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Regularity conditions on parabolic 

Pawel Kr6ger(1) 

measures 

1. I n t r o d u c t i o n  

We consider second-order parabolic differential operators of the following form: 

0 1 ~ 0 2 0 
L = Lt Ot -- 2 ~-~ aij (t, x) Ox-~xj Or" 

i,j=l 

Suppose that  L is uniformly parabolic on [s, oo) x R n for every s>0 ,  i.e., we suppose 
that  there exist positive constants C(s) such that  for each (t, x)E [s, oc )x  R ~ 

C(s)l[I 2_< ~ aij(t,x)~i~j < 1 2 i,j=l - C--~I~I for every ~ e R  n. 

We assume that  the matrix (aij(t, x))i,j is symmetric for every t, x. 
Suppose that  the coefficients of L are locally H61der continuous on (0, oc) x R n. 

Then the initial value problem 

Lu=O f o r t > s ,  u ( s , . ) = h  

is uniquely solvable for every s >_ 0 and every bounded continuous function h. 
The parabolic operator L t - O / O t  generates a diffusion process with decreasing 

time parameter. Tha t  process can be characterized by the property that  

t v(t, 

is a supermartingale (or a submartingale, resp.) for every function v which is 
continuously differentiable with respect to the time variable, twice continuously 
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differentiable with respect to the space variables with bounded derivatives, and 

which satisfies the inequality 

(or 

(see [9, Theorem 4.1]). 
The solution u of the above initial value problem can be written by means of 

the transition probability measures PL(t, x; s, .) of the diffusion process generated 
by the parabolic operator Lt-O/Ot as follows (cf. [9, Chapter 3]): 

u( t, x) =/R~ h(y) PL ( t, x; s, dy) 

(notice that  our notation differs from the notation in [9] since we suppose that  
t>s). The example of a singular parabolic measure given by Fabes and Kenig 
(see [1]) shows that  the transition probability measure PL (t, x; 0, .) can be singular 
with respect to the Lebesgue measure even if the coefficients aij are uniformly 
continuous. 

The aim of the present note is to show that  Pn(t, x; 0, .) satisfies nevertheless 
certain regularity conditions. More precisely, we will give polynomial upper and 
lower bounds for the probabilities PL(t, X; O, Uo(Y)) for small ~ and fixed t, x and y 
where UQ(y) denotes the open ball with radius Q and center y. The exponent of ~ in 
the lower bound depends on the ratio of upper and lower bounds for the eigenvalues 
of the matrices (aij(s, z) ) i j  for every (s, z) from a neighbourhood of (0, y). 

The exponent of ~ in the upper bound depends on the ratio of an upper bound 
for the eigenvalues of (a~j(s, z)) and a lower bound for the traces of the restrictions 
of (aij(s, z))i,j to (n-1)-dimensional  linear subspaces of R n for every (s, z) from a 
neighbourhood of (0, y). We remark that  the assumptions which are needed for the 
proof of the upper bound are satisfied for a large class of parabolic operators which 
are degenerated at the boundary. 

We show by appropriate counterexamples that  the exponents which occur in 
the upper and lower bounds, resp., cannot be replaced by larger or smaller numbers, 
resp. 

The upper bound for the case of space dimension n equal to 1 was first obtained 
by McNamara (see [7]). He also observed that  an upper bound for the probabilities 
Pn(t, X; O, UQ(y)) yields a lower bound for the Hausdorff dimension of every Borel 
set M with PL(t, X; 0, M ) > 0 .  

The lower bound is related to the value of the best constant in the Harnack 
inequality in a neighbourhood of {0} x R n (see [6] for the statement and a proof of 
the Harnack inequality for parabolic operators in nondivergence form). 
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(1) 

where 

For the sake of simplicity of the notation we restrict ourselves to the case y=O. 
We obtain our estimates by comparison with appropriate solutions of the ro- 

tationally symmetric problem 

Lr.,8 u(t, x) = 0 for all t, x with t > 0 and 

Ixl }a, Au(t,x) if ~ < r . ,  
L;:;pu(t, - 

if Ixl >r.; 

here r .  and s are positive numbers and 02~/ix I stands for the second directional 
derivative in the direction of x/Ixl. 

An elementary calculation yields that  (t,x)~(t+s)-x/2f(Ixl/tv/K4-s), with 
f :  [0, oo) \{r .} - -~R twice continuously differentiable, is a solution of (1) if and only 
if f is a solution of the following Sturm-Liouville equation with Neumann boundary 
condition at 0: 

(2) a ( r ) f " + ( r + ( n - - l r ) a ' ) f ' + ) ~ f = O  for every r C [0, ee) \ { r . }  

where cr(r)=ch if r<r .  and a ( r ) - a 2  if r>r. .  
The optimal value of r .  depends on al  and or2. It can, at least in principle, 

be determined by the solution of an eigenvalue problem for the Sturm-Liouville 
equation (2) with a free boundary at r .  (cf. [6, Section 2] and Section 2 below). 

T h e o r e m  1. Suppose that we are given positive constants al, a2, ~o, ro and 
a positive solution (t,x)~-+t-x/2f(Ixl/x/t) of (1) for s=0,)~=Ao, and r . = r o  (or 
equivalently a positive solution f of the Stur~n-Liouville equation (2)) with the ad- 
ditional properties that f vanishes at least exponentially fast at infinity and that the 
second derivative of f at r.  exists and is equal to zero. 

