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A Carleman type theorem for
proper holomorphic embeddings

Gregery T. Buzzard and Franc Forstneric

1. Introduction

We denote by C the field of complex numbers and by R the field of real num-
bers. To motivate our main result we recall the Carleman approximation theorem
[4], [11]: For each continuous function \: R—C and positive continuous function
n: R—(0,00) there exists an entire function f on C such that |f(t)—A(t)|<n(t) for
all teR. If X is smooth, we can also approximate its derivatives by those of f. A
more general result was proved by Arakelian [2] (see [14] for a simple proof).

Let C™ be the complex Euclidean space of dimension nn. Our main result is an
extension of Carleman’s theorem to proper holomorphic embeddings of C into C™
for n>1:

1.1. Theorem. Let n>1 and r>0 be integers. Given a proper embedding
A R—C" of class C" and a continuous positive function n: R—(0,00), there exists
a-proper holomorphic embedding f: C—C"™ such that

FOBH-AD @) <n(t), teR, 0<s<r.
If in addition T={t;}CR is discrete, there exists f as above such that

O =22@1), teT, 0<s<r.

Definition. Two proper holomorphic embeddings f, g: C—C"™ are said to be
Aut C™-equivalent if ®o f=g for some holomorphic automorphism & of C”.

1.2. Corollary. For each n>1 the set of Aut C™-equivalence classes of proper
holomorphic embeddings C—C™ is uncountable.

For n>3 the corollary is due to Rosay and Rudin [16]. The corollary follows
from Theorem 1.1 and a result of Rosay and Rudin [15] to the effect that for each
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n>1 there exist uncountably many discrete sets in C™ which are pairwise inequiv-
alent under the group of holomorphic automorphisms of C". Theorem 1.1 provides
for each discrete set E={ex:k=1,2,3,...} CC" a proper holomorphic embedding
fg: C—C" such that fg(k)=e; for all k=1,2,3,.... (For n>3 such embeddings
were constructed in [16].) Clearly the embeddings corresponding to inequivalent
discrete sets are inequivalent.

In this context we recall that the first construction of proper holomorphic
embeddings C— C? which are inequivalent to the standard embedding ¢+ (¢, 0) by
automorphisms of C2? can be found in [8]. On the other hand, it is well known that
all polynomial embeddings C—C? are equivalent to the standard embedding by
polynomial automorphisms of C2 [1], [18].

Remark 1. We emphasize that, in Theorem 1.1, one cannot expect in general
to extend A to a holomorphic embedding of C into C™. If X is real-analytic, it
will extend holomorphically to some open set in C, but in general not to all of C;
and even if A extends to all of C, the (unique!) extension need not be a proper
map into C™. So the best we can do in general is to approximate A by a proper
holomorphic embedding as in Theorem 1.1.

Remark 2. If the embedding A: R—C" is of class C*°, our method can be
modified so that we approximate to increasingly high order on complements of
compact subsets of R. Another possible extension is to approximate a proper
smooth embedding by a proper holomorphic embedding on a set of disjoint lines or
other real curves in C. We shall not go into details of this.

The original motivation for Theorem 1.1 was the question, communicated to us
by R. Narasimhan, as to whether there exist proper holomorphic embeddings f: C—
C? such that f(C) is a nontrivial knot in C?, i.e., C?\ f(C) is not homeomorphic to
C?\(Cx{0}), the complement of the embedding {+ (¢,0). Unfortunately we have
not been able to construct such embeddings with the aid of Theorem 1.1 because
real one-dimensional curves in C2=~R* are always unknotted.

In order to place Theorem 1.1 in context we recall some recent developments
on embedding Stein manifolds in C™ from [3], [7], [8], [9]. (For Stein manifolds
and other topics in several complex variables mentioned here we refer the reader to
Hérmander [12].) In those papers it was shown that a Stein manifold M which
admits a proper holomorphic embedding in C” for some n>1 also admits an
embedding f: M—C™ whose image f(M)CC" contains a given discrete subset
EcCm [7, Theorem 5.1]. (Recall that any Stein manifold M embeds in C" for
n>7(3dim M+1) according to Eliashberg and Gromov [5].) With methods of
the present paper one can show moreover that for each pair of discrete sets A=
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{a;}52,CM and E={e;}32,CC" there exists a proper holomorphic embedding
f: M—C" such that f(a;)=e; for j=1,2,3,....

