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A Carleman type theorem for 
proper holomorphic embeddings 

Gregery T. Buzzard and Franc Forstneric 

1. I n t r o d u c t i o n  

We denote by C the field of complex numbers and by R the field of real num- 
bers. To motivate our main result we recall the Carleman approximation theorem 
[4], [11]: For each continuous function /~: R--~C and positive continuous function 
~1: R--*(0, c~) there exists an entire function f on C such that If(t)-)~(t)l<~l(t) for 
all tER.  If ~ is smooth, we can also approximate its derivatives by those of f .  A 
more general result was proved by Arakelian [2] (see [14] for a simple proof). 

Let C ~ be the complex Euclidean space of dimension n. Our main result is an 
extension of Carleman's  theorem to proper holomorphic embeddings of C into C n 
for n > l :  

1.1. T h e o r e m .  Let n > l  and r>_O be integers. Given a proper embedding 
A: Rr '~ of class C r and a continuous positive function 7: R--*(0, oc), there exists 
a proper holomorphic embedding f: C~-~C n such that 

If(s)(t)-)~(~)(t)i<~(t), t E R ,  0 < s < r .  

If in addition T = { t j } c R  is discrete, there exists f as above such that 

f ( s ) ( t ) = A  (s)(t), t C T ,  0 < s < r .  

Definition. Two proper holomorphic embeddings f,g: Cr n are said to be 
Ant Ca-equivalent if Oof=g for some holomorphic automorphism �9 of C n. 

1.2. C o r o l l a r y .  For each n > l  the set of Ant Ca-equivalence classes of proper 
holomorphic embeddings Cr n is uncountable. 

For n > 3  the corollary is due to Rosay and Rudin [16]. The corollary follows 
from Theorem 1.1 and a result of Rosay and Rudin [15] to the effect that  for each 
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n > l  there exist uncountably many discrete sets in C n which are pairwise inequiv- 

alent under the group of holomorphic automorphisms of C ~. Theorem 1.1 provides 
for each discrete set E = { e k : k = l ,  2,3, . . . } c C  n a proper holomorphic embedding 

fE: C r such that  fE(k)=ek  for all k = l ,  2, 3, .... (For n > 3  such embeddings 
were constructed in [16].) Clearly the embeddings corresponding to inequivalent 
discrete sets are inequivalent. 

In this context we recall that  the first construction of proper holomorphic 
embeddings Cr 2 which are inequivalent to the s tandard embedding ~-* (r 0) by 
automorphisms of C 2 can be found in [8]. On the other hand, it is well known that  
all polynomial embeddings Cr 2 are equivalent to the s tandard embedding by 
polynomial automorphisms of C 2 [1], [18]. 

Remark 1. We emphasize that,  in Theorem 1.1, one cannot expect in general 

to extend ~ to a holomorphic embedding of C into C ~. If A is real-analytic, it 
will extend holomorphically to some open set in C, but  in general not to all of C; 
and even if A extends to all of C, the (unique!) extension need not be a proper 
map into C% So the best we can do in general is to approximate ), by a proper 
holomorphic embedding as in Theorem 1.1. 

Remark 2. If the embedding A: R~--*C ~ is of class g ~ ,  our method can be 
modified so that  we approximate to increasingly high order on complements of 
compact  subsets of R.  Another possible extension is to approximate a proper 
smooth embedding by a proper holomorphic embedding on a set of disjoint lines or 
other real curves in C. We shall not go into details of this. 

The original motivation for Theorem 1.1 was the question, communicated to us 

by R. Narasimhan, as to whether there exist proper holomorphic embeddings f :  C ' ~  
C 2 such that  f ( C )  is a nontrivial knot in C 2, i.e., C 2 \ f ( C )  is not homeomorphic to 
C 2 \ ( C  x {0}), the complement of the embedding ~-+(~, 0). Unfortunately we have 
not been able to construct such embeddings with the aid of Theorem 1.1 because 
real one-dimensional curves in C 2 ~ R  4 are always unknotted.  

