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Introduction

At the present time a great deal is known about the general theory of C*-algebras.
However, little has been done to clarify the precise structure of specific non-commutative
C*.algebras, for example, the group C*.-algebras of particular non-commutative non-
compact groups. In this paper we present a number of results which together constitute
program for determining the structure of many specific C*-algebras; and apply them to
describe completely the group C*-algebra of SL(2, C).

Our main tools will be algebras of operator fields defined on a locally compact Haus-
dorff space. Let 7' be a locally compact Hausdorff space, to each ¢ in which there corresponds
a C*.algebra 4,. For different values of ¢t the A, are in general unrelated. By a full algebra
of operator fields on 7" we mean a *-algebra A of functions z on 7T such that (i) x(t)€4,
for each #; (ii) t—||x(¢)|| is continuous on T and vanishes at infinity; (iii) for each ¢, {2(t)]

x€A} is dense in 4;; (iv) 4 is complete in the norm ||z|| = sup|[«(¢)||. Evidently 4 is itself
t

a C*.algebra; the 4, are called its component algebras.

Algebras of operator fields have been studied by various authors, for example in [8],
(6], and [11] (a more complete bibliography will be found in [117]).

Our paper is divided into five chapters. The first chapter begins with the basic concept
of a continuity structure; and then proceeds to the description of the dual space of a full
algebra of operator fields in terms of the dual spaces of the component algebras. It ends
with a description of all possible full subalgebras of a full algebra of operator fields—a
special case of Glimm’s generalization of the Stone—Weierstrass theorem (see [5]).

Chapter II takes up the problem of representing an arbitrary C*-algebra A as a full
algebra of operator fields. As usual we denote by A the dual space (i.e., the space of equi-

valence classes of irreducible *-representations) of A, equipped with the hull-kernel topo-
16 — 61173060, Acta mathematica. 106. Imprimé le 22 décembre 1961,
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logy. (1) The transform of an element a of 4 is the function 7— T, on 4. Now 4 is isomor-
phic with the algebra of all transforms of elements of 4; but the latter fails on two counts
to be a full algebra of operator fields in the sense defined above. In the first place A need
not be Hausdorff; in the second place the ‘“norm-functions” 7'—|| 7',|| need not be contin-
wous. However, in Chapter IT we construct from A a compact Hausdorff space A", called
the regularized dual space of 4; and modify the transform of each a in 4 so that it becomes
an operator-valued function @ on A" with continuous norm-function, called the regularized
transform of a. The algebra A of all regularized transforms is then a full algebra of operator
fields on A’, called the regularized transform of A4, and is isomorphic with A. The set of
those ¢ in A" for which the component algebra 4, of A is primitive is dense in A", but will
not in general coincide with A". Also, 4 need not be a maximal full algebra. If it is not
maximal, then Glimm’s theorem (Theorem 1.4) is precisely what we need in order to
deseribe 4 in terms of the maximal full algebra A,,,, containing 4.

Thus, the determination of the structure of a C*-algebra A4 is reduced to the study of
A v or, equivalently, the study of the continuity structure defined by 4. In Chapter I1I
it is shown that in certain cases {for example, if the irreducible representations of 4 are
of uniformly bounded finite dimension), the possible continuity structures on A’ can be
analyzed in terms of what we shall call fibre structures, which generalize the notion of
fibre bundle. We will illustrate this in an important special case. Let 7" be a locally compact
Hausdortf space, M, the n X n total matrix algebra, &, the group of all automorphisms
a—u"aw of M, (where % is unitary), and B a fibre bundle with base space 7', fibre space
M, and group @,. Then the family € (B) of all continuous cross-sections of B which vanish
at infinity forms a C*.algebra whose irreducible representations are all n-dimensional,
and whose dual space coincides with 7'. Conversely, it is shown in this chapter (Theorem
3.2) that any C*-algebra A whose irreducible representations all have the same finite
dimension » (such an A4 is called homogeneous of order n) is essentially equal to Cy(B)
for some fibre bundle B with base space A, fibre space M,, and group G,. Using fibre
structures, we can obtain a similar, though more complicated, description of many C*-
algebras which are not homogeneous.

Let T be a locally compact Hausdorff space, to each point of which a Hilbert space
H, is associated; and let a continuity structure F for vector fields (with values in the
{H,}) be given. In Chapter IV we construct from F a continuity structure for operator
fields whose values are completely continuous operators on the H,. The maximal full algebra
of operator fields so obtained belongs to a special class of C*-algebras which we call algebras

with continuous trace. The main motivation for this construction lies in its usefulness

(1) For the definition and properties of the hull-kernel topology, we refer the reader to [1].
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for Chapter V. As a matter of fact, the notion of an algebra with continuous trace seems
to be a natural and important one, inasmuch as every GCR algebra has a composition
series whose quotients are all algebras with continuous trace (Theorem 4.2). The question
whether every algebra with continuous trace arises by the construction of this chapter
from a continuity structure for vector fields amounts to a problem in the theory of fibre
bundles; its answer is negative, even for homogeneous algebras.

Finally, in Chapter V, we apply the preceding results to find the detailed structure of
the group C*-algebra of SL(2, C). The result (Theorems 5.3 and 5.4), as well as the steps
by which it is obtained, is outlined in § 5.1. Observe that Theorem 5.4 can be interpreted
in the light of Chapter III as saying that no “twists” occur in the fibre structure underlying
this C*-algebra.

I. Full algebras of operator fields
1.1. Continuity structures (1)

Let T be a locally compact Hausdortf space called the base space; and for each ¢ in
T, let A, be a (complex) Banach space. A vector field (with values in the {4,}) is a function
x on T such that x(t) €A, for each ¢ in 7". Obviously the vector fields form a complex linear
space. If each 4, is a *-algebra, then the vector fields form a *-algebra under the pointwise
operations; in that case the vector fields will usually be referred to as operator fields.

In this paper, either each 4, will be a Hilbert space or each A, will be a C*-algebrar

DEFINITION. A continuity structure for T and the {4,} is a linear space F of vecto.
fields on 7', with values in the {4,}, satisfying:
(i) If € F, the real-valued function ¢ —||z (#)|| is continuous on 7’
(ii) for each t in T, {x(t)| x€ F} is dense in 4.
If each 4, is a C*-algebra, we require also that

(iii) F is closed under pointwise multiplication and involution.

If all A, are equal to the same A, then the set of all constant functions on 7' to 4 forms
a continuity structure, the so-called product structure.

Let us fix a continuity structure F for T, {4,}.

DEeriniTION. A vector field x is continuous (with respect to F) at t,, if for each £ >0,
there is an element y of F and a neighborhood U of £, such that |« (f) —y(f)|| <& for all
tin U. We say that z is continuous on S if it is continuous at all points of S.

The following lemmas are easily verified:

(*) References to previous work on this subject are given in the Introduction.
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Lewmma 1.1. If a vector field x is continuous with respect to F at t,, then t—||z(t)|| s

continuous at t,.

Lemma 1.2. The vector fields continuous (with respect to F) at t, form a linear space,
closed under multiplication by complex-valued functions on T which are continuous at t,.
If each A, is a C*-algebra, the vector fields continuous at t, are also closed under pointwise
multiplication and involution.

Lremma 1.3. 4 vector field x is continuous (with respect to F) at t, if and only tf, for each
Y in F, the function t—||x(t) — y (t))| is continuous at t,.

Lemma 1.4. If a sequence of vector fields {x,} continuous (with respect to F) at t, con-
verges uniformly on T to a vector field x, then x is continuous at t, (with respect to F).

Lemma 1.5. For every t in T, and every o in A,, there is a vector field x, continuous on
T with respect to F, such that x(t) = .

DerinitioN. If F' is another continuity structure for 7' and the {4,}, then we
shall say that F and F' are strictly equivalent (F ~ F’) if, for all ¢t in 7T, a vector field is
continuous at ¢ with respect to F if and only if it is so with respect to F'.

LeMMA 1.6, If F' is another continuity structure for T and the {A4,}, and if there exists
a family G of vector fields such that

(1) each x in G is continuous on T with respect to both F and F’, and

(ii) for each t in T, {x(t)|x€G} is dense in A,

then F ~ F'.

Proof. Let F” be the linear span of G. Then clearly F” is a continuity structure con-
tained in both ¥ and F’. Combining the definition of continuity with Lemma 1.3, we see
that F ~ F”; similarly F' ~ F”. Hence F ~ F'.

From here on, until Chapter IV, the A, will always be C*-algebras.

As in the Introduction, we make the following definition:

DeriNiTION. A full algebra of operator fields is a family A of operator fields on T
satisfying:

(i) 4 is a *-algebra, i.e., it is closed under all the pointwise algebraic operations;

(ii) for each x in 4, the function ¢—||z (#)|| is continuous on 7" and vanishes at infinity;

(iii) for each ¢, {x(f)] x€A} is dense in A4,

(iv) A is complete in the norm ||z| = sup||z ().
t

Clearly 4 is a C*-algebra; hence (iii) could be strengthened to the statement that
{x(t)|x€A} = A,. The algebra A, will be called the component of A at t. We refer to T as

the base space.
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A full algebra of operator fields is evidently a continuity structure. If F is any continuity
structure, let us define Cy(F) to be the family of all vector fields x which are continuous.
on T with respect to F, and for which ¢—| 2 (¢)|| vanishes at infinity. In view of the preced-
ing lemmas, Cy(F) is a full algebra of operator fields—indeed, a maximal one. In fact,

the following lemma is easily verified:

Lemma 1.7. For any full algebra A of operator fields on T, the following three conditions
are equivalent:

(i) 4 is a maximal full algebra of operator fields;
(ii) A = Cy(F) for some continuity structure F;
(iii) 4 =C,y(4).
Such a maximal full algebra A of operator fields may sometimes be called a continuous

direct sum of the {4,}. It is clearly separating, in the sense that, if s,t€7T, s &1, a€A,,
and S€4,, there is an x in A such that z(s) = o, z(t) =8.