In light of this, a natural question is whether one can replace discrete sets in
M by certain positive dimensional submanifolds NCM, i.e., when is it possible
to approximate a smooth proper embedding A: N—C" by the restrictions to N
of proper holomorphic embeddings f: M—C"? For compact, totally real, holo-
morphically convex submanifolds N CM the answer is affirmative and it follows
immediately from the approximation theorems in [6] and [10]. The case when N is
noncompact is much harder. Our main result in this paper provides an affirmative
answer in the simplest such case when M=C and N=Rx {10} CC. It seems likely
that the result remains valid when N is a properly embedded real line in any Stein
manifold M. The details of our construction are considerable, even in this simplest
case, and the full scope of the method remains to be seen.

The paper is organized as follows. In Section 2 we introduce the notation and
give an outline of the proof of Theorem 1.1. In Section 3 we collect some technical
lemmas needed in the proof. The details of the proof of Theorem 1.1 are given in
Section 4.

The second author acknowledges partial support by an NSF grant and by a
grant from the Ministry of Science of the Republic of Slovenia.

2. Outline of proof

Since the proof of Theorem 1.1 is somewhat intricate, we give in this section
an outline of the proof. We also recall a technical result from [10] (Proposition 2.1
below) which will be used in the proof.

We begin by explaining the notation. We denote by A, the closed disc in C of
radius p and center 0, by B the open unit ball in C™ with center 0, and by RB the
ball of radius R. For a set ACC" and ¢>0, let A+oB={a+z:a€A, |2|<g}. We
identify C and R with their images in C™ under the embedding (—(¢,0,... ,0).
For 1<j<n we denote by m; the coordinate projection m;(21 ,... , zn)=2;.

In the proof we shall use special automorphisms of C™ of the form

U(z)=z+f(nz)v, z€C"”,

where v€C™, m: C"—C¥ is a linear map for some k<n with 7v=0 (in most cases
k=1), and f is an entire function on C*. An automorphism of this form is called a
shear; clearly ¥1(2)=z~ f(nz)v.

One of the main technical tools in our construction is the following result
from [10]. The case r=0 was obtained earlier in [9]. This result can also be obtained
by methods in [6].
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2.1. Proposition. Let KCCC™ (n>2) be a compact, polynomially conver set,
and let CCC™ be a smooth embedded arc of class C* which is attached to K in a
single point of K. Given a C*® diffeomorphism F: KUC— KUC' CC"™ such that F is
the identity on (KUC)NU for some open neighborhood U of K, and given numbers
r>0, €>0, there exist a neighborhood W of K and an automorphism ®€Aut C™
satisfying
[@—1dlerewy <&, ||®=Fllcr(c) <e.

(Here Id denotes the identity map.) Moreover, for each finite subset ZCKUC we
can choose ® such that it agrees with the identity to order r at each point z€ ZNK
and ®|¢ agrees with F' to order r at each point of ZNC.

The same result holds with any finite number of disjoint arcs attached to K.

We now give the outline of the proof of Theorem 1.1. We wish to approximate a
given proper embedding A: R<—C" by the restriction to R of a proper holomorphic
embedding f: C—C". By standard results we may assume that A is C°° and
that any C” map of R into C" which has C” distance less than n(t) from A (as in
Theorem 1.1) is a proper embedding.

We start with the standard embedding v, (¢)=(¢,0, ... ,0) and identify R with
Y (R). We inductively define automorphisms of C” of the form fy=®o...0P10¥;o0
...oW}, where each ®; and ¥; is an automorphism of C™ chosen so that fi|,,(r)
approximates A on larger and larger compact sets. Moreover, we construct the se-
quence fj such that the limit f=limy_,o fr exists on an open set DCC" containing
Cx {0}, and f is a biholomorphic map of D onto C". The restriction of f to the
z1-coordinate axis is then a proper holomorphic embedding of C=C x {0} into C™
satisfying the required properties.