In order to place Theorem 1.1 in context we recall some recent developments 
on embedding Stein manifolds in C n from [3], [7], [8], [9]. (For Stein manifolds 
and other topics in several complex variables mentioned here we refer the reader to 
Hhrmander [12].) In those papers it was shown tha t  a Stein manifold M which 
admits a proper holomorphic embedding in C n for some n > l  also admits an 
embedding f:Mr n whose image f ( M ) c C  n contains a given discrete subset 
E c C  ~ [7, Theorem 5.1]. (Recall that  any Stein manifold M embeds in C n for 
n > � 8 9  according to Eliashberg and Gromov [5].) With methods of 

the present paper  one can show moreover that  for each pair of discrete sets A =  
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{a j }~_ lcM and E={e j }~_ lCC n there exists a proper holomorphic embedding 
f :  M~-+C n such that  f (a j )=ej  for j = l ,  2,3, .... 

In light of this, a natural  question is whether one can replace discrete sets in 
M by certain positive dimensional submanifolds N c M ,  i.e., when is it possible 
to approximate a smooth proper embedding )~:N---+C n by the restrictions to N 
of proper holomorphic embeddings f :  Mr For compact,  totally real, holo- 
morphically convex submanifolds N c M  the answer is affirmative and it follows 
immediately from the approximation theorems in [61 and [10]. The case when N is 
noncompact is much harder. Our main result in this paper  provides an affirmative 

answer in the simplest such case when M = C  and N = R •  { i 0 } c C .  I t  seems likely 
that  the result remains valid when N is a properly embedded real line in any Stein 
manifold M. The details of our construction are considerable, even in this simplest 
case, and the full scope of the method remains to be seen. 

The paper  is organized as follows. In Section 2 we introduce the notation and 
give an outline of the proof of Theorem 1.1. In Section 3 we collect some technicM 
lemmas needed in the proof. The details of the proof of Theorem 1.1 are given in 
Section 4. 

The second author acknowledges partial  support  by an NSF grant and by a 
grant from the Ministry of Science of the Republic of Slovenia. 

2. O u t l i n e  o f  p r o o f  

Since the proof of Theorem 1.1 is somewhat intricate, we give in this section 
an outline of the proof. We also recall a technical result from [10] (Proposition 2.1 
below) which will be used in the proof. 

We begin by explaining the notation. We denote by A~ the closed disc in C of 
radius O and center 0, by B the open unit ball in C n with center 0, and by R B  the 

ball of radius R. For a set A c C  n and p>O, let A+oB={a+z :aEA ,  [zl<_O}. We 
identify C and R with their images in C n under the embedding @-+(~,0, ... ,0). 

For l<_j<_n we denote by ~j the coordinate projection Irj(zl ,... , z~)=zj. 
In the proof we shall use special automorphisms of C n of the form 

�9 (z) =z+f(~rz)v, z � 9  C ~, 

where v � 9  ~, 7r: C~--+C k is a linear map for some k<n with 7rv--O (in most cases 
k = l ) ,  and f is an entire function on C k. An automorphism of this form is called a 
shear; clearly ~ - 1  (z) = z -  f(Trz)v. 

One of the main technical tools in our construction is the following result 
from [10]. The case r=O was obtained earlier in [9]. This result can also be obtained 
by methods in [6]. 
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2.1. P r o p o s i t i o n .  Let K c c C  n (n_>2) be a compact, polynomially convex set, 
and let C c C  n be a smooth embedded arc of class C ~ which is attached to K in a 

single point of K .  Given a C a diffeomorphism F: K U C - + K U C '  c C  n such that F is 
the identity on ( K U C ) N U  for some open neighborhood U of K ,  and given numbers 
r>_O, r  there exist a neighborhood W of K and an automorphism (I)EAut C n 

satisfying 

II~-Idllc,-(w)<~, II~-FIIc,-(c) <c. 

(Here Id denotes the identity map.) Moreover, for each finite subset Z C K U C  we 
can choose q) such that it agrees with the identity to order r at each point z E Z N K  

and q~[c agrees with F to order r at each point of Z NC.  

The same result holds with any finite number  of disjoint arcs attached to K.  

