y(@) =7(@). Thus (E,(y,(G)):
E (y(@)=p"1 (k=1,2,...,¢), whilst (35(G): Eq (ys(G)) = p’f. These indices give
rise to the partition ((p —1)%, ;) of m —j. The invariants of y,(G) are the parts of the
conjugate partition, which are as stated.

CoroLrLaRrY 1. If GEECF(m,n,p) (m>p+1), then P (y;(@)) =11 (&), for
i=1L2,...,m—p+1.

As remarked at the beginning of this paragraph @ possesses a subgroup H, such that
H is a p-group of maximal class and v;(H) =y,(@) (:=2,3, ..., m —1). It follows from
Theorem 3.4 that for j=1,2,...,m —p + 1, y,(H) has p — 1 invariants: thus P, (y;(H)) is
a characteristic subgroup of H of order »™ 7 ?*1, and so P, (y;(H)) = y+p_y (H), by Lemma
2.2, This gives the result at once if j > 1. For j =1 we observe that

[y1(H), 2 (G)] = (1 (H), 2 (H)] <4 (H) = p,(G),

and so y,(H) <y,(G). Hence P,(y,(G)) = P,(y,(H)) =y, (H) =y,(G). But for p odd, we
can apply Theorem 3.2 to G/y,.,(G), and so P, (y,(®)) <y,(®); this is also true for p =2,
since G/y,(G) is elementary Abelian. Hence P, (y,(@)) =y,(G), as required.

CoroLLARY 2. If GEECF (m, n, p) (m>p +1) and G/y,_,(G) has degree of com-
mulativity greater than 0, then sf8y,, €y (@) 1=2,3,...,m —p).
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Without loss of generality it may be assumed that G is a p-group of maximal class.
By Lemma 3.3 the result holds for 1 =1, and so we may use induction on ¢. By the in-

ductive hypothesis sf_ 184 ,_5 €115 (G), and so

(871 814 p_g, S1€V14p ().
This commutator is

82 i (871)P Slep-2= 87 p-2 811 (811 8)° S5 p_2 St pa-
By Theorem 3.4 y,(G) is regular, and so if H is the group generated by s, , and s,
(84 8)°=8l_y s (mod P, (H')).

Now H <y,,(G), and since y,_,(@)/yi+, (@), being of order p?, is Abelian, H' <y,(G).
Hence by Theorem 3.4 P,(H') <v,,(G), and we obtain

si'+1p—2sinsl+p—2si+p—151 (mod yi+p(G))'

Also by Theorem 3.4 sf €y, ,(G), and so sf lies in the centre of G modulo yy,,(G).
Hence it commutes with s;,,_,, and so the result follows.
We shall now investigate more closely the commutator-structure of the groups of

ECF (m, n, p). We begin with the following lemma.

LeMMa 3.5. Suppose that G €CF (m, n, p) (m > 4), that G/y,_,(Q) has degree of com-
mutativity greater than 0 and that @ has degree of commutativity k > 0. If

(s 8]=84, . (mod Yy (G)) (A<i<ji+jsm—k—1),
then Gigro =04y (mod p) (1<i<[§(m—k—3)],
and Syypr F oy =0y (modp) (1<i<j-—2,i+j<m—k—2).

(If z is any number, we denote by [«] the greatest integer not greater than z, as
usual.)

The hypothesis that G/y,_, (@) has degree of commutativity greater than 0 is of
course only necessary when k =0, and in that case ensures that we may use the notation
described.

To prove Lemma 3.5, we observe that for 1 <¢<jand ¢ +j<m—k—2

_ ; . 1 .
[S141s ) =81 851 = 80 [81, 8] =siia [8)7, ).

Hence [8ie1, &1 =811 [8 S ssih]  (mod piyj. sz (@)
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We calculate the right-hand side by means of (1) and (2). Thus we have
« -1 o5 -1 x 31111
s sijlﬂk’ s8] =[s sli’i+k’ syl sy sti’Hk’ 8] ’

[3 Exd) e -1 s‘aiii+k Xif 71
[ R 81#1] - [8{,8/+1] [S‘T]‘+k, 3j+1],

8525, §1= [ sTii s (s, s].
Also [si, 874]=[ss, 5;+1]_Si_+11 =g 1, (mod piyjrkrs (@).
Thus (8874, 0o 81_+11]ES,-_:;‘,{7,.1,41 (mod Yi4s1p+e (G)).
Again [, s]sﬁ’jw:siﬂ [Si+15 s;’ii“k]zzs,ﬂ (mod Yitjrx+s (G)),

and so by Theorem 1.4,
[ sfii,+k, 8]=8i1, 37\1’““1 (mod piisip+e (F)).

Hence [$141, §]=8{1 S04t (m0d pysjirss (G))-

This reduces to the result stated, whether j=¢+1 or § >¢ + 1.

The next lemma is of a similar nature, but uses the p-th power relationships that
we have found.

LemMma 3.6. Suppose that G EECF (m, n, p) (m > p + 1), that G/yn_, (G) kas degree of
commautativity greater than O and that G has degree of commutativity k> 0. Then [s,, s,]€
yp+k+2(G), and i/ /07' 1’ =2’ 3) ey M _k —'P - 11

(81, s]=8/1,,, (mod yisiis (G)),
then [spsl=s1,,, (mod yyspsp41 ().
By Lemma 3.3 s7s, is an element of y,,,(@), and so for 1 =1,2, ..., m—k—p—1,
[s1, 878,] €[14(G), Y31 (D] < Pispr 41 (B).
Thus by (1) [s, s, =[s0, &i'2  (mod i pars1 (G)). (16)

With ¢ =1 this gives [s,, $,] €y,+x+2(F), 88 required. For 1 >1 we write

nsl=s7,,,2
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80 that z €y,4;+2(G). Hence by Theorem 3.4, Corollary 1, £” €y, x4+, (G). Now

[s7, 8] = 817 (s11)® = 817 (8187, ;1 2" (17)

Let L be the group generated by s, and .+, (@), and let H be the group generated by
8 and ;. By the argument at the beginning of this paragraph H is a p-group of maximal
class, and y;(H) =p(G) (:=2,3,...,m —1). Clearly s, €y,(H), and so L<y,(H). By
Theorem 3.4 it follows that L is regular. Hence

(8184, 2)" =887t 2" (mod P (L)).

