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1. Introduction

In section 3 of this paper we extend the author’s results [4] concerning perturba-

tions of real linear systems of the form
Z=[A @)+ B(t)]x, (1.1)

where A(t) and B(t) are continuous and uniformly bounded matrices. In particular
we obtain conditions on the matrix A4 (¢} which will assure us that the characteristic
exponents of system (1.1) are continuous at B(f)=0 as functions of B(t) (Corollary
3.1). In section 4 we obtain results concerning the existence and variation of bounded
solutions of nonlinear differential equations (Theorem 4.1). In section 5 we apply
these results to almost periodic nonlinear systems and extend the author’s previous
results (Theorem 5.1).

2. Elementary Transformations and Definitions

A counter example due to Perron [7] shows that even in the case where the
matrix 4(t) in (1.1) is a diagonal matrix the characteristic exponents of (1.1) need
not be continuous at B(f)=0. One notes, however, that one of the diagonal terms
in Perron’s example fails to possess a mean value. We shall find that if one restricts
oneself to matrices A (f) which are kinematically similar [5] to upper triangular ma-
trices whose diagonal elements have the following property I, then the characteristic

exponents of system (1.1) are continuous at B(£)=0.

(*) This research was sponsored by the QOffice of Ordnance Research, U.S. Army Contract No.
DA-23-072-ORD-1289.
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DErINITION 2.1. A continuous function a(t) is said to possess property 1 with

constant A (real) if for every w>0 there exvists a constant M (u) such that
t
|[la(t)—A1dt|< M (u)+ u|t—s| for all — oo <t, s< 0.

Let M, be the set of nXxn matrices whose entries are real valued functions of
a real variable ¢, continuous and bounded on the line, — oo <t< oo (the results of

the first three sections hold if we restrict ourselves to 0 <t< o).

DerFiNITION 2.2. For A€M, we say A possesses property 11 with the real con-
stants Ay, ..., An tf there exists a diagonal matriz D={d;(t)} € M,, where the dy(t)
possess property 1 with constants 4;, and if for any &>0 there exists a matriz E(t) €M,
such that | E||<e and A~D+E.

We recall the definition of kinematic similarity.

DeriNITION 2.3. For A, BEM, we say A~ B (read: A is kinematically similar
to B) in case there exists a matric P with P, P™', and P=dP|dt€ M, and — P!

[P—AP]=B for —oo<t< oco.
We note without proof that property I for a continuous function a () with con-
stant 0 is equivalent to a(t) satisfying the following two conditions.

S+A
1) lim | [ a()dt|/A=0 uniformly for —co <s< co.

A—>o0 s
S+A
2) sup | [ a@dt|<oo.

—00<8,8+A<0
A} <1

We next note that the results of Perron [6] and Diliberto [2] assure us that the
problem of studying the continuity of the characteristic exponents of the n-dimen-
sional linear system (1.1) for |B| small is equivalent to the problem for a system

of the form
2=[C @)+ D))=z, 2.1)

where C(t), D(t)€M,, '|D(t)| is small, and C(f) is an upper triangular matrix.

Here we use for the norm of a matrix 4 (¢): HA(t)H=i j2=1|ai,~(t)|, AH:Olltl(b 4 @)

We use the analogous norm for vectors. The study of system (1.1) can be simplified
further. If H(t)=diag (c11(t), ..., Can(t)), then by the change of coordinates &=7T'z,

n—l)

where T'=diag (1, », ...,y one has

E=[HWH+T W ~HO+DE)T1E=[H )+ E@®)]E. (2.2)
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If |C—Hi= M, then for any small 6>0, if we set y=2M [§, we have for any D (t),
|D|j<&"*1) (2"t M™), that the matrix K (t) is such that |E|<48. Thus we see that
the question of continuity of characteristic exponents for systems of the form (1.1)
is equivalent to the same problem for systems of the form (1.1), where A(f) is a

diagonal matrix.

3. Basic Perturbation Theorem

In this section we consider the two systems -
g=At)x (3.1)
2=[4({t)+B({)]z (3.2)

where 4, BEM,. In what follows the jth row (ith column) of a matrix C () will be
denoted by [C'(t)]; ([C(8)]).

DEFINITION 3.1. System (3.1) is said fo possess property 111 with constants (real)
Ay s An if for any u >0 there exists a set of n independent solution vectors 2 (t) and
a fundamental solution @ (¢) of (3.1) such that

1) [&' ()| <h(u) exp [Aat+p|t]] (=1, ..., m; O<t< o),

2) [[® @) P (&) <h(u) exp [Ai(t—s)+ult—s|]] (=1, ..., n 0<s, t< o),

where, for a fized value of u, h(u) is a positive constant.

