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1. Introduction 

I n  sect ion 3 of th is  pape r  we ex tend  the  au tho r ' s  resul ts  [4] concerning pe r tu rba -  

t ions  of real  l inear  sys tems of the  form 

s = [A (t) + B( t )]x ,  (1.1) 

where A (t) and  B(t)  are  cont inuous  and  un i fo rmly  bounde d  matr ices .  I n  pa r t i c u l a r  

we ob ta in  condi t ions  on the  m a t r i x  A (t) which will assure us t h a t  the  charac te r i s t ic  

exponen t s  of sys tem (1.1) are  cont inuous  a t  B ( t ) ~ O  as funct ions  of B(t)  (Corol lary 

3.1). I n  sect ion 4 we ob ta in  resul ts  concerning the  exis tence and  va r i a t i on  of bounded  

solut ions of non l inear  d i f ferent ia l  equat ions  (Theorem 4.1). I n  sect ion 5 we a p p l y  

these resul ts  to  a lmos t  per iodic  nonl inear  sys tems and  ex tend  the  au tho r ' s  p rev ious  

resul ts  (Theorem 5.1). 

2. Elementary Transformations and Definitions 

A counter  example  due  to  Pe r ron  [7] shows t h a t  even in the  case where the  

m a t r i x  A (t) in (1.1) is a d iagona l  m a t r i x  the  charac ter i s t ic  exponents  of (1.1) need 

no t  be cont inuous  a t  B(t)=--O. One notes,  however,  t h a t  one of the  d iagona l  t e rms  

in Pe r ron ' s  example  fails to  possess a mean  value.  W e  shall  f ind  t h a t  if one res t r ic t s  

oneself to  mat r ices  A (t) which are  k inema t i ca l l y  s imilar  [5] to  uppe r  t r i angu la r  ma-  

t r ices whose d iagonal  e lements  have  the  fol lowing p r o p e r t y  I ,  t hen  the  charac te r i s t i c  

exponents  of sys tem (1.1) a re  cont inuous  a t  B(t)~--O. 

(1) This research was sponsored by the Office of Ordnance Research, U.S. Army Contract No. 
DA-23-072-ORD-1289. 
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D E F I N I T I O N  2.1. A continuous /unction a(t) is said to possess property I with 

constant ~ (real) i/ /or every # > 0  there exists a constant M(#)  such that 
t 

] S [a ( t ) -R]d t l<  M (tt) + l ~ l t - s  [ /or all - oo <t, s< oo. 
8 

Let  Ms  be the set of n x n  matrices whose entries are real valued functions of 

a real variable t, continuous and bounded on the line, - c ~  < t <  c~ (the results of 

the first three sections hold if we restrict  ourselves to  0 <~ t <  o,) .  

D E F I N I T I O N  2.2. For A EMn we say A possesses property I I  with the real con- 

stants 21 . . . . .  ~t~ i/ there exists a diagonal matrix D= {d~j(t)} E M,., where the di~(t) 

possess property I with constants ~,  and i/ /or any e > 0 there exists a matrix E (t) E M~ 

such that IiEIl<~e and A , , , D +  E. 

We recall the definition of kinematic  similarity. 

D E F I N I T I O N  2.3. For A, BEM~ we say A,,~B (read: A is kinematieally similar 

to B) in ease there exists a matrix P with P, p - l ,  and P = d P / d t 6 M ~  and _ p - 1  

[ I ; -  A P]= B /or - ~ < t <  ~ .  

We note wi thout  proof t ha t  p roper ty  I for a continuous funct ion a ( t )wi th  con- 

s tan t  0 is equivalent  to a (t) satisfying the following two conditions. 
s+A 

1) lim ] S a ( t ) d t l / A = O  uniformly for - o o < s < ~ .  
A--~or 8 

s+A 

2) sup ] ~ a( t )d t]<oo.  
- -  Oo<s ,8+A<  ~ 

I,~,1 < x  

We next  note t ha t  the results of Per ron  [6] and Diliberto [2] assure us t ha t  the 

problem of s tudying  the cont inui ty  of the characteristic exponents  of the n-dimen- 

sional linear sys tem (1.1) for iiB[j small is equivalent  to  the  problem for a system 

of the form 

= [C(t) +D(t)]z, (2.1) 

where C(t), D(t)EM~, !iD(t)] ', is small, and C(t) is an upper  tr iangular matrix.  

Here we use for the norm of a matr ix  A(t) :  IIA(t)]I-=zia~i(t)], II/lly LIA(t) IE. 
We use the anMogous norm for vectors. The s tudy  of system (1.1) can be simplified 

further. I f  I t ( t )=diag (on(t) . . . . .  enn (t)), then by  the change of coordinates ~ = T z ,  

where T = d i a g  (1, 7 . . . . .  7 n-l) one has 

= [H (t) + T (C (t) - H (t) + D (t)) T - 1 ]  ~ = [H (t) + E (t)] ~. (2.2 / 
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If  ][C-Hi]=M, then  for any  small  (5>0, if we set 7 = 2 M / ( ~ ,  we have  for any  D(t), 

][D]I<r t ha t  the  ma t r ix  E(t) is such t h a t  ]]E]I<$. Thus  we see t h a t  

the  question of cont inui ty  of characteris t ic  exponents  for sys tems of the form (1.1) 

is equivalent  to  the same problem for sys tems of the form (l.1), where A(t)  is a 

diagonal  mat r ix .  

3. Basic Perturbation Theorem 

I n  this section we consider the two sys tems 

& = A ( t ) x  

= [A (t) + B (t)] z 

where A, B EM~. I n  wha t  follows the  j th  row (ith column 

denoted b y  [C(t)]j ([C(t)]~). 