We now give the outline of the proof of Theorem 1.1. We wish to approximate a 
given proper embedding A: R~-~C n by the restriction to R of a proper holomorphic 
embedding f :  C~-~C n. By standard results we may assume that  A is Coo and 
that  any C r map of R into C n which has C r distance less than r/(t ) from/~ (as in 

Theorem 1.1) is a proper embedding. 

We start  with the standard embedding ?0( t )=( t ,  0, . . .  , 0) and identify R with 
"y0(R). We inductively define automorphisms of C n of the form fk=q~k . . . . .  iPl o91 o 
.... ~k, where each (I)j and II/j is an automorphism of C n chosen so that  fkl~o(n) 
approximates A on larger and larger compact sets. Moreover, we construct the se- 
quence fk such tha t  the limit f=limk-+oo fk exists on an open set D c C  n containing 
C x {0}, and f is a biholomorphic map of D onto C ~. The restriction of f to the 
Zl-COordinate axis is then a proper holomorphic embedding of C = C  x {0} into C n 
satisfying the required properties. 

The inductive correction proceeds as follows. We assume tha t  there is an 
interval Ik c R  such that  fk approximates/~ on Ik in the sense of Theorem 1.1 and 
that  both  A(t) and fk(t)  lie outside some closed ball Bk for t~ Ik .  We want to 
produce an interval Ik+l and a ball Bk+l, each of which has radius at least one 

greater than the corresponding set at the kth stage, and a map  fk+l which gives 
the desired approximation on Ik+l.  

We do this by applying a version of Proposit ion 2.1 to get an automorphism 
~k+l which is close to the identity map on the sets fk(Ik),  Bk, and fk(Ak+l) ,  and 
such that  ~k+lofk approximates A on Ik+l. In order to apply Proposition 2.1, we 
define a polynomially convex set Kk which includes Bk, fk(Ak+l) ,  and most of 
fk(Ik),  and we also define a smooth, proper embedding Ak: R--+C ~ which agrees 
with )~ on R \ I k ,  agrees with fk. on most of Ik, and is C~-near )~ everywhere. We can 
then apply Proposit ion 2.1 via Lemma 3.4 to get r so that  (I)k+l o fk approximates 
,~ on some larger interval Ik+l and is near the identity on Kk (this is required for 
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convergence). 
The problem now is that  the point ~k+lofk( t)  may come very close to the 

previous ball Bk for some t E R \ I k + l .  Unless we control this distance from below, 
the limit map may not be a proper embedding. Hence we precompose Ok+l ~ fk with 
a shear of the form ~k+l(Z)=Z-}-Pk+l(Zl)Pk+l, for some #k+l holomorphic in one 
variable and some vector ~k+l with 7rl~k+1----0. By Lemma 3.2, we can choose ~k+l  
near the identity on Ak+l UIk+l and such that  ~Pk+l~176 (R\ Ik+l )  avoids some 
larger ball Bk+l. Except for technicalities, this finishes the induction. 

The proof is completed by showing that  f = l i m k ~  fk exists and gives a 
proper holomorphic embedding of C = C  • {0} to C n. This is so because the limit 
�9 =limk--+~ ~1 . . . . .  ~k exists and is an automorphism of C n, while the limit ~---- 
l i m k ~  ~k . . . . .  ~1 exists on an open set ~ c C  ~ containing q2(C• and ~P: gt--+ 
C n is a biholomorphic map onto C ~. Thus f=(I )o~ is a biholomorphic map from 
D = ~  -1 (~) onto C n whose restriction to C • { 0 } c D  provides the desired proper 
holomorphic embedding into C ~. The approximation properties of f are clear from 
the inductive step. 

3. S o m e  l e m m a s  

The following is standard, e.g., [13, Proposition 2.15.4]. 

3.1. L e m m a .  Let A: Rr n be a C ~ proper embedding. Then there exists a 
continuous ~: R--+ (0, oc) such that if  V: R--+ C n with IV (s) (t) -)~(s) (t) l < ~(t) for all 
tEl:t, s=0,  1, then 7 is a proper embedding. 