THEOREM 3.1. If system (3.1) possesses property TI1 with constants 2y, ..., An, then
given &>0 there exists § >0 such that for |B| <0 system (3.2) possesses n independent

solutions 2’ (t) satisfying the inequalities
7] <k(e) exp [(4+e)e] (=1, ..., m 0<i< 00),
where k(e) for a fixed value of ¢ is a positive constant.
Proof. Set A=min I/Il—lljl/ 4 and assume that e<l1/4. We now consider a
Al

fixed 2’ (t) and let S,={l|4 >4}, S,={l|A<4;}. We also define the matrices H (t —s)
and 9 (t—s) as follows:

[@HOT ()] (€S,

zero vector (JES,);

[H(t—S)L-:{

y(E—s)=0 @)D (s)—H (t—s).
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Next we define for system (3.2) the formal solution matrix w; ()= 2 v} (t), where
K=0
1) [v? ($)]* =62’ (t) (6;x denotes the Kronecker delta)
t ca
2) vt ()= [y (t—s)B(s)yj(s)ds— [ H (t—3) B(s)yi(s)ds.
] t

We now show that y;(f) is an actual solution matrix for 0 <{< oco. Taking pu=¢/4

we have, since |a; ()| <% (u) exp [(4;+ p)t],
|99 O] <A () exp [(+ )1 <h(p) exp [(4+e) ],
Assuming that [y} (t)|<h(u) k' exp [(4;+e)t], k=h(u)n|B|-u~", we establish that
[ O <h(u) K exp (4 +e) 1.

From its definition we have
éwé”(t)éKliBlI{j‘\y(t—s)H !wé(s)HdHfHH(t—s)H |/ (s)]d s}
<h(u)k'|Blnh(w) ’{fexp [+ ) ¢ =)+ (A +e)s]ds
+feXp [Ae(E—s)+ (4 + &) s+ u(s—t)ds},

where A;=min {1;}.
leS,

Thus we have:
i @< {h(u) K| B|nh(u) exp [(A;+ &)t} [ <k (u)k'** exp [(4; +&)t].

This completes our induction.

However, once ¢>>0 has been fixed the quantities y and A(u) are fixed con-
stants, and so, if we take |B|=u[[n*h(u)], we have that the formal series converges
uniformly for 0<¢<7T (T arbitrary) and so by the usual arguments is an actual
solution matrix for (3.2), where 0<t< oo. It is clear that the jth column vector 2’ (t)
of y;(t) satisfies the inequality of Theorem 3.1. We note that the coordinates of
2/(0) tend to those of 2/(0) as [[B[—0. Thus for sufficiently small values of |B| the
linear independence of the 2/(t) follows from that of the 2’(f). This completes the
proof of Theorem 3.1.

DeriniTioN 3.2. System (3.1) will be said to possess property IV with constants
(real) Ay, ..., An tf for any pw>0 its adjoint system ’ '
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g=—A*({)z (3.3)

possesses 1 iﬁdependent solutions x*(t) and a fundamental solution ®*(t) such that
1) |2 )| <n(p) exp [— At +ult|] (i=1, ... n; 0<t< 00)
2) [[@* ) @* ' (s));|<m(u) exp [— A (t—8)+u|t—s]] (=1, ...,n; 0<s,t< o),
where, for a fixed value of p, n{u) is a positive constant.

By the method used to prove Theorem 3.1 we now have:

TarorEM 3.2. If system (3.1) possesses property IV with constants A, ..., An, then
given any >0 there exists >0 such that for |B|<d the adjoint system

= —[A@)+B@#)]*= (3.4)
for system (3.2) possesses m independent solutions 2" (t) satisfying the inequalities
17" )| <k(e) exp [(—A+e)t] (G=1, ..., m 0<t<o0),

where, for a fized ¢, k(e) is a positive constant.

CororLLARY 3.1. If system (3.1) possesses properties IIL and IV with constants
Ays vy An which are also the characteristic ewponents of (3.1), then the characteristic

exponents of system (3.1) are continuous functions of B(t) at B(t)=0.