(3.1) 

(3.2) 

of a ma t r ix  C (t) will be 

DEFIhl ITIOI~ 3.1. System (3.1) is said to possess property I I I  with constants (real) 

21 . . . .  , 2~ i/ /or any # > 0 there exists a set o/ n independent solution vectors x i (t) and 

a ]undamental solution dp(t) o/ (3.1) such that 

1) [Ix' (t)ii<<.h(tO exp [2~t+t~ltl] 

2) ][ [0 (t) q)-'  (s)]j!l < h (t0 exp [2j ( t -  s) + t ~ l t -  s I] 

where, /or a ]ixed value o/ tt, h(tt ) is a positive constant. 

( i = 1  . . . . .  n; O ~ < t < ~ ) ,  

( ] = 1  . . . . .  n; O < ~ s , t < ~ ) ,  

T n E o R E ~  3.1. I /  system (3.1) possesses property I I I  with constants 21 . . . . .  2n, then 

given e > 0  there exists 5 > 0  such that /or !]B[]<5 system (3.2) possesses n independent 

solutions zJ (t) satis/ying the inequalities 

IIz~(t)il<~(e) exp [(2~+e)t] ( j = l  . . . . .  n; 0 < t < ~ ) ,  

where k (e) /or a /ixed value o ] e  is a positive constant. 

Prod]. Set 2 = m i n  1 2 z - 2 j l / 4  and assume t h a t  e < 2 / 4 .  We now consider a 
2t~:2j 

fixed x s (t) and let 81 = {112z > 2j}, 8 2 = {1]2z ~ 2s}. We also define the matr ices  H ( t -  s) 

and 7 (t -~ s) as follows: 

[O (t) O -~ (s)]j (jE S 0 ,  
[H (t 8)]/- / 

[ zero vec tor  (j E 82); 

7 ( t -  s) = op (t) ~ - ~  (s) - H ( t -  s). 
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Nex t  we define for system (3.2) the formal solution mat r ix  y~j ( t)=k~#~ (t), where 

1) [~0~(t)]~=~j~:~(t) (dj~ denotes the  Kroneeker  delta) 
t ~ 

2)  ~0~ +1 (t) = f r (t - -  S) B (8) ~)} (s)  d s - f H (t - s)  B (s)  yJ} (s)  d s. 
0 t 

We now show tha t  ~j (t) is an actual  solution mat r ix  for 0 ~< t <  ~o. Taking /X = e / 4  

we have, since IL~,(t)ll<h(/x) exp [(2, + /x) t], 

II~ ~ (t)II ~< h (F) exp [0,i +/X) t] < h (/X) exp [(2j + e)t]. 

Assuming tha t  ][yJ~ (t)][ < h (/x) k' exp [(2, + ~)t], k = h (/X)nil B]L./x -z, we establish t ha t  

I]~v~ +1 (t)ll<,.h(/x)kZ+l exp [ (2 j+s) t ] .  

F rom  its definition we have 

' ~j~§ < [iBII { f i1~ I t - s i l l  llw~(s)llds+fl[H(t-s)[] ][~//s/ild 8} 
0 t 

t 

< h (/X) k ~ I[ B H n h (/X) { f e~p [(2j +/x) ( t -  s) + (2, + ~) s] d s 

oa 

+ f exp [2k (t - s) + (2j + e) s +/X (s - t)] ds}, 
t 

where ).k = min {2z}. 
leg1 

Thus  we have: 

I1~§ (t) ll ~< {h (/x) ~' LI B!In h (/X) exp [(2j § ~)t]}//x < h (/X) k/+1 exp [(2] "4- ~)t]. 

This completes our  induction.  

However,  once e > 0  has been fixed the quanti t ies  # and h(#)  are f ixed con- 

stants,  and so, if we take ]]B[]=/x/[n~h(#)], we have tha t  the formal  series converges 

uniformly for 0~<t~< T (T arbi t rary)  and so by  the usual arguments  is an actual  

solution mat r ix  for (3.2), where 0 ~ t <  ~ .  I t  is clear t ha t  the j th  column vector  zJ(t) 

of v2j(t ) satisfies the inequal i ty  of Theorem 3.1. We note  tha t  the coordinates of 

zJ(0) tend  to those of x~(0) as liB[i--->0. Thus  for sufficiently small values of HB][ the 

linear independence of the zJ(t) follows from tha t  of the xJ(t). This completes the 

proof of Theorem 3.1. 

:DEFINITION 3.2. System (3.1) will be said to possess property IV with constants 

(real) 21 . . . . .  2~ i/ /or any F > 0  its adjoint system 
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= - A* (t) x (3.3) 

possesses n independent solutions x ~* (t) and a /undamental solution ~* (t) such that 

1) llx *(t)N<n( )exp [-`i,t+/,Itl] (i=l . . . . .  n;  0 ~ < t <  oo) 

2) IIl:r exp [ - ` i s ( t - s ) + ~ l t - s l ]  ( j = l  . . . . .  n; 0 ~ s ,  t <  ~ ) ,  

where, /or a /ixed value o/ /z, n(/~) is a positive constant. 

B y  the  m e t h o d  u s e d  to  p rove  Theorem 3.1 we now have:  

T ~ O R E M  3.2. I /  system (3.1) possesses property I V  with constants ì1 . . . . .  `i~, then 

given.any e > 0  there exists 8 > 0  such that /or IIBII<~ the adjoint system 

= - [A (t) + B (t)]* z (3.4) 

/or system (3.2) possesses n independent solutions z s* (t) satis/ying the inequalities 

ll~'(t)il<#~(~) exp [ ( - ` i s + ~ ) t ; ]  (7"=1 . . . . .  n; O < t <  oo), 

where, /or a /ixed ~, ]c (~) is a positive constant. 

COROLLARY 3.1. I /  system (3.1) possesses properties I I I  and I V  with constants 

21 . . . . .  `i~ which are also the characteristic exponents o/ (3.1), then the characteristic 

exponents o/ system (3.1) are continuous /unctions o/ B(t) at B(t)~--O. 