By Lemma 2.1
L'=[L, Yitk+1 @< Yitk+2 (@),

and so by Theorem 3.4, Corollary 1,

Py (L) S Yraraphr (@.
Thus (8 s:‘ik " z)P=s} 3?:5”1 (mod Yi4x4p41 ().

But by Theorem 3.4, Corollary 2,

slp+k+1584_+lk+p {mod }’l+k+p+1(G))s
and so 817 (8187t @)’ =87 (mod Yispspey (G))-

Hence by (16) and (17)

(85 8]=g7t,,, (mod Pisrspsy (@),
as required.

This brings us to the key lemma.

Lemma 3.7. Suppose that GEECF (m, n, p) (m >p +2), that Q/y,—, (G) has degree
of commutativity k, where 1 <k <m —p —2, and that

yi(G), Yms-sn (D] =1 (6=2,3,...,m—k —1). (18)

Then G has degree of commutativity k.
Since it is assumed that G/y,_;(@) has degree of commutativity k, it]is only neces-
sary to prove that

(@), Ymas (B =1 (=1,2,...,m—k—1). (19)
We begin by showing that (18) is true with ¢ =1, that is,
(@), Ymr(G)] = 1. (20)
Fori=m—-—km-k+1,...,m—1,

[s1, 8] =si%s, =8, 8,,1"8, = [s", siL1]8 = [ssz?, 8i—1 (811> 81118
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But [s_y, 8,1€[Ym-i—2(G), »,(G)], and by hypothesis this group is contained in y,_, (G).
Hence
g1
[8, 8] = [882, sqlss =81 * [85%, 8_4]8:
But [s,, 8] and [s,, 5,_,] are both elements of [y,(G), Ym_r_, ()], and by (18) this group
is the unit subgroup. Hence [s,, 8] =1, or, 8; commutes with each of the elements s,,_,,
Sm_g+1s +»+» Sm—y- LDUS 8; i8 contained in the centraliser of y,,_,(#). Now s, was defined to
be any element of y; (¢) which does not belong to £,_,(&). Thus if y € {,,_,(G), we could
use s,y instead of s,, and prove the same. Hence s,y and therefore y itself belong to the
centraliser of y,,_(G). Hence all elements of y,(Q) belong to this centraliser, and (20) is
proved. It is to be observed that (18), (20) and the hypothesis on G/y,, (@) imply that
@ has degree of commutativity & — 1.
To improve this to k we define 7' as in Theorem 2.15 and observe that for t€7'

[t Smsk-1]=8m‘ k- 18m-r-1=[% Sm_r—2) Sm_tc—1=[8", 8t k_2]8m s

By the definition of 7' ¢ =3, and

[8m—r—2s L1 €[Ym—r—3(G), 1 (D] < Y1 (F).
Hence [t, 85_x_;] = 1. It follows that in order to prove (19) it is sufficient to prove that

8 Smpi) =1 (¢=1,2, ...,m—k—1),
on account of (18). We already have [s;, 8,,_x_] €ypn_, (@), since G has degree of commu-
tativity £ —1, and we can therefore write

(8 Smox—t] =83 , 6=01,2,...,m—k—1).
We now apply Lemma 3.5 and find that
y=—ay=op=...=(—1)"*a, ., (mod p),

since G/y,_, (@) has degree of commutativity %. Also we apply Lemma 3.6 and find that

since [y, 8m_p_k] € Ym_p.1(G), it follows that [s,, 3, _,] =1, and 80 x, =0 (mod p). Hence
;=0 (mod p), and

[ Smxil =1 G=1,2,...,m—k—1),
as required.

THEOREM 3.8. If GE ECF(m, n, p) (m = p + 2), then G has degree of commutativity
greater than 0.

This is already known for m = p + 2, (or, if p =2, for m = 5), on account of Theorem
2.11. For greater values of m we use induction on m. Thus G/y,,_, (G) has degree of com-
mutativity 1, and since m = p + 3 and
6 — 583801. Acta mathematica 100. Imprimé le 29 septembre 1958.
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[yi(G), ym—t(G)] =1 (1‘ = 2’ 3» cesy M — 2)1

we may apply Lemma 3.7 with & = 1. Thus the result follows at once.

Analogous to Theorem 2.12 we deduce the following consequence of Theorem 3.8.

TuEOREM 3.9. Let G be a p-group of class at least p + 1, and suppose that G/y, ., (G)
€ECF (p + 1, n, p). Then GE€ECF (m, n', p), for some m, n'.

Let m — 1 be the class of G. For p odd we proceed by induction on m: thus G/y,_,(®)
€EECF(m —1,n", p) by hypothesis if m=p+2 and by the inductive hypothesis if
m > p + 2. The result is obtained by an exact repetition of the argument used to prove
Theorem 2.12.

For p =2 this argument does not quite suffice, and instead we prove that the hypo-
thesis of Theorem 3.9 implies that y,(@) is eyclic. If this were not so, then the Frattini
subgroup D (y,(G)) of v, (@) is of index at least 4 in 9, (G). By hypothesis y, (&) is a maximal
subgroup of 1,(G), and so @ (y,(F)) <y4(F). Hence there exists a normal subgroup N of
@ such that @ (y,(G)) < N <y,(G), and y,(G)/N is of order 4. It follows that y,(G)/N is
elementary Abelian and that G/N €ECF (4, n, 2). But this implies by Theorem 2.16,
Corollary 1 that y,(G)/N is cyclic, which gives us a contradiction. Hence y, (@) is cyclic,
and each of the groups y,_,(G)/7:(@) (:=3,4,...,m) is cyclic. But by Theorem 1.5 (i)
and (ii), each of these groups is also elementary Abelian, and so is of order 2, as required.

CoROLLARY. If G is a 2-group, and G/y,(G) is of order 4, then G is a 2-group of
mazximal class, and y, (G) is cyclic.

