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Discrete spectrum of the 
perturbed Dirac operator 

Mikhail Sh. Birman and Ari Laptev 

A b s t r a c t .  In this paper we study the asymptotics of the discrete spectrum in the gap 
( -1 ,  1) of the perturbed Dirac operator T)(c~)----:Do -c~V1 acting in L2(R3; C 4) with large coupling 
constant c~. In particular some "non-standard" asymptotic formulae axe obtained. 

w I n t r o d u c t i o n  

w The Dirac operator with a decreasing electric potentiM gives a non-trivial 
example of the discrete spectrum in a gap of the continuous one. Let 7 =  (71, V2,73) 
and 70 be (4 x 4) Dirac matrices; 1 be the unit matrix. The Dirac matrices satisfy 
the equations 

(1.1) 7jTk+TkVj=26jkl, j , k = 0 ,  1,2,3. 

Let us consider the "free" Dirac operator in L2(R3; C a) 

:Do = 7 " D + v 0 ,  

o 0) 
D - - -  0Xl '0X2 '0x3  ' 

and its perturbation by a potential 

3 0 
"t'D -- - i  E 7j Oxj ' 

j : l  

(1.2) :D(c~) = :Do-aV1, a > 0, 

(1.3) V �9  V(x) >_0. 

The spectrum of the operator :Do is (absolutely) continuous and covers the com- 
plement of the interval (gap) A - - i - l ,  1). The continuous spectrum of the operator 
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D(c~) coincides with the continuous spectrum of Do. Besides, the operator :D((~) 
has a discrete spectrum in the gap A. The eigenvalues of :D(a) are monotonically 
moving to the left, when c~ is increasing. 

Let us denote by N(c~,/~) the number of eigenvalues of the operator ~)( t ) passing 
the point i~, I)~1<1, when the coupling constant t is increasing from 0 to the value 
t=~. We study the asymptotic behaviour of N(c~, A) when c~--*c~. In the case 
A--•  we need some additional assumptions on V. In particular, these assumptions 
guarantee N(c~, 1) to be finite for all c~>0. 

The starting point of our paper is the following result of [K]. 

P r o p o s i t i o n  1.1 ( [g]) .  Let us assume that, as well as (1.3), we have 

(1.4) v �9 L3/2(R3). 

Then the following asymptotic formula holds* 

1/ 
(1.5) l i m  c~-3N(c~, • ---- ~ V 3 dx. 

In this paper we claim the following statements in addition to the result of 
Klaus. 
(a) The asymptotic formula (1.5) holds for N(a ,  )~), I)~l < 1, whenever we only have 
the condition (1.3). 
(b) The asymptotic formula (1.5) survives under some weaker (compare with (1.4)) 
additional restrictions on V. 
(c) There are potentials satisfying (1.3), such that  N(a ,  1) has an asymptotics of 
the order ha, q>3. 
(d) There are potentials, satisfying (1.3), such that  g ( a ,  1 )~ca  3, but the coefficient 
c > J, where 

1 / V  3 J : =  3-~ dx. 

w Let us clarify the previous statements. We begin with the necessary notations. 
Let T be a compact operator in a separable Hilbert space, and sk(T) be its 

singular numbers, i.e.; the decreasing sequence of the eigenvalues of the operator 
(T'T)  1/2, enumerated with their multiplicity. Let us set 

n ( s , T ) = c a r d { k e N :  sk(T)>s} ,  s > 0 .  

Besides, if T=T* we set 2T•177 and 

n~=(s,T):=n(s,T+), s > 0 .  

* The coefficient in [K] is incorrect and this mistake is repeated in [T]. 
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Obviously 
n(s,T)=n+(s,T)+n_(s,T), T=T*. 

Throughout the paper we use the notation 

w(x)  = (v(x))  1/2. 

Let us consider the operator 

(1.6) X(A) =W(Do-AI)-IW, IAI < 1. 

If this operator is compact, then the well known abstract method gives 

(1.7) N(a,A)=n+(s,X(A)), as=l ,  [A[<I. 

Using the relations (1.1) we represent the operator (1.6) as follows 

(1.8) I l< 1, 

(1.9) Y(A) =W(7.D(-A+aI)-I)W, a = l - ~  2, 

(1.10) Z(A) = W(.7o+A1)(-A+aI)-Iw, a = 1-A 2. 