Proof. The upper semi-continuity of the characteristic exponents is an immediate
consequence of Theorem 3.1. We now establish the lower semi-continuity of the
characteristic exponents. Let 1 (f) be any fundamental matrix of (3.2). Then for small
|B| we may assume, without loss of generality, that the [y ()] satisfy the ine-
qualities

Iy @YI<p(e) exp [(h+e)t] (=1, ..., n; 0<E< o0),
A<l (=1, .., n-1),
where p(e) is a positive constant for fixed e. We next establish that |[y ()]
>k, exp [(4;—e)t]. Since y* " (¢) satisfies the adjoint equation we have y** (t)=R(t) C ",
where C! is a constant nonsingular matrix and [R (t)] =2 () defined in Theorem 3.2.
We again assume that the A; have been linearly ordered as described above. Thus
p* () B(t)=C=(cy), and if ¢;+0 we have

[l OF]|= [ en| /| (B )Y ]> ky exp [(A;—&)1].

The case c;=0 can be reduced to the above case by a dimension argument (Bell-
man [1, p. 50]), which we shall not repeat here except to note that this was the
reason for the ordering of the 4;. This completes the proof of Corollary 3.1.
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CorRoLLARY 3.2. If in system (3.1) A(t) possesses property 11, then the charac-

teristic exponents of (3.2) are continuous at B=0.

Proof. By the definition of property II and the results of section -2, the con-
tinuity problem for (3.2) is equivalent to the same problem in which we assume
that A (t)=diag (dy;(t), ..., dan(t)). But it is easily seen that in this case system
(3.1) has properties III and IV; and the result follows from the previous corollary.

In preparation for Lemma 4.1 in the next section, we introduce the following

definitions and results.

DeriniTiOoN 3.3. System (3.1) is said to possess property TII* if it possesses
property 1II for — oo <s, t< oo,

DeFINITION 3.4. System (3.1) is said to possess property IV' if it possesses
property IV for — oo <s, t< oo,

TuaeEorEM 3.3. If system (3.1) possesses properties III* and IV* with constants
My ooes An them for any &>0 there exists a >0 such that for || B||<d to every solution
o’ (t) described in Theorem 3.1 there corresponds a solution 2’ (t) of system (3.2) which

satisfies the inequalities:
kyexp [A;t—e|t|]< 2/ (8) <k, exp [Ast+e|t|]] for —oo<it< oo,

Proof. Notation is as in Theorem 3.1, except now with respect to 1, we define
the sets S, ={k|dx>4}, S;={k|Ax<Ai;}, S;={k|Ax=4;} and the matrices H!(t—s),
H2(t—s), y(t—s) as follows:

[ D s)]m mMES), (m=1,2, ...,n i=12)

zero vector (m¢S;)

(H (t—8)]a= {
y(t—8)=® ) O (s)—H  (t—s)— H2(t—s).
Again we define the formal solution matrix y;(f)=> vf (¢), where
Jo=r

L. [9) (¢)]*=0,x2'(t), (;x denotes the Kronecker delta)

t )
2. pf )= [ yt—s)B(s) ) (s)ds— [ H (t—s) B(s)y} (s)ds
0 t

+ [ H2(t—s) B(s) g} (s)ds.
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Now one proceeds as in the proof of Theorem 3.1 to obtain the inequality |2/ (t)]
<k, exp (A;t+¢|t]) for —oco <t< oo. The remaining inequality is obtained as in the

proof of Corollary 3.1 after the obvious changes in Theorem 3.2.

CoroLLARY 3.3. If system (3.1) possesses properties 111" and IV with constants
Ai=0 (i=1, ..., n), then there exists 3, >0 such that every nontrivial solution of (3.2)

is unbounded for | Bfi< ;.

4. Perturbations of Bounded Solutions

In this section we shall consider an n-dimensional system of the form
@=F(x, p,t). (4.1)

DerinIiTiOoN 4.1. System (3.1) is said to possess property V if there exvists a
constant matriz D=diag (dyy, ..., dnn), |du| >8>0 (=1, ..., n) and if for any ¢>0
there exists a matriz H(t) € M, such that A (t)~ D+ H (t), where || H| <e.

Lemuma 4.1, If system (3.1) possesses property V, then there exists a 0,>0 such

that every momtrivial solution of (3.2) is unbounded for || B| <d,.

§
i

Proof. We observe that the system é—‘=D§ clearly possesses properties ILI" and
IV*. Thus all the nontrivial solutions of the system 3 =[D+H@E)+P{t)B@E) P&
are unbounded for |H|<}4, and || Bl<é,/(2]| P||| P7|), where 0, is the constant de-
scribed in Corollary 3.3. But now the conclusion of Lemma 4.1 is an immediate con-
sequence of the fact that there exists a P (t) such that D+H (t)+P ! BP=

= —p! [P— (4 + B) P], where P, P71, PeM,. This completes the proof of Lemma 4.1.