If @ is non-Abelian it follows from Theorem 1.5 (i) that y,(G)/y;(G) is of order 2,
and so we may apply Theorem 3.9. Hence G is a 2-group of maximal class, and by Theo-
rem 3.4 y,(G) is cyclic. All 2-groups of maximal class have of course been known for a
long time, and very simple direct proofs that y, (@) is cyclic can be given (see [10], page
121). .
We see from Theorem 2.10 that if GEECF(m,n, p) and 6 < m< p + 1, then @ fails
to have degree of commutativity 1 if and only if the maximal Abelian normal subgroup
of G contained in y,(G) is Yi3m+1,(@). We now propose to examine the properties of the
lower central series of @ under the hypothesis that a given term of this series is' Abelian.

Suppose first that @ is a metabelian p-group of maximal class of order p™. By Theo-
rem 2.10, Corollary G has degree of commutativity greater than 0. By Lemma 2.2
the centre of y,(G) is of the form y; (@), where 1 <1 < m. We shall show that 1< p. This is
obvious if m <p+1. If m >p +1, then s{s, is an element of y,,, (@) by Lemma 3.3.
Thus sf is an element of y, (@), but not of y,.,(G), and it is therefore sufficient to show

that sf lies in the centre of y, (). Now sf €y,(G), and so s{ commutes with each element
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of y,(@), since G is metabelian. But also sf commutes with s, ; hence sf commutes with
each element of y, (@), as required. Thus

1 (G), v, (@)] = 1.
More generally we prove by induction on p —¢ that, if m > p +1,
1 (@), Vi€ Yprs(@) (6=2,3,..., ).
We have proved this for p —¢=0; if p —¢ >0, then
[y1(@); Y141 (D] < Ymopis1(G), @n
by the inductive hypothesis. Now

[81, 8:1° = [s1, 8i] = [81081, S, si[1, 811 = [8182, 8:84+1]-

By (1) [8182, 8i8i41] = [8182s S141] [8182, 1] [8182, 81 Sy
Hence by (21) (8182, 8181411 = 18185, 8] (mod yp_pi141(G)).
But again by (1) (5182, 8] = [515 8:]" [, 8,1 =[5y, 8],

since y,(G) is Abelian. Thus
[$1, &1 =81, 8] (mod yp_p 145, (F)),

or, [sy, 8] belongs to the centraliser of s modulo y, .4, (G). But also [s,, 5] lies in y, (&),
and so by applying Lemma 2.14 to G/y,_p.i4,(@), we find that [s,, 8] is an element of
Ym_p+i(G). Clearly this implies the stated result.

Finally we generalize this to the groups of ECF (m, n, p).

TurEorEM 3.10. If GEECF (m,n, p) (m= p +1) and y,(Q) ts Abelian, then
[)’1 (G)r yi (G)] < ym—p-H (G) (1’ = 1’ 2: ooy P)-

The group generated by s and s, is a p-group of maximal class with the same lower
central series as @, and so the result which we have proved above shows that for i =2,
3,..., D, 8 lies in the centraliser of y,(G) modulo y,,_,.;(@). Now s, denotes an arbitrary
element of y, (@) which does not belong to {,,_,(G). Thus if y is a given element of ,,_,(@),
this is also true for s,y, and hence for y itself. Hence any element of y, (@) lies in the cen -
traliser of y,(G), modulo y,,_,.;(#), and so

[71 (G), 71 (G)] < ym—p+i (G) (i = 2’ 3’ crey p)

It remains to prove that the derived group y,’(G) of y,(Q) is contained in y,_ ., (@).
This follows at once from the following lemma.



76 N. BLACKBURN

Lemma 3.11. If GEECF(m, n, p) (m >3) and [y, (GF), y:()] <y, (Q), then p,'(F) <
yra(G).

Let 7' be defined as in Theorem 2.15, so that y, (G) is generated by s,, T' and y,(&).
Hence by Theorem 1.1 y,"(G) is generated by [y,((), y5(G)], together with the elements
[81,t], [t,u], as ¢, w run through 7. It is therefore only necessary to prove that these
elements lie in y,_, (&). By Theorem 2.15 [t, 4] €y,_y (@) <p,1(G). To prove it for [s, t]
we observe that since €S,

[81) t]él = [sls: ts] = [8182’ t] = [811 t] [811 t’ 82] [82’ t]’

by (1). Since [y, (@), y:(A)]< y,(G), it follows that [s), ¢] commutes with s, modulo , (G).
We deduce that [s,, £] €y,_, (@) by applying Lemma 2.14 to G/y,(G).

We now consider a group ¢ of ECF(m, n, p) in which y;(¢) is Abelian. Let K be
defined as in Lemma 3.1, so that y,(K)=y;,,(G) (¢=1,2,...,m —2). Thus y,(K) is
Abelian, and by Theorem 3.10

[71(K)’ yl—l(K)] <7’171-11“—2(1() ("' = 3’ 4’ e P + 1)’
or [ (@), (D] S Ym p+i1(G) 6=3,4,...,p +1). (22)
We shall prove that @ has degree of commutativity m — p — 2. If m = p + 3, this follows

from Theorem 3.8: thus we may use induction on m. By applying the inductive hypothesis
t0 G/ym_, (@), we see that this group has degree of commutativity m — p — 3. Also

[y‘(G)’ yp+4—l(G)] =1 (7’ = 2, 3: ey P + 2)’

on account of (22) and the fact that y3(G) is Abelian. Thus by Lemma 3.7 G has degree

of commutativity m —p — 3, and so
1(G), Y B Ymopri-2(@) (1=1,2,...,p +2).
Hence we may write .
(81, 8] =8m - pr1_g (MO Yp_piiq (@) (=2,3,...,p+1).
Also, by (23) we may write
[52, 8] =5 peiq (M0d y_pie(G) (i=3,4, ..., p).
We now apply Lemma 3.5 and obtain

% =0y (mod p),
Oy+q +ﬂ,Ed] (mOd p) (7. =3’ 47 ooy p):
Bs=Pf,= ... =4, (mod p).

Hence g=oa, — (j —3)fs (mod p) (j=3,4,...,p).
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But by Lemma 3.6 [s;, s,] lies in y,,_; () and
(85, 8] = 8m21;5
that is, o, =f,+ o, =0 (mod p).
Hence oy — (p —3)B3=10 +f53=0 (mod p).
Hence «,= ;=0 (mod p), (we neglect the trivial case p =2), and so o= ;=0 (mod p)
(t=2,3,....,p+1; §=3,4,..., p).

