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Boundedness, compactness,
and Schatten p-classes of
Hankel operators between
weighted Dirichlet spaces

Zhijian Wu(?)

1. Introduction and main results

In this paper, we study the small and big Hankel operators from one weighted
Dirichlet space to another. We characterize the analytic symbols for which these
operators are bounded, compact or belong to the Schatten p-classes for a certain
range of p. The endpoints of this range are also discussed.

Let D be the unit disk in the complex plane. Let dA(z)=1/7dzdy be the
normalized area measure on D. For a<1, set

dAy(2) = (2=2a)(1-|z|2)1 72> dA(2).

The Sobolev space L2 is the Hilbert space of functions u: D—C, for which the
norm

2 1/2
-I-/D(|8u/8z| +|0u/0z| )dAa(z))

fulla= (| [ ute) 242

is finite. The weighted Dirichlet space D, is the subspace of all analytic functions
in L»*. (This scale of spaces includes the Bergman space (az—%), the Hardy
space (=0) and the classical Dirichlet space (¢=2%).) The orthogonal projection,
P, from L*® onto D, can be understood as the integral operator represented by

Py(u)(w)= | u(z)dA(z)+ @(z)EKa(z,w) dA.(z).
D p 0z 0z

(1) Part of the research for this paper was done at Institute Mittag-Leffler. The author is
very grateful to the institute for providing excellent working environment and financial support.
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Here K, the reproducing kernel of D,, has the expression (see [W])

z pw 1
Ku(z,w)= —_— .
(z,w) 1+/0/0 (I=st)i—7a dsdt

Let P denote the set of all analytic polynomials on D. For a<1l, y<1(1+a)
and fe€L?%, the small and big Hankel operators with symbol f are defined on P,
respectively, by

WP (9)=P,(fg) and H{(g)=(I-P,)(fg), VgeP.

This definition is fine because of the fact that fg is in L»* if f€ L% and g€ P, and
P, is bounded on L>? if y<1(1+a) and a<1 (see Lemma D later).

The set P is in fact dense in Dg for any 5<1. Hence we can regard the small
and big Hankel operators as operators on Dg.

We will in this paper consider only analytic symbols.

Suppose H and K are Hilbert spaces. The Schatten p-class S,(H, K),
(0<p<o0) is the set of all linear operators T', from H to K, for which the sequence
of the singular numbers { Sy(T")=inf{ |T— R||:rank(R)<k } }ZOZO belongs to I?. The
Sp(H, K) norm of T is defined by ||T'|| s, (z,x)=I{Sk(T) }li»-

Previous work has obtained necessary and sufficient conditions for the bound-
edness, compactness, and for the membership in the Schatten p-classes of the small
and big Hankel operators acting on the Hardy and Bergman spaces. We refer the
reader to [P1], [P2], [R1], [R2], [S], [A], [AFP], [J1], [Z] and their references. For
the other weighted Dirichlet spaces some results for the boundedness and for the
membership in the Schatten p-classes of these operators can be found in [W] and
[RW1].

In this paper, we will characterize the symbols f for which HJ([Y) and h(;), as
operators from Dg to L%, are bounded, compact or belong to S, for a certain
range of p. We discuss also the endpoints of this range. (The ranges of a, 3, v and
p are stated later.)

For 0<p<oo and —oco<s<o0, By, BL, and bZ, denote the spaces of analytic
functions on D defined as follows:

By={f: (1= | f ™ (z) € L (1= |21%) " dA)
- 2y—1 1
BLy={ 1+ (=22 ) e L7 (1= [2") " log 15 d4) i
b= {£:(1=|2)™*F™(2) =0, as |2| -1},

Here m is a nonnegative integer so that m>s. B;/ P=B, is the usual Besov space
and b2, =By is the little Bloch space.
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A nonnegative measure p on D is called an a-Carleson measure if

/D l9(2) % du(2) < Cllgll%, Vg € Do

The best constant C' here, denoted by ||ifla, is said to be the a-Carleson measure
norm of y. 0-Carleson measures are just the classical Carleson measures (see [G]).
There are many equivalent characterizations on the a-Carleson measures (see for
example [St] and [KS]). In this paper, however, we do not need them. The above
definition seems easier to work with in our proofs.

We use S5% to denote S,(Dg, L»*) and x, (0<r<1) to mean the characteristic
function of the set D\rD={ 2:r<|2z|<1}. Our main results are stated as follows.

Theorem 1. Suppose a<]1, 55%, a—[(3<1, 'y<%(1+a), 0<p<oo and f is
analytic on D. Then

(1) H](f) is bounded or compact from Dg to L if and only if || | f'|*dAq]|p <o
or |[x-|f'>dAalls—0 as r—1_, respectively;

(2) If B<3, 1/(1+B~a)<p and B,<1, then H}7)655“ if and only if fe€
B;/’Ha_ﬁ. If p<1/(1+8—a), then Hﬁ”’esga if and only if f is constant.