In particular, for the edges of the gap (i.e., when A=+I)  

(1.11) Y := Y(+I)  = W(~I.DID[-2)W, 

(1.12) Z(=t=l) = W(~o• 

The operators (1.9), (1.10) are pseudodifferential operators of order (-1)  and ( -2)  
respectively. The symbols of the operators (1.11), (1.12) are homogeneous. Besides, 

(1.13) :kZ(+l)  _> O. 

Let us notice that the representation (1.8) - (1.10) together with (1.7) was used 
in [g]. 

The general results of the paper [BS2], about the Weyl asymptotics for the 
spectrum of pseudodifferential operators of negative order, imply (see w the 
following Proposition. 
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Proposition 1.2. Under condition (1.3) we have the asymptotics 

(1.14) lim s3n+(s,Y(~))  = J, likl < 1. 
8 - - - + 0  

According to (1.7), (1.8) the asymptotics (1.14) is equivalent to 

(1.15) lim a - 3 N ( a ,  A) -- J, 
Ot - -~  OO 

whenever 

(1.16) n(s, Z(A)) -- o(s3). 

We shall see below that  if I~]< 1, then (1.16) is provided only under condition (1.3). 
On the contrary, if A==hl, then (1.16) cannot be obtained without some restrictions 
on V. One of the simplest restrictions of this type is the condition (1.4), which leads 
to the estimate 

(1.17) n(s, Z ( + I ) )  = O(s -3/2) 

(see the explanations in w However, (1.16) can be obtained under some weaker 
restrictions on V. On the other hand, there are conditions on V, such that  (1.3) is 
fulfilled, but  

(1.18) n(s, Z(+I ) )  = O(s-q),  q > 3. 

Then the asymptotics (1.5) does not hold for sure. The most delicate case is q--3 
in (1.18). Then the contribution of both terms in the representation 

(1.19) X(+I)  : Y+Z(•  

have the same order. We are going to show that  for a sufficiently large class of 
potentials these contributions lead to the summation of their respective asymptotic 
coefficients (see Theorems 3.7 and 3.8). 

w Two clarifications should be added to the above statements. Firstly, the 
operator (1.2) needs to be correctly defined. Having only the condition (1.3), it is 
impossible to introduce this operator as the sum of two operators. However, we 
can define the sum of the two operators in (1.2) via the sum of their respective 
sesquilinear forms. This definition is normally used for semibounded operators. For 
non-semibounded operators the scheme of definition of operators via the sum of 
forms is given in Chapter 1 of the book [Y]. In our case it can be applied under 
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condition (1.3), since the operator W[/)0[ -1/2 is compact. The reader can find all 

the details in [Y]. 
The second clarification concerns the relation (1.7) and some of its analogies. 

These types of formulae are well known in the additive perturbat ion theory. How- 
ever, their justifications need an accuracy when the perturbat ion is introduced via 
the sum of forms, particularly, in the case when A is an edge of the gap. In the 
semibounded case all the details can be found in [B1] and [B2]. Similar ideas lead 
also to (1.7) in our case, if one introduces the sum of sesquilinear forms according 

to IV]. 

Acknowledgement. We both wish to express our gratitude to the Mittag-Lef[ler 
Institute where this research was carried out. 

w The preliminary information 

Our analysis is based on the well developed technique of investigation of the 
negative discrete spectrum of the Schr6dinger operator. We list here the important  
facts, with their references. 

w Let us begin with the notations for classes of operators and functional spaces. 
Let ~ be a separable Hilbert space. The space of linear continuous operators in 2) 
is denoted by B=B(2)); the space of compact operators in 2) is equal to | Fur- 
thermore, let |  be the class of operators TE| whose quasinorm 

/ \l/v 
IITIl p = , 0 < p <  

\ k / 

is finite. An operator T E |  is said to be from the class E v if the quasinorm 

(2.1) lIT[[E, =sup(sPn(s,T)) 1/p, 0 < p <  r 
s>0  

is finite. The space E v is a complete and a non-separable space. By E ~ we denote 
the separable subspace 

E~ n(s,T)=o(s-P)}, 0 < p < e c .  