1.2. The dual spaces of algebras of operator fields

We recall that the dual space of a C*-algebra A is the family 4 of all irreducible
*_representations of 4, topologized so that the closure of a subset W of 4 is the set of all

those B in A such that M Kernel (8)<Kernel (R). In this section we investigate the
SeW

dual space of a full algebra of operator fields. Let 7' be a locally compact Hausdorff space;
and let 4 be a full algebra of operator fields with base space 7' and component algebras

{4,}ter. The following lemma is proved as Theorem 1, p. 301 of [11]: (%)

Lemma 1.8. If A is mazimal, then any closed two-sided ideal I of A is of the form.
I={zxed|xz@)€l, foralltin T},

where, for each t, I, = {x(t)| x€I}.
THEOREM 1.1. To each R in A there corresponds an element s of T and a Q in (4,)" such
that
R, :Qx(s) (xeA) (1)

Proof. Assume first that 4 is maximal. Let I be the kernel of R, and define 7, as in
Lemma 1.8. We consider the set Z of those ¢ in 7" for which I, 4 4,. Assume now that Z

contains two distinct elements #, and ¢,. Let U, and U, be disjoint neighborhoods of ¢,

(1) In the lemma as proved by Naimark in [11], T is assumed compact. This causes no trouble as
we can adjoin the point at infinity to our 7T, and associate with it the 0-dimensional C*-algebra. Condi-
tion 2) of Naimark’s version follows from the fact that every C*-algebra has an approximate identity.
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and #, respectively; and denote by K; the closed two-sided ideal of A consisting of all
which vanish outside U. Since I, == Ay, it follows that K, ¢ I. On the other hand, K, K, =
{0}. But this contradicts the fact that R(A) has no ideal divisors of 0 (Lemma 2.5 of [8]);
so Z has at most one element. If Z were void, Lemma 1.8 would give I = A. Thus Z has
exactly one element s; and by Lemma 1.8 J = {x€A4|z(s)€I}. Hence R induces an ir-
reducible representation of A ; and the theorem is proved for the case that 4 is maximal.

In the general case, let B be the maximal full algebra containing 4. If S€ 4, there is
an 8" in B which acts in a space H(S') containing H (S), and such that 8’| 4 (1) coincides
with § on H(S).(?) Applying the preceding paragraph to 8, we find a ¢ in T and a @ in
(4;)" such that S, =Q.q, (x€B). Since 4 is full, §’| A is irreducible. So H(S") = H(S),
8’| A =8, and the theorem is proved.

Assume now that 4 is maximal. Then the uniqueness of the s and @ in Theorem 1.1
is evident. Thus there is a natural one-to-one correspondence between A and the set P of
all pairs (¢, @), where t€ T and Q€ 4,. In the following two theorems we identify 4 with P
{writing, for example, Kernel (s, @) instead of Kernel (R), where B is given by (1)).

If J, is a linear subspace of A4, for each ¢, let us define

lim J, = {xz(s)|x € 4, x(t) €J; for all ¢}.
t—>s

The topology of 4 is then given by the following theorem, the proof of which follows im-

mediately from the definitions (and Theorem 1.1):

TuEOREM 1.2. Let A be maximal. If W < A, we denote by W ,the set {Qezitl (t, QYEWY.
An element R = (t,, Q) of A belongs to the closure of W if and only if
Kernel (@°)> lim{ N Kernel (S)}.
t—t, SeW:

(If W,is void, N Kernel (S) = 4,).

SeW;
CorOLLARY. If 4 is maximal and A, is a simple dual C*-algebra (3) for each t, then A
18 homeomorphic with T.
Proof. Tt is well known (4) that each A, contains only one element in this case. Now

apply Theorems 1.1 and 1.2.

(*) 8’| A denotes the restriction of S’ to A.

(2) See, for example, Theorem 1, p. 274 of [11]. For C*-algebras the hypothesis of a unit element,
occurring in this reference, is inessential.

(®) A C*.algebra is dual if it has a faithful representation by completely continuous operators. A
simple dual C*-algebra is one which is isomorphic with the algebra of all completely continuous operators
on some Hilbert space.

(*) This is proved just as in the finite-dimensional case.
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LemMaA 1.9. If B is any C*-algebra, W a family of closed two-sided ideals of B, and
J=0N I, then

IeW

/7l =sup ll2/2]l (e B

Proof. The natural homomorphism of B/J into the C*-direct sum X B/I is an iso-
IeW
morphism, hence an isometry.
Lemma 1.9 could be rephrased as follows: If {I.} is a decreasing net of closed two-

sided ideals of B, and J = I,, then
l/J|| =lim|jz/1,|| (x€B).

The corresponding lemma for increasing nets is valid in a general Banach space; and its

proof is extremely elementary.

THEOREM 1.3. Suppose that all A, are the same C*-algebra B; and that A consists of all
norm-continuous functions on T to B which vanish at infinity. Then the topology of 4 is that
of T x B.

Proof. By Theorem 1.1, 4 coincides as a set with T X B (see the remark following
Theorem 1.1).

I. Suppose that

(tar @) (t, Q") in. 4. 2)
If t, did not belong to the closure of {f,}, we could find an x in 4 with z(t,) =0 for all «

and Q%¢,, % 0; but this would contradict (2). Therefore ¢,€ {_ta_}; and the same holds for any
subnet of {t,}. Hence

bt in 7. (3)

Let 8 be any element of M Kernel (§%); and choose an « in 4 whose value is §§ through-

out some neighborhood of ¢, Then, by (3), x€Kernel (¢, Q%) for all large enough «; so
that by (2) x€Kernel (t,, °), from which follows 8 € Kernel (Q°). This shows that (1 Kernel

(@*) = Kernel (Q"), that is, @° belongs to the closure of {@*} in B. Since the same holds for
any subnet, we have shown
Q*—~Q"in B. #)
Now (3) and (4) give
(ter @) > (tg, @) in T' X B, (5)

II. Now assume (5), thatis, (3) and (4). Let x be any element of [} Kernel (#,, @%); then

z () €EKernel (Q*) for each «. (6)
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By (3) and the norm-continuity of z, for each ¢ >0 there is an «, such that
|l (8} — 2 (to}|| < & for all a> o,

This and (6) combine to give

|Q%coll < & for a>o.

Applying Lemma 1.9 to the last inequality, we have

l(t)/ N Kernel @) <e. (7)

But, by (4) N Kernel (Q*) = Kernel (@°); so that from (7), [|@2¢, || <e&. By the arbitrariness

@ g

of ¢, this gives @3, = 0, or x€Kernel (f,, @°). We have proved that

N Kernel (¢, Q) = Kernel (¢, @°),

hence that (¢, Q°) belongs to the closure of {(t,, @)} in A. Since the same holds for any
subnet of {(f., @)}, (2) must hold.

Now I. and II. show that (2) and (5) are equivalent. This proves the theorem.

Now let 4 be a full algebra of operator fields on 7 with components {4,}, and let B
be the maximal full algebra of operator fields (with components {4,}) which contains 4.
Theorem 1.2 gives us the topology of B. The following lemma then gives that of 4, if we
observe (Theorem 1.1) that each 7 in B is still irreducible when restricted to A.

LemMMa 1.10. Let B be any C*-algebra, and A any C*-subalgebra of B such that T|A
is irreducible for each T in B. Introduce into B the equivalence relation ~ such that T ~ S if
and only if T|A=S|A. Then:

(i) Bvery R in A is of the form T |4 for some T in B. Thus there is a natural identification
of A with the set of equivalence classes B/ ~ .

(i) With this identification, the topology of A coincides with the quotient topology of B / ~
derived from the topology of B.

Proof. To prove (1) we repeat the argument of the last paragraph of the proof of
Theorem 1.1. The only mildly non-trivial part of the proof of (ii) consists in showing that
if W is a closed subset of B and a union of ~ classes, then W (the set of equivalence classes
contained in W) is closed in A. Let I = {x€B|T, =0 for all T in W}, S€ B, and S| A4 be
an element of the closure of ¥, Then A n I < Kernel (8); so that S| A induces an irreducible
representation 8’ of 4/4 nI=A4/I< B/I, which extends to an irreducible representation
T’ of B/I acting in the same space as S’. If 7 is the element of B induced by 7", we have
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TeW (since W is closed), and T'|A=8|A4. So S~ T€EW, whence SEW, or S|A€I7V.
Thus W is closed.

CoROLLARY. If A is a full algebra of operator fields (on a base space T') whose component
algebras are all simple dual C*-algebras, (1) then A is Hausdorff.

Proof. If B is the maximal full algebra of operator fields containing 4, B=~T by the
Corollary to Theorem 1.2, It is easy to show that, in the present case, the equivalence rela-
tion ~ of Lemma 1.10 is a closed subset of 7 x 7', and that each equivalence class is

compact. So 7'/~ is locally compact and Hausdorff. Now invoke Lemma 1.10.

1.3. Subalgebras of algebras of operator fields

We conclude this chapter with an interesting consequence of Glimm’s generalization
[6] of the Stone~Weierstrass Theorem.
If R is a relation, we write Ry to mean that the pair (z, y) belongs to R.

DEeFINITION. Let 4 and B be C*-algebras. An (4, B) correlation is a relation R
contained in 4 X B such that, for some third C*-algebra C and some *-homomorphisms

fand g of 4 and B respectively onto C, we have

xRy if and only if f(x) =¢(y) (for all x in 4 and y in B).

An (4, B) correlation can also be described as a closed *-subalgebra R of the direct
product algebra 4 x B such that {z| (z, y)€ R for some y} = 4 and {y| (x, y) € R for some
x} = B.

Now let B be a maximal full algebra of operator fields on a base space 7', with compo-
nent algebras {4,}. If r and s are distinct points of 7 and R is an (4,, 4,) correlation, we

define
B(r,s; R) = {x€B| x(r) Rz (s)}.

Clearly B(r, s; R) is a full algebra of operator fields with the same component algebras 4,.

THEOREM 1.4. (Stone—Weierstrass—Glimm). Let B be as in the preceding paragraph,
and A any full algebra of operator fields contained in B, with the same components {4.}. Then
A 1is the intersection of those B(r, s; R) (where r +s and R is an (4,, A,) correlation) which
contain A.

Proof. Let A° be the intersection of all those B(r, s; R) which contain 4. Adjoin ()

(1) See footnote (3) on p. 238.
% 1 4° already has a unit element, Ag is the direct product of A® with the one-dimensional C*.
algebra.
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to A° a unit element 1 not already in A°, getting the C*-algebra A4J. Let 4, be the C*-
subalgebra of A} spanned by 4 and 1.

Let us denote by P (A4%) the weak *-closure of the set of all pure states (i.e., indecompo-
sable positive linear functionals f with f(1) = 1) of A}. Suppose now that f and g are distinct
elements of P(A4Y) whose restrictions to A, coincide, We shall obtain a contradiction.