Since the f; are zero, modulo p, it follows that [s,, 8] lies in y,,_,.;(G) and so
2@, (A< Ympii (@) (E=3,4,...,p).

Since the o; are zero, modulo p, it follows that [s;, 8] lies in y,,_,,i_; (G), and hence that
8; lies in the centraliser of v,(@) modulo y,_,,:_,(G). By the usual argument it follows

that this holds for any element of y, (&), and thus

W@ (D <Ympua(@) (=2,8,...,p+])
By Lemma 3.11 this is also true for ¢ =1. Since also y,(G) is Abelian, it follows that ¢
has degree of commutativity m — p — 2, as stated.
We generalize this result in the following theorem.

THEOREM 3.12. Suppose that Q@ EECF (m, n, p), and that y,(Q) is Abelian, where a
8 an integer such that m =p+2a—4 and a>3. Then G has degree of commutativity
m—p—2a-+4.

As is seen by considering the case p =2, this is not always a very powerful result.
It is the best one, however, that the methods of the present work yield, and is probably
the best possible result if @ <p. Note that it is incorrect for @ = 2.

Theorem 3.12 is trivial for m = p + 2a — 4, and has already been proved for a = 3.
It is proved in general by a double induction on a and m under which we assume that it is
true (i) for smaller values of @ and all values of m and (ii) for the given value of @ and
smaller values of m. Assuming that m > p + 2a — 4 we may apply the result to @/y,_,(G)
on account of (ii). Hence G/y,,_, (G) has degree of commutativity m —p —2a + 3. Let K
be defined as in Lemma 3.1, so that K is a p-group of maximal class of order p” ! and
y(K) =y (@) =1,2,...,m —1). Thus y,_, (K) is Abelian, and so, assuming that a >3,
we may apply the result to K, on account of (i). Thus K has degree of commutativity
m—p—2a+5 Henceif i >2,7> 2,

[‘}’i(G)’ VI(G)] = [71—1 (K): Vi1 (K)] < 71+l+m—p—2a+3(K) T Yiti+m-p-2a+4 (G) (23)
In particular, if 2<¢<p —2a —4,
(@), Ypr2a—ia (G =1,
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and so we can apply Lemma 3.7. Hence G has degree of commutativity m —p —2a + 3,

and in particular

M@ 7N < Yiimpsga+a@ (=12,...,p+2a—4).
By (23) we have only to prove that

(@), (D] <VYitm_p2a+5(@) (E=1,2,...,p+2a—5).

Using (23) we deduce from Lemma 3.5 that if

[815 85) ES?’I—})—Z(H»G (mOd Ym—p—2a+7 (G))’

then [81: 8] =8m-p-2a+i44 (MOd yp_p_s5:145(GF), (1=2,3,...,p+2a —5).

But by Lemma 3.6 [s,, 8,] lies in y,,_5,.5(G), and so ¢=:0 (mod p). Thus s, commutes
with each element of y(G), modulo y,,_; »..15(G), and by the usual argument we deduce
that :
1 (@) (D] < Ym_pgarss{@ =2,3,...,p+2a —5).

This is also true for ¢ =1, by Lemma 3.11, and so Theorem 3.12 is proved.

It would be desirable to obtain a degree of commutativity for the groups of
ECF (m, n, p) which depends only on m and p, but the author is unable to do so. In the case
P = 2 of course the problem is very simple, for as we have already seen, [y, (&), y.(G)] =1,
and so by Lemma 3.11, y1(G) <y,_;(G); thus G has degree of commutativity m — 3.

For p =3, we have the following.

THEOREM 3.13. A group of ECF (m, n, 3) (m > 4) has degree of commutativity m — 4.

This may be deduced at once from Theorem 2.16, Corollary 2 and Theorem 3.10.
Alternatively we may prove it by induction on m. For m =5, the theorem is true by
Theorem 2.11. For m >5, we find by applying the inductive hypothesis to G/y,_;(Q)
that G/y,,_,(G) has degree of commutativity m — 5. If we apply the inductive hypothesis
to the group K defined in Lemma 3.1, we find that

[Y2(G), 74(G)] = [¥5(G), y3 (@] = 1;
hence by Lemma 3.7 G has degree of commutativity m —5. Hence

[y2(@), ys(@)] =1,
and by Lemma 2.1 y,(@) is Abelian. It follows from Theorem 3.10 that & has degree of
commutativity m — 4, as required.
These results for p =2 and p =3 suggest that the desired degree of commutativity
for the groups of ECF (m, n, p) will be some such simple form as m — p — 1. That this is
not so is shown by the case p = 5; for example there exists a group of order 5* and class



ON A SPECIAL CLASS OF p-GROUPS 79

13 with degree of commutativity 4 but not 5. The best result which our methods yield
for p =5, and probably the best possible result, is the following.

TaEOREM 3.14. If GEECF(m, n, 5) and m > 5, then G has degree of commutativity
[3(m — 5)]. In particular y,(Q) is of class at most 3.

To deduce that y, (@) is of class at most 3 from the first assertion, we observe that

Y2 (11 (®)=[y1(G), 1 (D] < Ve+rpom-o1(F),
Vs (71 (G)) = [71 (G), e (71 @M< [71 (G), Y2+ 1§(m—5) (MHl< Y3+2(3(m-5)]1 (G),

and similarly
Ya (11 () <vassgem-sn (@)
If m is odd it follows that y,(y,(G)) =1 for m > 7, and if m is even, then y,(y,(G)) =1
for m = 10. But for m =8 y,(y,(()) <y;(G), and by Lemma 3.6 [y, (G), ys (] < ya(G) =1,
since G has degree of commutativity 1; hence y,(y,(G)) = 1. The only remaining cases are
m < 6. For m =4 it is trivial and for m =5, 6 we see from Theorem 2.6 that v, (y, () <
y3(@), and, since G/y;(G@) has degree of commutativity 1,
7s(11(F) < [11(F), 73 ()] < y5(6).

Hence y,(y,(@)) =1.