Proo/. The uppe r  semi -con t inu i ty  of the  charac ter i s t ic  exponents  is an  i m m e d i a t e  

consequence of Theorem 3.1. W e  now es tabl ish  the  lower semi-con t inu i ty  of t he  

charac ter i s t ic  exponents .  Le t  y~(t) be a n y  f u n d a m e n t a l  m a t r i x  of (3.2). Then  for small  

[IB:I we m a y  assume,  w i thou t  loss of genera l i ty ,  t h a t  the  [yJ(t)] s sa t isfy  the  ine- 

qual i t ies  

II[w(t)]'ll<p@) exp [ ( ` i ,+~) t ]  ( ] = 1  . . . . .  n; 0 ~ < t <  ~ ) ,  

`is+l < , i s  (7 = 1 . . . . .  n -  1) ,  

where p(~) is a pos i t ive  cons tan t  for f ixed ~. We nex t  es tabl ish  t h a t  ]l[yJ(t)]Sil 

~> 1% exp [(`is - e) t]. Since ~ . - 1  (t) satisfies the  ad jo in t  equa t ion  we have  yj.-1 (t) = R (t) C 1, 

where C -1 is a cons tan t  nons ingular  m a t r i x  and  [R (t)] s = z s* (t) def ined in Theorem 3.2. 

We aga in  assume t h a t  the  ì~ have  been l inear ly  o rdered  as descr ibed  above.  Thus  

~* (t) R (t) = C = (eis), a n d  if css =4 = 0 we have  

II (t)],il I e;;l/ll [mR (t)]'ll exp 

The case css = 0 can be reduced to  the  above  case b y  a d imens ion  a r g u m e n t  (Bell- 

m a n  [1, p. 50]), which we shall  no t  r epea t  here excep t  to  note  t h a t  th is  was the  

reason for the  order ing  of the  `i,. This  completes  the  proof  of Corol lary  3.1. 
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COI~OLLARY 3.2. I /  in  system (3.1) A (t) possesses property I I ,  then the charac- 

teristic exponents o[ (3.2) are continuous at B ~ O .  

Proo/. By the definition of proper ty  I I  and the results of section .2, the con- 

t inui ty  problem for (3.2) is equivalent  to the same problem in which we assume 

tha t  A ( t )=d iag  (d n (t) . . . .  , d~, (t)). Bu t  it is easily seen t h a t  in this case system 

(3.1) has properties I I I  and IV; and the result follows from the previous corollary. 

I n  prepara t ion for L e m m a  4.1 in the next  section, we introduce the following 

definitions and results. 

D E F I N I T I O N  3.3. System (3.1) is said to possess property I I I +  i/ it possesses 

property I I I  /or - ~ < s, t < ~ .  

D ~ F I . ~ I T I O ~  3.4. System (3.1) is said to possess property IV + i/ it possesses 

property IV /or - ~ < s, t < co . 

T H E O R ] ~  3.3. I /  system (3.1) possesses properties I I I +  and IV + with constants 

,~1 . . . . .  ,~ then /or any e > 0  there exists a ~ > 0  such that /or IIBII<(~ to every solution 

xJ (t) described in Theorem 3.1 there corresponds a solution z~ (t) o/ system (3.2) which 

satis/ies the inequalities: 

4 exp [ ~ j t - ~ l t l ] < j  ~'(t)~!<4 exp [ ~ t + ~ l t l ]  for - ~  < t <  ~ .  

Proo/. Nota t ion  is as in Theorem 3.1, except now with respect  to 2j we define 

the sets $1 = (kiRk > 2j}, S 2 = (kiRk < 2j}, S 3 = {kl2k = ~j} and the matrices H ~ ( t -  s), 

H 2 ( t -  s), y ( t -  s) as follows: 

[H ~ (t - s)]m = / [(I) (t) (])-a (s)]m (m fi S,), (m = 1, 2 . . . . .  n, i = 1,2) 

[ zero Vector (m ~ S~) 

y ( t  - s )  = (I) ( t )  q ) - i  ( s )  - H 1  ( t  - s )  - H 2  (t  - s ) .  

o~ 

Again we define the formal solution matr ix  y~j (t)=k~0yJ ~ (t), where 

1. [yz0(t)]k=(~jkxJ(t), ((~iZ denotes the  Kronecker  delta) 
t ov 

2. y~+l (t) = / ~, (t - s) B (s) ~f~ (s) d s - f H 1 (t - s) B (s) ~f~ (s) d s 
0 t 

t 

+ f H 2 (t - s) B (s) ~f~ (s)ds. 
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Now one proceeds as in the proof of Theorem 3.1 to obtain the inequality llz~(t)ll 

~<ke exp (2~t+el t [ )  f o r - c ~ < t <  ~ .  The remaining inequality is obtained as in the 

proof of Corollary 3.1 after the obvious changes in Theorem 3.2. 

COROLLARY 3.3. I /  system (3.1) possesses properties III+ and IV + with constants 

) , ~ 0  ( i=1  . . . . .  n), then there exists (~1>0 such that every nontrivial solution o/ (3.2) 

is unbounded /or ]! B li< ~1. 

4. Perturbat ions  o f  B o u n d e d  Solut ions  

In  this section we shall consider an n-dimensional system of the form 

~ =  F (x, /~, t). (4.~) 

DEFI~ITIO:N 4.1. System (3.1) is said to possess property V i/ there exists a 

constant matrix D = d i a g  (d n . . . . .  d~) ,  Id~l>(5>0 ( i=1  . . . .  , n) and i~ /or any s > 0  

there exists a matrix H (t) EM~ such that A (t)~ n +  u (t), where !!Hl!<e. 

L E P T A  4.1. I /  system (3.1) possesses property V, then there exists a (52>0 such 

that every nontrivial solution o/ (3.2) is unbounded /or i/B/i< (~. 