Theorem 2. Suppose o<1, ﬁs%, a—-pF<1, 'y<%(1+a), O<p<oo and f is
analytic on D. Then

(1) hgf’) is bounded or compact from Dg to L** if and only if || | f'|? dAq||g <00
or “Xrlf'|2dAa”ﬂ—>0 as r—1_, respectively;

(2) If B<} and B,<1, then K\ €S> if and only if feBY/***~7.

Theorem 3. Ifa<l, $<8<1, y<i(1+a) and p>1/8, then the following are
equivalent:

(1) HY or b is bounded from Dy to L><;

(2) H}V) or h(fV) is compact from Dg to L**;

(3) H}"’) or h?) is in SP°;

(4) f is in D,.

Theorem 4. Suppose o<1 and 1<p<occ. Then

(1) Ifp>2 and fEBLZ, then H and bV €5,/";

(2) Ifp<2 and Hy or h{)€S,/*®, then feBLS.

Some of our results above can be reduced to the results in [P1], [S], [AFP], [J1],
[W] and [RW2]. The main work in this paper is to characterize the boundedness

and compactness of the small Hankel operators and the Schatten p-classes of the
big Hankel operators and to provide a proof for Theorem 4.

8-935212 Arkiv 6r matematik
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We take up some basic results in Section 2 and prove Theorems 1, 2, 3 and 4
in Sections 3, 4, 5 and 6 respectively. In Section 6, we discuss some examples which
show that the conditions in Theorem 4 are “sharp” but not sufficient.

Throughout this paper, the notation “<” means comparable and C means a
positive constant which may vary at each occurrence. We will use {-,-), to denote
the inner product in L. More precisely, for u,v€ L?®

(1, V) = / 2)dAn(2) / o(2) dAa(z)+ / % (2 )%dAa(z)
+ [ G5 ().

2. Preliminaries

For a< 1, the space A%172¢ is the subspace of all analytic functions in L%(dA,).
It is easy to check that A%1~2®=D,_; (their norms are different but equivalent).
The orthogonal projection from L?(dA,) onto A%172% is the integral operator de-
fined by (see [Z] for example)

B, (u)(w) = / (%cma(z).

b (1-Zw)3-2a

The Hankel operator with symbol f from A%1727 into L2(dA,) is densely defined
by _ 5
Hy(g)=(I—Pu)(fg), VgeP.

The following theorem, which can be found in [J1], is needed in Section 3.

Theorem A. Suppose a,3,a—83<1 and f is analytic on D. Regard fIf as
an operator from A%1=28 to [2(dA,). Then

(1) ﬁf is bounded or compact if and only if f is in B% P or in %P respec-
tively;

(2) If 1/(14+B—a)<p, then H;€S, if and only if fe By P,

(3) If p<1/(1+8—a), then I:Tf €Sy if and only if f is constant.

The following result, which is needed in Section 4, can be found in [RW1].

Theorem B. Suppose g is analytic on D, 8<3, o,7>—1 and min(o,7)+
26>—1. Then

/D/D |1|g(zzw!3+ﬂ+f)L2ﬁ( ~[2*)7 (1~ |wl|*)" dA(2) dA(w / lg'(2)[? dAs(2).
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For a fixed weD, let ¢, be the function defined by ¢, (z)=(w—=z)/(1-wz).
We know ¢,,: D—D is an analytic, one to one, and onto map. The hyperbolic
distance on D, which is Mdbius invariant, is defined by

1t+pw(2)|

d(z,w)=log T lou()]’

A sequence {z;}5° in D is called a d-lattice (see [R2]), if every point of D is
within hyperbolic distance 5d of some z; and no two points of this sequence are
within hyperbolic distance d/5 of each other. Associated to each d-lattice {z;}§°,
there exists a disjoint decomposition {D;}§° of D such that

{z€eD:d(z,2;)<d/10} CD; C{zeD:d(z2;) <10d }

and

[ dae)=a-15P?

2

(see [CR] for details).
For a measure p on D, the Toeplitz operator, T;Sﬂ ), with symbol p is defined
on Dg by

(TP(0) o= | oG du(z).
For the following theorem, proofs of the parts (a), (b), (¢) and (d) can be found
in [St], [RW2], [L], and [W], respectively.

Theorem C. Suppose 3<1, p is a nonnegative measure on D, {2;}§° is a
d-lattice in D and {D;}§° is the corresponding disjoint decomposition of D. Then

(a) T,Sﬁ ) is bounded if and only if p is a B-Carleson measure.