Suppose f| A° +0. Then f| A° is a weak *-limit of pure states {h,} of A% and, for each

v, Theorem 1.1 enables us to write
hy () = by (2 (1)), (8)

where £,€7T and h, is a pure state of As,. If £,—>c0 in T, then by (8) &, (x) —0 for each z in
A°, whence f=0 on A4° which was not the case. So ¢, oo, and we may pass to a subnet
and assume that £,—¢ in 7. Then, whenever x€A4° and z() =0, we have by (8) f(z) =

lim %, (x) = 0; so that f induces a continuous positive linear functional f' on A,
f@)=f(z@®) (@€A’). ®)

If =0 on A° (9) is trivially true (take /' =0). So we may always assume that f has the
form (9). Similarly,

g(@) =g (2(s) (v€d"), (10)

where s€T and ¢ is a continuous positive linear functional on 4,.
Assume that ¢t = s. Since f=g¢ on 4, and 4 is a full algebra of operator fields, (9) and
(10) imply that f=g on A° and hence on A}. This contradicts the distinctness of f and g.
Assume that ¢ #=s. Let U be the *.representation of 4 with cyclic vector & such that
fx) =g(x)=(U,&, &) for x in 4. By (9) and (10) U, =0 if either x(t) =0 or z(s) =0; s0 U
induces representations U’ and U” of A, and A, respectively. Clearly range (U) = range
(U") =range (U”), and
Usey=Upzs for z in 4. (11)

Thus U defines an (4,, 4,) correlation R («Rp if and only if U, =Uj), and A< B(i, s; R).
It follows that A%< B(t, s; R), so that (11) holds for all z in 4°. Thus, by (9) and (10), f
and g coincide on A’ and hence on Af{. This again contradicts the distinctness of f and g.

Thus we have reached a contradiction; and we conclude that A, separates the elements
of P(AY). By Theorem 1 of [5], A} = 4,. Since 1¢A4°, this implies that 4° = A.

COROLLARY. (1) A full separating algebra of operator fields is mazximal.

(*) For the definition of “separating” see the paragraph following Lemma 1.7. In case each compo-
nent algebra is dual, this Corollary is essentially due to Kaplansky ([8], Theorem 3.3).
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II. The representation of a C*-algebra as an algebra of operator fields

2.1. The regularized transform of a C*-algebra
For this chapter we fix an arbitrary C*-algebra 4.

Can A be represented as a full algebra of operator fields on some base space 7', with
components 4,? The answer is trivially “yes”, unless the components 4, are restricted in
some way. If the A4, are all required to be primitive, (1) the answer in general is “no”.(2)
But if we require only that the ¢t for which 4, is primitive be dense in T, then the answer
is always “yes”. In this section we construct this representation of 4.

As we mentioned before, the dual space 4 is the space of all unitary equivalence classes

of irreducible *-representations of 4, equipped with the hull-kernel topology. (3) Sometimes

it is convenient to consider the space A of all primitive ideals (i.e., kernels of elements of
A), also equipped with the hull-kernel topology; this we will call the ideal dual space.
A is obtained, both setwise and topologically, by identifying elements of A with the same
kernel. By the transform of an element a of 4 we mean the function 7— T, on 4 (or the
function I—>a + I on A, according to context).

If R is any *-representation (*) of 4, the function N on A4 defined by Ng(z) =|| R;||
is called the norm-function of R. The space of all norm-functions of *.representations of
A, equipped with the topology of pointwise convergence on 4, will be called H. The follow-

ing lemma is easily verified:
Lemma 2.1. If {N*} is a net of norm-functions and lim N*(x) = M (x) for all x in A,
i

then M is the norm-function of some representation.

CoroLLaRrY. N is a compact Hausdorff space.

Proof. This follows from Tychonoff’s theorem, the preceding lemma, and the fact
that M () <|jz|| for x in 4, M in .

We now define A" as the closure in 1 of the set of all norm-functions N, associated
with elements R of 4. By the preceding corollary A” is a compact Hausdorff space. To
each Nin 4" let Ay =4 /Iy, where I is the closed two-sided ideal {z| N (x) =0}; and to
each  in A, associate the operator field # on A" defined by #(N) = /I, € Ay. The family
of all # (x€A) will be called 4. It is clearly a full algebra of operator fields on A" (with

(*) A C*-algebra is primitive if it has a faithful irreducible representation.

(2) Indeed, by the Corollary to Lemma 1.10, a COR algebra whose dual space is not Hausdorff
cannot be isomorphic to a full algebra of operator fields all of whose component algebras are primitive.

(®) See [1].

(Y) The zero representation is admitted as a *.representation of A.
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component algebras {4y}), and is isomorphic with 4. By the definition of A", {N|Ayis

primitive} is dense in A",

DeriniTioN. The compact Hausdorff space A" will be called the regularized dual
space of A. The operator field # is the regularized transform of x; and A is the regularized

transform of A.

2.2. The Hausdorff compactification of A.

For the applications of our theory it is very useful to observe that A" can be obtained
by another construction, which uses the topology of 4 and nothing more. For this construe-

tion, let us note that 4 is always locally compact in the following sense:

DEFINITION. A (not necessarily Hausdorff) topological space X is locally compact
if, to each z in X and each neighborhood U of #, there is a compact neighborhood of »

contained in U.

TaEOREM 2.1.(1) For every C*-algebra A, 4 is locally compact.

Proof. Let U be an open neighborhood of an element 7 of 4. By the definition of the
hull-kernel topology there is an element a of 4 such that ||7,]|=1 and 8, =0 for all S in
A—U. Let V={Sed||S,|| >3}, W={SeA||S,||>1}. By Lemma 4.3 of [8], V is
compact. Since S—||S,|| is lower semi-continuous (Lemma 2.2 of [1]), W is open. Since

TeWcV, Vis a compact neighborhood of 7' contained in U.

Now in a separate note [2], we have given a general construction for passing from a
locally compact (not necessarily Hausdorff) space X to a compact Hausdorff space H(X).
Let us review that construction. Starting with a locally compact space X, we define C (X}
as the family of all closed subsets of X. For each compact subset € of X and each finite
family F of non-void open subsets of X, let U (C, F) be the set of all ¥ in C(X) such that
i) YnC=A, and (ii) Y n B +A for each B in F. The set of all such U(C, F) forms a
basis for the open sets of a topology for C(X); and C(X) with this topology is a compact
Hausdorff space. Now H (X) is defined as the closure in C(X) of the family of ail closures
{x}~ of one-element subsets of X. Being a closed subset of C(X), H(X) is compact and
Hausdorff. As in [2], this H (X) will be called the Hausdorff compactification of X.

A net {x,} of elements of X is primitive if x,—y whenever there is a subnet {x;} of

{z,} such that z,—y. By the limit set of a net {z,} we mean the set of all y such that x,—y.

(1) See p. 235 of [8] for the case that 4 is Hausdorff. It is stated on the same page of [8] that A
need not be locally compact in the general case. Professor Kaplansky has informed the author that
that statement was an error.
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Tt is shown in [2] that H (X) coincides with the family of all those subsets of X which are

the limit sets of some primitive net of elements of X.

THEOREM 2.2. The space N of all norm-functions on A (with the topology of pointwise
convergence) is homeomorphic with the space C(A) of all closed subsets of A (or, equivalently,
with the space C(A) of all closed subsets of A). The homeomorphism is implemented by the
mapping M which sends an element Y of C(A) into the norm-function My given by

My(a) = sup [|8.| (@€ 4). @

The image of H(A) under M is precisely the regularized dual space A",
Proof. By Lemma 1.9, the right side of (1) is |ja/I||, where I = N Kernel (S). Hence
Se¥

My is a norm-function. Conversely, since every norm-function is of the form a—|la/I|
{for some closed two-sided ideal I), and hence equal to My where ¥ = {S€ 4 | Kernel (8) > I},
the range of M is all of . Let ¥ and Z be distinct elements of C(A4); in fact,let T€Y — Z.
Since Z is closed there is an ¢ in A for which 7', =0 and S, =0 for all § in Z. But then
Mz(a@) =0, and My(a) 0. So M is one-to-one.

By the compactness of # (Corollary of Lemma 2.1), M will be a homeomorphism if
it is continuous, i.e., if Z— M ,(a) is continuous on C(A4) for each a in 4. Fix a; and let ¥
be in C(4) and ¢ > 0. By Lemma 4.3 of [8], C = {S€A|||S,|| = My(a) + ¢} is compact in
A; 5o that W = {Z€C(4)|Zn O =A)} is a neighborhood of ¥ in C(4) on which M,(a) <
My(a) +e. Tt follows that Z-> M ,(a) is upper semi-continuous. Now let 7' be an element
of Y such that |7,||> My(a) ~ L. By the lower semi-continuity of S—||S,| (Lemma
2.2 of [1]) there is a neighborhood U of 7' on which ||S,|| > My(a) —&. Thus, if W’ is the
neighborhood of ¥ in C(A4) consisting of all Z in C(A) which intersect U, we have M, (a) >
My(a) — ¢ for all Z in W'. It follows that Z — M ;(a) is lower semi-continuous. Being both
lower and upper semi-continuous, Z— M ,(a) must be continuous on C(4). ‘

It remains only to show that the image of H (A4) under M is A". This follows immediately
from the fact that, if 7€4 and ¥ = {7}~ then My is the norm-function of 7'. Thus the
proof is complete.

In view of Theorem 2.2, we may sometimes identify the regularized dual space A"
with the Hausdorff compactification H (4) of 4.

Tt is of some interest to observe that the compact Hausdorff topology of C(4) ean
be transferred to a compact Hausdortf topology for the space of all closed two-sided ideals

of A, if we use the natural one-to-one correspondence between the latter space and C(4).
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THEOREM 2.3. The regularized transform A of a C*-algebra A is a maximal full algebra
of operator fields if and only if the ideal dual space AisH ausdorff.

Proof. Let 4 be Hausdorff. Then A" is just the one-point compactification of A (see
Theorem 2.2); and A is the algebra of all transforms of elements of 4. To show that 4 is
maximal, it suffices by Theorem 1.4 to show that there are no correlations between the
values of the # in A at different points. Such a correlation would imply that there were
two distinct points I and J of fi, and an irreducible *-representation 7' of 4 whose kernel
contained both I and J. But then K = Kernel (T') would belong to the closures of both
{I} and {J}; and A would not be Hausdorff. Hence there are no correlations, and 4 is
maximal.