Pro@ We observe that  the system ~ = D~ clearly possesses properties III+ and 

IV +. Thus all the noutrivial solutions of the system ~'= [D + H (t) + P -  ~ (t) B (t) P (t)] 

are unbounded for HH]]< �89 and ]iBi]<(~l/(2ilPil I!Pq]), where /~1 is the constant de- 

scribed in Corollary 3.3. But now the conclusion of Lemma 4.1 is an immediate con- 

sequence of the fact that  there exists a P(t)  such that  D + H ( t ) + P q B P  ~ 

= _ p-1 [15_ (A + B) P], where P, P q ,  P E M~. This completes the proof of Lemma 4.1. 

DEFINITION 4.2. System 4.1 is said to possess property VI with respect to a 

bounded curve p(O,t) i/ there exists a A>O such that /or O~Itt]<~A and O<~i]~i! <~A 

it may be written in the /orm 

i] = F (p (0, t), re, t) - F (p (0, t), 0, t) + [A (tt, t) + ~ (~, re, t)] ~, (4.2) 

where 

1) ~ = x - p ( O , t ) ,  

= ~  F q 2) ~q~ [ x~xj(p(O,t),#,t)+F~,~j(p(O,t)+O(t,~)~,ia, t)]~j, where F q is the q-th 

component o/the vector/unction F (x, t, tt) and [ 0~ (t, ~1)1 < I, 
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3) A (t t, t) and F~,xj (i, ~, q = 1 . . . . .  n) are bounded, continuous in x, #, t and jointly 

continuous in t t, x uni]ormly ]or - c o  < t < ~ , 

4) i 7 = A (0, t) ~ possesses trroperty V, and ~b (0, t) = F (p (0, t), 0, t). 

We  nex t  introduce the  sys tem 

where 

~ = ] (#, t ) +  [ D +  a(# ,  t ) ] z + c ( z , # ,  t) z, (4.3) 

1) ]]a(tt, t ) ] [ < a ( # ) + e  for - ~ < t < ~ ,  where l im a ( t t ) = 0 ,  

2) [I [ (/t, t)]:~ < m (re) for - ~ < t < ~ ,  where l im m (it) = 0, 
it..-.>0 

3) there exists a A x > 0 and  M such t h a t  ]1 c (z, re, t) [I < M ][ z ]I for 0 ~< [] z I[ ~< A1 and 

o<l~l<A. 
4) D = d i a g  (d n . . . . .  d=~), where [ d ~ [ > 6  for i =  1 . . . . .  n. 

LEMMA 4.2. I] system (4.1) possesses property V I  with respect to a bounded curve 

p (0, t), then ]or any s > 0 there exists a trans]ormation z = p - 1  (t) ~ which ]or 0 <<. II ~ II <<- A 

and O<~lttl< A reduces system (4.1) to a system o] the ]orm (4.3). 

Proo[. The result  is an  immedia te  consequence of definit ions 4.1 and  4.2. 

THEOREM 4.1. There exists A > 0  such that to ~very # in the interval ( - - A ,  A) 

there corresponds a bounded solution z(lt ,  t) o/ (4.3) such that ][ z!l tends to 0 as # tends 

to O. 

Proo[. Select e > 0  and  then  A 2 and  A a such t h a t  for ]tt]~< A 2 and  I[z[]~<A a, we 

have [[2(~(~)+e)n]/~]<�89 and [m(~)+MA~]Sn/O<A~. 

We next  in t roduce sys tem (4.3) which for a f ixed #1, I/~11 ~< A2, is defined in the  

following way.  Le t  z(~l ,  t) denote  a n y  solution of (4.3) such t ha t  IIZ(#l, 0)]/~< A 8. 

Then  for any  value of t we define a corresponding solution $(ju 1, t) of sys tem (4.3) 

as follows: 

[ z (#1, t) if I] z (/~1, t)1[ • A 3, (#. t) (4.~) 
[z ( / t l ,  t ) A31][z(tq, t)H if ][z(ttl, t)[]>~A3. 

Thus  all the  solution curves of sys tem (4.3) are contained in a cylinder of radius 

A 3 abou t  the  t axis. We fur ther  observe t h a t  any  solution $(#1, t) such t h a t  

I1~(/~1, t)I[ < A3 for all t is an  actual  solution of sys tem (4.3). Now corresponding to  

each ~(#x,t)  we define 
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o o  

X ([%1' t) =i_~O xi (~tl, t), (4.4) 

where  

1) ~ (~ .  t) = J" r ( t -  s) [l (~1, s) + c (~ (~1, s), ~1, s) ~ (~ .  s)] ds 
t 

+ j" r  (t - s) [1 (~ .  s) + c (~ (~ .  s), ~ ,  s) ~ (,"1, s)] ds, 

t ~ 
21 x ~§ (~1, t) = f r  (t - s / ~  ( ~ .  sl x ~ (~, ,  s / d ~  + J" r  (t - s / ~  (~1, s / x  ~ (~1, s / d  s. 

Here  (I) 1 (t -- s) = diag (an  exp  [d n (t - s)] . . . . .  a ~  exp  [dnn (t - s)] 

qb 2 (t - s) = exp (D (t -- s)) - (:I) 1 (t - s), 

where  at, is 0 or  1 accord ing  as  d**<0 or  d~,>0.  Since I[dPl(t-s)[l<~n exp [c~( t - s ) ]  

for t ~< s a n d  [] (I) 2 (t - s)[] ~< n exp  [ - ~ (t - s)] for  s ~< t, we h a v e  the  fol lowing es t imates  

on !/x~ (/tl, t)I]: 

T h u s  

II x0 (/'~1, t)11 < [m (~1) § M ~3 2] n / (~ § [m (~t) § M A3 2] n / (~; 

[Ix~(lal, t)l[<(2n/(~) [ m ( # I ) + M A ~ ]  [2n( (~(#1)+~) /c$]  ~ ( i = l  . . . .  ). 