Let us point out tha t  |  ~ p>0.  
If T E E p  we introduce the following functionals (see [BS3]) 

(2.2) Ap(T) = nm sup sPn( s, T), 5p(T) = liminf sPn( s, T). 
s---)O s---*O 
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If T=T* E Ev, then we also define the functionals 

(2.3) A~(T) :=Ap(T+) ,  5~(T):=hp(T+).  

All these six functionals (2.2) and (2.3) are correctly defined and continuous on 
the factor-space Ep/E ~ Moreover, they are continuous with respect to the quasi- 
norm (2.1). 

Let f ( x ) > 0  now be a measurable function on R d, which defines the measure 
~i(w)=fojfdx, w c R  d. Let us recall the definition of the Lorentz spaces with 
respect to the measure ~Y (we shall omit f in our notations when f ( x ) = l ) .  For a 
measurable function u: R d ---+ C we set 

= Qs{x e a d :  lu(=)l > t}. 

We say that  u is in the class Lp,r(R d, f ) ,  0<p<oo,  0 < r < o c ,  provided that  the 
quasinorm ]] Iiv,r is finite, where 

Ilull~,~ = ff-l#~/P(t)dt, 0 < r  <c~,  

I iu I I~,~ = sup tP#u (t). 
t>0 

The spaces Lp,r are complete; the spaces Lp,oo are not separable. When r=p we 
obtain the usual classes Lp(R d, f). Finally, 

L ~ d,f)  = {u �9 Lp,~(R d, f )  : i~,(t) = o(t-P), t --+ 0, t ~ c~}. 

w In what follows below, ff is the operator of the Fourier transform in L2(Rd). 
By C (may be with indices) we denote different constants appearing in our estimates. 
For the operator of multiplication by a function we use the same symbol as for the 
function itself. 

P r o p o s i t i o n  2.1. 
(a) Let bELp(Rd), cE Lp,oo(Rd), p>2.  Then bdA*CEEp and the following esti- 

mate holds 
IIb *cll   _< C(p, d)llbllL llcllL,. . 

(b) Under the additional condition 

m e s { x e R d :  ]c(x)i>t}=o(t-P), t-*O, 

we have 

o (2.4) br c E ~p. 
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In essence Proposition 2.1 is due to Cwikel [C]. Concerning (2.4) see [BKS], 
[BS5]. In the future we use the notation 

(2.5) Qe := WIDI -~/2, 0 < Q < 2d. 

It is clear that  Qe is equal to WO*c, where c(4)=141-~/2. Therefore we have 

P r o p o s i t i o n  2.2. Let WELp(Rd), p>2.  Then 

(2.6) IIQQII~p ~ C(p, d)IIWIILp, ~o= 2d/p. 

Let a(O), ~=4/1~1, now be a Hermitian matrix-function. The operator 

(2.7) Ke(a) = QeaQ*~ 

is a pseudodifferential operator with the Hermitian symbol 

G(x,4):=lW(x)12a(~)141 -~, ~--=UI41. 

P r o p o s i t i o n  2.3. Let WEL2~(Rd), x > l ,  Q=d/x and aELoo(Sd-1). Then 
(a) The following estimate holds for the operator (2.7) 

(2.8) IIKe(a)Ll~x ~C(d,x)llallL=l 2 IWIIL2x. 

(b) The following asymptotic formula holds 

(2.9) A (+)(Ke(a) ) = 5(~ • (Ke(a) ) = (2~r) -d / /  n• a(x, 4)) dx d4. 

(c) The asymptotics (2.9) hold if the function a(~) in (2.7) is substituted by the 
sum a(O)+g(4), where the Hermitian matrix gcL~(R d) and g(4)---~O when 141--*cc. 

Notice that  the estimate (2.8) directly follows from (2.6). The subsections (b) 
and (c) in Proposition 2.3 are very special cases of the results of the paper [BS2] 
(see Theorem 1 and Remark 5 on this theorem, and also Theorem 2 and Remark 3 
on this theorem). 