Now assume that A is not Hausdorff. Then there is a primitive net {I,} of elements of
A whose limit set ¥ contains two distinct ideals J and K. Since closed sets separate points
in A, one of {J} and {K} does not contain the other in its closure; say K ¢ {J}~ = Z. Thus
Z and Y are two elements of A7(}) with Z< Y, Z & Y. If M is the mapping of Theorem 2.2,
the fact that Z< Y implies that M ;< My. So there is a *-homomorphism F of 4y onto
A, such that @(Z) = F(G(Y)) for all @ in 4. This, however, is a correlation between the

values of the @ at the distinct points Z and Y of A", So 4 is not maximal,

CoroLLARY. If A is Hausdorff, the algebra of oll transforms of A is closed wnder

multiplication by bounded continuous complex functions on 4.

IIl. C*-algebras and fibre bundles

3.1. Extension of matrix units
We begin with two lemmas leading to a theorem which enables us to extend a finite
system of ““matrix units” throughout a neighborhood when they are given at a point.
Throughout this section we fix a full algebra 4 of operator fields on a locally compact

Hausdorff base space T, with component algebras {4,}.

LeEMMA 3.1. Let s be an element of T, and let 7y, ..., 7w, be a finite number of pairwise
orthogonal non-zero projections in A,. Then there exist a neighborhood U of s, and n elements
Pis - P Of A, such that

@) pi(s)=a; (=1,2,...,0);

(ii) for each t in U, the p (), ..., p,(t) are pairwise orthogonal non-zero projections in A,.

The proof of this lemma is essentially contained in Part 4 of the proof of Lemma 2.5
of [1].

1) Y€A' in virtue of the remark preceding Theorem 2.2.
P g
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Lemma 3.2. Suppose that s€T, m, and 7, are projections in A, and o is an element of

A, such that o¥ o =7y, ao* =, Suppose further that p, and p, are elements of A such that
(i) pi(s) =7, (e =1, 2); and
(ii) there is a neighborhood U of s such that p, (t) and p,(t) are projections for all ¢ in U.

Then there is an element q in A, and a neighborhood V of s, such that q(s) = o and
@ @) =p. (), (qq*) ) =p,(t) fortin V.
Proof. Choosing an element A’ in 4 such that 2 (s) = o, and setting h = p, &' p,, we have

h(s) =myam; = a, 1)
and, for { in U,
(P ) () = (hpy) (£) = B (). (2)

Now consider the positive square root g =(h*h)*. We have by (1)

g(8) = (h())*h(s)t = (* )t =7y = py (s). )

For tin U, by (2)
(B*R) (£) = py (8) (B* ) (£) py (£);

hence, since p, (f) is a projection,

gty =p (g )P () (ED). (4)

Now by (3) (g — p,)(s) =0. Hence, narrowing U if necessary we may assume that

g —p)@)ll <§ ¢€). (5)

Let ¢ be a continuous non-negative-valued function on the reals such that ¢{(0) =0 and

Forming the element ¢=4%-¢(g), we have for ¢t in U

(@@®)* a(®) = plg(£)) h(t)* B(2) p(g(2)) = (@(g(£)) 9(8))* = (w(g(t)))%, (6)
h _ {O if r=0, .
where w(r)=7r@(r) = 1t |7“1|<%- (7)



248 J. M. G. FELL
Combining (4), (5), and (7), we find that (g (f)) = p, () for ¢ in U; so, by (6),
@@)*q®) =p,(t) (ED). (8)
Now q(s) =h(8)p(g(s)) = am = x; 9)
80 (q*)(s) = oxa* =y =1p,(s), that is,
(9q* —p,)(8) =0. (10)

On the other hand, for ¢ in U, by (2)
P2 (@*) () = P (VR (O p (g (D) g* (1) = R ()@ (9 (1)) ¢* () = (¢ 4¥) () (11)

In view of {8), ¢(f) is a partial isometry for ¢ in U; thus, (g¢*)(f) is a projection, which by
(11) is contained in p,(t). If (qg*)(t) & p,(t) for some ¢ in U, then ||(p, — ¢g*)(#)|| =1. By
(10) and the continuity of |[(p, —g¢*)(t)||, the neighborhood U can be narrowed so that
for ¢ in U this cannot happen. Then, for all ¢ in U,

[@®)*q(t) = pr(8), q(®)(qE)* =y (t);
and this with (9) completes the proof.

TarEoREM 3.1. Suppose that s€T, and that B is a finite dimensional *-subalgebra of A..
Then there is a neighborhood U of s, and a mapping —xs of B into A, such that
(i) zg(s) =p for all § in B;
(ii) for each t in U, B—>wxs(t) is a *-isomorphism of B onto a finite-dimensional *-sub-
algebra of A,.
Proof. Let B!, ..., B" be the minimal two-sided ideals of B; and let {ﬁfk}] k=1, .. i

form a basis of B!, where
Bix Bra=0xp Bias (B)" =Bl
Using Lemmas 3.1 and 3.2, we choose a neighborhood U of s, and elements Pt
(¢=1, ..., 7, 7=1, ..., n;) and qfl (t=1, ..., 137=2, ..., ;) of 4 such that
(@) i (8)=Fin G () =B

(ii) for each ¢ in U, the p} (t) are > n; orthogonal non-zero projections;
i=1

r

(i) for each ¢ in U, ¢=1, ..., r, and j=2, ..., n

(@ ®)° gh () =11 (0),
g (8) (g ()" = ().
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Now define gl =g} (¢k1)*. We easily verify that the linear map of B into A which

carries B; into gjx has the required properties.

3.2. Homogeneous C*-algebras

DEriNITION. A C*.algebra A is homogeneous of order n if every irreducible *-repre-
sentation of 4 is of the same finite dimension #.

Here is a way of constructing homogeneous C*-algebras from fibre bundles. Let M,
be the C*.algebra of all n X n matrices (with complex entries), and @, the group of all
automorphisms of M, of the form a¢-—>u-law, where u is a unitary matrix in M,. Let T
be a locally compact Hausdorff space, and B a fibre bundle ([12], p. 9) with bundle space
B, base space T, fibre space M,, and group G,. If p is the canonical projection of B onto
T, A;=p7(t) ¢€T), {V,} is a covering of T by coordinate neighborhoods, and {¢,} the
corresponding coordinate functions ([12], p. 7), we can transfer to each fibre 4, the algebraic
operations and the C*-algebraic norm of M, via the mapping x—g;(t, a) (where j is so
chosen that £€ V,); this makes each 4, into a C*-algebra isomorphic with M,. The opera-
tions in 4, thus defined are clearly independent of the choice of ;.

Now let Cy(B) denote the family of all continuous cross-sections x of B which vanish
at infinity (that is, » is a continuous function on 7' to B such that p(x(t)) =¢(t€T)
and tlim lx®)] =0). Clearly Cy(B) is a C*-algebra under the pointwise operations and

the supremum norm. In fact it is a maximal full algebra of operator fields (1) with component
algebras {4,}. Thus, by the Corollary of Theorem 1.2, 0y(B) is homogeneous of order n,
and Oy (B)" coincides with 7' (both setwise and topologically).

Now the converse of this is also true:

THEOREM 3.2, Every homogenecous C*-algebra A of order n is isomorphic with some

C,(B), where B is a fibre bundle with base space A, fibre space M, and group G.,.

Proof. In the first place, 4 is locally compact and Hausdorff by [8], Theorem 4.2. If
we identify 4 with the algebra of its transforms, 4 becomes a maximal full algebra of
operator fields on 4 ([8], Theorem 4.1 and Lemma 4.3; also the Coroﬂary of Theorem 1.4
of this paper). Let B denote the set of all pairs (7, «), where T€ A and « €7 (A4).

We shall construct a fibre bundle with bundle space B. For this we choose (i) a covering

of A by open sets {U}, and (ii) for each ¢ a map f, of M, into 4, such that, whenever

(*) See § 1.1.
17 — 61173060. Acta mathematica. 106. Imprimé le 22 décembre 1961.
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TeU,, the mapping a— Ty is a *-isomorphism of M, onto T'(A4). These choices are
possible by Theorem 3.1. Now let B be the fibre bundle with bundle space B, base space
A, projection sending (7, ) into 7', fibre space M, group @,, coordinate neighborhoods
{U;}, and coordinate functions {p;} sending (7, a) into (7, Tsw). As a matter of fact,
for B to be a fibre bundle the coordinate transformations ([12], p. 8) must be continuous
on the intersections U; N U;. This amounts to saying that, for each a in M,, a—>gr(a) is
continuous on U; N U, where gr(a) = b is the element of M, defined by the condition that
Tty = Tyw»- But this follows easily from the continuity of the norm-functions 7'—|| 7', ||
(x€A).

Next, we verify without difficulty that, if an operator field X on A4 is continuous with
respect to the continuity structure A4 (in the sense of § 1.1), then 7'— (7', X (T')) is a contin-
uous cross-section of B, and conversely. Thus the family Cy(B) of all continuous cross-
sections of B vanishing at infinity coincides (1) with the maximal full algebra of operator
fields containing A; and this is 4, since 4 is maximal. The proof is now complete.

Fix an integer n and a locally compact Hausdorff space 7. Two fibre bundles B and
B’ with base space T, fibre space M,, and group G, will be said to be weakly equivalent if
there exists a third such fibre bundle B” such that (i) B and B” are equivalent in the sense
of [12], p. 11, and (ii) B” is induced from B’ by a homeomorphism of 7' onto itself. It is
easy to see that, if B and B’ are two such fibre bundles, Cy(B) and C(B’) are *-isomorphic
if and only if B and B’ are weakly equivalent. Thus the problem of classifying all homo-
geneous C*-algebras of given order » and with given dual space 7' is reduced by Theorem
3.2 to that of classifying to within weak equivalence all fibre bundles with base space 7',
fibre space M, and group @, or, equivalently (see [12], p. 36), of classifying all principal
fibre bundles with base space T and group G,,. Generally speaking, for given n and 7', there
will exist many inequivalent such bundles; so that a homogeneous C*-algebra is not fully

determined by its order and its dual space.

3.3. Fibre structures

The notion of fibre structure, which we shall now introduce, lies in between the
general notion of a continuity structure and the special continuity structures arising (as
in § 3.2) from fibre bundles. It permits the “fibre’” to vary essentially from point to point
of the base space.