The inductive correction proceeds as follows. We assume that there is an
interval I, CR such that fi approximates A on I in the sense of Theorem 1.1 and
that both A(t) and fi(t) lie outside some closed ball By for t¢I,. We want to
produce an interval I ; and a ball Bgy;, each of which has radius at least one
greater than the corresponding set at the kth stage, and a map fr+1 which gives
the desired approximation on Iji1.

We do this by applying a version of Proposition 2.1 to get an automorphism
®.11 which is close to the identity map on the sets fi(I}), Bg, and fr(Ag41), and
such that @10 f; approximates A on Iy1. In order to apply Proposition 2.1, we
define a polynomially convex set K} which includes By, fi{Ag+1), and most of
fr(Ix), and we also define a smooth, proper embedding A;: R—C™ which agrees
with A on R\ I}, agrees with fi on most of Iy, and is C"-near X everywhere. We can
then apply Proposition 2.1 via Lemma 3.4 to get ®, 1 so that ® 10 fi, approximates
A on some larger interval I ; and is near the identity on Kj (this is required for
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convergence).

The problem now is that the point ®j.0fi(t) may come very close to the
previous ball By, for some t€R\I; 1. Unless we control this distance from below,
the limit map may not be a proper embedding. Hence we precompose @10 fr, with
a shear of the form Wy ;(2)=2+pg41(21)Vk+1, for some pr41 holomorphic in one
variable and some vector vi4+1 with 710541 =0. By Lemma 3.2, we can choose Y1
near the identity on Ag11UIx4+1 and such that @410 froWri1(R\I;x41) avoids some
larger ball B, 1. Except for technicalities, this finishes the induction.

The proof is completed by showing that f=limg .o fr exists and gives a
proper holomorphic embedding of C=Cx {0} to C". This is so because the limit
U=limg_,o0 ¥yo...0¥; exists and is an automorphism of C™, while the limit $=
limy— oo ®po...oP; exists on an open set QCC™ containing ¥(Cx {0}), and &: Q—
C” is a biholomorphic map onto C™. Thus f=®-W¥ is a biholomorphic map from
D=9"1() onto C™ whose restriction to Cx {0} CD provides the desired proper
holomorphic embedding into C™. The approximation properties of f are clear from
the inductive step.

3. Some lemmas
The following is standard, e.g., [13, Proposition 2.15.4].

3.1. Lemma. Let \: R—C"™ be a C* proper embedding. Then there exists a
continuous 1n: R—(0,00) such that if y: R—C™ with |y (t) = A& (t)|<n(t) for all
teR, s=0,1, then v is a proper embedding.

Recall that a compact set ACCC” is polynomially convex if for each zeC™\ A
there is a holomorphic polynomial P on C” such that |P(2)|>max{|P(w)|:we A}.
We refer the reader to [12] for properties of such sets.

3.2. Lemma. Let ACC"™ be compact and polynomially conver and ¢>0. Let
ICR be an interval whose endpoints lie in C™"\(AUA,), and let r,e>0. Then there
exists an automorphism ¥(z)=z+g(z1)es of C" such that

(i) |¥(z)—z|<e for z€l,,

(i) | ¥lR(t)—tller(r <e, and

(iii) (t)¢A for teR\I.

If ZCI is finite, we can choose ¥ as above so that g(s)(t)zo forteZ, 0<s<r.

Proof. Let p1 <po denote the endpoints of I in R, and let T'j={(y;,¢,0, ... ,0):
¢eC} for j=1,2. Let R>max{|u1|, |u2]}+1 such that ACRB. Consider the set
E;=AnNI;. Since A is polynomially convex, E; is polynomially convex in I'; and
hence I';\F; is connected. Since the endpoints of I lie in I';\Ej, there exists a
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smooth curve ~;: [0,1]—T;\E; with ~;(0)=(y;,0,... ,0) and |moy,;(1)|>R+1 for
j=1,2.