1. Assume that (aij (t, x))i,j <a21 and trace(H(aij (t, x))i j)  > ( n -  1)al for every 
(t, x) from an appropriate neighbourhood of (0, O) and every orthogonal projection 
II on an (n-1)-dimensional linear subspace of R n. 

Then for every to>0 and xoCR n the following holds: 

lim inf lnPL(to, Xo; 0, UQ(0)) _ ~0. 
0--*0 in Q 

2. Assume that (aij(t, x))i,j >_~21 and (aij(t, x))i,j <_chl for every (t, x) from 
an appropriate neighbourhood of (0, 0). 
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Then for every to > 0 and Xo E R '~ the following holds: 

lim sup 
e--,o In 0 

lnPn(to, X0; 0, U~(0)) ~ A0. 

Remark. We will show in Section 2, Proposition 1 that  given an arbitrary pair 
a l ,  a2 of positive numbers with al<_a2 (or a l ~ a 2 ,  resp.), there exist always a 
function f and positive numbers A0, r0 such that  the presuppositions of the first 
part  of Theorem 1 are satisfied (or that  the presuppositions of the second part of 
Theorem 1 are satisfied, resp.). 

Estimates for that  number A0 will be given in Section 2, Lemma 5. 

Remark. A simple consequence of Theorem 1 and Section 2, Lemma 5 is that  
for coefficients (aij(t, x))i,j such that  lim(t,x)--~(o,0)(aij (t, x))i,j exists and is nonde- 
generate the following holds: lime--.o (ln PL (to, X0; 0, Ue (0))/In Q) =n .  

Remark. Suppose that  n_>3. Then it is easy to see that  the assumptions 
(aiy (t, x ) ) i j  ~o'21 and trace(H(aij(t, x))i,j) ~ (n-1)al  for every (t, x) and every 
(n-1)-dimensional  orthogonal projection H are satisfied for a large class of para- 
bolic operators which are degenerated at the boundary {0} •  '~ of the domain 
[0, oc)> R n. We notice that we can also generalize our results to processes of the 
type constructed in [5]. 

Remark. Under the assumptions (aij(t, x))i,j ~ 2 1 ,  (aij(t, x))i,j > a l l  and the 
additional assumption that the coefficients aij (t, x) of Lt are independent of the 
time variable t, the parabolic measures PL(tO, X0; 0, .) have a density with respect 
to the Lebesgue measure (see [9, Lemma 9.2.2]). Furthermore, that  density belongs 
to Lq(R '~) for a constant q depending on al ,  a2, and n with q>n/ (n-1)  (see [2, Sec- 
tion 4]). Hence, the following estimate holds: l iminfe~0(ln PL(tO, x0; 0, Ue(0))/ln 0) 
kn--n/q.  We are not able to compare this estimate with our estimates since it seems 
to be difficult to give "good" bounds for q. 

2. E x i s t e n c e  a n d  p r o p e r t i e s  o f  a s o l u t i o n  o f  an  
e x t r e m a l  p r o b l e m  for  a S t u r m - L i o u v i l l e  e q u a t i o n  

We claim that there exists a positive number r .  such that the smallest nontrivial 
eigenvalue A of the following boundary value problem attains its minimal value if 
~1 <or2 or its maximal value if ~1 >or2, resp. We will denote that  value of r .  by r0. 
The corresponding minimal or maximal eigenvalue will be denoted by A0. 
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We consider solutions of the Sturm Liouville equation (2) with Neumann 
boundary condition at 0, the condition that  the solution vanishes at least expo- 
nentionally fast if the independent variable r tends to infinity, and the condition 
that  the solution itself and its first derivative are continuous at r . .  

It is well known that  the first nontrivial eigenvalue A of that  problem has 
multiplicity one and that  the corresponding (real) eigenfunction does not change its 
sign. 

The proof of the above claim is based on a compactness argument and explicit 
representations for the solutions of the following confluent hypergeometric equation 
which can be obtained from (2) by replacing the independent variable r by z-r2/2cri 
for i=1,  2 and by the substitution f(r)=y(z): 

(a) zy"+ (z+ (n-1)al+ai'~~ )y+~y=O.'' A 

We set p- �89 and qi=-(((n-1)al+(ri)/2cri)-�89 for i = 1 , 2  and every A_>0. An 
analytic solution Yl on [0, oo) of the equation (3) with i =  1 is given by the following 
power series representation: 

(4) yl(z) = 1+ E p(p+l )  ... ( p + k -  1) ( -z )  k 
k=l (P+ql )~-~)~"O-~l+k-1)  k! 

Notice that  Yl is up to a scalar factor equal to f2 tp_l(l_t)ql_l exp ( - z t )d t  if p 
and ql are greater than zero (cf. [8, Section 3.1]). 

The integral on the right-hand side of the following equation 

(5) Y'2 (z) - / t ; -1 ( t -  1) q2-1 exp(-z t )  dt 

yields a solution of (3) on (0, co) for i=2  if we consider the integral along the real axis 
from 1 to cc if q2 > �88 and the integral round the contour consisting of the real axis 
from +oc to 3, a circle with radius �89 and center 1, and the real axis from 3 to +co 
if q2 < �88 It is known that  ~2 does not vanish identically (the proof for the case q2 < 0 
can be reduced to the case q2_>0 by an iterated application of the transformation 
~2H-~'~-~2).  A simple consequence of the above integral representation for Y2 is 
that  [Y2 (z)[<exp(-�88 holds for every sufficiently large positive z. 