This section is confined to definitions and elementary facts. All proofs are of a routine

nature, and are omitted in the interest of brevity. It seems probable that fibre structures

(*) Here we are identifying the operator field X with the cross-section T'~>(T', X (T')).
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will eventually prove to be of some interest; but we have so far not obtained any results
about them substantial enough to justify more than passing mention. '

Let T be a fixed locally compact Hausdorff base space; and suppose that a O*-algebra
A, is given for each ¢ in 7'. An operator field is a function x on 7 such that x(f)€ 4, for

each .

DEFINITION. A fibre element is a triple J = (C, W, I), where
(i) 0 =C(J) is a C*-algebra, called the fibre of J,
(i) W=W(J) is an open subset of 7', called the domain of J,

(iii) for each ¢t in W, I, is a *-isomorphism of ¢ into (but not necessarily onto) A,.

DEFINITION. A fibre structure (for T, {4,}) is a family B of fibre elements such that:

(i) For each t in T, each ¢ >0, and each pair of elements «, and «, of 4,, there is a.
fibre element (C, W, I) in B, and elements f;, 8, of C, such that t€ W and || 1,(8;) — ]| <&
(t=1,2)

@ HI=C, W, Hand T =(C', W, I'arein B,teW N W', x€C, &' €C', £>0, and
| I — It o'|| <é, then |[I,a — I;o || <e for all s in some neighborhood of ¢.

For the time being we fix a fibre structure B (for 7', {4,}).

DEFINITION. An operator field x is continuous at a point s of T' (with respect to B)
if and only if, for each & > 0, there exists a fibre element (C, W, I) in B such that s€ W,
and an « in ¢ such that | I,a —z(t)|| <e for all ¢ in some neighborhood of s.

ProrostrioN 3.1. Let W be an open subset of T. The family F of operator fields which.
are continuous everywhere on W (with respect to B) is closed under addition, multiplication,.
tnvolution, multiplication by continuous complex functions on W, and under the operation of
passing to uniform limits. If € F, t—||x(¥)|| s continuous on W.

Let Cy(B) denote the family of all operator fields x which are continuous everywhere:

on T with respect to B and for which lim ||z (#)|| =0. From Proposition 3.1 we see that.
t—o00

Cy(B) is a maximal full algebra of operator fields (with the 4, as component algebras)..
Any continuity structure F which is strictly equivalent to Cy(B) (i.e., such that Cy(B) =
Co(F); see § 1.1) will be said to be derived from B.

If each A4, is isomorphic with M, (for some » independent of ¢), then any fibre structure:
(for T, {4,}) is strictly equivalent to some fibre bundle with base space 7', fibre space-
M,, and group G, (see § 3.2), in a sense which the reader can easily make precise.

The question now arises: Are all continuity structures derived from fibre structures?
In general the answer to this is “no”. For example, it is not hard to construct a continuity

structure in which one of the component algebras, say 4,, is the algebra of all complex
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«continuous functions on [0, 1], while all the other component algebras are finite-dimen-
sional. Since 4, has no non-trivial finite-dimensional *-subalgebras, it is clear that in this
ccase there exist no fibre structures at all. On the other hand, if each 4, has “enough”

finite-dimensional *-subalgebras, the answer is “yes”.

THEOREM 3.3. Suppose that each A, has the following property: To each a,f in A,
and each & > 0, there are a finite-dimensional *-subalgebra C of A;, and elements o, f’ of C,
such that || — o|| <e and ||f’ —B|| <e.

Then every continuity structure (for T, {A4,}) is derived from a fibre structure.

The proof of this theorem falls out of Theorem 3.1 almost immediately.

If each A, is dual, the hypothesis of Theorem 3.3 is obviously satisfied.

IV. Algebras with continuous trace

4.1. Definition and elementary properties

If 9 is a representation of an algebra A, H (8) will denote the space of S. If  is a linear
operator, dim () means the dimension of the closure of the range of . Tr(a) is the trace

of the operator a.

DEFINITION. A C*-algebra A will be said to have a continuous trace if it is a COCR
algebra (1) whose dual space 4 is Hausdorff, and if, for each 7' in 4, there is an o in 4 and
a neighborhood U of T such that, for all Sin U, S, is a one-dimensional projection in H (S).

The phrase “‘continuous trace’” will be justified in Theorem 4.1.

LEMMA 4.1. Let A be a O*-algebrd with continuous trace, U an open subset of A, and
a an element of A such that S, is a projection for all S in U. Then S—dim (S,) 7s continuous

on U.

Proof. Let T be in U. Choose an element b of 4 so that S, is a one-dimensional projec-
tion for all § in some neighborhood of 7'. Further let 7,, ..., 7, be orthogonal one-dimen-
sional projections in H (7') whose sum is 7T',; and, for ¢ =1, 2, ..., n, let «; be a partial iso-
metry in H(T) such that o a; =m;, ;00" = T,. According to Lemmas 3.1 and 3.2 there are
elements p;, ¢; of 4 (¢t =1, 2, ..., n) such that (i) T, =7;, T'q, = «;, and (ii) for all S in some
neighborhood of T, the Spi are pairwise orthogonal projections and Sqi*qi = Spi, Sqiqi* =
S,. Let p =2 p;. Now since S, is one-dimensional for S near to T, it follows from (ii)

that the same holds for S,. Thus S, is an n-dimensional projection for each S sufficiently

(") A OCR algebra is a C*-algebra A such that T, is completely continuous for all 7 in 4 and «
in 4. For the basic facts about CCR algebras, see [8].
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near to T; and T, =T, From this, the continuity of the mapping §—||S, —S,|, and
the fact that S, is a projection, we conclude that S, is n-dimensional for all .S sufficiently
close to 7.

An element a of 4 is said to be boundedly represented (1) if there is an integer n such
that dim (7,) <= for all T in 4.

TueorEM 4.1. If A is a C*.algebra with continuous trace, the map S—Tr(8,) is

continuous on A for all boundedly represented elements a of A.

Proof. Since the boundedly represented elements form a *-subalgebra of A, we may
as well assume that ¢ is Hermitian.

Fix an element of 7 of 4. Since dim (7',) is finite, Sp(7,) (the spectrum of 7',) consists.
of finitely many distinct non-zero real numbers 7, ..., r,, together (possibly) with 0. By
Lemma 3.1 there are m elements ¢, ..., e, of 4 such that (i) for all § near enough to 7',
the Sg (6 =1,...,m) are m orthogonal projections, and (ii) 7', = T,, where b = > "1 #; e;.
Now by Lemma 4.1 Tr(8,) =X[~, r,dim S,; has a constant value, namely Tr(7,), on some
neighborhood of 7. On the other hand, by continuity of the norm, T, =T, implies
lsin; ISs—all =0. Since dim (S,_,) is uniformly bounded on some neighborhood of 7', the:

latter statement implies that lim Tr (S,_,) = 0; whence lim Tr(S,) = Tr(T,).

S—T S—>T

TureorREM 4.2. Every GCR algebra(?) has a composition series all of whose quotients

are C*-algebras with continuous trace.

Proof. In view of the structure theorem for COR algebras ([8], Theorem 6.2), it is
sufficient to assume that 4 is CCR with a Hausdorff dual space, and to show that 4 has
a non-zero closed two-sided ideal I with continuous trace.

By Lemma 3 of [9] there is a non-zero positive element @ of 4 such that ada is a
commutative set. Let I be the smallest closed two-sided ideal containing a. Since A4 is
CCR and A is Hausdorff, the same is true for I. The commutativity of a4a implies that.
dim (7,) <1 for each T in A. Further, if 7€, a ¢ Kernel (7). It follows that, for each T
in [, T, is a positive multiple of a one-dimensional projection. Thus, if S€ [, we may apply
to the element a some suitable real continuous function f so that 7', is a one-dimensional

projection throughout a neighborhood of S. Hence I has continuous trace.

THEOREM 4.3. Every homogeneous C*-algebra has continuous trace.

This follows easily from Theorem 3.2.

(*) For this notion, see [1].
(3) For the definition of a GCR algebra, and of a composition series, see [8].
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4.2. Spatially constructed algebras with continuous trace

All the vector fields (see § 1.1) so far discussed in this paper have been operator fields,
that is, their values have been elements of C*-algebras. In this section we deal with vector
fields whose values are vectors in Hilbert spaces.

For this section we fix a locally compact Hausdortf space T to each point ¢ of which
there corresponds a complex Hilbert space H,. A vector field will be a function x on 7' such
that x(t)€ H,(t€ T); an operator field will be a function ¢ on T such that, for each ¢, a(f) is
a bounded linear operator on H, We also fix at the outset a continuity structure ¥ for
vector fields (see § 1.1). Continuity of vector fields will always be with respect to F. If
x and y are continuous vector fields, (1) the polarization identity assures us that ¢ —(z(t), ¥ (¢))
is continuous.

The Gram-Schmidt orthogonalization process yields the following lemma:

Leuma 4.2. If ,, ..., x, are continuous vector fields such that, at some point s, the
2,(8), ..., %, (s) are linearly independent, then x,(t), ..., x,(t) are linearly independent for all
& near enough to s. In fact there are continuous vector fields yy, ..., y, such that, for all t near
enough to s, the y,(t), ..., y,(t) form an orthonormal set in H : spanning the same space as

&y (t)a ceey Xy (t)

The following easy technical lemmas will be useful in what follows. Their verification
is left to the reader.

LemMa 4.3. If Q is a bounded operator on a Hilbert space H, and P and P’ are projec-
tions with P <P’ then
|PeP -~ PeP| <@ - PQP].
In particular,

PP — Q[ <2]Q — PQP|.

LEMMA 4.4. Let u,, ..., u, and us, ..., u, be two orthonormal sets of vectors in a Hilbert
space, such that ||ui —u|| <e (i=1,2,...,n). Then
[P — Pl <2ns,

where P and P’ are the projections onfo the spaces spanned by the u, and the u; respectively.

DEFINITION. An operator field a will be called almost finite-dimensional (a.f.d.)
around a point s of T if, for each £ > 0, there exist (i) a neighborhood U of s, (ii) a positive
number k, and (iii) a finite set x, ..., 2, of continuous vector fields which are linearly

independent at each point on U, such that:

(1) A vector field is continuous if it is continuous at all points of T' (with respect to F).
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(a) ||a(®)| <k fortin U,
() |P@)a@)P(¢) —a®)| <e fortin U,

where P(t) is the projection onto the space spanned by #, (£), ..., z, (t).

Lemma 4.5. If a and b are operator fields which are a.f.d. around s, then a +b, Aa, ab,
and a* are also a.f.d. around s (where A is a complex constant).