Recall that  a compact set A C C C  n is polynomially convex if for each z c C ' ~ \ A  

there is a holomorphic polynomial P on C n such that  IP(z) l>max{IP(w) l :weA}.  
We refer the reader to [12] for properties of such sets. 

3.2. L e m m a .  Let A c C  n be compact and polynomially convex and Q>0. Let 
I C R  be an interval whose endpoints lie in c n \ ( A U / k e ) ,  and let r , c > 0 .  Then there 
exists an automorphism ~ ( z )=z+g( z l ) e2  of C ~ such that 

(i) IV(z)-zl<  for 
(ii) IIq21R(t)-tllc~(i ) <c, and 

(iii) ~ ( t ) ~ A  for t e R \ I .  
I f  Z C I  is finite, we can choose �9 as above so that g(S)(t)=0 for t E Z ,  0 < s < r .  

Proof. Let #1 <#2 denote the endpoints of I in R,  and let F j - -{ (# j ,  4, 0, . . .  , 0): 
~CC} for j = l ,  2. Let R>max{It t l l ,  1#21}+1 such that  A c R B .  Consider the set 
Ej  =AAFj .  Since A is polynomially convex, Ej is polynomially convex in Fj and 
hence F j \ E j  is connected. Since the endpoints of I lie in F j \ E j ,  there exists a 
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smooth curve 3'j: [0, 11-~Fj \Ej  with 7 j (0 )=(# j ,  0,.. .  , 0) and [Tr27j(1)[ > R + I  for 
j = 1 , 2 .  

Since A is compact, there exists 6>0  such that ~/j([0, 1 ] ) + 3 ~ B c C n \ A .  Let 
7r2(z)=z2. Let K = { x + i y E C : # l  1 1 < ~ + 1 } .  a - ~ ( 5 < x < # ~ +  ~(5, lY[ Define function 
h: KU[-R ,R] -+C by 

/ ~r271 (1), if t E [ -R ,  #1 - 2~1; 

712~/1 ( ( ~ l - 6 - t ) / 6 ) ,  if t E [#1--2~, #1--~]; 

h(t) = 7r2~/2((t-1~2-6)/6), if t E [/z2+6,#2+2~]; 

7r272 (1), if t E [p2 +26, R]; 

0, otherwise. 

Choose r/, 0<r /<min{e , 6}. By Mergelyan's theorem [17, Theorem 20.5] there is 
an entire function g on C such that Ih(z ) -g(z ) l<n for z E K U [ - R ,  R]. The shear 
�9 (z)=z+g(zi)e2 then satisfies (i) and (iii). Since I C I n t K ,  Cauchy's estimates 
imply that  it also satisfies (ii) provided that r]>0 is chosen sufficiently small. The 
last condition on g is a trivial addition to Mergelyan's theorem. [] 

3.3. L e m m a .  Let A:Rr n be a proper, C ~ embedding, K c C  n compact, 
e>0,  and rEZ+.  Let Z c R  be finite, and suppose A ( t ) E C = C x { 0 }  n-~ for each 
tEZ.  Then there exists a shear q~(z)=z+h(zl)v for some vEC n with 7rlV=O such 
that 

(i) ~P(C) M)~(R) =)~(Z), 
(ii) I O ( z ) - z l < e  for zEK,  and 
(iii) qJ(z)=z+O(]z-A(t)] r+l) as z--+A(t), for all tEZ.  

Proof. Let Z={ty}~=l. For CEC let h(~)=Hl<_j<_~(r ~+1. Consider 
the map @: CxC'~-I---~C ~ given by 

e ( z l ,  , . . . ,  = (zx, 0 , . . . ,  0 ) + h ( z l ) ( 0 ,  , . . . ,  

Clearly q5 is an automorphism of (C\A(Z))  x C n-1. Let An,j denote the closed disc 
of radius R in C with center ~rlA(tj) for j = l ,  2,.. .  , s. Choose R > 0  such that the 
discs An,j for l<_j<s are pairwise disjoint. Choose a p, 0< t )<R ,  such that t) 2 is a 
regular value of #j(t)=l~rlA(t)-TrlA(tj)] 2 ( tER)  for each j = l ,  2,.. .  ,s. 