(b) T,Sﬁ ) is compact if and only if p is a B-Carleson measure and

Ixrplig—0 asr—1_.

(c) Ifﬂ<%, p>0 and B,<3, then Tﬁﬂ)v belongs to Sy, if and only if

>

S (D)) (A~]2;H) %1 < 0.

0

(d) If 8>3%, p>0 and Bp>3, then T,Sﬁ) is bounded, compact or belongs to Sy
if and only if i is a finite measure on D, i.e. p(D)<oo.
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Lemma D. Suppose 3>—1 and b>1+3(1+8). Then the operator defined by

/ |1F(z)|b |2)b—2 dA(z)

is bounded on L2((1—|z|?)P dA).

This result can be found in, for example, [R2] for 5>2. For the full range, it can be
proved in a similar way. See also (Z].

Remark. A consequence of Lemma D is that P, is bounded on L2
if y<1(1+a)<l. In fact du/dz is in L*(dA,) if u€ L>»* and
Ou

0 . E(z) 2,a
a_wP”(“)(w)_/ ey (), Yue I,

p (1—zw)3—2v

Applying Lemma D with b=3—2v, we get the desired result.

3. Proof of Theorem 1

Because of the independent interest, we break the proof of Theorem 1 into
several lemmas.

Lemma 3.1. Suppose o, <1, ’y<%(1+o¢) and f is analytic on D. Then
| H{:Dg— L
is bounded, compact or belongs to S, (0<p<oo) if and only if
H}a): Dg— L**
is bounded, compact or belongs to S, (0<p<o00) respectively (compare the result in
[J2)).

Proof. By the assumption on a and ~ and the remark following Lemma D, we
have that P, and P, are both bounded on L?%. Clearly

P,Py=P, and P,P,=P,.
Hence for g€ P, we have the following identity:
H{ (9)—H{ (g) = (Fg—Pu(f9))~ (Fo— Py (f9))
= P,(f9)— Pa(f9) = P,(fg—Pa(f9)) = = Pa(fg— Py (fg)).
This yields that
(@) _ 77(7) () () _ () (o)

Hf —Hf —PaHf and Hf —Hf —P,,Hf .

The desired result follows. O
For a function f, define My to be the multiplication by f.
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Lemma 3.2. Suppose a,3<1 and f is analytic on D. Then HJ(,O‘):DB—>L2’°‘
is bounded, compact or belongs to S, if and only if both of the operators

My Dg— A»172*  and ﬁf:A2’1_2ﬂ—>L2(dAa)

are bounded, compact or belong to S, respectively.

Proof. Let g€ P. By the definition of the big Hankel operator, we have
H{™ (g)(w) = (I - Pa)(fg)(w)

Flatw)- [ FEo(:) dAale)~ [ T/ ()57 Kalerw) dAaa).

Il

With this formula, it is easy to check

oH ™ s
/ H(™ (g) dAa(z) =0, ',;T@(W) = f'(w)g(w)
D

and

OH ™ — T ()2 K (2. 0) H
5w(g) ()= T ()~ /D FoN'(2) o Ko (211) dAa(2) = Hy (g ).

Notice that g,h€Dg if and only if g', k'€ A%1=28. The desired result follows from
the following computation:

(HYH (g), o= (H (g), H (h))a

= (H(g"), Hy (")) 2(aan) +(F'9, T R 12(4a.)
= ((Hf)*Hy(g), (W) az1-20 +{(Mp:)* Ms:(g), hYg. O

Lemma 3.3. Let o, <1 and 0<p<oo. Regard My as an operator from Dg
to A?172@, Then
(a) My is bounded or compact if and only if |||f'|2?dAsllg<oco or

xr|f'PdAallpg =0 asr—1_,

respectively;

(b) If B<3, a—B<1, 1/(1+B8—a)<p and B,<1, then M €S, if and only if
fEBII,/(p+a—ﬂ).

(¢) If B<3, a—P<1 and p<1/(1+B—a), then My €S, if and only if f is
constant.
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Proof. For g, h€ P, we have clearly

(M) My (9), s = (g, £'B) 12y = /D (R () dAa(z).
This is equivalent to
(3.1) (Mpy My =T

A direct consequence of (3.1) is that My, as an operator from Dg to A%172%
is bounded, compact or belongs to Sp if and only if Tl(fﬁ,?z da, 18 bounded, compact
or belongs to Sy, respectively. Part (a) is then a consequence of Theorem C, (a)
and (b).