Proof. Let ¢ > 0. Choose a positive &, a neighborhood U of s, and two finite sets z;, ..., 2,
and @, ..., z, of continuous vector fields linearly independent at each point of U, such
that for all ¢ in U:

la@|| <&, @) <k (1)
|P#ya P (t) —a@)| <e/6; (2)
1P )b (¢) —b(t)|| <e/6. (3)

{Here P(t) and P’ (t) are the projections onto the spaces spanned by z,(f), ..., z,(}) and
x1(2), ..., Tn (t) respectively.)

Now the 2, (s), ..., z (s) need not be linearly independent. Assume that
xl(s)a LR xn(s)a xi(s)} LR x,l-(S) (4)
are linearly independent, while, for ¢ =r +1, ..., m, i is such a linear combination of
the xy, ..., 2, 21, ..., 2, that
xy (s) =i (s). (5)
Narrow the neighborhood U, if necessary, so x,, ..., @,, 21, ..., ¥, are linearly independent
everywhere in U. Define P, (t) as the projection onto the space spanned by z; (¢), ..., z,(f),

z(t), ..., 2 (¢); and P”(t) as the projection onto the space spanned by the i (¢), ..., z(t),
251 (t), ..., (). Evidently

P(t)<Py(t), P () <Py (t) (tET). (6)
From (5) and Lemma 4.4, it follows that
lim||P”(t) — P’ (8)]| =0. (7)
Now, for teU, M
[P” @b &P (€) — P' ()b &) P ()] < [(P"(t) — P )b OP B)|| + [P O ) (P (1) — P (1]
<2k|| P () — P (t)). (8)



256 J. M. G. FELL
It follows from (3), (7), and (8) that U may be further narrowed so that for all  in U

12" )b @) P"(t) —b®t)|| <e/3. (9)
Now combining (6), (9), and Lemma 4.3, we obtain

[Po ) () Py (£) — b ()| < 2¢/3. (10)
Again by (2), (6), and Lemma 4.3,

[Po(®)a () Py (t) — a(t)]| <e/3. (11)
Adding (10) and (11), we get for t in U

[1Po(t) (@(®) +B(E) Po(t) — (a(t) + D@ <e.

Therefore a + b is a.f.d. around s.
Observe from (10) and (11) that, for ¢ in U,

6P (t) —b O] <4e/3,
|Pot)a(t) —a ()] < 2¢/3.
But then

1Py (®)a (8) (£) Py () — a(£)b ()| < ||(Po (B a(t) — a )b () Po(®)]| + [la(®) (B )Py (8) — b ()]
< 2ke

Therefore ab is a.f.d. around s.
Next, it follows from (2) that

P (#)a* 1)P () —a*(1)]| <e/6 ((€EU).

Hence a* is a.f.d. around s. Now it is trivial that the a.f.d. property is preserved on multi-

plication by a scalar. This completes the proof.

DEFINITION. An operator field a is weakly continuous at s if, for all continuous vector
fields x and y (or, equivalently, for all x and y in F), the numerical function { — (« (t) % (£),¥ (t))
is continuous at s.

We shall say simply that a is weakly continuous if it is weakly continuous everywhere

on T'. The following lemma is easily verified.

LemMma 4.6. If {a,} is a sequence of operator fields each of which is a.f.d. around s and
weakly continuous at s, and if a,(t)—>a(t) (in norm) uniformly on a neighborhood of s, then

a is a.f.d. around s and weakly continuous at s.
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LeMMA 4.7. Suppose that a is an operator field which is a.f.d. around s and weakly

continuous at s. Then t—||a (8))| is continuous at s.

Proof. Fix ¢ > 0; and choose a positive %, a neighborhood U of s, and continuous vector

fields «,, ..., #, which are linearly independent everywhere in. U, such that, for all ¢ in U,
lle®] <k,
||P(t)a(t)P(t) — a(t)” < 8/2, (12)

where P (t) is the projection onto the space spanned by the z,(t). By Lemma 4.2, we may
assume that the z;(f) form an orthonormal set for each ¢ in U. Then the continuity at s
of the n* matrix elements (a(t)x;(t), z,(t)) assures us that {—||P (¢)a ()P ¢)|| is continuous
at s. Combining this with (12), we see that U can be further narrowed so that, for all
tin U, ||ja®)| —|le(s)]|| <e. This completes the proof.

LevmA 4.8. Let a and b be two operator fields which are both a.f.d. around s and weakly
continuous at s. Then a +b, la (A complex), ab, and a* are all a.f.d. around s and weakly
continuous ot s.

Proof. In view of Lemma 4.5, the only non-trivial step is to show that ab is weakly
continuous at s.

Choose k>0, a neighborhood U of s, and projections P, (t)(t€U) as in the proof of
Lemma 4.5, so that (1), (10), and (11) hold. If we define

q (1) = (Po()a )Py (t)) (Po (16 (1) Py (2)),
then by the continuity at s of the matrix elements of Py (t)a (t)P,(t) and P, (t)b (£)P,(t), we
conclude that ¢ is weakly continuous at ¢,. But by (1), (10), and (11),

lg@®) —a@®)b@®)|| <ke (t€U).

From this and the weak continuity of ¢ at s, we deduce that of ab at s.

DeriNiTION. We denote by A the family of all operator fields @ on 7 which are
a.f.d. and weakly continuous everywhere on 7', and which vanish at infinity (that is,
}irg |la @) =0).

4 is a *-algebra in virtue of Lemma 4.8. By Lemma 4.7 we may introduce into 4 the

sup norm

[lall =suplla@)];
teT

then by Lemma 4.6 A is complete. In fact, 4 is a C*-algebra.
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Lemma 4.9. For each t, A, = {b(t)| b€ A} consists of all completely continuous operators
on H,.
The proof is easy and is omitted.

Using Lemmas 4.9 and 4.7, we verify:

THEOREM 4.4. 4 is a maximal full algebra of operator fields, whose component algebra

A, at t is the algebra of all completely continuous operators on H,.

THEOREM 4.5. 4 is a C*-algebra with continuous trace.

Proof. By Theorem 4.4 and the Corollary of Theorem 1.2, A can be identified with
T. Thus A is COR and 4 is Hausdorff. If s€ T, and z is a continuous vector field not vanish-
ing at s, there clearly exists an element of A coinciding on a neighborhood of s with projec-

tion onto the one-dimensional space spanned by z(f). So 4 has continuous trace.

Thus, to every continuity structure F for vector fields on 7 there corresponds an
algebra 4 with continuous trace, constructed as above, and having 7' as its dual space.
This 4 will be said to be derived from F.

At this point it is natural to ask whether every algebra 4 with continuous trace is
derived from some continuity structure F for vector fields on 4. Also, if 4 is derived from
some F, is that F in any sense unique? Both these questions can be answered in the negative
by considering homogeneocus algebras (see Theorem 4.3).

Indeed, let T be a locally compact Hausdortf space, n a positive integer, and for each
tin T let an n-dimensional Hilbert space H, be given. If ¥ and F’ are two continuity
structures for vector fields on T (with values in the {H,}), we shall say that F and F’ are
equivalent if for each ¢ there is a unitary operator U, on H, such that a vector field x is
continuous with respect to F if and only if {— U, (x(£)) is continuous with respect to F'.
1t is left to the reader to verify that there is a natural one-to-one correspondence between
equivalence classes of continuity structures F (for vector fields) and equivalence classes
of principal fibre bundles with base space T and group U, (all » X n unitary matrices).

Now let F be a continuity structure for vector fields on 7' (with values in the {H}),
and B, a corresponding principal bundle with base space T and group U,,. Form the algebra
Ap with continuous trace derived from F, and let B, be a principal bundle, with base
space T and group(!) G, = U, /Z, (see § 3.2), corresponding to 4. On the other hand, the
natural homomorphism of U, onto @, induces a natural mapping ® which carries principal
bundles with group U, into principal bundles (with the same base space) with group G,;
and it is easy to verify that ®(B,) is equivalent to B,. Thus the passage from a continuity

() Z, denotes the center of Uj.
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structure for vector fields to the derived algebra with continuous trace will be similar in
structure to the mapping ® from U,-bundles to G,-bundles. In particular, for fixed T and
7, the question whether every homogeneous algebra of degree n with dual space 7' is derived
from a continuity structure for vector fields amounts to asking whether ® is onfo, i.e.,
whether every principal bundle with base space 7' and group &, = U, /Z, can be obtained
by the mapping ® from a principal bundle with base space 7' and group U,,. The author is
indebted to Professors Spanier and Steenrod for an example of a 7' for which the answer
to this question is negative. Again, the question whether a continuity structure for vector
fields on 7' is determined to within equivalence by the derived homogeneous algebra amounts
to asking whether @ is necessarily one-to-one. The answer here is again negative. The
same homogeneous algebra can be derived from essentially different continuity structures

for vector fields.

We conclude this chapter with a theorem which will be of importance in Chapter V.
As before, let T be a locally compact Hausdorff space, H, a Hilbert space for each ¢ in 7',
and F a continuity structure for 7', {H}.

THEOREM 4.6. Let a be a positive operator field on T (i.e., each a(t) is a positive operator

on H\); and let s be an element of T such that:

(i) a is weakly continuous at s (with respect to F);
(il) @(t) has a trace for all ¢ in some neighborhood of s, and the map t—Tr(a (t)) is contin-
uous at s.

Then a is a.f.d. around s.

Proof. Fix ¢ > 0; and choose a projection w on H,, of finite dimension r, such that

@(s) —ma(s)m is positive and
Tr (a(s) —mwa(s)m) <&*/9. (13)

Choose a neighborhood U of s in which Tr(a(t)) is bounded, and r continuous vector fields
%y, «.., Z;, orthonormal everywhere in U, such that P(s) = (where P{f) is the projection
onto the space spanned by =, (t), ..., 2, ().

If b is a positive operator field and te U, let us set
BU(t) = P ()b ()P (@),
bR (E) =P®)b(t)(1 —P(t)),
b2L(t) = (b'2(t))* = (1 =P ()b (t) P (t),
b2(t) = (1 —P(#)b(t)(1 — P(t)).
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Now, for tin U,
Tr(a(t)) = Tr(a''(t)) + Tr(a®2(t)); (14)

so by (13) Tr(a?2(s)) < £2/9. (15)
Now the weak continuity of g at s implies that Tr (o™ (2)) is continuous at s. Combining this
with (14) and (15), and the continuity of Tr(a (¢)) at s, we can narrow U so that

Tr(a®(t)) <e2/9 fortin U.
Hence, since a?2(t) is positive,

la22(t)|| <&2/9 fortin U. (16)
Let b(¢t) be the positive square root of ¢ (t). Then (16) becomes
@12 @)y*bi2) + (b= @) < e2/9 (€ V);
from which we obtain, for t€ U,

Il <e/3, 0] == o) <e/3 an
Hence, for teU,
b¢) — P @b @)L O = ||b2 ) + b2 () + b2 (1) <.