Let Mo=C\Ul<_j<_sintAo, j. Let ~o=~[MoxC~-i and Oc~=-f f2 loMoxCn 1. A 
simple check shows that B e and 0qse are transverse to A(R). Hence by the transver- 
sality theorem, there exists a set A o c C  n-1 of full measure such that for each 
c~=(c~2, ... , an)EA o, ~ ( M  o, c~)={~(Zl, c~):Zl EMe} and A(R) are transverse, hence 
disjoint by dimension considerations. 
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A Let =Nj=IA1/j .  Then A c C  ~-1 has full measure, and for each a E A  we see 
that  O(C\A(Z), (~) and )~(R) are disjoint. Finally, choose a e A  such that  ]h(zl)c~] <e  
for z l e ~ ( g ) ,  and let ~(z)---z+h(Zl)a. Then ~ ( z l , 0 , . . .  , 0 ) = ~ ( z l , a 2 , . . .  , an) ,  
and �9 satisfies the conclusions of the lemma. [] 

3.4. L e m m a .  Let/~: Rr n be a C a embedding, f: Cr n a proper holomor- 
phic embedding, and I c R  a closed interval with f]i---A[r. Let K c C  n be compact 
and polynomially convex, a, r , s > 0 ,  and T C R  discrete. Suppose that A ( t ) , f ( t ) ~ K 
for t E R \ I .  Then there exists ~ E A u t C  '~ such that if g={~of, then 

(i) ]g(S)(t)-A(s)(t)[<r for te[-a,a],  O<_s<_r, 
(ii) g(~)(t)=i~(~)(t) for teTn[-a ,a] ,  O<_s<_r, and 
(iii) ] O ( z ) - z ] < s  for z e K .  

Proof. We may assume that  I c ( - a , a ) .  Let I1, I2 be the two connected com- 
ponents of {~EI: f (~)ECn\K}  containing the respective endpoints of I,  and let 
Io=I\(IiUI2). Let A be the polynomial hull of KUf(Io).  Then A is the union of 
KUf(Io) and the bounded connected components of f (C) \ (KUf(Io)) .  Note that  
f(I1)  and f ( I2)  lie in f ( C ) \ A  since f ( t ) ~ K  for all t e R \ I .  

Let L=AUI([ -a ,  a]). Then C = L \ A  is the union of two embedded arcs, each 
containing an endpoint of f ([-a,  a]). Define F on L by F(z)=z  if zeA ,  and F(z)--- 
)~f-1 (z) if zEf ( [ -a ,  a]). Then F is a C ~ diffeomorphism of L which extends as the 
identity map on (AUC)NU for some neighborhood U of A. Apply Proposition 2.1 
to get O E A u t C  ~ such that  ] r  for z e K  and such that  g=(~of satisfies 
(i) and (ii). [] 

4. P r o o f  o f  T h e o r e m  1.1 

Choose a smooth cutoff function X on R such that  x( t ) - -1  for It] small and 
s u p p x C ( - 1 ,  1). Define the constant C=Cr>I  such that  IIxh][c~<C[[h[[c ~ for each 
h e g r ( R ) .  We fix such C for the entire proof. 

By approximation we may assume that  )~: Rr n in Theorem 1.1 is a proper 
C ~ embedding. Decreasing ~] if necessary we may also assume that  ~? satisfies 
Lemma 3.1 for A and ~( t )< 1 for all t E R .  