Since A is compact, there exists §>0 such that v;([0,1])+36BCC™\A. Let
ma(z)=22. Let K={z+iyeC:ipy—36<z<pr+36, ly|<e+1}. Define a function
h: KU|—R, R]—C by

man (1), if te[—R, 11 —26;

mav1((p1—6-1)/8), if L€ [y —26, 411 —6];
ht)=< mave((t—p2—6)/6), ift€|ua+6, pa+28};

may2(1), if t € [up+26, R);

0, otherwise.

Choose 1, 0<np<min{e,6}. By Mergelyan’s theorem [17, Theorem 20.5] there is
an entire function g on C such that |h(z)—g(2)|<n for z€ KU[-R, R]. The shear
W(z)=2z+g(z1)ez then satisfies (i) and (iii). Since ICInt K, Cauchy’s estimates
imply that it also satisfies (ii) provided that >0 is chosen sufficiently small. The
last condition on g is a trivial addition to Mergelyan’s theorem. [

3.3. Lemma. Let X:R—C"™ be a proper, C*° embedding, KCC"™ compact,
€>0, and r€Z,. Let ZCR be finite, and suppose A\(t)€C=Cx{0}""1 for each
teZ. Then there exists a shear ¥(z)=z+h(z1)v for some v€C™ with mv=0 such
that

(i) ¥(C)NAR)=X(Z),

(i) |¥(z)—z|<e for ze K, and

(ili) ¥(2)=2+0(|z—A(®)|""}) as 2—A(t), for all te Z.

Proof. Let Z={t;}5_,. For C€C let h(¢)=Il1<;<s(C—mA(t;))"*!. Consider
the map ®: Cx C"*~1 —C" given by

B(z1,02, ... yon)=1{21,0,... ,0)+h{z1)(0,02,... ,a,).

Clearly @ is an automorphism of (C\A(Z))x C"~!. Let Ag ; denote the closed disc
of radius R in C with center 71 A(t;) for j=1,2,... ,s. Choose R>0 such that the
discs Ag ; for 1<j<s are pairwise disjoint. Choose a g, 0<o< R, such that o? is a
regular value of p;(t)=|m A(t)—m1A(¢;)? (¢.€R) for each j=1,2, ... ,s.

Let MQ=C\ UlSsz int Ag’j. Let @gzélMgXCn—l and 6<I>g=<I>|6MQch71 A
simple check shows that ®, and 0@, are transverse to A(R). Hence by the transver-
sality theorem, there exists a set A,CC"! of full measure such that for each
a=(az,.. ,0n)€A,, ®(M,, a)={®(21,a):216M,} and A(R) are transverse, hence
disjoint by dimension considerations.
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Let A=ﬂ;’;1 Aj1;. Then ACC™! has full measure, and for each o€ A we see
that ®(C\\(Z), a) and A\(R) are disjoint. Finally, choose a:€ A such that |h(z1)a|<e
for zy€m (K), and let ¥(2)=z+h(z1)a. Then ¥(21,0,... ,0)=8(21,02,... ,an),
and ¥ satisfies the conclusions of the lemma. O

3.4. Lemma. Let \: R—C" be a C* embedding, f: C—C™ a proper holomor-
phic embedding, and ICR a closed interval with f|;=M\|;. Let KCC™ be compact
and polynomially convez, a,r,e>0, and TCR discrete. Suppose that A(t), f(t)¢K
for teﬁ—\—I. Then there exists € Aut C™ such that if g=®- f, then

() 199 @) -2 (t)|<e for te[—a,a), 0<s<r,

(ii) g ()=XO(t) for teTN[-a,a], 0<s<r, and

(iii) |®(2)—z|<e for zeK.

Proof. We may assume that I C(—a,a). Let I1, I be the two connected com-
ponents of {¢€I:f({)eC™\K} containing the respective endpoints of I, and let
Iy=I\(I1UI;). Let A be the polynomial hull of KUf(I). Then A is the union of
KU {f(Iy) and the bounded connected components of f(C)\(KUf(Ip)). Note that
f(I1) and f(I) lie in f(C)\A since f(t)¢K for all teR\I.