It follows that b is a.f.d. around s. By Lemma 4.5, 2 = a is also a.f.d. around s.

CoROLLARY. If a is a positive operator field on T which ts everywhere weakly continuous
with respect to F, and if Tr(a(t)) exists and is continuous everywhere and vanishes at oo (in

T), then a belongs to the algebra with continuous trace which is derwved from F.

V. The group algebra of the 2x2 complex unimodular group

5.1. Introduction

In this last chapter, with the help of the preceding chapters, we deduce the precise
structure of the group C*-algebra of the 2 x 2 complex unimodular group 7, that is, the
group of all complex 2 x 2 matrices of determinant 1. We shall first remind the reader of
some concepts and results which will be used.

The irreducible unitary representations of G have been known for some time (see [3]

and [4]). They are intimately related to the fractional linear transformations of the complex

plane C. We note here for later use the following fact. (1) If g = (oc p

v 5) €@, the corresponding

transformation

(1) See p. 420 of [3].
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az+y
fz+0

z2—>

of C induces a transformation of Lebesgue measure described by the factor |8z 8]

In fact, if f is summable over C with respect to Lebesgue measure,

f/ dz—f |pz+ 0| (zzig) - (1)

Now, apart from the trivial identity representation, which we will call I, the irreducible
unitary representations of @ are classified into two series, the principal and the supple-
mentary series. The representations 7™ ¢ of the principal series are indexed by an integer

m and a real number g. The space H,, , of T™ ¢ is the Hilbert space L, (C) of complex func-

tions square-summable on ' with respect to Lebesgue measure; and, if g = (;‘ g) €4,

+
(T52) () =Bz -+ 8|72 (B +9) '"f(;;g)

The representations T of the supplementary series are indexed by a real number ¢
with 0 <¢ <1. The space H, of T° is obtained as follows. Let H, be the linear space of

all complex measurable functions f on C such that

fc J‘clzl—zz|_2+2d|f(z1)| lf(zz)ldz1dzz< 9,

equipped with the inner product

(fv, ) = J‘c J; lzl ) B fl(zl)Tz(z;) dz,; dz,.

Clearly H includes all continuous functions on € with compact support; in fact these

are dense in H,. If g=(:}c g) €@, and fEH,, let

(-2

Then 7' preserves inner product on H,, and so may be extended to a unitary operator (also
called T7) on the completion H, of H,. This 7°, acting in H,, is then a representation of
the supplementary series.

Two representations of the principal series corresponding to distinct parameter pairs

(m, @) are (m’, ) are unitarily equivalent if and only if m’ = —m, o’ = — p. Representations
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of the supplementary series corresponding to distinct ¢ are inequivalent to each other, and
to all members of the principal series. In view of this, let us agree always to index the
principal series with pairs (m, g) for which m >0, and ¢ >0 when m =0.

The group C*-algebra C*(G) of G is defined as the completion of L, (G) with respect
to its minimal regular norm. (1) It is well known that the irreducible unitary representations
of & are in one-to-one correspondence with the dual space of C* (). Hence this dual space
will usually be denoted by G; and corresponding representations of ¢ and C*(G) will be
denoted by the same letter.

Now the hull-kernel topology of G was worked out in Chapter 3 of [1]. The result was

as follows:

TueEOREM 5.1. Let G,, G, denote the principal and supplementary series of representa-
tions of G respectively, so that G = G, U G, U {I}.

(a) The topology of G relativized to G, (or G,) is the natural topology of the parameters
{(m, o) (or o).

(b) G, and {I} are closed subsets of G.

(¢) Let X be a subset of G,, with closure X (in G); and set S = {o|T°€X}. Then (i)
XcG,u {T"° T*°, I}; (ii) T*°€X if and only if 0 is a limit point of S; (iii) 7% °€X if
and only if 1 is a limit point of S; (iv) I€X if and only if 1 is a limit point of S.

We shall now represent C* (@) in terms of its regularized transform (see § 2.1). Let Z,
be the space of all the parameters (m, o) (m a non-negative integer, o real, o = 0 if m = 0), with
the natural topology; Z, the closed unit interval [0, 1] with the natural topology; Z’ the
disjoint union of Z; and Z,; and Z the space obtained from Z’ by identifying the point
(0, 0) in Z, with 0 in Z,. Clearly Z is a locally compact Hausdorff space. To each w in Z
we associate a representation 7 of C*(G) as follows: (a) if w = (m, 9)€Z,, T is the repre-
sentation 7™ @ of the principal series; (b) if w =0 €Z,, 0 <o <1, then 7™ is the representa-
tion 7° of the supplementary series; (¢) 7" = T %@ I. Using Theorems 2.2 and 5.1, the

reader will now verify:

LemMa 5.1. For each z in C*(Q), let £ be the operator field w—T7 on Z.(%) Then the
family A of all £ (where x €C*(Q)) is a full algebra of operator fields on Z, and is isomorphic
with C* (G) under the mapping x—%.

() See [11], p. 235. The minimal regular norm of an element f of L, (G) is the supremum of the
|| Tll, where T ranges over all *-representations T' of L, (G).

(3) Z is not quite the regularized dual space of C*(G); the latter consists of Z together with the
point at infinity plus one other isolated point. The % of this lemma is the restriction to Z of the regularized
transform .
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In future we identify C*(G) with 4. The component algebra 4, of 4 at w is just
T?(C*(®)). Since C* (@) is a CCR algebra (see, for example, [4]), 4,, consists of all com-
pletely continuous operators on H (T*) provided w + 1. For w = 1, we have that H (T") =
H(T*%eC, where C is the one-dimensional Hilbert space; and A4, consists of all a®4,
where a is a completely continuous operator on H (7%°) and A is a complex number (operat-
ing on C).

Note that 4 is not maximal. Indeed, the values of the £ at (2, 0) and 1 are correlated:

T =T%% I, (x€C*(G)). (2)

Clearly, however, because of the inequivalence of the 7' for different w +1, this is the
only correlation between the values of the £ at distinct points of Z. From this observation,

Theorem 1.4 enables us to draw the following conclusion:

THEOREM 5.2. Let Ay, be the maximal full algebra of operator fields on Z (with values
in the {A,}) which contains C*(G). Then C*(G) consists precisely of all those operator fields

2 1 Apmax Such that
z(1)==z(2,0)81 (3)

for some complex A.

Theorem 5.2 embodies all the information about C*(G) that is available from an im-
mediate application of the preceding chapters. However, the structure of C*(G) is still
not determined. By Theorem 3.3 C*(@) is derived from some fibre structure; we do not
yet know what kind of “twists”, if any, this fibre structure has. Nor do we know just how
the representation 7° “joins on” to T* =T*°® I as ¢—1—. Indeed, we defined 7" as
T*°® I only in order to satisfy the condition || 7| =sup (| 7%°|, || L) (*) The same end
would have been served by defining 71 = nT*°@m I (n, m any positive integers). By what
n and m is the limiting behavior of 7 (as ¢—1—) best described?

It is the object of the following sections to answer these questions. The answers are
as simple as they could be. The fibre structure associated with C* (@) has no “twists’;
it is equivalent to a ‘“product structure’ (see Theorem 5.4). And it is 7™ °® I, rather than
any other n 7% %@ m I, which describes the limiting behaviour of 77 as ¢—1—.

We arrive at these answers in four steps. In the first step (§ 5.2), 7% ° is expressed in
a new form, more suitable for the definition of 7T as the limit of 7 as ¢—1—. The second
step (§ 5.3) consists in defining a continuity structure X for wvector fields on Z. In the third
step (§ 5.4) it is shown that C*(G) is weakly continuous with respect to X. Finally, in

(*) This will be clear to the reader who has verified Lemma 5.1.
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§ 5.5 we show that O* (@) is a subalgebra of the algebra with continuous trace derived from
X, and combine this result with Theorem 5.2 to obtain the complete description of C* (G).

5.2. A new description of T%°

As usual, ¢ denotes the complex plane. If f is a complex function on C, we write D, f
and D,f for the first partial derivatives of f with respect to the real and imaginary parts of

the argument, and introduce

(D, and D_ are commonly called 8/8z and 8/8Z respectively). We denote by L the family
of all complex functions A on C with compact support which are everywhere infinitely
differentiable; and by L, the subset of L consisting of those & for which

f h(z)dz = 0. (4)
C
Further, E will be the set of those functions in L,(C) which are infinitely differentiable at

all but finitely many points of C; and F will be the image of ¥ under D_. If f€EF and

g= (oc i) €@, we shall define
Y

s @ =1gs-+ol 1 (55%). ®)

The reason for this definition lies in the following lemma:

LemumA 5.3. Each operator T%°(g€G) leaves E invariant. If fE€E,
D_T%"[=8,D_f. (6)
Proof. We recall that

(5D (&) = (B + )" f (;;z—ig) )

Tt is clear that T%° leaves E invariant. The verification of (6) is straightforward, and is

left to the reader.
It follows from (6) that F is invariant under the S,(g€®).

LemmA 5.4. D_ is one-to-one on K.

Proof. Suppose that f€E, D_f = 0. It is enough to show f =0.
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By the hypotheses, f is analytic (except perhaps for finitely many singularities) and
square-summable on C. For simplicity of notation, let 0 be a typical singularity of f; and
expand f in a Laurent series about 0, valid in {z|0 <|z| < R} =B:

Put f,(z2)=2;1_o a,2". Now the different 2" are orthogonal in each annulus
1 g

A={z|p<|z|<R} (0<p<R).
Hence

2n+2 Rzn +2

(8)

-1 -2
fA [/ @) P dz =n=2_w Ian|2fA |z|**dz =|a_1[* 25 log §+n;_w 27, 22 -

Since f is square-summable and f-f, is bounded on B, f, is square-summable on
B; hence

oo > lim f |f ()] d=.
>0+ J 4

But by (8) this is impossible unless a, =0 for n<0. It follows that f can have no
singularities in the finite part of the plane. A similar argument shows that it has no

singularity at oo either. Hence f is identically 0.