It is easy to see that  the asymptotics (1.14) are a simple corollary of Proposi- 
tion 2.3. If ) ,=•  then, for the proof of (1.14), it is enough to use subsection (b). 
When I~1 < 1 we must also take into account subsection (c). The arguments in the 
paper [K] are more cumbersome; instead of referring to the result from [BS2], the 
problem was reduced to the results of the earlier paper [BS1] which needs the ho- 
mogeneity of the symbols. Probably this explains why in [K] the asymptotics (1.14) 
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was obtained only for A = + I .  Proposition 1.1 also follows directly from Proposi- 
tion 2.3. Indeed, under condition (1.4) the estimate (1.17) follows from (2.8) when 
d=3,  x =  3 and Q--2. 

w To avoid tedious provisos, we come back to d=3.  Apart from the operator 
/ ) (a)  we consider in L2(R 3) the SchrSdinger operator 

(2.10) H = - A - a V .  

We denote by NH(a,a), a>O, the number of eigenvalues of the operator H, lying 
to the left of the point ( - a ) .  Let us also consider the analogy of the operator (1.6): 

z~((7) = w ( - ~ + ( 7 1 ) - l w ,  (7 > o, 

and observe the relation 

(2.11) NH(a,(7)=n(S, ZH((7)), a s=l ,  (7>>0. 
If (7=0 we use the shortened notation 

(2.12) z .  := z~(0)  = Q2Q~. 

The matrix 7o-4-1 is unitarily equivalent to the matrix =t=2diag(1,1,0,0). This 
implies that  

(2.13) A(Z(~:I)) = 2P+IAv(ZH), 

(2.14) 6(Z(+l) )  : 2P+16p(ZH). 
Assume now that  (1.4) is satisfied. It follows from (2.6) that  

(2.15) IIQ211~3 -< ClIWllL3. 

By (2.11) this is equivalent to the inequality 

NH( a, (7) <_ Col 3/2 _f Y 3/2 dx, (7 > O. 

The last estimate is well known (Rozenblum-Lieb-Cwikel estimate). It is accom- 
panied by the asymptotic formula 

w Let us now discuss the estimates for NH(~, O) when the condition (1.4) is bro- 
ken. In particular, we need some sufficient conditions which guarantee the inclusion 

z .  c r~q, q > ~ .  
The appropriate material is borrowed from [BS4], w Here we write down the 
estimates assuming that  the right hand sides are finite. We regard the function ~, 
such that  

(2.16) (p(x) >0 ,  r Ilvll~3,,,... -- 1, 
to be fixed. As ~ we can take, for example, the normalized function Ix[ -2. 
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Proposition 2.4. I] q> 3, then 

(2.17) IlZn[Iq~ ~ C(q) / Vq~ 3/2-q dx, 

(2.18) IlZgll~q<C(q)sup(tq f ~3/2dx), 
t>o \ J v > t ~  

Let us clarify that the finiteness of the right hand sides in (2.17) and (2.18) 
means that the function V/~ belongs to the classes Lq(~ 3/2) and Lq,~(~ 3/2) re- 
spectively. The right hand sides in (2.18) and (2.19) are finite, for instance, if 

V- -~ l ln~ l  -~, Tq=l. 

These results look even simpler for some specially chosen functions ~. For example, 
the following estimate is the particular case of the estimate (2.17) 

C(q) / Vqtxt 2q-3 dx. <_ 

Futhermore, let XR be the characteristic function of the ball {Ixl<R} and ~E 
Lq($2), ~(0)>0, O=x/Ix I. Let us consider the potential 

(2.20) V,(x)=(l_xl(x))lx]-2(lnlxD--~(O), T--1 q>3 

for which the estimate (2.18) turns out to be (if ~--Ix1-2) equivalent to the inequal- 
ity 

(2.21) sqn(s, ZH) <_ C(q) ~(0) q dS(O), q > 5" 
2 

The accuracy of the estimate (2.21) is verified by the asymptotic formula which 
is essentiMly not a Weyl type asymptotic formula. Let us consider in L2(S 2) the 
operator with a parameter s>0 

(2.22) -Ao-s-'~q2(O), 

where Ao is the Laplace operator on the unit sphere. Let {v/v) is)} be the sequence 
of the eigenvalues of the operator (2.22) and 

1 T f~176162 (2.23) M, := ~ (~}')(s)+�88 2 ds. 
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P r o p o s i t i o n  2.5. Let, in (2.10), V = V r ,  where V~ is the potential defined 
by (2.20). Then the following asymptotic formula holds 

(2.24) lim sqn(s, ZH) = Mr, Tq = 1, q > 3. 
a---*O 

The asymptotic formula (2.24) is obtained in [L]; the partial result with ~---1 
was analyzed earlier in [BS4], w 

w Let us give one more simple estimate for the operator ZH, which has not been 
mentioned before. 