DeriniTIiOoN 4.2. System 41 is said to possess property VI with respect to a
bounded curve p(0,1t) if there exists a A>0 such that for 0<|p|<A and 0<|yn <A

it may be written in the form

n=F(p0,1), u, t)~ F(p(0,t),0, )+ [4 (u,t) + § (5, w, )1, (4.2)
where
L) n=2-p(0,1),
2) %qt=zl[Faizf (PO, 1), . t) + Flaizy (p(0,) 40 (£, ), 1, )03, where F? is the q-th
7= .

component of the vector function F(x,t,u) and |0;(t,n)| <1,
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3) A(u,t) and Fiz;(i,§,9=1, ..., n) are bounded, continuous in x, u, t and jointly
continuous in u, x uniformly for — co <t< oo,
4) §=A(0,8)n possesses property V, and p(0,t)=F (p(0,1),0,t).

We next introduce the system

i=1(u )+ [D+0 (w2 +e(zp )z, (4.3)

where

1) lo(u, t)|l<o(u)+e for — oo <t< oo, where lim o(u)=0,
>0
2) Hf(‘u,t)}{<m([u) for — oo <t< co, where lim m(u)=0,
=0

3) there exists a A, >0 and M such that |e(z, u,¢) |< M| z|| for 0< ||2|<A; and
0<|ul<A,
4) D=diag (d,,, ..., dun), Where |dii|>8 for i=1, ..., n.

Lemma 4.2. If system (4.1) possesses property VI with respect to a bounded curve
p(0,1), then for any £>0 there exists a transformation z= P~ (t)n which for 0<||y||<A
and 0<|u|<A reduces system (4.1) to a system of the form (4.3).

Proof. The result is an immediate consequence of definitions 4.1 and 4.2.

THEOREM 4.1. There exists A>0 such that to every p in the interval (— A, A)
there corresponds a bounded solution z(u,t) of (4.3) such that ||z| tends to O as u tends
to 0.

Proof. Select £¢>0 and then A, and A, such that for |u|<A, and ||z2]<A,;, we
have |[2(c(u)-+e)n]/d|<} and [m(u)+MA3]I8n[d<A,.
We next introduce system (4.3) which for a fixed u,, |u;|<A,, is defined in the
following way. Let z(u,,t) denote any solution of (4.3) such that [z(uy,0)[<A,.
Then for any value of ¢ we define a corresponding solution 2 (u,,t) of system (E)
as follows:

A 2 (uy, 1) if H 2y, ) H< A, —
(g, t) = 4.3
Sl ) {zwptms/nzwmu it 2 (uy, 8) | > Ay *3)

Thus all the solution curves of system (4.3) are contained in a cylinder of radius
A, about the t axis. We further observe that any solution 2(u;,f) such that
[2(uy, t)|<A; for all ¢ is an actual solution of system (4.3). Now corresponding to

each 2(u;t) we define
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o0

;ul’ z (ful’ t)’ (4-4)

where
t
1) @ (py, )= [ @, (t—s) [ (g 8) + ¢ (B (g, 8), pr,8) 2y, $)1d's

[ @y (t—s) [f (11g, ) + € (B (10, 9), pa, 8) B (s )1 s,
t H
2) @ (ug, )= [ @y (t—5) 0 (ug, 8) 2 (g, 8) ds+ [ @y (E—5) 0 (4,5 8) o' (g, 8) dis.

Here D, (t—s)=diag (a,; exp [d;; E—8)], ..., Gnn €xP [dnn (E—3)]
D, (t—s)=exp (D ({E—s))— D, (t—s),

where a; is 0 or 1 according as di; <0 or di;>0. Since |, (t—s)||[<n exp [6(t—s)]

for t<s and | @,(t—s)[<n exp [—d(t—s)] for s<t, we have the following estimates

n |2 (u, 1)]:

120 (g, )< [m (uy) -+ M AZIn | 8-+ [m (uy) + M A3 m [ 6;
2 (g, 1) | < (27 ) 8) [m (uy) + M AZ] (27 (0 () +6) /6] (i=1, ...).