Theorem 3.14 is trivial for m = 6, and for m > 6 we use induction on m. By Theorem
3.8 @ has degree of commutativity greater than 0. We may therefore assume that m > 7.
Applying the inductive hypothesis to G/y,_, (@) gives

(@), y1 (@] <psiam-en (@)  (i+7<[}(m+5)]).

Applying the inductive hypothesis to the group K defined in Lemma 3.1 gives

i (K), y1 (K< Piasrrgom-on (K),
and this yields, for 1 =2, 3, ..., [3(m +5)],

(@), yyyemron-1(G)]=1.

Hence by Lemma 3.7 G has degree of commutativity [4(m — 6)]. If m is even this com-
pletes the proof.

If m is odd, put m =27 + 1, so that » > 4, and @ has degree of commutativity r — 3;
that is,

(@), v (D] < Yiijers(@) GHj<T+4). (24)
Let (s, s,]EsﬁfI“_s (mod yyiir.2(G)) (1<i<yj, i+§<r+3).
By Lemma 3.5
g =0y (mod 85) 1=1,2,...,[}(r +1)]), (25)

@y + =0y (mod 5) (1<i<j—2,i+j<r+2) (26)
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By Lemma 3.6
a0, =0 (mod 5),
oy + o4 =0 (mod 5) (i =2, ..., min (r — 2, 4)), @7
=0y (mod 8) (:=6,7,...,r—2). (28)
We deduce that
ay= Z (— 1)* l(k :) oiyik-1 (mod 5) (1<i<j. i+j<r+3). (29)

This is correct for ¢ =1; for ¢ > 1 we proceed by induction on 4. If ¢ <j and ¢ +§<r+3,
we have from (26)
Oy =ay_y;— g4y (mod 5),

go that by the inductive hypothesis

i-1 i—1 2
o= kE (= ¥ l(k 1) X1y k-1 2 (— 1kt (k 1)“11+k (mod 5).

) i—2\  [i-2
Hence oay=oy+ kzl( —1)F? {(IZ— 1) + (I:— 2)} ayie1t(—1) Toqyyo1  (mod 5),

and (29) follows.
More precisely we may deduce that if oy, = «, then for 2 =2,3,...,r +2,

ay=a (mod5) (1=2 (mod 4)),
ay=0o (mod 5) (i=3 (mod 4)),
oy =38a (mod 5) (1=0 (mod 4)),
o =0 (mod5) (=1 (mod 4)).

(30)

For :=2,3,...,9 this has to be proved rather carefully from (25), (26) and (27), paying
particular attention to the cases which arise when r is small. The details are as follows:

» dg=0y, (by (25));

» Olog==0lpy (DY (25)), gy == atyg — tyy, Upq =4 — 0y5 (bY (26)), 0,5 =0;

) Oy ==0t1g — Olpg, Opg = g5 — g5 (bY (26)), ags = — o35 (by (27));

3
4
8 =6, ajg=0; — g5 (by (26)), otz = — ay5 (by (27));
7
8, Oty =0y — Gy, gy == Olpg — Olng, Ugg = lgs — %5 (bY (26)), 2y5= — a4 (by (27)).
9

s Olyg == Olyg — Olag, Olag = Ulgy — Olgy, Olgg = Olgg — Otgg (DY (26)), 0tye =045 (by (25)).

For ¢ > 10 we use induction on ¢; by (28) and (29),

5 . 4
Qg =ap-g= 2 (— l)k_1 ) asps (mod 5),
K=l k-1
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or 4“11_3 - 6“1{_2 + 4“1‘_1 =0y (mod 5).

From this (30) readily follows.

(30) comprises all the information which Lemmas 3.5 and 3.6 yield. To prove that
a=0 (mod 5) it is therefore necessary to perform a further calculation with the group
elements, and this we do as follows. We have

(31, 8] = 87,
where x €y, ,,(G). Transforming by s, we obtain
o1, s8] = (s7)"".
By (24) r1(@), 7s(@)] =1,
and so x® =z =8; %[, s,]. Hence, since y,(@) is Abelian,
(s, s3] = [8r, 851" [51, Sel- (31)
Now {51, ss]=81 9, [83, 85]1=87%22,
where y €y,,5(G), 2€¥,,5(G). Since
(V2(@); Yre2(@)] = [11(G), yres (@] =1

and [s, 8;45], [8s, 8y+1] are elements of the centre of G, we see from (1) and Theorem 1.4

that
[s1, 857] = [8, 871, 8, 87%s]

=[8y, 83] [815 $7+2]"® [35) Spsq]™ ™"

Hence by (31) [8rs 85)% = [815 Sr42a1™[Say Sr41]™ "
This gives ooty t GogOypig = 045 lyr+y (mod 5).
or, using (30), o (0tgy — Oprsq T 30,40)=0 (mod 5),

and so by (29)

o{otry — 201,41 + Oirsg — Harey + Aarsg + 3a1rso) =0 (mod 5);
that is, a(oar — 3or41) =0 (mod 5).
Thus by (30), (—1). 3a2=0 (mod 5),
and so «=0 (mod 5). By (30) and (29) a;;=0 (mod 5) for 1 <{ <4, i +j <r+ 3. Hence
V(@) 73 (D] < Piagars (@) (2 <i<f,i+j<r+3)
and [81s 8] €Y1 r_1 ().
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Since s; is an arbitrarily chosen element of y, (@) which does not lie in §,_,(G), it follows

that if y €, ,(G), then s,y belongs to the centraliser of y,(¢) modulo y;.,_,(G), and so
(@, i @] <Pier1 (@) 6=2,3, ..., 7r+2).
By Lemma 3.11 1(Q) <9,(G)

and so G has degree of commutativity r — 2 :=[}(m — 5)]. This completes the proof of
Theorem 3.14.

4. We conclude by turning to the problem of determining the types of p-groups in
certain classes. Our primary aims are to find all 3-groups of maximal class and all groups
of order p% and class 5. To this end we proceed as follows.

Let G' be a metabelian group of order p™ and class » —1 where n > 4, and suppose

that
[21(G)s 72(G)] < yn_s(G).