We use an inductive procedure to obtain a sequence of proper holomorphic em- 
beddings fk: C~-+C n such that  f = l i m k ~  fk exists on C and satisfies Theorem 1.1. 
Each fk will be a restriction to C=C•  (0} n-1 of a holomorphic automorphism 
of C n. The next map fk+l will be of the form fk+l=q~k+]ofko~k+l for suitably 
chosen ~k+l,  ~k+l EAut C n. 
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We will describe the case k=  1 after the inductive step is given. Recall that  Ak 
is the closed disc in C = C  x {0} n-1 with center 0 and radius k, and B is the unit 
ball in C n. For the induction at step k, suppose we have the following: 

(a) closed balls Bj = Rj B c C ~ with Rj ~ max{j  + 1, Rj_  1 ~- 1}, j = 1 , . . . ,  k, 
(b) automorphisms O1 ,... ,Ok of C a with IOj(z)-zl<2-J for zEBy_I, j= 

2,. . .  ,k, 
(c) numbers ~ j>0  such that  c1<2 -1 and cj<lcj_l<2 -j  for j=2,  ... ,k, 
(d) automorphisms ~1, . - .  ,~k  of C a of the form q2j(z)=z+gj(zl)e2+ 

hj(zl)vy, where 70(vj )=0 and I ~ j ( z ) - z ] < s j  for Izl<_j, 
(e) closed intervals Ij = [-aj, aj], j= 1,... , k, with aj >max{a j_ l  +2, j +2}, 

and 
(f) numbers 0<by < 6  -1 inf{v(t):te/j}, j=l , . . . ,  k, 

such that  the automorphism 

fk = Ok .... O1o~1 . . . . .  ~k E Aut C n 

(whose restriction to C = C  • {0} n-1 provides an embedding Cr n) satisfies: 
(lk) f k ( A j + c k B ) C I n t  By for j = l , . . .  , k, 

(2k) If(~)(t)-;~(s)(t)l<~(t) for telk and 0 < s < r ,  

(3k) If(~)(t)-)~(s)(t)l<hk for tEIk\(--ak+l, ak--1) and 0 < s < r ,  

(4k) f(~)(t)=)~(~)(t) for tETNIk, O<_s<_r, 
(hk) fk(C)N;~(R)=A(TNIk), 
(6k) I)~(t)l>Rk+l for Itl>_ak-1, 
(7k) IA(t)l>Rk for Itl>ak-1. 
We will now show how to obtain these hypotheses at step k + 1. Let I 1 and I~ be 

the two connected components of the set {~ C Ik \Ak+1:1 fk (~)1 > Rk } containing the 
respective endpoints of the interval Ik. Let 0_  1 2 I~-Ik\(I~ UIk) be the middle interval. 
By (7k) we have I ~  ak -1 ) .  

Let Kk be the polynomial hull of the set BkUfk(Ak+~UI~). Since fk(C) is a 
complex submanifold of C ~ and Bk is polynomially convex, it is seen easily that  
Kk is contained in BkUfk(C), and it is the union of Bkufk(Ak+lUI ~ and the 
bounded connected components of the complement fk(C)\(BkUfk(Ak+l UI~ (see 
Lemma 5.4 in [7]). Note that  (Tk) and ( e ) imp ly  that  fk(R\(--ak+l, ak--1))C 
Cn\Kk.  

Choose R k + l > R k + l  such that KkC(Rk+I-1)B, and let Bk+I=Rk+IB. 
Choose ak+l>ak+2 to get (6k+1). We now want to approximate /~ on the larger 
interval Ik+l=[-ak+~,a~+~] by the image of the next embedding Cr n (to be 
constructed). In order to apply Lemma 3.4 we first approximate A as follows: 

4.1. L e m m a .  There exists a proper C ~ embedding A~: Rr ~ satisfying 
( i ) ) ~ = f ~  on [--ak+l, ak--1], 
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(ii) A~=A on R\Ik, 
(iii) IA(~)(t)-A(~)(t)l <~(t) for t~Ik \(-a~ + l, ak--1), O<_s<_r, 
(iv) A(~)(t)=A(~)(t) for t~T, O<_s<_r, and 
(v) A~(t)~Kk when Itl>a~-l. 

Proof. We define the cutoff function Xk on R using X, so that  Xk =0 on R\I~ ,  
x k = l  on [--ak+l,ak--1], and IIxkhllc~<CIIhllc~ as before. Let 

 k(t) t 

By Lemma 3.1, (3k), (4k), and choice of zl and ~k, we see that  (i) (iv) are satisfied 
for Ak in place of Ak. 