Thus

2 (s )| < I (1) + M AB] 2/ 8) (1= [0 () + 6] 2/ 8) (4.5)
<(dn]8) [m(u)+ M A <LA,

We shall next show in Lemma 4.3 that there exists a 2* (,ul,t) such that 2% (u,, 0) =
«* (1, 0), where z*(u,;,t) is the function obtained by using 2*(u,,f) in the definition
of #°* (u,,t). However, from the definition of «* (u;,¢), as long as ||«* (uy,#)|| remains
less then A; it is clear that 2* (uy, 8)=2%(uy, ). But by 4.5) ||2" (4, )| <3 A, for
—oco<t<oo, and so z*(uy,t)=2%(u,, £)=2(uy, t), where z(u;, 1) is an actual solution
of system (4.3). Thus we will have established for every u,, |u,|<A,, that there
exists a bounded solution z(u,,#) of system (4.3). From the inequality (4.5) it follows

that this solution satitfies
Iz (ps, )| < (4] 8) [m () + M AT] < § Ag.
Since lim m(u)=0, we may conclude that A; also tends to zero. Thus the proof of

u—>0

Theorem 4.1 will be complete once Lemma 4.3 has been established.

Lemma 4.3. The mapping (2 (4, 0)) =z (4;,0) of the n cell |2 (u;, 0)| <} A, into

ttself is continuous and so possesses a fixed point.
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Proof. From the definition of the-set of functions z(u,,?) it is clear that there

exists an N (g;), independent of 2(u,,t), such that > [a’(u,,#)!|<e /16 for all &. We
=N

set M,=[2m (u;) +2 M A;] and choose 7>0 such that n M, exp (—867T)/6<0,.

Since

I= Tlub |c(Z;(uy,8), e, 1) 21 (g, 8) — € (Ba (g, 1), iy, 8) By (g,
|t|<(g+2)7"c(z1(ﬂl )s o1, ) 21 (a1, ) — € (25 (g5 1), 115 8) 2 (g )|

is a continuous function of 2;(u;,0), i=1,2 and is zero for 2, (u;,#)=2,(us,,¢), for
any 8,>0 there exists a d,>0 such that I<d, if |2, (i;, 0) — 2, (1, 0) | < 6,. Thus for
any ¢, [({<(N+1)7, we have

t t

() =2 )< — [ (@ ¢—9)Ids+ [ I[®,¢—s)|ds

NinT —(N+2)T ‘
(N+2)T v —+T
- [ M t—s)|ds+ [ Dy (t—s)] M ds<2(d,+nb,/0).

For any t, |t|<NT, we have

¢
Ex}(l/‘pt)“xé(ﬂvt)isg_ ,[ |(I)1(t—-s)l [o(u)+e]2(6,+ndy/0)ds

(N+1T
£
+ [ @y(t—s)] [o(py) +€12 (8, + 10y [0)ds+20;.

~NThr

In general for f, |{|<(N—¢+1)7T, we obtain

| 21 (1, £) — 25 (g t)§l<261j;){2 [o(uy) +eln |6} +(2n6,/08) {2[0(py) +eln/ 8}

Thus we obtain for ¢, |¢|<2T,

N-1 ) N-1
21 (g, 1) = %) (0, ) [ < (208, [ 0) 3 {2[0 () +e] m ] 6}

N-1
+26, 3 (N —i) {2[0 (1) +e]n [ 8}

N-1 N-1 )
Now k1=2iZO(N—i) {2[0 () +&]n [0} and ky=(2n/6) 212 [o(uy)+e] M |6} are fixed
numbers for a given pu, and N (g). Hence we may choose 7' in such a way that

Ok, <e, /8. Then having determined 7 we may choose d; in such a way that
kyd,<e,/8. Thus for any £ >0 and T >0 there exists a 0, such that |z (uy, ) —
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—ay (g, t) || < gy for |2, (py, 0) — 2, (1y, 0) <&y and |t|<27. It then follows that for any
finite value of #, x(u,,f) is a continnous function of 2(u,,0). I we set t=0 it
follows that ¢ is a continuous map of an n-cell into itself and so possesses a fixed
point. This completes the proof of Lemma 4.3 and so of Theorem 4.1.

As an immediate consequence of Theorem 4.1 and Lemma 4.2 we have the

following corollary. -

CoroLLARY 4.1. If the system (4.1) possesses property VI with respect to a
bounded curve p(0,t), then there exists a A>0 such that for each u, |u|<A, there
corresponds a bounded solution p(u,t) of (4.1). The solution p(u,t) tends to p(0,%)

uniformly as u fends to zero.

Lemma 44. If system (4.1) possesses property VI with respect to p(0,t), then
there exist Ay>0 and ry>0 such that for |u|< A, there is at most one bounded solution

v {1, t) contained in a cylinder of radius r, about p(0,t).