Finally, we consider the function Y2 which is defined by the right-hand side 
of (4) with q2 in place of qx. It is known that  ~2(z)~z -p for large positive z 
and q27~0,-1,... (see for instance [8, Section 4.1.1]). Hence, Y2 and Y'2 form a 
fundamental system of solutions of (3) if q27 ~0, - 1,.... 
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A standard application of Sturm's Comparison Theorem yields that  for every 
A1 there exists an r l  such that  every solution of (3) has at most one zero in the 
interval [rl ,oc) if A<A1. We aim to show that  Y2 has no zero in the open interval 
(rl ,  oo) if A<A1. Suppose that  on the contrary ~'2(r)=0 for some r>r~ and A<A1. 
Uniqueness theorems for ordinary differential equations of second order imply that  
~'~(r)r We notice that  Y2 and ~'~ depend continuously on the parameter q2 if 
q2 < ~. Thus, we can assume without loss of generality that  q2 50,  - 1 ,  .... If we take 
into account that  [Y2 (z ) [<exp(- �88  and that  Y2 ( z ) ~ z  -p for z sufficiently large, we 
obtain that  there exists a (small) real number 5 such that  Y'2+hY2 has at least two 
zeros in the interval (r~, oo). This is in contradiction to our assumption on [r~, oo). 
We can conclude that  there exist scalar multiples Y2 of Y2 with ]y2]<]~'2[ for all p 
and q such that  every Y2 is nonnegative for z sufficiently large and such that Y2 and 
its derivatives of arbitrary order depend continuously on the parameter p. 

We set 

for every A>0, i=1,  2, and every r with r_>0 i f i = l  and every r with r > 0  if i=2.  By 
(4), it is easy to see that  f~x) converges to 1 and its derivatives up to an arbitrary 
fixed order converge to zero uniformly on every bounded interval if the nonnegative 

number A tends to zero. The above integral representation for Y2 yields that f(x) '  is 
negative on [r., oo) for every given r .  >0 if A is sufficiently small (take into account 

1 i fO<A<�89 that  q2 > a - 
We define a real function F on (0, oo) • (0, oc) as follows: 

(x), (a) (~), (~) 
(7) F(A, r . ) -=  f l  (r.)f~ (r . ) - f~ (r.)f  1 (r.) for every A,r.  > 0. 

It follows from the above considerations that  F(A, r , )  is positive for every sufficiently 
small A > 0. 

It can be deduced from Sturm's Comparison Theorem that  neither f}~) nor f(x) 
is nonnegative on [0, r . )  or (r. ,  oo) for a given r .  >0  if A is sufficiently large. We con- 

sider the smallest positive number Al(r.)  such that  f}Xl(~*))(r.)=0 or f(~l(r*))~(r.) 

=0. Notice that  f}:q(r)=f}x)l(r)=O or f(x)~(r)=f(x)"(r)=O for an arbitrary r > 0  
are in contradiction to uniqueness theorems for ordinary differential equations of 
second order. Hence, elementary properties of zeros of differentiable functions im- 

ply that  f}X)(r)>0 for every r, A with r<_r. and A<AI(r .) .  Moreover, we ob- 
! 

thin that  the condition f }a ) ( r )=0  and f}x)'(r)>_O for some r with 0 < r < r .  and 

A_<AI(r.) is in contradiction to (2) (take into account that  f}~l(r*))'(r)=0 implies 
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t h a t  f})~l(r*))(r)~s By (4), f}x)'(0)=0 and f}~)"(0)<0. Hence, f}x) '(r)<0 for 
every r, ~ with 0<r_<r.  and %_<%l(r.). 

The function f(~)~ is a solution of a Sturm-Liouville equation and we can 

deduce from Sturm's Comparison Theorem that there exists an rl such that f (x)~ 

has at most one zero in [rl, oo) for every )~ with %_<)~l(r.). Recall that  f~ ) ( r )  is 

nonnegative for r sufficiently large and that limr-~oc f (x ) ( r )=0  for every ~. Hence, 

f(~)'(r) is negative for r sufficiently large and every ~ with/~<A1 (r.). Again, we can 
l 

conclude that f (~ ) ( r )<0  for every r>_r. and A<AI(r .) .  In particular, we obtain 

that f()'l(~*)) (r.) > 0. 

Hence, F(%l(r.), r.)=f}xl(~*))'(r.)f(~l(r*))(r.)<O for every positive r . .  
We can conclude that for every given positive number r .  there exists a )~(r.)E 

(0,/kl(r.)) such that F(%(r.), r . )=0 .  

Moreover, we have f}~(r*))(r)>O for every rE[0, r.], f}X(r*))l(r)<O for every 

rE(0, r.], f(~(r*))l(r)<O and f~(~*))(r)>0 for every rE[r . ,oo) .  

L e m m a  1. Suppose that f(xl) and f(),2) are nonnegative solutions of (2) on 
[0, oo ) \{ r . }  for/k=/~l or ~=/k2, resp., and a fixed positive number r..  We assume 
that both functions f (~)  for i= l ,  2 satisfy the boundary conditions f(~)~(0)=0 and 
f(~{) vanishes at least exponentially fast at infinity. Suppose that f(Xl) and f(~2) 
are continuous at r. and that f(~)'~(r.)=(-1)ichr,  for a positive c and i = 1 , 2  in 
the distributional sense. 

Then ;~1 < ~ (r.) < ;~2. 