Let L=AUf([—a,qa]). Then C=L\A is the union of two embedded arcs, each
containing an endpoint of f([—a,a]). Define F on L by F(z)=z if 2z€ A, and F(2)=
Af7(2) if z€ f([~a,a]). Then F is a C* diffeomorphism of L which extends as the
identity map on (AUC)NU for some neighborhood U of A. Apply Proposition 2.1
to get ®€Aut C™ such that |®(2)—z|<e for z€ K and such that g=®- f satisfies
(i) and (ii). O

4. Proof of Theorem 1.1

Choose a smooth cutoff function x on R such that x(¢)=1 for || small and
supp xC(—1,1). Define the constant C=C,>1 such that ||xh||cr <C| k||~ for each
heC"(R). We fix such C for the entire proof.

By approximation we may assume that A\: R—C" in Theorem 1.1 is a proper
C* embedding. Decreasing 7n if necessary we may also assume that 7 satisfies
Lemma 3.1 for X and n(t)<3 for all teR.

We use an inductive procedure to obtain a sequence of proper holomorphic em-
beddings fx: C—C" such that f=limy_,, fx exists on C and satisfies Theorem 1.1.
Each f; will be a restriction to C=Cx{0}"~! of a holomorphic automorphism
of C™. The next map fr4+1 Will be of the form fir11=Pxs10froPi+1 for suitably
chosen @y 1, Vi €Aut C™.
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We will describe the case k=1 after the inductive step is given. Recall that Ay
is the closed disc in C=Cx{0}"~! with center 0 and radius k, and B is the unit
ball in C™. For the induction at step k, suppose we have the following;:

(a) closed balls Bj=R;BCC" with R;>max{j+1, R;_1+1}, j=1,... ,k,

(b) automorphisms @1 ,...,®; of C™ with |®,(z)—z|<279 for z€B;_1, j=
2,...,k,
(c) numbers ;>0 such that £1<27! and sj<%sj_1 <279 for j=2,... ,k,

(d) automorphisms Wq,.., ¥, of C" of the form U;(z)=z+g;(z1)e2+
hj(z1)v;, where m1(v;)=0 and |¥;(z)—z|<e; for |z|<j,

(e) closed intervals Ij=[—aj;,a,], j=1,... ,k, with a;>max{a;_1+2,j+2},
and

(f) numbers 0<6; <C~inf{n(t):tel;}, j=1,... ,k,
such that the automorphism

fo=®po...®1oW 0,00, € Aut C"

(whose restriction to C=C x {0}"~! provides an embedding C— C™) satisfies:
(1k) fk(Aj —}-EkE)CInt B; for j=1,... ,k,

(26) 178 (6) =A@ (1) <n(?) for te, and 0<s<r,

(3k) |f,§3)(t)—)\(s)(t)|<6;c for teIx\(—ar+1,ar—1) and 0<s<r,
(4%) £ (H)=2E) () for teTNI,, 0<s<r,

(5k) fe(C)NAMR)=XTNI),

(6x) [A(t)|>Rg+1 for [t|>ak—1,

(Tk) |fx(t)| >Ry for |t| >ar—1.

We will now show how to obtain these hypotheses at step k+1. Let I} and I2 be
the two connected components of the set {(€Ix\Agy1:]fx(¢)|>Ri} containing the
respective endpoints of the interval Ij,. Let I?=1I;\(I}UI?) be the middle interval.
By (7x) we have I?C(—ax+1,ar—1).

Let K be the polynomial hull of the set BiU fr(Ag41UIY). Since fx(C) is a
complex submanifold of C™ and By, is polynomially convex, it is seen easily that
K}, is contained in ByUf,(C), and it is the union of ByU fix(Agr1UIY) and the
bounded connected components of the complement fi(C)\(BxU fi(Ag11UID)) (see
Lemma 5.4 in [7]). Note that (7) and (e) imply that fr(R\(—ax+1,ax—1))C
C™"\ K.