][ x (/~1, t)]! • [m (/~1) § M A~] (2 n / c$) (1 - [a (/~1) § s] 2 n / (~)-1 (4.5) 

< (4 n / c~) [m (/h) + M A~] < �89 A 3 

W e  shall  nex t  show in L e m m a  4.3 t h a t  the re  exists  a z (/~1, t) such t h a t  ~* (jUl, 0 ) =  

x* (#1, 0), where  x* (#1, t) is t he  func t ion  o b t a i n e d  b y  using $* (/h, t) in the  def in i t ion  

of x ~ (#1, t). Howeve r ,  f rom the  def in i t ion  of x* (/h, t), as long as Iix* (jul, t)II remains  

less t hen  An, it is clear t h a t  x*( /~Dt)~- -$*(# l , t  ). B u t  b y  (4 .5 ) ] [x* ( /~ l , t ) ] [< �89  a for 

- co < t < co, a n d  so x* (#1, t) = $* (/h, t) = z (,u 1, t), where  z (/~1, t) is an  ac tua l  so lut ion 

of sy s t em (4.3). Thus  we will have  es tabl i shed for eve ry  /h ,  I~11<A2,  t h a t  the re  

exists a b o u n d e d  solut ion z (#1, t) of sy s t em (4.3). F r o m  the  inequa l i ty  (4.5) i t  follows 

t h a t  this  solut ion sat i t f ies 

tl z (/~1, t)II < (4 n / ($) [m (#1) § M A3 ~] < �89 A 8. 

Since l im m ( / ~ ) = 0 ,  we m a y  conclude  t h a t  A 3 also t ends  to  zero. T h u s  the  p roof  of 
/~--->0 

T h e o r e m  4.1 will be comple te  once L e m m a  4.3 has  been  establ ished.  

LE~MA 4.3.  The ~rItappin~ ~/)(~(t/tl, O) )=z( /~ t l ,  0 ) o/ the n ce~l l[~(~tl, O ) I I - - ~ A  3 into 

itsel/ is cont inuous and  so possesses a / ixed point .  
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Proof. F r o m  the definit ion of the~set  of functions x(/~l, t) i t  is clear t h a t  there 

exists an N(s l ) ,  independent  of }(/~x, t), such t ha t  ~ I: J I! x (/~1, t)I] < Sx / 16 for all t. We 
] = N  

set  M 1= [2m (~q) + 2 M A~] and  choose T > 0 such t h a t  n M 1 exp ( -  8 T ) / 8  ~< 81. 

Since 

I = lub ]i c (~1 (~1, t), ~1, t) ~1 (~1, t) - c (~2 (~1, t), ~1, t) ~2 (~1, t)H [tI<.(N+2)T 

is a continuous funct ion of $, (~tl, 0) ,  i = 1,2 and  is zero for ~1 (tq, t) = }2 (#2, t), for 
~^ 0 ^ i any  (~z > 0 there exists a 83 > 0 such t h a t  I < 82 if I! zl ( t h , )  - z~ (th, 0)II ~< 83. Thus  for 

a n y  t, I t[<~(N+I)T, we have  

t t 

ix~ t)--x~ t) i '<~- f i01(t '-s) i:~ I d s +  f IHO2(t-s)  llds 
(N+2) T -- (N+2) T 

(N+2) T -(N+2) T 

- -  f MliOPl(t-s)[]ds-t- f i!~2(t-8)ilM1ds<'--2(81+n82/8) �9 
or - r 

For  any  t, [ t [ ~ N T, we have  

t 

il 2;11 (/21, t) --  X 1 (~1, t)ii "~< - -  f ii (I)1 (t - -  8)il [0" (/21) + g] 2 (81 -~ n(~ 2 / 8)  d 8  

(N+I)T 

t 

+ f V,(1)2(t-s) ' [a( /z l )+e]2(81§247 
--(N+I)T 

In general for t, l t I< ( ~ -  i + 1) T, we obtain 

t 
- 2(~1, t)il~< -~ 2 81 ~o{2 [a (/~1) § s] n / (~}J + (2 n 82 / 8) {2 [a (/zl) + ~] n / 8} ~. 

Thus  we obta in  for t, I t ]~<2T,  

N-I  N-1 

}! xl (ju,, t) -- x~ (~ul, t)!~ ~< (2 n 82 / 8) ~ {2 [a (/2~) + s] n / 0} ~ 
i=1 I=1 

N-1 

~- 2 81 y (N - i) {2 [a (/~1) + eJ n / 8}'. 
i -0  

N 1 N-I  

~OW k 1 = 2 ~ ( •  --  i )  {2 [0" (~/1) "~ e] ~rb / 8} i and k 2 = (2 n / 8) ~ 2 [a (#1) + s] M / 8} * are f ixed 
t=0 ~=I 

numbers  for a given ~q and  N(el ) .  Hence  we m a y  choose T in such a w a y  t h a t  

81k 1 < e l / 8 .  Then  having de termined  T we m a y  choose 8a in such a way  t h a t  

k 2 8 2 < e l / 8 .  Thus  for  any  e l > 0  and T > 0  there exists  a 83 such t ha t  ]lxl(fll, t ) -  
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- x 2 (/tl, t)I[ < ~1 for I] ~1 (/~, 0) -- ~2 (tt~, 0)l! ~< 5a and It I < 2 T. I t  then follows tha t  for any  

finite value of t, x ( lh ,  t ) is a continuous funct ion of ~(#1,0). I f  we set t = 0  it 

follows tha t  ~ is ~ continuous map  of an  n-cell into itself and so possesses a fixed 

point. This completes the proof of Lemma 4.3 and so of Theorem 4.1. 

As an immediate  consequence of Theorem 4.1 and Lemma 4.2 we have the 

following corollary. 