Proof. For the sake of simplicity of the notation we restrict ourselves to the 
proof of A1 <A2. Suppose on the contrary that  A1 >A2. Without loss of generality 
we may and will assume that f (x l) (r.) = f (~2) (r.)  = 1. 

We set g(i)=-f(~)~/f (~). By assumption, g(1)(0)=g(2)(0)=0. The Wronski 
determinant of every pair of solutions of (2) on [0, ~ )  is a scalar multiple of r~--~ 
(1/r  n - l )  exp(-ra/2~rl) .  Hence, the solution f (~)  of (2) on [0, r . )  with f(~)~(0)=0 
is uniquely determined up to a scalar factor. An elementary cMculation shows that 
g(1)~(0) <g(2)~(0) (cf. (4)). Since g(0 is a solution of the mccat i  equation 

crlg~ +g2 + r-~ 

on [0, r . )  for the corresponding value of i, it can be deduced from comparison theo- 
rems for ordinary differential equations of first order that g(1)(r.-O)<g(2)(r.-O).  

Thus, the assumptions of the lemma imply that g(1)(r. +0) <g(2)(r.  +0).  We 

aim to show that this leads to a contradiction. Since f(~) and f(~)' depend continu- 
ously on A, we can restrict ourselves for the following considerations to the case that 
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q~l) ~ 0 , - 1 ,  ... where q~ l )_ ( ( (n_ l ) a l  +a2)/2a2)-�89 Let e be a positive number 
such that  

(9) g(1)(r, < +0) 

and consider the unique solution h of the initial value problem h(r,)= 0 and h' ( r , )=  e 
for the equation (2) with A1 in place of A. If we apply Sturm's Comparison Theorem 
to the functions f(~l) and h we obtain that h ( r )>0  for every r with r>r,.  

Recall that  Y2 and Y2 form a fundamental system of solutions of (3) and that  
ly2(z)l <exp(- �88 and ~2(z)~z -p for large z. We obtain in particular that  a solu- 
tion of (3) that  vanishes at infinity faster than every power of z is uniquely deter- 
mined up to a constant factor. The function h is not proportional to the function 
f(xl). The functions f(~l) and f(~2) vanish at infinity faster than every power of 
r 2 =z.  Hence, (f(Xl)+h)(r) > f(~2)(r) for every sufficiently large r. 

In view of (f(~l) + h) (r,) = f ( ~ )  (r,) = f(~2) (r,) = 1 and 

(f (~i)+h) '  f(~=)' ( r , + 0 )  = < g(2) (r .+0)  = (r, +0 )  
f(~l) + h  

(cf. (9)) we can deduce from ( f (~)  + h) (r) _> f(~2) (r) for every sufficiently large r that  

there exists an rl  > r .  with ( f (~)  +h) ( r l )=f (~2) ( r l )  and ( f (~)  +h) ' ( r l )  > f(~)'(rl). 
Hence, 

(f(~O+h)' f (~) '  (rl) ~> ~ - ( r l ) .  
f (~ l )+h  

Since ( f (~)+h) ' / ( f (~)+h) and f(~)'/f(~2) are solutions of (8), comparison 
theorems for ordinary differential equations of first order lead to a contradiction. 

Remark. A similar argument as in the proof of Lemma 1 shows that  A(r,) is 

the unique zero of A~-*F(A,r,) such that f~)(r)>O for every r<r,  and f~)'(r)<_O 
for every r>r,.  Hence, the continuity of F implies that  the function r ,  HA(r , )  is 
also continuous. 

In order to apply a compactness argument we aim to show that  there exists 
an r l > 0  such that  for every r, with r ,>rl  the inequality A(r2)>A(r,) holds for 
every r2 with r , - e<r2<r ,  and an appropriate positive e if (rl<(T2 and similarly 
that  )~(r~) < A(r,) holds if a l  > a2. 

The proof is based on the following lemma. 

L e m m a  2. Let ~] be given. Then there exists a positive number rl such that 
every function f~)"  for A>0 has at least one zero in the interval [0, rl) (cf. (6) for 
the definition of f~)) .  
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Proof. Using an argument similar to the argument used at the beginning of 
the proof of Lemma 1, we can reduce the proof of the assertion of Lemma 2 to 
the case of all positive A belonging to an arbitrary small neighbourhood of 0 (by 

differentiation of (2) we obtain a linear equation of second order for f~h)'; therefore 

the function ~(~)"/~(h)' satisfies a Riccati equation; that  equation replaces (8)). In J1 / J1 
view of [7, Lemma 1], we can restrict ourselves to the case n>2.  

We have f~h)"(r)=2zy~'(z)+y'l(Z) for 1 2 z--~r and yl(z)=f}~)(r). The power 
series representation of -(n/)~)y~ is given by the right-hand side of (4) for p - � 8 9  A+ 1 
and q l - l n  - �89 Moreover, the function (1/)Qy~ and its derivative with respect to 
z depend continuously on A for )~ _>0. 

Therefore it is sufficient to prove that  there exists an z l > 0  with 2zly'o(zl)+ 
__1 yo(zl)=O for the function Y0 defined by the right-hand side of (4) for p - l ,  ql=~n. 

Since Y0 is up to a scalar factor equal to f01(1-t) q~-I exp ( - z t )d t  and since 
by definition y0(0)=l ,  we obtain that  y0(z)>0 and y~(z)<0 for every z>0.  Sup- 
pose that  2zy' o (z) +Yo (z) > 0 for every z > 0. Hence, by Gronwall's Lemma, Y0 (z) > 
(1/V~)yo(1) for every z_>l. 