To prove (b) and (c), let {z;}5° be a d-lattice in D. Theorem C, (c) says that,

for Bp<1, the Toeplitz operator T|(fﬁ,)|2 44, 18in Sp/2 if and only if

o] p/2

([ werdama-lsrp | <o

4]

For d small enough the above inequality is equivalent to
> sup{| £/ (2)IP}(1~ ]z )PP PP < .
o Di
And this is a discrete version of
(3:2) [\ dage) <o
D

If p>1/(1+3—a), then (3.2) is just ||f||’}’31/p+a_ﬁ<oo. If p<1/(14+8—a), then
(3.2) is finite for the analytic function f' if and gnly if f'=0, that is f= constant. O

By Theorem A, Lemmas 3.1, 3.2 and 3.3, we see that to complete the proof of
Theorem 1 it is enough to show the following (compare a similar result in [RW1}).

Lemma 3.4. Suppose o, 3,a—B<1 and f is analytic on D. Regard My as
an operator from Dg to A»1~2%. Then

(a) My is bounded or compact implies f is in DoNBX P or in DaNb% P,
respectively.

(b) Ifﬁ<% and p>1/(1+8—a), then My €S, implies feBll,/ero‘_'@.
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Proof. The constant 1 is in Dg, hence the boundedness of My implies
fleA?17%a that is feD,.
For a fixed weD, let

(1 _ |w|2)3/2—a
(1—wz)3—2a

z
(1—w2)t-8"
Straightforward computations show that the norm estimates |ey||42.1-2« <1 and
| fwllg=<1 are independent of w.

Since (1—@z)?>~3 is the reproducing kernel of A%172% we have

(My(fu), €w) a21-2 =(1—lwf2)2—a/D (1_;;;,1(2?1{&152)3—2«1

=wf'(w)(1-|wl?) e

ew(2)= and  fu(2) = (1—|w|?)Y/?

This yields that
|f' ()= w )+ < C|Mpr(fu)ll a22-2a.
Hence, if M} is bounded, we get
|f(w)|(1=|w|*) P < Ol My |l

This is f€B% 4.

Notice that f,,~—0 in Dg as |w|—1_. Hence the compactness of My, yields

that
f'(w)|(1= w07 < Ol Mp (fu)llaza-2e =0 as fw]—1_.
Thus febd P,

Part (b) is true for 1/(14+8—a)<p<2 (<1/8) by Lemma 3.3. For p>2, we
need to estimate the B;/ Pre=bnorm of f. The discrete version of this norm is easy
to work with in our case. For d small enough, we choose a d-lattice {2;}5° in D
such that

“f||1;;/p+a—a :/D |f/(2)[P(1— |2[2)PtPB—Pa=2 g A( )
XZ |F'(2)|P(1=|2;|2)pFPB—Pe,
0
On the other hand, a result in [R2] says that if {2,}§° is a d-lattice in D, then

{f2;}8° and {e., }§° are, respectively, the images of some orthonormal sequences in
Dy and A»1~2* ynder bounded maps. Hence if p>1, then (see [RS2))

Z [(Mf/(fzj ) €z; >A2’1'2°‘ P < C”Mf' ||§
0
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This, together with the previous computation, yields
[o o]
S ()P (1|25 2y < | My 5.
0
And thus feB,l,/p"'a—ﬁ for p>2. O

4. Proof of Theorem 2

In this section, we assume, for convenience, that f has the expansion f(z)=
o frz”.

Lemmi4.1. Suppose a, B,a—PB<1, y<1(1+a) and f is analytic on D. Then
hg:’):Dﬂ—éDa is bounded or compact implies f is in DoNBY%# or in DaNb% A,
respectively.

Proof. The following proof is similar to the proof of Lemma 3.4. The constant
1isin Dg and it is clear that hE;Y) =, hence the boundedness of h?) implies f€D,.
Let [3] be the greatest integer in 3 and set n=1—[3]. For a fixed weD, let

B (1_ |wI2)—1/2+[3+nzn

ful2)= (1—wz)"

and g,(2)= (1 [wP)*2e ( ! 1).

0(2—2a) \(1—@z)2-2*

Straightforward computation yields that the estimates || f,||s<1 and ||gy ||« <1 are
independent of w.
It is easy to check

(h(f’Y)(fw)ag—w >a = (P’Y(ff_w )7gw>a

=([Py(F 1w ), 9lo) 12(d0) = (1= [w*)*/> 7Py (£ fuo )/ (w)
Q—fupyrtio-e o
- F ).
(3—2v)(4—-27) ...(n+2—27)

This yields the estimate
FHD @) (L= ) = < CIAY (fu)la-
Hence, if hE,'Y) is bounded, then

£ @) (1 w02 < CYA)
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That is fe B P.
Notice that f,,—0 weakly, as |w|—1_. Hence the compactness of hg:') yields

A (fu)lla =0 as Jw|—1_.

This implies
|fHD ()| (1= w]?)" 1+~ 50 as juw| - 1-.