COROLLARY 4.1. I /  the system (4.1) possesses property V I  with respect to a 

bounded curve p(O,t),  then there exists a A > O  such that /or each tt, I~tl< A, there 

corresponds a bounded solution p( t t ,  t) o/ (4.1). The solution p( t t ,  t) tends to p(O, t) 

uni/ormly as tt tends to zero. 

L E M ~ A  4.4. I /  system (4.1) possesses property VI  with respect to p(O,t) ,  then 

there exist Aa> 0 and ra> 0 such that /or I tel < A a there is at most one bounded solution 

p (tt, t) contained in a cylinder o/ radius r a about p (0, t). 

Proo]. Since system (4.1) possesses proper ty  VI,  it is clear t ha t  there exist 
I! II 

A~ > 0 and r I > 0 such tha t  for any  bounded solution p (re, t), where I//,I < A~, 0 ~ i:~] ~[ ~< r~, 

0 ~< : p  (0, t) - p (~u, t)[] ~< rl, system (4.1) m a y  be rewrit ten in the form 

= [A (0, t) + c (t, re) + G (7, t t, t)] 7, (4.6) 

where 1) 7 = x - p ( ~ , t ) ,  

2) Gq~ ~ F q F q = [ x~xj (p (#, t), re, t) + x~xj (p (#, t) + 0 (t, V) 7, t t, t)] W, 
]=1  

where IO~( t ,~)[<l  for - co < t <  o~; i, ], q = l  . . . . .  n, 

(F  ~ . . . . .  F ' )  
3) A ( O , t ) + c ( t t ,  t ) ~(x~, ~..:x~) [P(t t ' t )  and e(0, t ) = 0 .  

If  we set B(t t ,  t )=[c( t t ,  t ) + G ( ~ , t t ,  t)] , then by  Lemma 4.1 there exists a > 0  such 

tha t  for ] B]i < (~ the system ~ = [A (0, t) + B(# ,  t)] x possesses no nontr ival  bounded 

solutions. :By the joint  cont inui ty  in x and  /t imposed by  condition VI  it follows 

tha t  there exist A 2(A I > A  2>0) ,  and r 2 ( r l > r  2>0) ,  such tha t  []c(tt, t ) ] ]< �89  and 

lie(7, ~, t) ll<�89 for o<l:~li<r2, o<llp(t~,t)-p(o,t)[]<r~,O<.< I I<A , and  - ~ < t <  ~ .  

Thus, if we set r a = � 8 9  2 and A a=A2 ,  we have our desired result. 

T H e O r e M  4.2. I /  system 4.1 possesses property VI  with respect to a bounded 

curve p(O,t) ,  then there exist a A and r such that to every value o/ ~t, I # I < A ,  there 
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corresponds a unique bounded solution p(/z, t) contained in the cylinder o[ radius r 

about p (0, t). 

Proo]. I n  Corollary 4.1 we select A 1 so tha t  for ] j u l < A  1 the p ( / t , t )  there de- 

scribed are contained in a cylinder of radius ra, where r a is as described in Lemma 4.4. 

Then, if we set A = m i n  (A1, As) and r = r s ,  the desired result  follows. 

5. Almost Periodic Systems 

We consider the  per turba t ion  problem for the continuing of real a lmost  periodic 

solutions of the real nonlinear differential system 

~ =  F (x, t~, t). (5.1) 

I t  is assumed t h a t  for / t = 0  system (5.1) possesses an  a lmost  periodic solution 

p(O,t). I t  is fur ther  assumed tha t  there exists ~ > 0  such t h a t  for # sufficiently 

small F(x,  re, t) is a lmost  periodic in t uniformly with respect to x in R(~),  where 

R ( r ) = ( x  ] lub !!x-p(O,t)ll<~y}. Here the funct ion F(x , /u , t )  for a fixed # is said to  
--  O0 < : t  <: Oo 

be almost  periodic in t uni formly  with respect to x in a set R if for any  s > 0 there 

exists a relatively dense set S (s) such t h a t  if x E R, ~ E S, then ~ is an  s t ranslat ion num- 

ber of F (x, #,  t). I n  the  future  we shall say  t h a t  F (x, tt, t) is Mmost periodic for x E R, 

or if the range of x is clear, we shall s imply say F (x , / t ,  t) is a lmost  periodic. Our 

main  result  is t h a t  if system (5.1) also possesses p roper ty  VI* with respect to p (0, t), 

then for /t in a sufficiently small interval  about  # = 0 there exists a one parameter  

family  of almost  periodic solutions p (#, t) which tend  uniformly to  p (0, t ) a s  # tends 

to 0. I n  preparat ion for this result  we first establish a number  of e lementary lemmas. 

Le t  the funct ion F (x,/t, t, ~) be defined by  the equal i ty  F (x, ~u, t, T) = F (x,/~, t + ~). 

We now assume t h a t  there exists A > 0  such tha t  for any  re, ]#]<A,  F (x ,# , t )  

is a lmost  periodic for x in a compact  set R, and F(x,  #, t) is joint ly continuous 

in x and  # uniformly for - ~ < t < ~ ,  x E R ,  i / t ] < A "  Then for any  fixed /~ 

the set of all t ranslates of the almost  periodic funct ion F(x,  #, t) is clearly the set 

P = {F  (x, #, t, ~)] - oo < v < ~ } .  We now consider the closure P of P under  the uniform 

norm ( lub I] x (t)][ = uniform norm of x (t)). P is called the closed hull of F (x,/z, t). 
- o ~ < t < o o  

I t  isclear t ha t  if F* (x, tt, t ) E P ,  then F* (x,/~, t) is a lmost  periodic; and there exists a 

sequence {t~} of real numbers  such tha t  lim [ lub I~j 2 '  (x,/t, t, t,) - F* (x,/z, t)HI = 0 exists 
~---~ r  - -  r 1 6 2  t < :  00 '  

uniformly for x E R. 
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LEMMA 5.1. Suppose that F(x,  tt, t ) in system (5.1) /or a /ixed tt is almost 

periodic /or xER,  R={x]]lx]l~<a}. Assume also that /or any F* (x, tt , t) contained in 

the hull o/ F(x,  re, t) the system 

= F *  (x, ~ ,  t) (5.1")  

possesses a unique bounded sulution p* (re, t) such that []p* ([u, t)][~< a. Then this solution 

is almost periodic. 