P r o p o s i t o n  2.6. The following implication is valid 

(2.25) V C L3/2,q(R 3) ~ ZH E ~q, 3 < q < 00. 

Proof. It is more convenient to consider the operator Q2 (see (2.5) and (2.12)). 
For this operator we have the implications 

(2.26) WEL3,oo(R 3) ~ Q 2 c B ,  

(2.27) W E L 3 ( R  3) ~ Q2EE3,  

accompanied by their respective estimates. The relation (2.26) is contained in the 
results of the paper [BKS], and (2.27) coincide with (2.15). It now remains to ap- 
ply the real interpolation. The coincidence of the left first (main) indices is not 
an obstacle, since the main indices on the right hand sides of implications (2.26) 
and (2.27) coincide with the second indices on the left. The corresponding theo- 
rem concerning reiteration (see [BL] Theorem 3.5.4) allows one to deduce directly 
from (2.26) and (2.27) the following relation 

W c L3/2,2q ==~ Q2 c ~2q, 

which is equivalent to (2.25). [] 

w Finally, let us mention one special result about the operator ZH(a),  when 
0>0 .  It is contained in the paper [BS4] (Corollary 4.1 when l = l ,  d--3, q--3). 
However, we give here its direct deduction. 
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P r o p o s i t i o n  2.7. 

(2.28) 

Under condition (1.3) we have 

Zu(a) �9 ~3, ~>o .  

23 

Proof. Let us take advantage of the representation ZH(Cr)--Q2(a)Q2(a)*, with 
Q2(a)- -W(-A+aI)  -1/2. The following implications are valid 

WELo~(R3)=~Q2(a)CB, a > 0 ,  

WEL3(R3)~Q2(a)EE3 ,  a>_O. 

The first one is obvious, and the second one follows from (2.15). After interpolation 
we obtain 

(2.29) W e L 6 ( R  3 ) = ~ Q 2 ( a ) � 9  a > 0 ,  

which is equivalent to (2.28). [] 

w The  main  results  

We shall now formulate the main results of the paper. After the preparation 
which has been done in w and w these results almost do not need any proofs, and 
therefore we shall give the necessary explanations at once. The only exception is 
Theorem 3.7. We devote w to the proof of this theorem. 

w 

T h e o r e m  3.1. Under conditions (1.3) and IAI<I the relation (1.15) holds. 

Proof. From (2.29) with a = l - A  2 we immediately obtain that  

z()o e e53(c ~o), 12~1 < 1. 

This implies (1.16) and, therefore, the matter is reduced to Proposition 1.2. [] 

w The following concerns the edges of the gap A=•  The next proposition is 
almost obvious, but it is convenient to single it out. 
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P r o p o s i t i o n  3.2. Let the condition (1.3) be fulfilled, and assume that for the 
operator (2.12) we have the inclusion 

(3.1) z .  e r 0. 

Then the asymptotic formula (1.5) holds. 

Proof. The proof once again is reduced to Proposition 1.2, since (1.16) is the 
corollary of (3.1) and (2.13) when A--=kl. [] 

The informative conditions for the validity of (3.1) can be extracted from the 
assertions of w and w We deduce some of the results avoiding the most general 
statements. The estimate (2.17) obviously leads to 

T h e o r e m  3.3. Let the condition (1.3) be fulfilled. Let, for some q, the integral 

3 < q < 3  ' (3.2) Vq[x[ 2a-3 dx < oc, ~ _  

converge or, more generally, 

f Vq~ 3/2-q dx < c~, 3 ~ q <_ 3, (3.3) 

with some function ~, satisfying (2.16). Then the asymptotic formula (1.5) is valid. 

The extreme value _ 3 q - ~  in (3.2) and (3.3) corresponds to the condition (1.4). 
The sufficient conditions (3.2) or (3.3) do not absorb each other for different values 
of q. The next theorem contains a more direct generalization of the condition (1.4)*. 

T h e o r e m  3.4. Let us assume that together with (1.3) we have 

(3.4) V 6 L3/2,3(R3). 

Then the asymptotic formula (1.5) holds. 