Thus feb% A, O

We will see in the following discussion that the second part of Theorem 2 can
be reduced to the results by Peller, [P1] (p>1) and Semmes, [S] (p<1) (see also
[R2]).

For <1 and k=0, 1,2, ..., set vx,-=|2*||», and find explicitly: yo,,=1 and for
k>1 , )

2 k—112 kT (k)[(3—2a
o=k / 2 a4 (2) = 5 2o

Thus
(4.1) Yoo < (k+1)7, k=0,1,2,....

The sequences {z™/vm g} and {Z"/vno}&° are clearly orthonormal bases of
Dg and D, respectively. The matrix elements of hS{’): Dg— D, related to these
bases can be computed as follows.

(B (2™ [ 8) (W), T Y, )a = Vi g Vm Py (F (2) 2™ (W), 0™

et ( [ @ aae) [ o dda(w)

/ /D ”(fl ZZ) ;";ldAv(z)dAa(w))

—vm,ﬂvm( [ 7@ da [ o ddatw)
+—7§f /D mzm+n_1dA7(z))

772n+1,7
B (m+ 1)27m,ﬂ'7n,a
n712n+n,77n,a
(m+n)¥m,673

6n,0f7n

fm+n-
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(Here 6,,0=1 if n=0; 0 otherwise.) Hence h(f”’) €552 if and only if the matrix

2 =S 2 o]
7m+1 07 e n7m+n,'y7"ya
o (ke ) (e
( e N ) M

defines an S, operator on (2. The first matrix of (4.2) is a rank one operator (because
all columns are zero except the first one) and its S, norm estimate is

| H( of‘)w
(m+1 VB8V, on0fm =0
|fm

<c /D If’(Z)I2(1—Izlz)5+2ﬁ‘4” dA(2)

2

( 7m+1,'y 5 Of >
n,0Jm
(m+1)27m75’yn704 m,n=0

since Ita "(2)]2(1—]2)?)>+ 2822 JA(2
(since 7.< 5%) <€ [ £ (P2 dA)

<CIIf1

B A"
Using (4.1), we know that the second matrix of (4.2) defines an S, operator on
[2 if and only if the matrix

does. It is then a consequence of the results by Peller [P1], and Semmes [S], that for
B<3%, v<3(1+a), p>0 and Bp<1, the above matrix defines an S, operator on >
if and only if Y_3° kfizke BYPToe=P1 i feBYPT* Theorem 2, (2) is hence
obtained by these facts and Lemma 4.1.

To prove the first part of Theorem 2, we notice that hgf’): Dg—L** is bounded
or compact if and only if the operator defined on I? by the second matrix of (4.2)
is bounded or compact respectively. This matrix operator is clearly corresponding

to the operator £ h(7 which maps Dg to A21=22_ It is easy to verify that 2 hm
has the integral express1on
9 ;) f'(2)9(2) S B s
_h Y — A = P ! = P M ’ V P
s = [ L 440 =B (19 =My @), vae
Clearly My is bounded or compact from Dg to L%*(dA,) if and only if My
is bounded or compact from Ds to A21722 respectively. Since P, is a bounded
operator on L?(dA,) if y<1(14+a)<1 (see the remark following Lemma D), we get

the “if” part immediately by Theorem C, (a) and (b).
We need the following lemma to continue our discussion.
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Lemma 4.2. Suppose o, 3<1 and ’y<%(1+g). If the og('amtor ﬁ7Mf/: Dg—
A>1722 is bounded or compact, then the operator Py_y/5Mg: Dg— A»1=2% 45 boun-
ded or compact, respectively.

Proof. We will prove the lemma by showing that the boundedness or com-
pactness of 13.,M ¢ implies the boundedness or compactness of ~7‘1 2 My —}37M £
respectively.

By previous computation for obtaining matrix (4.2), we see that the matrix
of the operator P, My : Dg— A%1-2% related to the bases {Z™/ym s} in Dp and

{(n+1)2" /41,0 }5° in A>172 i

((”+1)’772rz+n+1,07n+1,a J; 1)00
o m+n+
(mAn+1)Ym,6% 41,0 =0

Transferring the difference of the operators 157_1 s2Mjy and ﬁvM 7 into the difference
of their corresponding matrices, we have

2 2
M.y~ M, = <<7m+n+1,7—1/2’7n+1m_ )(n+1)772n+n+1,77n+1,af . +1)°°
— - mTn
K K 772,,+1,»7_1/273n+n+1,'y (m+n+1)7mﬁ’y§+l,'y m,n=0

Using the identity

n+4-—2y

2 2
Ymtnt1,y-1/2Tn+1y _
m+n+4—2v

1=

’772L+1,7-1/2712n+n+1,7
_ m + 3—2v
T m4+n+1 m+n+4—2v

. m (_1 '772n+n+1,7—1/2)