Proof. Since system (4.1) possesses property VI, it is clear that there exist
A;>0 and r, >0 such that for any bounded solution p (u, t), where |u|< A, 0<[nli<r,
0< p(0,t)—p(u t)|<r, system (4.1) may be rewritten in the form

=[A(0,8)+c (b u) + Gy, w, 1)y, (4.6)
where 1) y=2—p(u,t),

2) qu’:jgl[ngxi (p (Ma f), U, £+ ngwj (p (M? )+ 0 (¢, 7]) ns U, 2] s

where |0i(t,77)[<1 for —co<t<oo;d,4,q=1, ..., n,

or, ) |p(u,t) and ¢(0,8)=0.

3) A0, 8)+c(u, t)= m
1y - Un

If we set B(u,t)=[c(u,t)+G(xn, u,t)], then by Lemma 4.1 there exists ¢>0 such
that for | B| <o the system #=1[4(0,t)+ B(u,t)]x possesses no nontrival bounded
solutions. By the joint continuity in z and p imposed by condition VI it follows
that there exist A,(A,>A,>0), and 7,(r,>7,>0), such that |[c(u,t)|<ioc and
G0, . )| <30 for 0<[y]<r,0<|p@t)—p0.1)]<r,0<|u| <Ay and — oo <t< oo,

Thus, if we set r;=1}r, and A;=A,, we have our desired result.

THEOREM 4.2. If system 4.1 possesses property VI with respect to a bounded
curve p(0,t), then there exist a A and r such that to every value of u, |u|<A, there
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corresponds a unique bounded solution p(u,t) contained in the cylinder of radius r
about p(0,1).

Proof. In Corollary 4.1 we select A, so that for |u|<A; the p(u,?) there de-
scribed are contained in a cylinder of radius r;, where r, is as described in Lemma 4.4.

Then, if we set A=min (A,, A;) and r=r;, the desired result follows.

5. Almost Periodic Systems

We consider the perturbation problem for the continuing of real almost periodic

solutions of the real nonlinear differential system
&=F(z, u,t). 6.1

It is assumed that for u=0 system (5.1) possesses an almost periodic solution
p(0,t). It is further assumed that there exists >0 such that for pu sufficiently
small F(x, u,t) is almost periodic in ¢ uniformly with respect to z in R(y), where
R(y)={=z| wlglzw!fx—p((), t)|/<y}. Here the function F(z,u,t) for a fixed u is said to

be almost periodic in ¢ uniformly with respect to x in a set R if for any &£>0 there
exists a relatively dense set §(¢) such that if x€R, 7 €S8, then 7 is an ¢ translation num-
ber of F(z, u,t). In the future we shall say that F(x, u,t) is almost periodic for z€ R,
or if the range of z is clear, we shall simply say F (=, u,?) is almost periodic. Our
main result is that if system (5.1) also possesses property VI* with respect to p (0, 1),
then for u in a sufficiently small interval about © =0 there exists a one parameter
family of almost periodic solutions p(u,f) which tend uniformly to p(0,%) as u tends
to 0. In preparation for this result we first establish a number of elementary lemmas.

Let the function F(z, u,t, 7) be defined by the equality ¥ (x, u,t,7)=F (x, u,t+1).
We now assume that there exists A>0 such that for any u, |u|<A, F(z, u,t)
is almost periodic for z in a compact set R, and F(z,py,t) is jointly continuous
in # and yx uniformly for — oo <t<oo, z€R, ju|<A. Then for any fixed u
the set of all translates of the almost periodic function F(w, u,t) is clearly the set
P={F (x,pu,t,7)|— o <r<oo}. We now consider the closure P of P under the uniform

norm ( lub | (f)|=uniform norm of z(f)). P is called the closed hull of F (z, u,t).
—oo<t< oo

It isclear that if F*(z, u,t)€P, then F*(z, u,t) is almost periodic; and there exists a
sequence {t;} of real numbers such that lim [ lub | F(x, u,t,t)— F* (z, u, t) ] =0 exists

i>00 —oo<i<oo

uniformly for z€R.
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Lemma 5.1. Suppose that F(x,p,t) in system (5.1) for a fized u is almost
periodic for x€R, R={a|||z|<c}. Assume also that for any F*(x,u,t) contained in
the hull of F(x,u,t) the system

i=F* (z, u 1) (5.1%)

possesses a unique bounded sulution p*(u,t) such that |p* (u,t)||<o. Then this solution

s almost periodic.