This is in contradiction to fol(1- t )  ql-1 exp(-z t )dt<_f3 exp(-z t )  d t<l / z  (re- 
call that  ql = �89 1). 

L e m m a  3. Assume that we are given )~1 and r l > 0  with F ( A l , r l ) = 0  (cf. (7) 

for the definition of F). Suppose that f}hl)"(rl)>0.  
Then there exists an ~>0 with A(r2)<A1 (=A(rl)) for every r2E[rl-~,rl)  if 

~1<~2 and A(r2)>A1 for every r2E[rl-r  if al>a~.. 

Proof. The definition of F yields that  J1 ~-11J2 ~-11-~2 ~,1/~1 v,z~-- 
(h i )  ! r  0. Moreover, we have f~hD(rl)>0, f}~) ' ( r l )<0 ,  f~ ( r l )<0,  and r ( r l )>0.  

Since r (~ )  and r (~)  J1 j ~ are both solutions of an equation of the form (2) with a~ 

or a2 in place of a (r), we can conclude from Jl'C (A1) '[_~jl}/Jl "~ / ~(A~ ) ~J 1)----- J 2 [ -  \ .e (Az) t[~U, 1 ) / J  2 \ / $ ( A ~  ) ( r l )  

that  

(10) f( h l ) l ~  \ f ~ h l ) l l ( r x )  1 Lrl) 
ffl f~hl)(rl ) --G2f~hl)(rl  ) �9 

Thus, 

A ~1! r A ,, i A ~,1! " A  ~ 1) L 1) L 1) L 1} O F(A,r.)l(hl,rl)=fl (r,)f~ (rl)--f~ (rl)fl (rl) ~ 0  
Or. 

if 0"1~O'2,  resp. The assertion of Lemma 3 is now a consequence of Lemma 1. 
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L e m m a  4. Suppose that f ~ )  is decreasing on [O,r.] (or that f(x) is decreasing 

on Jr., oc), resp.) for a positive number ~. 

Then f~ x)t' has at most one zero in [0, r.] (or f(x)" has at most two zeros in 

[r,, rasp.). 

Proof. It can be deduced from the power series representation for the cor- 

responding solution of the equation (3) that  f~x)"(0)<0. Hence the assertion of 
I t  t t  

the lemma is established once we have shown that  f }x ) ( r l )= f i ( a ) ( rh )=0  and 
f t t  t t l  

f(x) ( r l )>0>f}x)  (rh) for rl ,r2 with O<rl<r2<r .  and i=1  or r . < r l < r 2  and 
i=2  leads to a contradiction. The derivative g of f}~) satisfies the following SturIn- 
Liouville equation: 

r r2 g(r) = 0 

on (0, r . )  for i=1  (or on (r., c~) for i=2)  (recall that  o is by definition constant 
on each of the intervals [0, r,] and (r., oc)). By assumption, we have g(rk)<O and 
g ' (rk)=0 for k = l ,  2. By uniqueness theorems for ordinary differential equations, 
g(rk)r for k = l ,  2. Since g"(rl)>O>_g"(r2), we can deduce from (11) that A + I -  
((n - 1) a l / r  2 ) >_ 0 > A + 1 - ( (n - 1) al /r~ ). This is in contradiction to rl < rh. 

P r o p o s i t i o n  1. Let ~1 and a2 be positive numbers. 

Then there exist positive numbers A0 and ro such that the Sturm LiouviUe 
equation (2) with r .= r0 ,  with Neumann boundary condition at O, and the condition 
that the solution vanishes at least exponentially fast at infinity has a positive solution 
fo which is twice continuously differentiable on [0, oc). 

Moreover, we have f~'(r)<_O i fr<ro,  f~'(r)>O ifr>_ro, and f~(r)<_O for every r. 

Proof. We restrict ourselves to the case Ol < 02, the remaining cases 01 > a2 and 
o1=o2 can be dealt with in a similar way. 

By Lemma 2 and Lamina 4, there exists an rl  such that  f~( r*) )" ( r . )>0  for 
every r .  with r . > r l .  Thus, we can conclude from Lemma 3 that  r . H A ( r . )  is 
increasing on [rl, co). 

On the other hand, we can obtain (at least in principle) an upper bound for 

A(r.) from Sturm's Comparison Theorem if we take into account that f~(r*)) is 

nonnegative on [0, r.] and that  f(A(~.)) is nonnegative on Jr., oc). Thus, we can 

conclude from (4) that  f~(~*))"(r)<0 for every r e  [0, r.] and every sufficiently small 
positive r . .  A similar argument as in the proof of Lamina 3 shows that r.~-*A(r.) 
is decreasing in an appropriate neighbourhood of 0. 
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Since F is continuous, there exists a nonnegative number r0 such that  r ,  ~-~A(r.) 
attains its minimal value at r .= r0 .  We set A0-A(ro). 

By Lemma 3, we can deduce that  the inequality f ~ ~  holds. It can 

be shown in exactly the same way that  f~~ Hence, f~~  Notice, 
that  we have in particular r0 #0.  

~(~o)"rM ~_~ (eft (10)). We set fo(r)- f~~ if r<ro and We also have J2 t ,o)-u 
fo(r)=-(f~~176176 if r>_ro. This establishes the existence of a 
twice continuously differentiable positive solution f0 of (2) on [0, oe). 