- m4n+l %2n+n+1,—y

we get

o0

—-m(n+1)Vn+1,a %2n+n+1 5
M, _1—M, = > >
7oz K ( 77717571%—}-1,7 (m+n+1)2 fm+n+1 m,n=0

oo

2

+(m(n+1)%+1,a 7m+n+1,w—1/2f . 1)
+
Ym Va1,  (mAn+1)2 T

m,n=0

By Peller’s result, [P1], the first matrix is bounded or compact on /2 if and only if f is
in B% P or in %P, respectively; and the second matrix is bounded or compact on I2
if and only if f is in B #~1 or in 52,71, respectively. Notice that B3 #c B A1
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and b%# Cb% P!, we have hence P,_; ;M — P,My:: Dg— A?'~2 is bounded or
compact if and only if f belongs to B%? or %7, respectively.

An implicit consequence of the proof of Lemma 4.1 is that if IB,YM s:Dg—
A%1-2a op 137_1/2Mf/: Dg— A%17%2 is bounded or compact, then f is in B%? or
in b2, respectively. Lemma 4.2 hence follows. O

To prove the “only if” part of Theorem 2, (2), we compare %h(f”’_l/ ? and Mz
by considering their difference

My — 6‘9_h(7 Y2). Dg— L*(dAq).
We need to estimate this difference.

Let ge Dg, 0<r, s<1, we have

6 _ I
Mpe) - 2hg ) = [ LD 4y )
Then
5 —— 2
‘MF(Q)(Z)“b—z'h? " | —l f(z1 Z))y %(f))dAv—l/z(Z)
2 2
<2 ,
D\»D N <‘/D\TD D )
hence

/\

”Mf,(g 3,,(7 1/2>(g

2

Lz(dA ) (/ VD\rD D/rD )
2

([ ol ool *

D|/D\rD D\sD|J/rD sD

=2(I(r, g)+11(r, s, g)+11I(r, 5, 9)).

o))

We will gather the estimates of the L?(dA,) norm of M7 (g)— %h(;—l/ 2)(g) in
the following lemma (compare the result in [RW1]).

Lemma 4.3. Suppose a<l, <1, a—pB<1, y<3(1+a), 0<r,s<1, feBX™P
and g€Dg. Then

|7 (6) = hg=2q)|

paanyy S 2 9)+1(r 5,9)+T(r, 5, 9)),
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where

I(r,g) = Sup {If' (P~ |2*)>*+2072Ylg||3,

I(r, 5,9) = C(1—r) "> 2727221 —5)>=%|| f | 205 |19 I3,
I(r, s,9) < C(l‘7")_6(1"3)_6||f||23;—ﬁ(ISTE {lg(w)*}+ sup {lg(=)|*}).

|z|<r

Remark. If r=0, then II=II1=0.
The following lemma will be employed to estimate II.

Lemma 4.4. Suppose a—(<1, geDg and 0<s<1. Then

/D 1 I dAa) SO0 g

Proof. Let ge Dg and g(z)=>_g gn2™. It is easy to check

o0

lgll3 =D (1+1)*|gn .
0

Hence we get the pointwise estimate
o0 o

o) < (o010 ) (14 P unl?) <00 fol?) 42
0 0

This is enough to obtain the desired result. O
Proof of Lemma 4.3. By the Schwarz inequality, we have

N TN 2

I(r’g):/n‘/n\m f'(2)(g(w)—g(2)) dA,_15(2)

(1—zw)=2

|g(w)—g(z)|2 |52 Ha—26-27 » w
< R e ane) aao

dA,(w)

(1=|zf?)tte=2

u 1(2}2(1—|z[2)2+28—2a (A—|z7) ™ 7 ,
< r@re-prree [ [ G

[ %(1_ |2|2)1+o—26-27 dA(z)} dAq(w).
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Since

J QD da) = (- ),
D

|1—Zw[4—27
we can continue the estimate by

< sup {|'(2)* (1= [[?)* 20722}

[z|zr

x/ |lg(w)—g(2)[? (1—|2]2)12=28=27 JA(2)(1—|w|*) ™ dA(w).

p |1—ZzZw|*~2v

The double integral above is comparable to [|g||3 by Theorem B. Hence we get the
desired estimate for I(r, s, g).