Choose Rpy1>Ri+1 such that KpC(Rp+1—1)B, and let Bjy1=Rp 1B.
Choose ag.+1>ar+2 to get (6511). We now want to approximate A on the larger
interval Iy1=[—ag+1,ak+1] by the image of the next embedding C—C" (to be
constructed). In order to apply Lemma 3.4 we first approximate A as follows:

4.1. Lemma. There exists a proper C embedding Ax: R— C™ satisfying
(i) )\kak on [—ak—i-l,ak—l],
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(ii) >\k=)\ on R\Ik,

(i) AP () =2 ()| <n(®) for telp\(~ax+1,ax—1), 0<s<r,
(iv) AP (£)=AO(t) for teT, 0<s<r, and

(v) Me(t)¢ Ky when |t|>ar—1.

Proof. We define the cutoff function x3 on R using x, so that x;=0 on R\,
Xt=1 on [—ax+1,ar—1], and || xxh|cr <C||h||c- as before. Let

M) = F(xe @)+ MO (L—xx(t), teR.

By Lemma 3.1, (3;), (4«), and choice of i and 6, we see that (1)—(iv) are satisfied
for S\k in place of Ag.

To obtain (v) we use a transversality argument to perturb My on the set
I\(—ax+1,a;—1). First note that if |¢|>ag, then |\e(£)|=|A(t)|>Rk+1 by (6z),
s0 Ai(£)¢Bs. Also, by (5;), we see that A\y(t)¢fx(C), so Ae(t)¢Kj. Next, if
teTN(Ix\(—ax+1,a,—1)), then by (4z), (7&), and (e) we see that \y(t)=fi(t)¢
K. Hence there exists a neighborhood V' of TN([x\(—axr+1,ar—1)) such that
j\k(V)ﬂKk=@.

Thus we need only perturb Ay on It\(VU(—ar+1,a;—1)) to get (v). Note
that if t€ I \(—ax+1,a,—1), then from (6;) and (2) We see that [A\(t)|>Rx+3,
S0 g (t)¢By. Finally, a simple transversality argument implies that we can make
an arbitrarily small C>° perturbation of e to avoid fx(C), and hence we get A
with A=A outside I\(VU(—ar+1,ar—1)) and X satisfying (i)~(v). O

Now we can use Lemma 3.4 to approximate )i, hence to approximate A. Set

Ok+1=min{n(t) :t € Iy41}/2C,
orsr =min{n(t) =N () -\ (W) £ € ipr, 0<s<r}>0.

Choose £>0 so small that
e< min{2—(k+1), Okt1,0k+1}s  fr (AJ +Ek§)+€§ CIntB;, 1<j5<k.
Apply Lemma 3.4 with A=Ag, f=fk, I=[—ar+1,a5—1], K=K}, a=ag 1, 7 and T

unchanged, and ¢ as above. This provides ®;,1€Aut C"™ and G=®4 10 fre Aut C”
satisfying

[®Pri1(2)—2| <e for 2z € Kj, hence on By;
IG(S)(t)—AI(:)(t)|<E fort€ Iy, 0<s<r;
GO () =2 (1) for t € TNIjt1, 0<s <.

In particular, (2x41)—(4x+1) bold with G in place of fi4;.
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Since fx(Ag+1) CKix C(Rry1—1)B, we can choose €} ; <ej small enough that
(1x+1) holds with G in place of fyi1 and €}, in place of €x41, and such that if
e Aut C* with |[9(t) —tlier(7,,,) <€ky1» then (2x41) and (3x41) hold with G in
place of fri1. Let Ek+1:%5;c+1. Then with G in place of figi1, we have (1541)-
(4k+1), (Bk+1), and G(—ak+1), G(ak+1)¢ Br+1 by (6x41) and (2¢41)-

Next we want to obtain (7x+1). We do this using Lemma 3.2 to change the
embedding so that the image of R\, misses By;1 while leaving the embedding
essentially unchanged on Agy1UIxy;. Apply Lemma 3.2 with A=G~Y(Byy1), 0=
k+1, [=I; 1, r unchanged, Z=TNIx41 and 6=%€k+1. This gives a shear

Yr41(2) = 2+grsa1(21)es

with

Wrt1(2) = 2] < 3€k1, LPAVEEE

k1R ) —tller(gp) < 3ER+15

gl () =0, te€TNIkp1, 0<s<m;