We use the notation of the last paragraph, and so
8 =[8_1,8] 6=2,3,...,n—1). (32)

Suppose that (85, 8] =8 285 1. (33)

By Theorem 3.13 we may take a =0 if p=3; for p =2 we take = =0. Also, by
Theorem 2.11 we may take « =0 if » = 5; for n =4 we take « =f =0. Then

[81, 8a] = 83" s5=18, 851" 83 =[8", 83185 =[5837, 8,57 2] $3=1[8, 85 82%2] S3,
and so [81, 851 =sn-1, (34)
using (1) and (2). And by exactly the same calculations, for n» >4
Bpsl=1(t=4,5...,n—1). (35)

We shall now work out (ss$)?. For p >3 we may do this by applying Theorem 1.6
taking « =s,y =s{. The group there denoted by Y is y,(G), and by Lemma 2.1 ¥’ be-
comes [y, (@), y5(G}]. Since this is contained in y,_,(G) and by Theorem 3.4, Corollary 1
Yn_o(@) is elementary Abelian, P,(Y’) becomes 1. It is clear from (35) and the fact that
G is metabelian that [Y, p,_, ()] becomes 1 and that

p-2
‘I_Tz (@), yp-1(D]=1.
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Hence Theorem 1.6 gives
@ (P
(ssby? = 8% st 3% ... 0t ... o
where ;=0 (s, sf). Now
oy =[sf, s]=s1%(s])* =57 % (s})* = 1% (8, 8,)°.

Since [y, (@), yn-2(@]=1, 7,(Q) is of class 2, and so by Theorem 1.4

(8, 85)* = si 8§ [, 31](§)

Hence —sgs;a;) Sn_Y (2)
Further =858, % () - 8n_ (é) , 8] =858n_ (2),
and for i=4, 5, ..., p g,=s}. Again since y,_,(G) is elementary Abelian, we see that

for 1=2,3,..,p
4 H:
051)2855) ,

D)e Py
and so (ssi)”=8"s{’5322) 8,(‘) e 8.

For p=2 9,(G) is Abelian and we simply have

(s85) =% (8, 85)° sf = ® s} sf.
For p=3 we have
(881)* = 8% (s1) (s)" o] = 6° (3, 88 85)° (8 85)" 1.

Since again y,(G) is of class 2, we obtain, using Theorem 1.4,

(550 = 6 s ¥ sfafof o [sE o, 1P sy, 5,1,
Collecting together the si and using the fact that
n
(83) " = (s, [, 41 = s P,
this gives (88})% = 8% s¥ 53 5§ 85,
p

Hence for all p (ssf)”=s”(s{’s§2) s,)‘sﬁc_(s), (39)
since the elements sf, s§2), ... all lie in y,(@) and therefore commute with one an-
other.

By Lemma 2.14 s* and (s8s,)” belong to y,-,(G). It follows from (39) that

(2)

sf 83"’ ... 8, lies in p,_, (@), and we write
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=84 (36)

D
o) e —aly. (37)

Finally by Theorem 2.15, Corollary 2 ss, is a conjugate of s for 2 <:<n <1, and so
(88,)?, s are conjugate. Thus (ss,)® = s”. By Theorem 1.6 or by a simple direct calculation
this reduces to

4
) sy, a=1 (i=2,3, ..., n—1). (38)

Equations (32)-(38) are the defining relations of G, and it is easy to verify that such a
group exists for arbitrary «, 8,y and & (except in the cases mentioned when » or p is small)
by using the theorem on cyclic extensions (see [13], Kap. IIT, § 7).

It follows from (36), (37) and (39) that

(ss8)p = gbrrirae(8),
We deduce from this that if £ is not divisible by p, then

o (P
(68 sl ... afn-p)p = glfple st (3). (40)

For let & be a number such that ££'=1 (mod p); when p =3, we take & =£. Then
&si . el s congruent to the &-th power of ssf # modulo y,(&) and is therefore a con-

jugate of this element, by Theorem 2.15, Corollary 2. Hence
(sFsf... 8in-1)? = (s %)™,

and (40) is obtained by applying the above formula for (ss{)?.

Now each group of this kind is determined by the four parameters («, g, y, 8). We
wish to find what relations exist between the sets of parameters of two isomorphic groups
of this kind. Thus suppose that @ is another group and that § is an isomorphic mapping
of @ onto G. In G we use the notation 3, 3, instead of s, s; and we suppose that the four
parameters are (&, §, 7, 9). From ,(G)° =9,(@) : =2, 3, ..., n — 1) follows y, (@)® = y,(G).
Hence we may write

SP=sfofsf ... sfn1l, B =ePap .. g1, (41)
where p does not divide &7,. By (32)

=[5y, 3P = [, F] = [s o .. s1n31, of ool .. sins1l.

By working out each 3? in this way and substituting in all equations corresponding to
(33)—(38), such as B
(8, 8] = (5%-282-1)°,
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we obtain the transformation laws between the parameters («, 8, ¥, §) of @ and the para-
meters (&, f, 7, 8) of G. (Actually of course there is no need to substitute in such equations
as those corresponding to (38), since these are automatically satisfied on account of the
general theory). The necessary and sufficient condition for isomorphism between G' and
@ is therefore that it is possible to find integers &, &, 7, with £, %0 (mod p) such that
these transformation laws are satisfied.

For the calculation of 3, 33, ... we need only proceed to a small degree of accuracy,
and we find the following, using (1) and (2):

R POALS (mod 3, (G)) (n>4),

8 = (mod y, (6) (n=4,5),

% =sgmgend@uen mod y (@) (n-s),

B =gy tebiness e (n=6),

? =g sg-lne*—?(é)m*f'_l"‘ (mod v,,@) (2<i<n—2;n>7),
52_1585.'1_;2"' - (n=4).

It will simplify matters if we replace § by another parameter ¢ which we define as follows.

For p=2,3 we put ¢ =8, £=f, and for p >3 we put
e=f+i(n—4)a, E=f+}(n—4)a.
If we now substitute in the equation
[, 881 = (552 30-1)°

and use the fact that y,_,(@) is elementary Abelian when p is odd, we obtain the trans-

formation laws

an, =&£"* (mod p) (n>6), (42)
en, =" (mod p) (n>5, n+6), (43)
en, =883 — 2aa£é, (mod p) (n =6). (43)

To obtain the transformation laws involving y and é we use (40). This gives
@)P  =gparee(3),

But also @P° =@y =m0,
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and so 08 2y =08+ yp& +ebl} (g) (mod p). (44)
We also deduce from (40) that
(s8,)? = 5108 (3),
It follows that the analogous formula in G holds, namely
(33,7 =55%5B (5).
We transform this equation by 6 and substitute for each 39; the left-hand side becomes
(fsft ... sl 1s]sle .. sTn1)P,

and by Theorem 2.15, Corollary 2 this is equal to (s¢si**™)*. Hence we obtain
8E+y (E,+m) +BE &+ ) (’;)ssﬂ-z (8+;‘»+5(§)) (mod p).