Proof. By (2.25) from (3.4) we have (3.1). [] 

w Let us consider the case when the operator Z(=t=l) dominates in the sum (1.19). 
It is also convenient to begin with the simplest statement. 

* It can be shown that Theorem 3.4 absorbs Theorem 3.3. The authors thank T. Weidl for 
verifying this fact. 
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P r o p o s i t i o n  3.5. Let the condition (1.3) be satisfied and there be q>3 such 
that we have the following inclusion for the operator (2.12) 

(3.5) 

Then 

(3.6) 

Z H E~-]q, q>3. 

lim sup a-qN(a ,  1) oqq-1  ," q = .  um sup a -  NH(OI, O), 
Ot "--~ O 0  Ot ---+ O 0  

(3.7) lim inf a-qN(a ,  1) = 2 q+l lim inf a-qNH (a, 0), 
~ ---~ o o  c~ ---4 ( x 3  

(3.8) limoo a-qN(a ,  -1)  = O. 

Proof. It follows from (1.14) and (3.5) that  the functionals A (• and 5~ +) are 
the same for X(1) and Z(1); the same assertion is true for the operators Z ( - 1 )  
and Z( -1) .  Hence the necessary statements follow from (2.13) and (2.14). To 
obtain (3.8) we have to take into account (see (1.13)), that  Z ( - 1 ) < 0 .  [] 

Propositions 2.5 and 3.5 imply 

T h e o r e m  3.6. Let the condition (1.3) be fulfilled, and 

(3.9) Ixl-  , �89 

where Vr is the potential (2.20). Then we have (3.8) and the following asymptotic 
formula holds 

(3.10) lim a-qN(a ,  1) = 2q+lM~, Tq= 1, 
O~ ---+ r 

where the coefficient M,  is defined in (2.23). 

Proof. For the potential V=V~ the inclusion (3.5) is fulfilled (by (2.24) and 
also (1.3)). Therefore the formula (3.8) holds for the potential V,, and the rela- 
tions (3.6) and (3.7) by (2.24) transfer into (3.10). The same is true for the potential 
V--(1--XR)V,, R >  1, since (XR--X1)V, cL3/2, and the right hand sides in (3.6) and 
(3.7) do not change when we vary the potential V with a term from the class 
L3/2(R3). By the same argument an arbitrary potential (3.9) can be substituted 
by another one which is equal to zero in the ball {Ixl <R}. It is clear now that  the 
asymptotics (3.10) are true for any potential VEL3 satisfying (3.9). [] 
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w Let us now consider the case when (3.5) is fulfilled by q=3, or, which is the 

same when 

(3.11) Nu(a,O)=O(aa) .  

In this case both  terms of the sum (1.19) give contributions of the same order. 
With  some additional conditions we succeed in proving that  their asymptotic con- 
tributions are added. The point is tha t  the main contribution of the operator Y 
to the spectrum is given by large momenta,  but the contribution of the operator  
Z ( + I )  is given by small momenta.  (The precise meaning of this s tatement  is given 

in Lemmas 4.1 and 4.2.) Therefore the contributions of both  terms enter into the 
asymptot ic  formula additively. It  is convenient to express the necessary supplemen- 

ta ry  condition in terms of the Fourier t ransform W = ~ W ,  W=V1/2: 

(3.12) / I ( )12 d~ < oo, ~ > 0. 
I>e 

T h e o r e m  3.7. Let the conditions (1.3) and (3.11) be fulfilled and let us as- 
sume (3.12) for some ~>0. Then 

(3.13) lim sup a-3N(a ,  1) = J +  16 lim sup a-3NH(a,  0), 
Ot ----+ O O  O~ - - - 4 0 0  

(3.14) l iminf  a-3N(a ,  1) = J +  16 l iminf a-3NH (a, 0), 

(3.15) lim a-3N(a ,  - 1 )  = J. 

From Theorem 3.7 it is easy to deduce the analogy of Theorem 3.6. 

T h e o r e m  3.8. Let (1.3) be fulfilled and 

(3.16) V(x)--tZ(x)(l+o(1)),  I x l ~ ,  

where* 

V(x) = (1-X2(X)) 
Ixl2(InlxI)V 3' 

c L3(S~). 

* The potential V1/a from (2.20) would not be convenient now, since it is not from L3(R 3) 
because of the singularities at Ixl=l. 
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Then we have (3.15) and the following asymptotics hold 

l i m  c~-3N(a, 1) = J+16M1/3. 