To obtain (v) we use a transversality argument to perturb Ak on the set 
Ik\(--ak§ ak--1). First note that  if [t[>ak, then ]Ak(t)[=[A(t)[>Rk+l by (6k), 
so Ak(t)~Bk. Also, by (hk), we see that  Ak(t)~fk(C), so Ak(t)q~Kk. Next, if 
teTn(Ik\(--ak+l,  ak--1)), then by (4k), (7k), and (e) we see that  Ak(t)=fk(t)q~ 
Kk. Hence there exists a neighborhood V of TN(Ik\(--ak+l,ak--1)) such that  
J,k (V) n = O. 

Thus we need only perturb Ak on Ik\(VU(--ak+l,ak--1)) to get (v). Note 
that  if tEIk\(--ak+l, ak--1), then from (6k) and (2k) we see that  [Ak(t)[>Rk+�89 
so Ak(t)~Bk. Finally, a simple transversMity argument implies that  we can make 
an arbitrarily small C ~ perturbation of Ak to avoid fk(C), and hence we get Ak 
with Ak=Ak outside Ik\(VU(--ak+l,ak--1)) and Ak satisfying (i)-(v). [] 

Now we can use Lemma 3.4 to approximate Ak, hence to approximate A. Set 

5k+1 = min{~](t): t E Ik+l } /2C, 

O'k+ 1 ~--- min{~](t)-[A (~) ( t ) -  A (~) (t)]: t E Ik+l ,  0 < 8 < r}  > O. 

Choose r  so small that  

~<min{2-(k+l),hk+l,ak+l} , f k (Aj+ckB)+cBCIntBj ,  l <_j<_k. 

Apply Lemma 3.4 with )~=),k, f=fk ,  I=[--ak+l, ak--1], K=Kk, a=ak+l, r and T 
unchanged, and ~ as above. This provides ~k+l EAut C n and G = ~ k + l  ~ EAut C n 
satisfying 

{ l~kq_l(Z)--z[ <~ for z e K k ,  hence on Bk; 

for teIk+l, 0 < s < r ;  

G (s) (t) = A~ ) (t) for t e Tnlk+l, 0 < s < r. 

In particular, (2k+1)-(4k+~) hold with G in place of fk+l. 
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Since fk(Ak+l)cKk C (Rk+l- 1)B, we can choose r <ok small enough that 
(lk+1) holds with G in place of fk+l and ~+1 in place of r and such that if 
r  C ~ with II~p(t)-tltc~(ik+~) <~+1,  then (2k+l) and (3k+1) hold with Gor in 

1 , Then with G in place of fk+l, we have (lk+l)-  place of fk+l. Let r ~ck+ 1. 
(4k+l), (6k+l), and G(-ak+l) ,  G(ak+l)6Bk+l by (6k+l) and (2k+1). 

Next we want to obtain (7k+1). We do this using Lemma 3.2 to change the 
embedding so that the image of R\ Ik+l  misses Bk+l while leaving the embedding 
essentially unchanged on Ak+lt3Ik+l. Apply Lemma 3.2 with A=G-I(Bk+I), ~= 
k + l , / = I k + l ,  r unchanged, Z=TNIk+~ and 1 r ~Ek+l. This gives a shear 

Ck+l(Z) : Z+gk+ l ( z l ) e  2 

with 1c I~k+I(Z)--ZI < ~ k+l, Z C A k + I ;  

1C - I[r < ~  k+l, 
(s) 

gk+l(f;) = O, t E TNIk+I ,  0 < S < r; 

Ck+l (t) ~ a -  l(Bk+l), t E a \ Ik+ l .  

Let H=GoCk+I. Then with H in place of fk+l, we have (lk+l)-(4k+l), (6k+1), 
and (Tk+l). 

For the final correction, we use Lemma 3.3 to obtain (5k+l) while maintaining 
the other properties. Let R>ak+l be such that A=G-I(Bk+I)CRB. Let 5>0 be 
such that 

Ck+l ( I - R ,  R]\(- -ak+l ,  a k + I ) + S B ) N A  = 0, 

and such that if BEAut C ~, with 10(z)-z] <5 on RB, then 

(1) ffCk+~ oSJR(t)-tllc~(xk+,) < ~k+,. 