Again by the Schwarz inequality, we have

I(r,s,g) = /
D\sD

Sf?f{lf (2)P(1=[zf?)*+2072)

/\ D/D (1—|2]) sz2L (1= |2[)~20=2% 4 A(2) d Ao (w)
< Sup{lf( J2(1—|2|2)2 220} (1 — )~ B+21—26 20

|z

, 2
/ H 19%))4 ‘i(f))dfu 1/2(2)| dAa(w)

></ / (lg(w)*+19(2)[?) dA(2) dAa(w).
D\sD JrD

Using Lemma 4.4, we get
[ [ Ustw)+1a(:) ) dA() ddalw)
D\sD JrD

<[ (lswpP+ [ 1)) aa) dow)
c(
o

\
(1= 2P g5+ (1—5)*"**|g]|3)

<
<C1-s)""*lgll3,

hence

I(r, s,9) < C(1—r) >3 272 (1 )22 {1 205 llg3-
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Similarly

II(r,s,9) =

/ F(z w) g(Z)) dA7_1/2(Z) 2dAOt(’LU)

1 Zw)t—2v
< sup {11/ 2)P(1—|2|*)>+20 72}

/ / lg(w)—g(2)|* (_|z|2)—27‘25—2"‘dA(z)dAa(w)

p (1- 7“384’7

<O fl3a-s(1-7)7(1~5) "5 sup {lg(w)[*}+ sup {|g(2)[*}).

lw|<s |z|<r

The proof is complete. [
The “only if” part of Theorem 2, (2) can now be proved as follows. Suppose

first hgc'Y) is bounded from Dg to L>“. Then by Lemma 4.2, & hh 1/2) is bounded

from Dg to L%(dA,). By Lemma 4.3, (r=0), we have for any gEDﬁ
M; < | Mz (9)- h(7 2 (g) H
1947:(0)ls2(an < || M ) Ol o

< [1(0,9)11/2+||h; YD\ lglls < CUFll pos +IR 1D gl -

Hence by Lemma 4.1, we get

/D 19(2)21'(2)[? dAa(2) = | M7 (@)1 320,y < CIBS 913

(7 1/2)(9)‘

Now suppose h?) is compact from D to L?* and {g;};>0 is a sequence in Dg
with ||g;/|g<1 and g; —>0 weakly in Dg as j—o0. We want to show that Mz (g;)—0
in L?(dA,) as j—oo. Notice that

g
M550l 2@y < | M (95) =0 ™2 (95)]

(’Y 1/2)( J)‘

L2(dAa) H 8z 1 L2(dAq)

By Lemma 4.3, we get
M7 (95)122(aa,) < 4 (r, 95)+I11(r, 5,9;) +11I(r, 5,9;))

+2H8 h("/ 1/2)(g )‘

L2(dAy)

By Lemma 4.2, the compactness of h(;) from Dg to L»* implies the compactness
of h?_l/ ? from Dg to L?*. Hence the last term of the above inequality converges
to zero as j—oo. By Lemmas 4.1 and 4.2, we have I(r, g;)—0 uniformly for j as
r—1_. For fixed r€(0,1), we have clearly II(r, s, g;)—0 uniformly for j as s—1_.
Since g; —0 weakly in Dg as j—o0, we have I1I(r,s,g;)—0, for fixed r and s in
(0,1), as j—o0. These facts show that

M7 (95)|1 2244,y =0 asj— oo
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5. Proof of Theorem 3

We know from Lemmas 3.1, 3.2 and 3.4 that H;'Y): Dg— L% is bounded, com-

pact or belongs to Sp if and only if the Toeplitz operator TI(fB’TZ da, s bounded,
compact or belongs to S/, respectively. We know also by Theorem C (d), for
B8,p0 >% that these properties are equivalent to

/ /() dAa(z) < oo,
D

which means that feD,.

For the small Hankel operator, from Section 4, we know that hg,a): Dg— L2e
is bounded, compact or belongs to S, if and only if the operator defined on I2 by
the matrix (4.2) is bounded, compact or belongs to S,. As we saw in Section 4, the
Sp norm of the operator corresponding to the first matrix of (4.2) is dominated by

C [ 17|22 dAG).
D
This can be further estimated by (since we assume <3<1 in Theorem 3)

SC/DIf’(2)|2(1—|2|2)3_2"dA(Z)SC/Dlf’(Z)|2(1—|2|2)2dA(z)-

Thus if f is in Dy, then the operator corresponding to the first matrix of (4.2) is
in S, for any 0<p<oo. If pB>1, a result in [W] yields that the operator defined on
I? by the second matrix of (4.2) is bounded, compact or belongs to S, if and only
if f€D,.

6. Proof of Theorem 4 and some further discussion

For a<1, ﬁ=% and 7<%(1+a), it is easy to compute and get that

H(v)( ) h(7)< )
k.8 ; V.8

o0

2

0

2

[s3

/ [P |2)°~ log 1113 dA(2).

Hence we have (see also [W]):
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Lemma 6.1. Suppose a<l, B=2 and y<i(l+a). Then HJ(CV) or h(f'Y) is in
Sz'eo‘ if and only if fe BLS.