Proof. We establish that the family & of functions formed by p (u, t) and its translates
is a normal family. If we set p(u,t,7)=p (u,t+7), then @={p(u,t,7)| — co <T < 00}.
Clearly G is an equicontinuous family, and it will suffice to show that for any
sequence {r;} of real numbers there exists a subsequence {7;} such that the
sequence {p(u,¢, 7;)} converges uniformly on the real line. To do this one first
picks a subsequence {r;} of {r:} in such a way that the sequence {F (x,u,t,7})}
converges uniformly to a function F* (z, u,t) which is again almost periodic for |z <a.
If the sequence {p(u,t,7;)} does not converge uniformly, then system (5.1%*) can be
shown to possess at least two distinct bounded solutions which are contained in the
cylinder of radius o about x=0. The proof of this fact follows by means of a well
known argument due to Favard [3] and will not be repeated here. However, the
existence of two bounded solutions in the cylinder of radius ¢ contradicts the
hypothesis and the result follows. But if p(u,t) is almost periodic, then the limit
function p* (u, t) is also almost periodic and the proof of Lemma 5.1 is complete.

We next obtain two lemmas which will allow us to recast our problem for

systems of the form (5.1) in a more manageable form.

Lemma 5.2. If F(x, pu,t) and p(0,t) are almost periodic for x € R(A) and F (z, u, t)
18 continuous in x wuniformly with respect to zx€R(A) and — co <t<oo, then
Fn+1p(0,8),ut) is almost periodic for n€R, R={y||5]|<A}.

Proof. Let E(y) denote the set of common jp-translation numbers of F (x, u,t)
and p(0,¢). By the uniform continuity of F(z, u,t) for any &>0 there exists
0(e)>0 such that | F(xy, p, ) — F (w5, u, t) | <&/ 2 if |2, —x,]< 0.

Setting » =min (¢/2, o (¢)), we have

|F(n+p(0,8), u,80) = F (i + p(0, 6 +7), 0+ 7) | <| F (7 + (0, 8), 1, 8) — F (g -+ p(0,8), p, t+ 7) |
| Fm+pO,t), ut+7)—Fp+pO,t+7), ut+7)|<c/2+e/2=¢

for any 7 €Z(y). Thus the set of e-translation numbers of F (4 p(0,1), u, t) contains
E(y) and so is relatively dense. This completes the proof of Lemma 5.2.
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Lemma 53. If for a fized u there exists ¢>0 such that F{x,u,t) is almost
periodic for |x—x, |<o and F, (xg, u,t) is continuous in x uniformly for |x—u,| <o

and — oo <t< oo, then ng (g, u, t) is almost periodic.
Proof. For any A <o we have
[F (g + A, i, £) = F (g, 1, )] | A = Fi (2 + 0 () A, 1, 0), 0 () <1,

where A=A(6u, vers Oni)T. Sinece F?¢ (xo—i-A,[u, t) and F?(x,, u,t) are almost periodie,
Fi (xg+0(1) A, M,t) is almost periodic. Thus lim FZ, (x0+0(t)A, u, t)y=F3 (29, u, t) is
A—-0

the uniform limit of a sequence of almost periodic functions and so is almost peri-
odie.
In preparation for the proof of Theorem 5.1 which follows we have the following

definitions.

DEerINITION 5.1. For A,BEM, we say A~ B in case there exists a matrix P
with P,P', and P€M,, P uniformly continuous and —P'[P—AP]=B for

— oo <f{< oco.

DerINITION 5.2. System 5.1 is sasd to satisfy condition VI* if it satisfies con-
dition VI with ~ replaced by ~.

In light of the preceeding lemmas we note that if for x€R(y) the function
F (x, u,t) is almost periodic and possesses second order partial derivatives with respect
to = which are jointly continuous in z and u, uniformly for — co <t< oo, then the
problem described at the beginning of this section for system (5.1) may be reduced
to an equivalent problem for systems of the form (5.2) below. This is accomplished
first by the change of variable =z —p(0,t) and then by developing F(x, u,t) in a
Taylor series about =0 to obtain the system