Proof. As in the proof of Theorem 3.6, it is enough to consider the case when 
in (3.16) V--g~. The following estimate is true 

(3.17) IIX(• _< CllkOIILs(S2). 

Indeed, from (1.19) it is enough to show similar estimates for the operators Y and 
Z(•  The estimate for the operator Y is a simple corollary of the representa- 
tion (1.11) and (2.6) when d=3 and p=6. The estimate for the operators Z( •  
by (1.12) follows from (2.18) with q=3 (we have to calculate the right hand side 
in (2.18) with U=g~ and ~--Ixl-2). 

By (3.17) it is sufficient to calculate the spectral asymptotics for the operators 
X( •  (and therefore the asymptotics of N(a,  • on some L3-dense set in the 
cone set of functions ko such that {~EL3(S2): k~(O)>0}. In particular, we may 
regard that 

�9 C~(S~), ~ ( e ) > 0 .  

Then the condition (3.12) is fulfilled for any e>0. It remains to apply Theorem 3.7 
and Proposition 2.5 with q--3. [] 

w The value 

(3.18) N(a, A):= N(a, 1 ) - N ( a , - 1 )  

is equal to the number of all eigenvalues of the operator :D((~) inside the gap 
A = ( - 1 ,  1). Under conditions of Theorems 3.3 and 3.4, for the function (3.18) we 
obtain only the estimate N(c~, A)=o(a3). On the contrary, under the conditions of 
Subsections 3 and 4 we obtain for N(a,  A) more interesting asymptotic information. 

w The proof  of  T h e o r e m  3.7 

w First of all let us make sure that the main contribution to the spectrum of the 
operator Y is given by large momenta, and the main contribution to the spectrum 
of the operator Z( •  is obtained from small momenta. 

Let us settle the notations. In what follows below we denote by XR the char- 
acteristic function of the ball {Ixl <R}; XR=I--XR . Set (~t.D)ID]-I=S. Using the 
notation (2.5) we represent the operator Y as 

Y=Q1SQ~.  
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Lemma 4.1. Let the condition (1.3) be satisfied and 

YR := QI~R(D)S~R(D)Q~, R >  O. 

Then  

(4.1) 

Proof. 
obtain the inclusion 

Q I x R ( D )  e z ~ 

The last one follows directly from Proposition 2.1(b), since 

(Q1xR(D)v)(x) = (27r)-3/2W(x) ~]<R 1~1-1/2 ei~z~ v(~) d~. 

Let us rewrite the operator Z ( •  in the form 

Z ( •  = Q2(70•  

and denote 

y-9  ss ~ . 

From (2.6) we have Q1CE6. Therefore to prove (4.1) it is sufficient to 

Z r ( •  :-- Q2x~(D)(7o• r > O. 

Under conditions (1.3) and (3.11) we obtain 

Z ( •  Z , ( i l )  C Z ~ 

[] 

Lemma 4.2. 

(4.2) 

Proof. The equality (2.11) implies that the condition (3.11) is obviously equiv- 
alent to the inclusion Q2EE6. Thus to obtain (4.2) it is sufficient to show that 

(4.3) Q2~r(D) C E ~ 

The relation (4.3) can be established by applying the method of real interpolation 
to the integral operator 

(Q2~(D)v)(x) = (2zc)-3/2W(x) f I~1-1 e ix~ v(~) d~. 
I>_r 

Indeed, it is obvious that . 

W c L ~ ( R  3) ~ Q2~r(D) EB(L2), 

and by Proposition 2.1 

W E L 3 ( R  3) ~ Q 2 ~ ( D )  EE3(L2). 

Interpolating the two last implications we find that 

W C  L6(R 3) ~ Q2~r(n)  E G6(L2) C E 0. [] 

In the formulation of the next lemma we avoid the obvious generalizations. 
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L e m m a  4.3. Let the condition (3.12) be fulfilled. Then 

(4.4) P := ~+~(D)Q2xr(D) E ~2. 

Proof. 