The inequality f~x~ (cf. the first step of the proof of Lemma 4) and 

Lemma 4 imply that  f~o)  ( r )<0 if r<ro. Hence, J1 tj0}_v. If we take into 

account that  f~o) '  and f(~o)' are solutions of (11) on (0, r , )  or (r , ,ce) ,  resp., 

, , ~o )"(ro)  and that  p(~o) . . . .  (~o), ~ (~o)" J1 ~ro)--yff ~roj and f~ =f~ (ro)=0, we can conclude that  
f (Ao) t / t l~  ~>c~ " _ t, oJ-~.  Hence, by Lemma 4, f2 (~~ ( r )>0  if r_>ro. 

The last part of the assertion of the proposition was already shown before 
Lemma 1. 

Remark. An immediate consequence of Proposition 1, Lemma 4, and the 
uniqueness up to a scalar factor of solutions of (3) that  are regular at the ori- 
gin is that  the positive number ro such that  r,~--,A(r,) attains its minimal value if 
0-1 <0-2 (or its maximal value if al  >a2) is uniquely determined. 

Now we aim to give a (rough) estimate for Ao in terms of 0-1 and a2. 

L e m m a  5. Suppose that Ao satisfies the conditions of Proposition 1. 
Then 

(n--1)0-1 n0-1 <A0<  - - + 1  if G1<0-2 
0-2 0"2 

and 
n0-1 (n--1)G1 
- - ~ A 0 > - - + I  ifal>0-2. 
0"2 0-2 

Proof. Suppose that  0-1 <0-2. 
We aim to show first that Ao<((n-1)0-1/0-2)+l. Our proof is based on 

Lemma 1. We set A2=_((n-1)0-1/a2)+1. Now, we define a function f(~2) on [0, c~) 
by f(h2)(r)--exp(_r2/2G2) if r > r  and 

( r2 ~ exp(-~2/2a2) 
f(~2) (r) -- Yl \ 20-1 ] Y1(e2/20-1) 

if r<e ;  the function Yl is defined by the right-hand side of (4) for p - l A 2  and 
q - � 8 9  ~1A2 and the positive number e will be chosen later. 
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Thus, f(x2) is a solution of (2) on [0, oc) with f(x~)'(0)=0 and such that  f(x2) 

vanishes at least exponentially at infinity. Once we have shown that  f(x2)"(r 
in the distributional sense for every sufficiently small positive ~, the assertion follows 
from A0=inf~.>o A(r.)<A(e)<A2 (the last step is a consequence of Lemma 1). The 
proof can be completed by the observation that  for e small the following holds: 

f(~2),(r ) r , /" r "~ exp(_r 
~ - ~ I - l Y l ~ I )  y 1 ( r  

< r - f(~2)'(~+0)+O(c). 
5r2 

c ~2 +O(r 
o 1 n 

(We remark that  the number ((n-1)o.1/o.2)+l can be obtained as the smallest 
nontrivial eigenvalue of an eigenvalue problem for an operator whose coefficients do 
not depend on the time variable; see [2, Section 4].) 

Next, we show that  under the above assumption the second part of the assertion 
holds, i.e. we show that  A0 >_nal/a2 if or1 <a2. Let r be an arbitrary positive number. 
We set 

( 'x'2 ) fort>O, xERn. v(t, x) =-- t -nal/2("2+e) exp 2(o.2 q-~)t 

Then (we write r for x/x/~; the number r0 was defined in Proposition 1): 

t o.(r) r2_  1 r2 
2 2 ( o . 2 + r  

(n-- 1)o.1 +o.(r) nOl 
2 ( o . 2 + r  - 

m < 0  

(recall that  a(r)=o.1 if r<r, and a(r)=o.2 if r > r , ) .  On the other hand, for 

we obtain that 

~(t,x)=--t-~~ } \ for e v e r y t > 0 ,  x E R  n 
/ 

L~'~2~(t, x) = 0 for every t, x. 

Using a similar integral representation for ~2 as in (5) for a contour in the complex 
plane that  contains a circle with center 1 and sufficiently small positive radius, 
we can show that  given an arbitrary positive number 5 the function Y2 can be 
estimated from above by exp( - (1 -~ )z )  for every sufficiently large z. Hence, there 
exists a positive constant C such that Cv(1, x) -~(1 ,  x)_>0 for every x E R  n. The 
maximum principle yields that  Cv(t, x)-~(t, x)>_0 for every t >  1 and xEa n. Thus, 
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we can conclude that  Ao>n0-1/(0-2-4-e). Since s was an arbi trary positive number, 

A0 > n0-1/0-2. 

The inequality AoK_n0-1/0-2 for o-1>o- 2 can be proven in a similar way if we 
take into account that  for every positive number 5 there exists an zo such that  
y2(z)>exp(-( l+$)z)  for every z with z>zo. Because the author could not find a 
good reference, a sketch of a proof is given. 

We will restrict ourselves to the case when 5<  1. The est imate O<_y2(z)< 
e x p ( - ( 1 - 5 ) z )  for large z and the fact tha t  (exp((1-25)z)y2(z))' satisfies a S tu rm-  
Liouville equation for which every solution only has a finite number  of zeros yield 
that  zHexp((1-25)z)y2(z)  is decreasing on [zl, oc) for a sufficiently large zl. Hence, 

0 < Y2 (z) < - (1/(1 - 25))y2'(z) for sufficiently large z. We can conclude from (3) that  
- ( 1 - � 8 9 1 8 9  for sufficiently large z. The proof can be 
completed by an application of Gronwall 's Lemma. 