Proo/. We establish tha t  the family G of functions formed by p (/~, t) and its translates 

is a normal family. I f  we set p(# , t ,~ )=p( t t ,  t+T), then G = ( p ( # , t , ~ ) l -  co < T <  cr 

Clearly G is an equicontinuous family, and it will suffice to show tha t  for any  

sequence {~} of real numbers there exists a subsequence {T~} such tha t  the 
$ 

sequence {p (/~, t, T~ )} converges uniformly on the real line. To do this one fh'st 

picks a subsequence (~*} of {~} in such a way tha t  the sequence {F (x, /t, t, ~*)} 

converges uniformly to a function F* (x, #, t) which is again almost periodic for II x][ ~< o. 

I f  the sequence {p(tt, t,~*)} does not converge uniformly, then system (5.1") can be 

shown to possess at  least two distinct bounded solutions which are contained in the 

cylinder of radius a about  x =  0. The proof of this fact  follows by  means of a well 

known argument due to Favard  [3] and will not be repeated here. However, the 

existence of two bounded solutions in the cylinder of radius a contradicts the 

hypothesis and the result follows. But  if p (re, t) is almost periodic, then the limit 

function p* (l~, t) is also almost periodic and the proof of Lemma 5.1 is complete. 

We next  obtain two lemmas which will allow us to recast our problem for 

systems of the form (5.1) in a more manageable form. 

LEMMA 5.2. I /  F (x, #, t )  and p (0, t) are almost periodic/or x E R (A) and F (x, tt, t) 

is continuous in x uni/ormly with respect to x ER(A)  and - ~ < t < ~ ,  then 

F (~ + NP (0, t), iz, t) is almost periodic /or ~ E R, R = {~]1 II ~ll < A}. 

Proo/. Let E(y) denote the set of common y-translation numbers of F(x,  tt, t) 

and p(0,  t). By  the uniform continuity of F(x,  ft, t) for any  s > 0  there exists 

~ ( e ) > 0  such tha t  I ]F ( x l , # , t ) - F ( x ~ ,# , t ) l i<s /2  if IIx~-x211<(~. 

Setting y = m i n  (s/2, a (s)), we have 

i ~  (~ ~ p(~ t )~#~t ) -  ~(~ ~ p ( ~ t  ~ ~)~#~t ~ T)]~<~ ì~F(~ ~ p (~ t )~ t~ t ) -  F(~ ~ p(~t)~#~t + v)~ 

+ilF(~+p(O, t ) , # , t + ~ ) - - F ( ~ + p ( O , t + ~ ) , t t ,  t+~)!l<~s/2 + s / 2 = s  

for any  ~ E E(y).  Thus the set of s-translation numbers of F ( ~  + p (0, t), #, t )conta ins  

E(y) and so is relatively dense. This completes the proof of Lemma 5.2. 
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LEMMA 5.3. I /  /or a /ixed # there exists a > 0  such that F ( x ,  tt, t ) is almost 

periodic /or !] x -  x o ]] < (r and Faxi (xo, ~u, t) is continuous in x uni /ormly /or x -  x o ]] < (r 

and - c~ < t < co, then Fqx~ (xo, #, t) is almost periodic. 

Proo/. For  a n y  A < a we have  

[F  q (x o + /~ ,  tt, t) - F q (x0, tt, t)] / A = F~q~ (x 0 + 0 (t)/~, tt, t), 0 (t) < 1, 

where /~=A((51~ . . . . .  dni) r. Since F q ( x o + A , # , t )  and  Fq(xo, tt, t) are a lmost  periodic, 

F~qi (% + 0 (t)/~,/~, t) is a lmos t  periodic. Thus  lim F~q~ (x 0 + 0 (t)/~, re, t) = Fxq~ (x0, #, t) is 
A-->0 

the uni form limit  of a sequence of a lmost  periodic functions and  so is a lmost  peri- 

odic. 

In  p repara t ion  for the  proof  of Theorem 5.1 which follows we have  the following 

definitions. 

D E F I N I T I O N  5.1. FOr" A,  B E M ~  we say A ~ B  in case there exists a matrix  P 

with p , p - 1 ,  and [P E M~,  I) uni /ormly continuous and _ p - 1  [ P - A P ] = B  /or 

- -  ~ o  < t <  c o .  

D E F I N I T I O N  5.2. System 5.1 is said to satis/y condition VI* i/ it satis/ie8 con- 

dition VI  with ,,, replaced by ~ .  

I n  light of the  preceeding l emmas  we note  t h a t  if for x ER(~,) the funct ion 

F (x, #, t) is a lmos t  periodic and possesses second order  par t ia l  der ivat ives  wi th  respect  

to x which are joint ly  cont inuous in x and  tt, un i formly  for - ~  < t < ~ ,  then  the 

prob lem described a t  the beginning of this section for sys tem (5.1) m a y  be reduced 

to an equivalent  p rob lem for sys tems of the  form (5.2) below. This is accomplished 

first  by  the change of var iable  ~ = x - p  (0, t) and  then  b y  developing F (x, re, t) in a 

Tay lor  series abou t  ~ = 0 to  obta in  the  sys tem 

/1 = F (p (0, t), re, t) - F (p (0, t), O, t) + [A (#, t) + ~(U, #, t)] U, (5.2) 

where F (p (0, t), tt, t), A ( re, t) are a lmost  periodic and  ~ (U, t t, t) is a lmost  periodic for 