If we substitute with (44) for § and, for p = 3, with (43) or (43’) for § =&, remembering
that for p =3 « =& =0, we obtain

pE T =y —4delE, (g) (mod p). (45)

(42)—(45) are the required transformation laws. The number of types of groups of the
kind considered is therefore equal to the number of classes of parameters, where the para-
meters (a, ¢, y, 0) and (&, &, 7, 8) belong to the same class if and only if there exist numbers
&, & and 7y with £#,3 0 (mod p) such that (42)-(45) hold. We determine this number by
finding a standard set of parameters in each class.

We consider first the case when
[71(@), 72(0)]. = Yn-2(G),

that is, when « = 0 (mod p), and this case arises only when p =5, n > 6. In (42) we may
put £ =1 and choose %, such that an, =1 (mod p), from which it follows that in each
class of parameters there exists at least one set in which «=1 (mod p). Therefore in each
such class we may consider the standard set to have a =1, and for further reductions we
only consider those sets in which « = 1. Thus by (42)

T EEH_“ (I!].Od p),
and (43)-(45) reduce to
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e=t& (mod p) (n=17); e£=Ef%—2£, (mod p) (n =6);
08 +y&,=0£""° (mod p); y=p&"? (mod p).

For n > 6 we now argue in exactly the same way with ¢; in all sets in a given class
either p divides all the ¢ or it divides none of them. We consider first those classes in
which £30 (mod p), and by putting & =¢, & =0, we see that in each such class there
exists at Jeast one set in which ¢ = 1. Thus we may take ¢ =1 in the standard set of each
such class and need only consider those sets in which ¢ =1. Thus £=1 (mod p), and the

transformation laws reduce to

§=6+y& (mod p); $=y (mod p).

It follows that v cannot be altered within a class. If in any class y % 0 (mod p), we choose
a number ' such that yy'=1 (mod p) and put & = — y’d; thus there exists a set in this
class having §=0 (mod p). If in any class y=0 (mod p), than J cannot be altered. Thus
we obtain the 2p —1 standard sets (1,1,y,0) where y=1,2,...,p—1, and (1,1,0,9)
where 6 =0,1,...,p—1.
If « =1 but £ =0, we observe that throughout the sets of such a class either p divides
y or it does not. In the latter case there must exist in each class a set with =0 (mod p),
for we may put £ =1, & = — ' as before. Within such a class y can be multiplied by
any number of the form £"-2 with £% 0 (mod p), and there are (p~1)/(n —2,p—1)
residue classes modulo p expressible in this form, since the number of solutions of the
congruence {"~2=1 (mod p) is (n — 2, p —1). Hence y may be reduced to one of (n — 2,
p — 1) standard forms, and we obtain this number of standard sets of parameters. When
=0 (mod p) a similar argument shows that § may be reduced to one of (2n —7,p — 1)
standard values which are not divisible by p or to zero. Altogether the number of stan-
dard sets in which p does not divide « is

2p+(n—-2,p—1)+(2n—T7,p—1).

In the remaining cases similar arguments are used and they need only be sketched.
If x =1 and » = 6 we can make £ = 0 and must then have & =0 (mod p). If y = 0 (mod p),
y can be assigned one of (4, p — 1) values, and so £*=1 (mod p); 4 may then be chosen
to have one of (p —1)/(4, p —1) + 1 values, and so the total number of standard sets is
p—1+(4,p—1). If y=0 (mod p), 6 can be assigned one of 1+ (5, p —1) values. We
have therefore proved the following.

THEOREM 4.1. For p >3 the number of types of metabelian groups G of order p" and
class n — 1 in which
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1@, 72 (D] = y,2(F)
iptd,p-1)+6,p—1Difn=0and2pt(n—2,p-1)+2n—-T,p—-1)if n>6.
We now consider the case
[1(G), v2(G)] =y (G),

which arises when » > 5 and p > 3. This case is characterized by «a =0, ¢ 0 (mod p).
From (43) and (43’) we see that we may take ¢ =1 and must then assume that 7, =&"-3
(mod p). For p >3 we see from (45) that, if p does not divide y, then y may be assigned
one of (n— 2, p—1) standard values and from (44) that we may take 6 =0, whilst if p
divides y, then 4 may be assigned one of 1 + (2n — 6, p — 1) values. For p =3 we may
take y =0 and must then have £, =0 (mod p); d cannot then be altered since £2=1
(mod 3).

THEOREM 4.2. For n =5 and p > 2 the number of types of metabelian groups G of
order p™ and class n — 1 in which

[y (@), }’2(0)] =Y (@)

18 3 for p=3 and 1+ (2n—6,p—1).+(n—2,p—1) for p>3.

Finally we consider the case when v, (@) is Abelian, that is, when a=e=0 (mod p):
this arises when » > 4 for all p. If y is prime to p, then y can be assigned one of (n — 2, p —1)
values and 0 can be chosen to be zero. If p divides y, then § can be chosen to be either
Oorl.

THEOREM 4.3. For n >4 the number of types of p-groups of maximal class of order
p" which possess an Abelian maximal subgroup is 2 +(n—2,p —1).

Theorem 4.3 was proved by Wiman [11]. The number of groups of order ° and
class 4 is by Theorems 4.2 and 4.3 3 + (4, p — 1) +2(3, p — 1) for p > 3, and this coincides
with the result of Schreier [9]. Theorem 4.1 is in conflict with a result of Wiman (see
[12], page 344).