The inequality Ao > ((n-1)0-1/0-2)q-1 for a l  >0-2 can be established in exactly 
the same way as the corresponding inequality for 0-1 < a2. 

L e m m a  6. Suppose that fo E C 2 [0, 0o) satisfies the conditions of Proposition 1. 
Assume in addition that al <_a2. 

Then f~r(r)>(1/r)fg(r) for every r>O. 

Proof. The assertion is obvious if r>_ro or if 0-1----0-2- Therefore we suppose that  
r<ro and tha t  0-1<a2. 

We set z--  �89 2 and fo ( r )=y (z ) .  Thus, we obtain tha t  f~'(r) - (1/r)f~(r)=y'(z) .  
By Lemma 5, we have A0<n and therefore _ 1 1 ql----~n-~A0>0.  Hence, y l ( z ) =  

C f ~  tp - l (1 - t )  q1-1 e x p ( - z t )  dt for a positive constant C (cf. [8, Section 3.1]). This 
completes the proof. 

3. P r o o f  o f  t h e  m a i n  resu l t  and  a p p l i c a t i o n s  

The objective of this section is to prove Theorem 1 and to give several related 
results which can be shown by similar methods. 

Proof of the first part of Theorem 1. In view of well-known localization argu- 
ments (see [9, Section 6.6]), we may  and will restrict ourselves to the case where the 
assumptions of the first part  of the theorem are satisfied for every (t, x) E [0, oc) x R n. 

We will furthermore suppose that  0-1 <0-2 since the assertion is trivial if 0-1 =0-2. We 
claim that  

{ Ixtl t H  (t+8)- o/2fo j \ tzT-  / 
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is a supermartingale with decreasing time parameter t for the diffusion process 

t~-~Xt with differential generator Lt-O/Ot and for every positive s. 

By Section 2, Proposition I, 

(12) trace((aij(t,x))i,j 02 ( s0( ixl 

< ~ 2Jo _ - -  ~-~rltn-l)-----~.ro 
t+s \ ~  \ ~v~)) 

for every s,t ,x with I/I/t~/~T_>~o. 
The estimate trace(H(aij (t, x))i,j)~__ (n-- 1)if1 for every (n-- 1)-dimensional or- 

thogonal projection II implies in particular that  trace((aij (t, x))i,j)>_nal. 
By Section 2, Proposition 1 and Lemma 6, O>_f~'(r)>_(1/r)f~(r) for every r 

with r~_ro. Thus, we can conclude that  

(13) trace((aij(t,x))i,j 02 ( So/ Ixl 

<--~k ( ~ )  +~ 1)~-f6 ( ~ ) )  1 fa l f~ '  [/[ tvQT~ , [/[ 
- t+s 

for every s, t, x with Ixl/~VT4-~_<ro. 
By (12) and (13), 

__~LO'l'(Y2--~--~)((t~-s)--)~o/2fo~?~O, 8 ~ ~//~/]zflXl ~ - 0  

for every s, t, x. 
This establishes the claim. Hence, 

Eto,xo denotes the expectation operator with respect to the diffusion with differential 
generator Lt-O/Ot starting at (t0,x0). The corresponding probabibility measure 
will be denoted by Pto,xo. 

We can estimate from above the right-hand side of the last inequality by a 
constant C. Since f0 is decreasing, we obtain from Chebychev's inequality that 

fo(1)P~o,xo[lXol <_ v~ ] <_ Cs ~~ for every positive number s. 
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This completes the proof of the first part of the theorem. 

Proof of the second part of Theorem 1. Now, suppose that  the assumptions of 
the second part of the theorem are satisfied and that  ch >62. 

It can be shown in a similar way as above that  

(14) t~-+(t+s)-~~ ) 

is a submartingale with decreasing time parameter t for every positive s. 
We notice that  the analogue of Section 2, Lemma 6 does not hold if al  >0"2. The 

analogue of (13) is nevertheless correct since the presupposition trace (H (aij (t, x ))i,j ) 
_> (n-1) ( r l  for the first part of the theorem was replaced by the "stronger" presup- 
position (aij (t, x))i,y _<al 1. 

Since (14) is a submartingale, 

[s- ol fo(IZol 
- \ ~ / t 0 + s  

for every positive s. Since fo is decreasing on [0, ~ ) ,  we obtain that  

Eto,xo [S- :~~ fo ( ~-~- ) l >_ f~176 v/-~ 2to )~O/2 

for every s with O<s<_to. 
On the other hand, 

E'~176 [f~ )] <-f~176176 f~ ) 

for every positive 0 and s. 
We can conclude that 

for every positive 0 and every s with 0 < s < t o .  
Let a positive number c with c < l  be given. We set s - ~  2(1+~) for every p with 

max{02; 04}~t0. Thus, 

1 f PL(tO,Xo;O, Ue(O) ) > 
- s- l, (2to) ol  
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for every sufficiently small positive 6. Taking into account that f0 vanishes at least 

exponentionally fast at infinity, it is easy to see that 

fo(o-O limo~0 ot0"l+e)x-- - O .  

Hence, 

1 fo(Ixol lv~)O(l+~)x  o 
PL( to, xo; O, UQ(O) ) >_ 2f0 ( 0 ~  

for every sufficiently small positive 6- The assertion is herewith established because 
was an arbitrary positive number with r < 1. 