Therefore 

Obviously the kernel of the operator P is equal to 

(2~)-~/ :~+~ (~)W(~-~)  J~V~X~(~ ) �9 

(27r)311Pll| flnl<rlrll-2 drl fl~l>r+ IW(~-~)12 d~ 

< flnl<_ Irll-2 d~ fl~l>_ 'W(')I 2 d' < c~" 
[] 

29 

w We now need the approximations of the operators YR and Zr ( •  

L e m m a  4.4. Let the condition (1.3) be satisfied. Let 

Then 

YR:=~R(D)Q1SQ~R(D), R > 0 .  

~R--YR C ~ ~ . 

Proof. Let us use the following representation 

YR-- YR = [W, ~a( D ) ]S~R( D )Q~ + ~R( D )Q2S[~R( D ), W] =: YR,1 + YR,2, 

where, as usual, the brackets [., .] denote the commutator. Let us estimate for 
example the operator YR,1. Representing the commutator explicitly we have 

YR,1 = Q1XR(D)SxR(D)Q~ -~R(D)Q1S~R(D)Q~. 

From (2.6) we find 

which implies 

(4.5) 

IIQIlI~ ~- CIIWIIL~, 

IIYR,111~3 ~ CIIWII2~. 

2-Arkivff6rmatematik 
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The estimate (4.5) allows us to consider W from any dense subset of L6 (Ra). There- 
fore we can assume that  

(4.6) W E C ~  (Ra). 

Then 

(4.7) 
YR,1 = [xn(D), W]S~R( D )Q~ 

= XR(D)WSxR(D)Q2-- WXR(D)SxR(D)Q> 

It is clear that  under condition (4.6) xR(D)WE~2  and Q2EE3. Therefore both 
terms on the right hand side of (4.7) belong to the class E ~ Using the estimate (4.5) 
we see that  the inclusion YR,1 EE ~ can be extended to an arbitrary WEL6. Similarly 
one can prove that  YR,2 E E ~ [] 

Denote now 
Z~,~(+I) :=x~(D)Z~(• Lo>O. 

L e m m a  4.5. Let the conditions (3.11) and (3.12) be fulfilled, and let Q=r+e. 
Then 

(4.8) Zr (4-1)- Zr,~(-bl) E Z ~ 

Proof. The operator in (4.8) can be written as the following sum of three terms 

x~(D)Zr(+I)x~(D)+x~(D)Zr(•177 
(4.9) =: f~l+f~2 + ~ .  

Using the notation introduced in (4.4), we write f~l in the form 

ftl = P ( % + I ) P * .  

From Lemma 4.3 we obtain that  ~1 E G I C E  ~ We have 

f~2 = P( % + I )xr( D )Q~x~( D ). 

Here PE@2, and the other terms are bounded (moreover, (3.11) implies that  
Q2 E E6). Therefore certainly f~2 E E ~ This implies that the operator (4.9) belongs 
to E ~ [] 

w The proof of Theorem 3.7. Using (1.7), (2.11) and also (2.13), (2.14) we 
rewrite the asymptotic formulae (3.13), (3.14) and (3.15) as follows 

(4.10) A~ +) (X(1)) = J +  16A3(ZH), 
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(4.11) 6~ +) (X(1)) = J +  1663 (ZH), 

(4.12) A~+)(X(-1)) = 6~+)(X(-1)) = J. 

Let us agree to denote the terms from the class E ~ by dots. Using the lemmas of 
this section we have 

X ( + I )  = Y + Z ( + I )  = :KR + Zr (4-1) + . . . .  YR+Z~,e(+I) + . . . .  

Let R >  t~. Then the operators YR and Z~,e(4-1) are mutually orthogonal, and there- 
fore 

A (+) (X(+l ) )  = A (+) (YR)+A~ +) (Zr,e (4-1)) �9 

We now have 

and hence 

(4.13)+ 

Similarly, 

(4.14)+ 

Y R - Y e E  ~ Z r , ~ ( + I ) - Z ( + I ) e E  ~ 

A~ +) (X(+ 1)) = A (+) (Y)+ A~ +) (Z(+l ) ) .  

6~ +) (X(+I) )  : 6~ +) (Y)+6~ +) (Z(+I) ) .  

It is clear now that  by (1.14), (2.13), (2.14) the equalities (4.13)+ and (4.14)+ lead 
to (4.10) and(4.11). In just the same way we have that  (4.13)_ and (4.14)_ are 
equivalent to (4.12), since Z(-1)_<0. [] 
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