Apply Lemma 3.3 with A replaced by H-loA, K = R B ,  r unchanged, Z=TNIk+I, 
and r �89162 This gives a shear 8k+l(Z)=z+hk+l(Zl)Vk+l with 7rlvk+l =0 
such that 

IOk+I(Z)--Zl < min{5, �89162 

8k+1 (C) AH-1A(R) = H-1A(TNIk+I); 
(s) hk+l(t) =0, 

z E Ak+l; 

tETNIk+I, 0 < s < r ,  

and such that (1) holds with O----Ok+ 1. Also, by the choice of R and 5, 

~/)k+l ~ (a\fk+l)NA = O. 
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Taking ~k+l=r  and 

fk+l = HoOk+l = Ok+l o fko~k+l 

we obtain (5k+1) and preserve the remaining hypotheses. Hence we obtain ( lk+l ) -  
(7k+1). Note that (k+l)BCBk+l  so we also obtain (a)-(f), thus finishing the 
inductive step. 

The case k--1 is similar to the general step. First apply Proposition 2.1 with 
K = 0 ,  C = [ - 3 ,  3] c C ,  F : A ,  ~ : C  -1 inf{~(t):re [-3, 3]}, and Z:TFfl [-3, 3] to get 
r EAut C n satisfying the conclusions of that  proposition. Choose R1 >_2 such that 
r  choose a1>4  to get (61), and let I i=[-al ,al] .  Choose 51 to 
satisfy (f) for j----1. 

Define a proper C ~ embedding )~0 as in Lemma 4.1 so that (i)-(v) are satisfied 
with A0 in place of Ak, r in place of fk, 3 in place of he, [--3, 3] in place of Ik, and 
r (A1) in place of Kk. Apply Lemma 3.4 with )~=)m, f =r I =  [-2,  2], K =  r (A1), 
a=al, r and T and r unchanged. This gives r  C n such that 

Ir < z e 

and such that 2 1 O1=r162 satisfies 

{ IlOl- 011c-u,)<e; 
O~8)(t) = ;~ )  (t), t ~ T n I 1 ,  0 < s < r .  

As before, we can apply Lemmas 3.2 and 3.3 to obtain e l > 0  and a shear ltI/1 such 
that the hypotheses (11)-(71) hold for f1=O1o~1,  and (a)-(f) hold for k = l .  This 
completes the base case. 

To finish the proof of Theorem 1.1, note that  

k 

�9 1 .....  k(z)=z+Z(g (zl) 2+hj(zl>j) 
j = l  

and that (c) implies 

Igj(zl)e2q-hj(zl)vjl < 2  - j ,  Izll <j. 

Hence this sum converges uniformly on compacts to a shear ~(z )=z+G(z l )  for 
some holomorphic map G: C--+{0} • C ~-1. 

By Proposition 4.2 in [7], the composition Ok .. . . .  O1 converges locally uniformly 
to a biholomorphic map from a domain f~ onto C n, and 

U ... . .  



168 Gregery T. Buzzard and Franc Forstneric 

We claim that  ~I ' (Cx{O})CfL Let k > l .  By (lk) we have 

�9 1 . . . . .  ~ k ( a k - l + ~ k g )  C (~k . . . . .  ~ l ) - l ( B k _ l ) .  

O 0  Since I ~ P j ( z ) - z l < c  d on Ak_l  for j > k ,  and ~ j = k + l  cdKek by (c), we see that  

l i m  ~IJkq_ 1 . . . . .  ~I] m (z) E Ak-1 +EkB 

for each zEAk_ l .  Hence 

lI/(/k k_ 1) C ((I) k . . . . .  491)-1(Bk_1) C f~, k > l ,  

so the claim holds. In particular, ~oq~: C--*C n is a proper holomorphic embedding. 
Finally, using the conditions ( lk)-(7k),  we see tha t  ~o~ :  C~--*C n is a proper 

holomorphic embedding with the desired properties. [] 
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