Theorem 4.3 contains the well-known result that the number of 2-groups of maximal
class of order 2" is 3 provided that » > 4. Similarly all 3-groups of maximal class may
be determined from Theorems 4.2 and 4.3. For » > 5 there exist 3 groups which possess
no Abelian maximal subgroups: their defining relations are (32)-(38) with ¢« =y =0,
B=1and §=0,1,2. If n is even and n > 4 there exist 4 groups with an Abelian maximal
subgroup: their defining relations are (32)-(38) with x = =6=0,y=1,20ra=8=y =0,
6=0,1. If n is odd and n > 5 there exist 3 groups with an Abelian maximal subgroup:
their defining relations are (32)-(38) with « ==0=0,y =1 or a=f=9=0,0=0, 1.
The first of these results is different from that of Wiman [12].
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These results do not enable us to determine all groups of order 2° and class 5 because
not all such groups are metabelian. Thus let @ be a non-metabelian group of order p®
and class 5. We then have

1 <'}’é (@) =[7:(@), ys(D] < y5(F)

by Lemma 2.1: hence [y,(G), y3(G)] =94(G). Thus G does not have degree of commu-
tativity greater than 0, and so by Theorem 3.8 p > 3. Also the centraliser of ,(G) is a
maximal subgroup different from v, (), and so we may choose s to be an element which
belongs to the centraliser of v,(G) but not to y,(@). s; denotes as usual an element of
v1 (@) which does not belong to v,(G), and we define

89 = [81’ 8], 83 = [82: 8]’ 8y = [53’ 8]’ 85 = [84’ 81]' (46)

Then s; and y;.,(G) generate y, () for © =2, 3, 4, 5. By the definition of s
[84 8] =1, (47)
and by Lemma 2.9 [89, 83] = 85. (48)

We transform the first equation of (46) by s, and obtain

82 = [siz, Ssz] = [31 [81, 82]’ 8[8, 82]]'

Since [sy, s,] lies in yp,(G) and the elements of y,(@) commute with s and the elements
of y4(G), this gives
o1
8y=[s;, 8551 =[5y, 83 ']82° =[s3, 81828

by (1), (2) and (48). Hence [8, $3]=s5". (49)

Let us now put §=3s, 5, = 8,6 and define 8y, 53, 84, 85 by relations similar to (46).

Then 8y =8,8%8%, S3= 83, 8= Sy, 85= 8.
Hence [51s Sa] = [8, 85, 85851 =18, 85] 85%,
so that if [81, 85] = %85, then [3,, 8,] =5%50 2.

Thus by suitably choosing { we may ensure that [5,, 5,] = 5. We drop the bars and write
[8is 8o] = 84%. (50)

Finally by Theorem 3.2 we may write
sP=st, P =g, =88 =sf=s0=1. (51)

(46)-(51) are therefore the defining relations of G.
7~ 583801. Acia mathematica. 100. Imprimé le 25 octobre 1958.
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To determine the types we shall adopt the same procedure as above. It will be seen
that this amounts to making a substitution
§—>8, 8§;—>8,

and finding what conditions on 8 and 5, are required to preserve each of the defining
relations, apart from replacing the parameters; we must also find the relations between
the old and the new parameters. 3 and 3, are to be chosen to stand in the same relation

to the characteristic subgroups of G as s and s, respectively. Hence we must take
s=gfs5 ... sk, 5, =808y ... 8P,
where &7, is not divisible by . 8,, 3;, 8,, 85 are defined by relations similar to (46), and so-

Sy=s§" (mod y3(@)); Fy=s™ (mod v4 (@)

gdzsi"h (mod Vs (G)) ; ',3"5 = gg'm'.
Thus the relation (51, 5,]=8 (mod y4(@))
yields o, =a&é? (mod p). - (52)

Similarly we must work out the relations
st=%, ¥-3

Now the group generated by 3 and y,(G) is a regular p-group, since its order is p® and
p 2 5. Also y,(Q) is of exponent p, and so

3P = g% = g%,

Also 3 =30 = ol
Hence E916=4 (mod p), (53)
and similarly Eny=y (mod p). (54)

There is one more fact to be considered: the substitution must be so chosen that
[51, §2] = EE»

and not merely that this holds as a congruence modulo y;(@). However we may ignore
this because if this equation fails to be valid after the substitution made in reducing the
parameters to a standard set, we may make it true by making a second substitution in
which £ =%, =1 and all the &, #, are zero except 7;. This will not affect the values of

«, v, on account of the transformation laws (52)—(54).
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To find the standard sets of parameters we consider first the case

1(G), v2(G)] = 7,4(G);

this is characterized by «=* 0 (mod p). By (52) we may take a =1 and must then assume
that 7, =£2 (mod p); (53) and (54) then become

0=8&°, y=9& (mod p)

If p does not divide y, then v may be reduced to one of (5, p — 1) standard values, and
we must then assume that £> =1 (mod p). 4 may then be assigned one of 1 + (p — 1)/ (p — 1,5)
standard values, and so altogether we obtain p —1 + (p — 1, 5) standard sets of para-
meters. If y=0 (mod p), then § may be assigned one of 1 + (p — 1, 6) values.

THEOREM 4.4. For p > 3 the number of types of non-metabelian groups G of order p°
and class 5 in which
[Y1(G), y2(G)] = y4(G)
wspt+(@—15+(p—1,6).
In the case [y1(@), p2 (D] =5 (G),

that is, =0 (mod p), we proceed as follows. If y is not divisible by p, we may suppose
that y =1 by (54) and must then assume that &3z, =1 (mod p). Hence £&*6=4 (mod p)
and & can take one of 1+ (p —1,4) standard values. If y=0 (mod p), then § can be
assigned the value 0, 1 or a quadratic non-residue modulo p by (54).

TuEOREM 4.5. For p > 3 the number of types of non-metabelian groups Q of order p®

and class § in which

71(G), y2(@)] = 5(G)
134+ (p—1,4).

From these results all groups of order p® and class 5 can be determined and for p >3
the total number of them is

2p+7+4(p—1,4)+2(p—1,5)+2(p—1, 6).

The five classes into which these groups are divided in Theorems 4.1-4.5 are the five
families into which they fall in the sense of Hall [5]. Using the ideas of Hall’s classifica-
tion theory Easterfield [2] has determined all groups of order p° and the above results
coincide with those of this author. For p =2, 3 the groups of order p® and class 5 are of
course already determined by Theorems 4.2, 4.3.
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