To prove Theorem 4, (1), we apply the interpolation theory to the map
(6.1) fo—»Hj(ﬁ) (or hgj)):Dl/p—»Lz"", p=2 or oco.

We know, by Lemma 6.1, that this map takes functions in BL§ to operators (from
D, ; to L%“ in S, and, by Theorems 1 and 2, this map takes functions in

BMO,, = { g is analytic in D :|g’(2)|? dA4(2) is a 0-Carleson measure }

to the bounded operators (bounded from Dg to L*®). Interpolation theory then
insures that the map (6.1) takes functions in the spaces between BL§ and BMO,, to
the operators (which map the corresponding spaces between Dy, and Dy to L?2)
in the corresponding spaces between Ss and the space of the bounded operators.

In [RW1], one can find the atomic decomposition theorem for BMO,, (for e=0,
see also [RS1]). The result of the atomic decomposition for BLS is similar to the
same type of result for B, (see [R2]). Using these results and the methods in [RS1]
and [R2], one can prove easily that the spaces intermediate between BL§ and BMO,,
are the spaces BL;, 2<p<ococ. The spaces intermediate between D;/, and Dy are
clearly the spaces D,;,, 2<p<oo. And it is a result from the theory of Schatten
p-classes that the spaces between Ss and the space of bounded operators are the
spaces Sp, 2<p<oco. Hence

H}’Y) or h(f7): Dyjp— L?®

is in Sp, 2<p<oo0, if f isin BLy.
Let 1<p<oo and ¢ be the conjugate of p: 1/q+1/p=1. Tt is easy to see, by a
standard dual argument, that the dual of BLy is BLg under the pairing

(f,9)= /D ()9 @)(1-2]*)!"** log 1_+z|2 dA(2), feBLg and g€BL;.

The second part of Theorem 4 is in fact a “dual” result of the first one. To
see this we suppose, for example, that H}” is in S,l,/ P 1<p<?2. We know from
Section 3 that H{" is in S,/P*, 1<p<2, if and only if My: Dy jp— A>'2* is in 5.
Let g be the conjugate of p and g be in BLg. Then, by the first part of Theorem 4,
we have My:: Dy /q— A*172% js in S;. Notice that

1 2|22 & 2k zF
o L =2 = 2 kT e
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By using (4.1), we have

(f.9 |—] AT tog 1 dA()

[ () 2 (&)

<Cl(Mg )" My ||s,
<C|| My ||s, |1 Myls,
<C[Mylls,llgllsre.

This implies that f is in BLy. A similar argument will prove that the same result

is true if hgj) is in S;/pa, 1<p<2.
We now discuss the conditions for the symbols in Theorem 4.

Let fi(z)=2F and f2(z)=(1—-az)**"2. We first estimate their BLZ norms.

1
1
R R
0 r

o0 1
:k”zl./ P(-=Dp() ) (1=adp=143 g
J Jo
1

= (k+1)*?log(k+1);

—a)p— = a— 1
15215 =C | (1=|21*) =P~ 1-az|®* =3P log —— dA(2)
? D 1-|z]

X

(j+1) (2P 2|a|2”zn (j+n)l>br

X

=[M]8 ob)(ﬂz =[M3

(j+1)F=*P=2log(j+1)|al¥

(
=

_ (a— 2p+11
e g

We then estimate the Sj, norms of hgfl") and H}?) . We know that h(f‘j)

1
. : 1
(j+1)B-20P=2)q)% / ri(1—r)A=2P-1l]pg T dr
0 _

isarank k+1
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operator and hence

Hh ||p_ ’Yl%+1a p+ Z "713,(1 P
(k+1)27k 1/p70 a mtn=k (k+1)7m,1/p7n,a
(k‘-{—2)2°‘ p n(k+1)2a—1 P
4.1 —_—
(by (4:1)) = \(k+1) 2(k+1)1/r +m§n::k (m+1)1/p(n+1)
= (k+1)°? log(k+1).

And by Lemmas 3.2 and 3.3, we have
| H 2|2 < || Mgy |+ | H |12 || M |2

Here we regard My, as an operator from D, to A»'~2*. Clearly My, has the

singular values
{ k2’}’k+m,a }oo
(k+m)2’ym71/1’ m=0

Therefore
k? 7k+mo¢ T k2p(k+m+1)ap
Mu|P = = —_— L = (k P | 1).
M 1 }:l et <0 () < (47 g+
Hence

IRl =< IH < D fall g

These estimates show that the conditions of the symbols in Theorem 4 are sharp.
However, the following estimate on the S, norm of hg,‘:) shows that the condi-
tions of the symbols in Theorem 4 are not sufficient at least for h(fa) in Sy,

It is easy to check that hgf;) is, at most, a rank two operator and hence

B 1o = IRz = [ foll garasa-rss < (1=|af?)> 417772,
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