7=F(p(0,t), 1) = F (p(0,2),0,8) + [4 (u, 1) + F(n, w017, (5.2)

where F(p(0,t), u,t), A(u,t) are almost periodic and & (n, u,t) is almost periodic for
n<y. Here A(u,t) and &, u,t) are as defined in definition 4.2. If we further assume that
system (5.1) possesses property VI* with respect to p(0,¢), then there exists a
bounded transformation 7' (f) which reduces system (5.2) to

t=ft, )+ [D+o(ut)ztc(z pt)z (5.3)
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which is of the same form as (4.3) and satisfies the same restrictions. Thus by
Theorem 4.2 there exist A>0, r>0 such that for every u in the interval (—A, A)
there corresponds a unique bounded solution #(u,f) of (5.2) which is contained in

the cylinder of radius r about =0. We next observe that for any system

(5.21)

the transformation 7' (¢+¢) reduces system (5.2i) to one of the form
t=ft+t, u)+[D+o(ut+t)]z+vclz u, t+t)z (5.31)

which again satisfies exactly the same restrictions as (5.3). Thus we have that for
any @ €(—A,A) there corresponds a unique bounded solution p(u,f+#) of (5.2i)
which is contained in the cylinder of radius » about z=0. Thus in order that the
hypothesis of Lemma 5.1 be satisfied it remains only to establish that any system
{(5.2*1)} which is the uniform limit of a sequence of systems {(5.2i)} associated with
a given sequence {f} possesses for u€(—A,A) a unique bounded solution p* (u,?)
which is contained in the cylinder of radius r about n=0. Since T (¢), T7'(t), and
Te€M, and T is uniformly continuous for —oco<t<oco, it is clear that for any
sequence {1'(¢+1%)} we can choose a subsequence {7T' (t+1;)} which converges uniformly
on all finite intervals to 7™ (f) where T™(t), T* ' (t) and T (t)€M,. It is further
noted that 7*(f) reduces system (5.2*) to a system of the form (5.3*), where the
functions f*(u,t), o*(u,t), and c*(z, u,t) satisfy exactly the same conditions as the
functions f(u,t), o(u,t) and c(z, u,8) in system (5.3). Thus system (5.2%) possesses
for x in (—A,A) a unique bounded solution p*(u,t) which is contained in the
cylinder of radius r about 5=0. It then follows by Lemma 5.1 that the bounded
solution p(u,t) of (5.2) is almost periodic. Using the equivalence of systems (5.1)
and (5.2) we have established our desired result. We now collect the conditions im-
posed on system (5.1) and the results obtained in Definition 5.3 and Theorem 5.1

bhelow.

DeriniTIiON 5.3. System (5.1) is said to possess property VIL with respect to
p(0,1) if

1) for u=0,p(0,t) is an almost periodic solution of system (5.1},
2) there exist A>0, y>0, such that for any u, |u|<A, F(z, p,t) is almost peri-
odic in t uniformly with respect to x in R(y),

3) system (5.1) possesses property VI* with respect to p(0,¢).
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TaEOREM 5.1. If for pu=0 system (5.1) possesses property VII with respect to
the almost periodic solution p(0,t), then there exist ¢>0, r>0 such that to every
u, lu| <o, there corresponds a umique almost periodic solution p(u,t) of system 5.1 which
is contained in a cylinder of radius r about p(0,t). As u—>0,p(u,t) tends uniformly
to p(0,¢).

It is in general not known whether there exists a transformation 7 (t) such that
T (), T1(t) and T (t) € M, and 7' (¢) is uniformly continuous which reduces the linear
part of (5.2) to a system which is “close” to a linear system with constant coeffi-
cients. There are cases, however, in which such a transformation is known to exist.

We consider two of these cases in the following corollaries to Theorem 5.1.

CoroLLARY 5.1. For u=0 let F(x,pu,t) of system (5.1) be periodic in t and let
system (5.1) possess a periodic solution p(0,1) whose variational equation has no charac-
teristic roots with zero real parts. Further assume that system (5.1) satisfies the almost
periodic, differentiability, and continuity restrictions of property VII. Under these assump-
tions there exist ¢>0 and r>0 such that for every u, |u|<o, system (5.1) possesses a
untque almost periodic solution p(u,t) which is contained in a cylinder of radius r

about p(0,t). Furthermore, the p(u,t) tend to p(0,t) uniformly as u tends to zero.

COROLLARY 5.2. For pu=0 let system (5.1) possess an almost periodic solution
p(0,t) whose wvariational equation is a linear system with constant coefficients, none of
whose characteristic roots have zero real parts. Further assume that system (5.1) satisfies
the almost periodic, differentiability, and continuity restrictions of property VIL. Under
these assumptions there exists 6>0 and r>0 such that for every u, |u|<o, system
(5.1) possesses a unique almost periodic solution p(u,t) which is contained in a cylinder
of radius r about p(0,t). Furthermore, the p(u,t) tend to p(0,t) uniformly as u tends

to zero.
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