Pr+1(t) € G~ (Brt), teR\Ijq1.
Let H=Gotk4+1. Then with H in place of fr+1, we have (1x41)—(4k+1), (6r41),
and (7x+1)-

For the final correction, we use Lemma 3.3 to obtain (5541) while maintaining
the other properties. Let R>aj41 be such that A=G~!(By41)CRB. Let §>0 be
such that

Ur41([~R, RI\(—ak+1,ax 1) +6B)NA =0,

and such that if € Aut C™, with |§(z)—2|<6 on BB, then
(1) [k 100R(E) —tller (i) <Ekt1-

Apply Lemma 3.3 with A replaced by H~ o), K=RB, r unchanged, Z=TNIyy,
and e=min{§, 36511 }. This gives a shear Ox41(2)=2+hi+1(21)vk41 With 710541 =0
such that

|0k+1(z)~z|<min{6, %5k+1}, 2€DApya;
01 r1(C)NHIA(R) = H I NTNIjs1);
), (t) =0, teTNIpyy, 0<s<r,

and such that (1) holds with #=6;. Also, by the choice of R and 6,

Yrt1°0k41(R\k1)NA=0.
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Taking Wr+1="vk+1°0k+1 and

Jror=Hobky1=Ppp10froVrta

we obtain (554 1) and preserve the remaining hypotheses. Hence we obtain (1x41)-
(Tk+1). Note that (k+1)BCBji4+1 so we also obtain (a)—(f), thus finishing the
inductive step.

The case k=1 is similar to the general step. First apply Proposition 2.1 with
K=0, C=[-3,3|CC, F=), e=C~linf{n(t):t€[-3,3]}, and Z=TN[-3,3] to get
¢} € Aut C™ satisfying the conclusions of that proposition. Choose R;>2 such that
#1(A1)C(R1—1)B, choose a; >4 to get (61), and let I;=[—a;,a1]. Choose 6; to
satisfy (f) for j=1.

Define a proper C* embedding A¢ as in Lemma 4.1 so that (i)—(v) are satisfied
with Ao in place of A\, ¢1 in place of fx, 3 in place of ax, [—3, 3] in place of I, and
#1(A1) in place of K. Apply Lemma 3.4 with A=Xo, f=¢1, I=[-2,2], K=¢1(A;),
a=a,, €=6;, and T and r unchanged. This gives ¢? € Aut C" such that

61 (2) =2l <61< 3, z€¢1(A),

and such that ®; =¢2¢] satisfies

121 Xoller (1) <&;

) =2 (), teTnI, 0<s<r.
As before, we can apply Lemmas 3.2 and 3.3 to obtain £; >0 and a shear ¥; such
that the hypotheses (11)—(71) hold for f;=®;-¥,, and (a)-(f) hold for k=1. This

completes the base case.
To finish the proof of Theorem 1.1, note that

k

\Illo...olIJk(Z) = z+Z(g]~ (21)62+hj(2’1)’vj)

and that (c) implies
|gj(21)62+hj(21)1)j| <2_j, |Zl| <7J.

Hence this sum converges uniformly on compacts to a shear ¥(z)=2z+G(z1) for
some holomorphic map G: C—{0} xC"~1.

By Proposition 4.2 in [7], the composition ®o...o®; converges locally uniformly
to a biholomorphic map from a domain Q onto C™, and

Q:kﬁjl(@ko...@l)—l(Bk,l).
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We claim that ¥(Cx {0})CQ. Let k>1. By (1x) we have

Tlo...o\Ifk(Ak_.l +£k§) C (@kO...O‘I‘l)_l(Bk_l).

Since |¥;(2) —z|<e; on Ag_1 for j>k, and 3372, | €;<ex by (c), we see that

lim \I!k+1o...o\11m(z) S Ak_1 +Ek§

for each z€A_1. Hence

\I/(Ak_1)C(@kO...Oq)l)“l(Bk_l)CQ, k>1,

so the claim holds. In particular, ®¥: C— C" is a proper holomorphic embedding.

Finally, using the conditions (1x)—(7%), we see that ®o¥: C—C™ is a proper

holomorphic embedding with the desired properties. [
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