< ~. Here  A(#,  t) and ~(U, tt, t) are as defined in definit ion 4.2. I f  we fur ther  assume t h a t  

sys tem (5.1) possesses p rope r ty  VI* with  respect  to p (0 ,  t), then  there  exists a 

bounded t r ans fo rmat ion  T( t )  which reduces sys tem (5.2) to 

= ] (t, tt) + [D + a (tt, t)] z + c (z, tt, t) z (5.3) 



P E R T U R B A T I O : N S  O F  : N O N L I N E A R  S Y S T E M S  137 

which is of the same form as (4.3) and satisfies the same restrictions. Thus by  

Theorem 4.2 there exist A > 0 ,  r > 0  such tha t  for every /~ in the interval ( - A , A )  

there corresponds a unique bounded solution ~](tt, t ) o f  (5 .2)which is contained in 

the cylinder of radius r about  ~ = 0. We next  observe tha t  for any system 

/ /=  F ( p  (0, t + t~), tt, t+ t~) - F (p (0, t + t~), O, t + t~) + [A (#, t § t~), + ~(~ ,  tt, t+  t~)] 

(5.2i) 

the transformation T ( t +  t~) reduces system (5.2i) to one of the form 

= / ( t +  t .  re)+ [ D +  (~ (re, t + t~)] z+ c (z, re, t+t~) z (5.3i) 

which again satisfies exactly the same restrictions as (5.3). Thus we have tha t  for 

any # E ( - - A ,  A) there corresponds a unique bounded solution p(tt ,  t+t~) of (5.2i) 

which is contained in the cylinder of radius r about  z =  0. Thus in order tha t  the 

hypothesis of Lemma 5.1 be satisfied it  remains only to establish tha t  any system 

{(5.2"i)} which is the uniform limit of a sequence of systems ((5.2i)} associated with 

a given sequence {t~} possesses for tt E ( - A, A) a unique bounded solution p* (tt, t) 

which is contained in the cylinder of radius r about ~ 0 .  Since T(t) ,  T -1 (t), and 

T EM~ and T is uniformly continuous for - c ~  < t <  ~ ,  it is clear that  for any 

sequence {T (t + t,)} we can choose a subsequence {T (t + tj)} which converges uniformly 

on all finite intervals to T*(t) where T*(t), T*- l ( t )  and T*( t )EM~.  I t  is further 

noted tha t  T*(t) reduces system (5.2") to a system of the form (5.3*), where the 

functions ]* (#, t), (~* (re, t), and c* (z, ~t, t) s~tisfy exactly the same conditions as the 

functions /(/t, t), (l(tt, t) and c(z,/~, t) in system (5.3). Thus system (5.2*) possesses 

for # in ( - A , A )  a unique bounded solution p*(tt, t) which is contained in the 

cylinder of radius r about  ~ = 0. I t  then follows by  Lemma 5.1 tha t  the bounded 

solution p(# , t )  of (5.2) is almost periodic. Using the equivalence of systems (5.1) 

and (5.2) we have established our desired result. We now collect the conditions im- 

posed on system (5.1) and the results obtained in Definition 5.3 and Theorem 5.1 

below. 

DEFINITION 5.3. System (5.1) is said to possess property V I I  with respect to 

p (0, t) i/  

1) /or #=O,p (O , t )  is an almost periodic solution o/ system (5.1), 

2) there exist  A > 0 ,  ~ > 0 ,  such that /or any re, I # [ < A ,  F ( x , # , t )  is almost peri- 

odic in t uni/ormly with respect to x in R(7) ,  

3) system (5.I) possesses property VI* with respect to p(O, t). 
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THEOREM 5.1. I f  /or /~=0 system (5.1) possesses property V I I  with respect to 

the almost periodic solution p(0,  t), then there exist ~ > 0 ,  r > 0  such that to every 

~, I[~l < (~, there corresponds a unique almost periodic solution p(/~,t) o/ system 5.1 which 

is contained in a cylinder of radius r about p(0,  t). As  /~->0, p (/~, t) tends uniformly 

to p (0, t). 
I t  is in general not  known whether there exists a t ransformat ion T (t) such t h a t  

T(t),  T -l(t)  and  T( t )E  Mn and  T(t)  is uniformly continuous which reduces the linear 

par t  of (5.2) to a system which is "close" to  a linear system with  constant  coeffi- 

cients. There are cases, however, in which such a t ransformat ion is known to exist. 

We consider two of these cases in the  following corollaries to  Theorem 5.1. 

COROLLARY 5.1. Fo r  fl=0 let F(x ,  lt, t ) of system (5.1) be periodic in t and let 

system (5.1) possess a periodic solution p (0, t) whose variational equation has no charac- 

teristic roots with zero real parts. Further assume that system (5.1) satisfies the almost 

periodic, diHerentiability, and continuity restrictions of property V I I .  Under these assump- 

tions there exist a > 0  and r > 0  such that /or every /~, I # l < a ,  system (5.1) possesses a 

unique almost periodic solution p (/~, t) which is contained in a cylinder of radius r 

about p(0,  t). Furthermore, the p (# , t )  tend to p(0,  t) uni/ormly as # tends to zero. 

COROLLAR:Z 5.2. For /~=0 let system (5.1) possess an almost periodic solution 

p (0, t) whose variational equation is a linear system with constant coefficients, none of 

whose characteristic roots have zero real parts. Further assume that system (5.1) satis/ies 

the almost periodic, differentiability, and continuity restrictions of property VII .  Under 

these assumptions there exists a > 0  and r > 0  such that /or every /t, I/t] < a, system 

(5.1) possesses a unique almost periodic solution p(#,  t) which is contained in a cylinder 

of radius r about p(O, t). Furthermore, the p (re, t) tend to p (0, t) uniformly as tt tends 

to zero. 
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