C o r o l l a r y  1. Suppose that the assumptions of the first part of Theorem 1 are 
satisfied for~ a differential operator L t - O / O t ,  constants 0.1, 0"2, AO, ro with 0"1 <0"2, 
and every (t, x)E (0, ec )x  R n (i.e., we suppose that the assumptions on (aij(t, x))i,j 
are satisfied_uniformly on (0, oc)x Rn).  

Then PL(t, x; O, M ) = 0  for every Borel set M with Hausdorff Ao-measure equal 
to zero. 

Proof. The corollary can be proved in exactly the same way as [7, Theorem 2] 
if we take into account the following remark. The same argument as in the proof of 
Theorem 1 yields that  given (to, x0)C (0, co)x R ~ and a positive constant R, there 
exists a constant C with Pto,xo[lXo-Yl<vfs]<Cs ~o/2 for every y with lYl<R and 
every positive s. 

Co ro l l a ry  2. Suppose that the assumptions of the second part of Theorem 1 
are satisfied in an appropriate neighbourhood of (0, 0) for a differential operator 
L t - O / O t  and constants 0"1, a2, A0, ro with 0.1 >0"2. Let (to, xo)E (0, oc)x  R n and a 
positive number r be given. 

Then there exists a positive constant C such that for every positive solution u 
of the equation (L t -O/Ot )u=O on (0, oc) • R n the following holds: 

u(to, Xo) >_ CtO+~)~~ x) for every t, x with 0 < t <_ �89 [xl 2 < _t. 
c 

Proof. By Harnack's inequality (see [6]), there exists a positive constant Cl(e) 
such that  for every positive solution u of (L t -O/Ot )u=O on (0, 3 ~t) x Uv/~/~(0 ) and 

every t with 0<t_< �89 the following holds: 

(15) u(ht,  x t )  >_ Cl(C)u(t, x2) for every Xl, x2 E Ux/7- ~ (0). 
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We notice that  we can restrict ourselves to the case where (t, x) belongs to an 
arbitrary small neighbourhood of (0, 0). Therefore we may and will assume that  
the assumptions on (aij (t, x))id are satisfied uniformly on (0, co) • R ~. 

A similar argument as in the proof of Theorem 1 shows that  there exists a 

positive constant C2(~) such that  

/ t \(1+~)~0/2 

for every t with 0 < t <  �89 Hence, 

(~)(1+~)~0/2 
(16) u(to, x0) > C2 (~) inf u 

- {st/a} x v V ~ ( o )  

for every positive solution u of (Lt-O/Ot)u=O on (0, co) x R n. The assertion of the 
corollary is now an immediate consequence of (15) and (16). 

Examples. We consider a positive solution f0 of the Sturm-Liouville equation 
(2) for real numbers A0 and r0 such that  the conditions of Proposition I are satisfied. 
We claim that  there exists a continuous function ~ on [0, cx~) with el  <~(r )<(r2  for 

every r > 0  or with al  >~( r )  >_a2 for every r>_0 and a solution f of a Sturm-Liouviile 
equation of type (2) with ~ in place of a and with similar boundary conditions as 
in Theorem 1 such that  the difference of the corresponding eigenvalues )~0 and ~ is 
arbitrary small. 

Once this claim is established, we obtain by similar arguments as at the ends 
of the proofs of the first and second part  of Theorem 1 that  for the diffusion process 
with differential generator 

1 o l A +  ~ -o"1 /1~1 
2 

the following equality holds: 

lim in PL(tO, X0; 0, UQ(0)) = 

(cf. [9, Chapter 7] for existence and uniqueness results for diffusion processes with 
differential generators with continuous coefficients). 

We can conclude that  the "exponent" A0 in the assertion of Theorem 1 cannot 
be improved. 

In order to prove the claim, we consider for every r with r<ro the function 
a (~) on [0 ,~ )  with (r(~)(s)-(h for s<r, ~r(~)(s)---~2 for s>ro, and such that  (r (~) is 
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afllne linear on Jr, ro]. Given a number  r, the eigenvalue A(r) of a Sturm-Liouville 
equation similar to (2) with a (r) in place of a,  with the same boundary conditions 
as in Theorem 1, and the condition that  the solution is continuously differentiable 
on [0 ,~ )  can be defined as the zero of a function ) ,HF(r) ( ) , , ro) .  Tha t  function 
can be defined in a similar way as the function F( . , ro )  from Section 2. As in the 
remark after Lemma 1, we can conclude that  ;~(r) depends continuously on r. This 

establishes the claim. 

Finally, we consider a simple degenerated situation. Suppose tha t  we are given 

natural  numbers n and k with 2 < k < n. We set aij (t, x) - 1 if i = j  < k and aij (t, x) - 0  
otherwise for every t, x. A similar argument as in the proof of Par t  1 of Theorem 1 

(cf. also the last remark in Section 2) shows that  limel0 inf In PL(tO, xo; 0, Ue(0))/ln e 
),0 where ~o is given by Proposit ion I for al-= ( k - 1 ) / ( n - 1 )  and a 2 - 1  (notice that  

the presupposition ( a i j ( t , x ) ) > C ( t ) l  for a positive number C(t)  is not satisfied in 
this situation). On the other hand, it is obvious tha t  

lim inf In PL (to, xo ;0, Ue (0))/ ln Q = k. 
e J,0 

Hence, k>_A0. 
Notice that  Lemma 5 yields the estimate (n ( k -  1)) / ( n -  1) _< )~o < k. 
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