LemMma 5.5. Lyc F. Further, the inverse image of Ly under D_ is dense in L, (0).
Proof. Certainly L< E, and D_ (L)< L,. Since L is dense in L, (C), the last state-

ment of the lemma is proved.

Now let & be a function in L, Its Fourier transform

_l iRe(2w)
p(w) = e fc h(z)e dz
is infinitely differentiable and goes to 0 at oo faster than any |w|™™. Also by (4)
@{0) =0. Hence, putting w, =Re w, w,=Im w,
p(w) =wy(c; + e (w)) +wyc, -+ &x(w)),

where the ¢; are constant and lim g (w)=0. From this it follows that

w—>0

_ o, P0)
plw) =204 (9)

18 — 61173060. Acta mathematica. 106. Imprimé le 27 décembre 1961.
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is bounded, besides going to 0 at oo faster than any |w|™. In particular, ¢ belongs

to L;(C) N L,(C); and we may take its inverse Fourier transform

1

f(z) = g f‘/’(w) e_meaz) dw.

Then f € Ly(C) and is infinitely differentiable (since y vanishes rapidly at oo). Thus fEE.

The lemma will be proved if we show
D_f=h. (10)

Let m be an arbitrary function in L. Then (10) will be proved if we show
f (D_f) (2) m(z) dz = f h(z) m(z) d. (11)
C o]
Integrating by parts, we obtain

f (D-1) z)m dz‘—f 1(z) (D m) (2) dz (12)

Now, if the Fourier transform of m is u, that of Dim is }éwu(w). Combining this
with (12) and (9), we obtain from the Plancherel formula

f (D-f (z)mz)dz— ——f (w)wy,(w)

which is (11). The proof is complete.

In view of Lemma 5.4, the inner product (
to F. In fact, if b, = D_f,(f,€E),

, )in L,(C) can be transferred via D_

we define (hys Pa)o = (f1s f2) (13)

“hlno = “fl" (14)

Then F is an incomplete Hilbert space under || ||o; its completion will be called K. By
Lemma 5.5, L, is dense in K. By Lemma 5.3, the operators S,(g €@) are linear isometries
of F into itself, which can be extended to unitary operators, also called §,, on K. Thus
we have:

LuMMA 5.6. 8 is a unitary representation of G acting in K; and 8= T*°. In fact, extend-
ing D_ to an isometry (also called D_) of Ly(C) onto K, we have T%°=D='S,D_(g€@).
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In Lemma 5.8 we shall obtain an explicit expression for (hy, hy), in case h,, hy €L,

A fundamental tool for this and much of what follows is the following known result: (1)

Lemwma 57 If by, by €L, and ¢, is the Fourier transform of 4;:

_L iRe (2w)
@ (w) = 27 fc hi(z) e dz,

then for all 0<o <1,

fc J; |z =222 by (R) by () ded’ =2 I,(I;(G) @ (W) awydw.  (15)

Lemma 58. If hy, hy €Ly, then
(hy, ) ~——f f log |z —#'| hy(2 z)dzdz (16)

Proof. The proof of (16) consists essentially in passing to the limit ¢—1— in (15).
Let us denote either side of (15) by I,. In view of (4), we have

I, |z —2'| 227 —1 — ,

Now, if 22, (|z—2'| "> —1)/(1 — 0)——2 log |2—7'| as 6—1—. An easy dominated-

convergence argument applied to (17) therefore gives

—2f f log |z —2'| hy(2) hy(2') dz d2. (18)

o—>1-—

As in Lemma 5.7, let ¢; be the Fourier transform of #,. By (4) we have g, (0) =0,

so that the function |w|™ @, (w) p,(w) is bounded. Applying the dominated-convergence
argument to the right side of (15), we have

tm 22—t [ Jul 2 a0 ) do (19)

Now suppose (see Lemma 5.5) that hiy=D_f;, where f,€E. If v; is the Fourier

transform of };, we see from the proof of Lemma 5.5 that

_g; Pi)
pi{w) =2¢ ra

(*) This is the Lemma on p. 454 of [3].
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Hence f Nl gy(w) o) dw =} f 100 pa() dw = (F fo) =, B (20)

‘Combining (18), (19), and (20), we get (16).
Observe that, if h€L,, S,k need not be in L, We shall need to know that (16) is valid
in the more general case that &, is replaced by Sy ;. To see this we note the following easy

consequence of Lemma 5.8:
LemMMA 5.9. Let {f,} be a sequence of functions in Ly, all vanishing outside the some
compact set, all bounded in absolute value by the same number, and such that
lim | |fu(2)]dz=0.
n—>x0 J C
Then lim [|f, ]}, =0.

LeMMA 5.10. If h, b €L, and g=(“ /g)ea then
¥

(S,h, B )y = 2 f f log |z—2'| (8yh) (2) ' (2') dz dz'.
TJecdJc

Proof. If 8 =0, then S h€L,y, and Lemma 5.8 applies immediately.

Assume f +0. By the definition of S, it is clearly possible to pick a sequence {f,}
of functions in L, satisfying the hypotheses of Lemma 5.9, and such that, for each =,
A{(2) +f,{z) =0 in some neighborhood (depending on n) of zy=oa/f. Define h, =h +f,.
Then, by Lemma 5.9,

h,—h in both L, (C) and in K. (21)

Now let @,,, ¢, and ¢’ be the inverse images of k,, b, and »’ under D_. By (21)
@@ in Ly(C). (22)

Now, by the definition of &,, S,k, has compact support. By (1) and (4), f (Syhy) (z)dz =0.
c

It follows that
S, by, € L. (23)

Since by (1) 8, is an isometry in L,(C), (21) gives
S, b8,k in Ly (C). (24)
By (22) Ty ou—T5° . (25)

Now, by (23), (24), (25), and Lemma 5.8,
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(Syh, B)o=(T5 %, @)
—lim (T%° g, ¢) =lim (8, hn, 1),

=lim (_E)f f log |z —2'| (S, hn) (2) B (2) dz d2’
n T/ Jec Je

z_gf f log |z —2'| (S,k) (2) b (2) dz dz’.
T JcJo

(For the last step, we use (24), and observe that f log |2 —2'| ' (z')dz’ is bounded
c

in z because b’ €L,.)

5.3. A continuity structure for vector fields on Z

Let Z,, Z,, Z be as in § 5.1, and L, Ly, K, S as in § 5.2, For w€Z, w +1, let T be as:
in § 5.1, and put H, = H(T"). For the case w =1, we shall put 7' =S I,(1) and H, =
H(T") = K& C (C being the one-dimensional Hilbert space).

For the rest of this paper let us fix an element h, of L satisfying

f by (z)dz=1. (26)

For each complex number 4 and each % in L;, we define a veetor field z;, , on Z, with values
in the H,, as follows:

If (m, @) €Z., s (m, 0) =Ah, +h;

if0<o<l, xl,h(a)=vl/1:[l/;lh1+hl/(l ¢ )]
T — 0

@ (1) =he

A
Ve
(Since Lyc K, h@i_eKeaO=H1.)
Vo
DeriniTION. We shall denote by X the family of all z; , where A ranges over
C and h over L,.

Clearly X is a linear space of vector fields.

Lemma 5.11. For each w in Z, {x; »(w)|x1, €X} is dense in H,.
This follows from the fact that L is dense in H, for each w€Z, w=1, while
L, is dense in K.

Thus, X will be a continuity structure for Z, {H,}, if the following lemma holds:

(*) In § 5.1 T' was dofined as 7°°@®I. The present definition (which will be maintained.
throughout the rest of the paper) is unitarily equivalent to the former one by Lemma 5.6.
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LemMma 5.12. The function w—| 2 n(w)||m, 15 continuous on Z for eack x5 in X.

Proof. This is evident for all points of Z except 0 and 1. We consider first
the point 1. Let x=uz; ,€X. Now

ety 2 =12 +||h]|0 [w—zfc fclog |z—z’|h(z)h(z’)-dzdz’j|. 1)

On the other hand, for 0<g<1,

1 -
||x(a)|l2 =7—Z (I + 1+ I+ 1), (28)
where I,=a|AP J‘c fc |z —2'| 722 by (2) by (27) dz d2, (29)
IZ=1 af f|z~z'|"2+2°h(z)h(z’)dzdz', (30)
~olJecle

j (1—g)f f |2— 2 |22 by (@) k(&) dedz’. (31)
For z=z2', |z—2/|?*?°=1 as ¢—1—; also, for all ¢ near to 1, the integrand in (29)

is uniformly majorized by a summable function. It follows from (26) that

lim I, =|A]? f f 2) by (7)) dz dz’ =| AP (32)

o—1—

Also, it was shown in the proof of Lemma 5.8 that

lim I,= —2f f log |z —2'| h(z) h(2') dz d'. (83)
C (o}

a->1—

Now, since f h(z)dz=0,
[o]

I;=1/(1 ff{z_zlzm } () b (2) dzde'. (34)

It follows as in the proof of Lemma 5.8 that the integral in (34) approaches a finite

limit as g—1—. Therefore
lim I,=0. - (35)

o—>1 -

Combining (27), (28), (32), (33), and (35), we have

sim [e(o)]] =[l=(1)]. 0
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Next we consider the point 0=(0, 0) in Z. Let w, be the Fourier transform of

1
——(g). Then by Lemma 5.7, for 0<o<1,
o

ol'(c)
I'l—o)

lim ||z(0)|? = lim 2*x f J0|7% | wo(w) [P dw=nf [w(w) |? dw, (87)
o—0+ o—>0+4 c ¢

where o is the Fourier transform of lim z(c)/ V;=x(0)/ V. Thus (37) gives
o—0+
i fla(o) | = (0} B

Now (36) and (38) complete the proof.

As we have already mentioned, this lemma implies the following consequence:

Lemma 5.13. X ts a continuity structure for vector fields on Z with values in the {H,}.

5.4. The weak continuity of C*(G) with respect to X

In Lemma 5.1 O*(G) was identified with the algebra of operator fields w— T3 on Z.
We continue to make this identification, reminding the reader of the slight alteration in
the definition of 7 made in § 5.3. In this section we prove that each operator field in
C*(@) is weakly continuous with respect to X. For this purpose it is enough to consider
only those which arise from continuous complex functions ¢ on G' with compact support;
for these are dense in C*(@).

Let @ be a continuous complex function on G with compact support; and let # =, »,

x' = 25, - be elements of X, We shall prove that the function
w— (T3 (2(w)), '(w)) (39)
is continuous on Z.

If w=(m, p)€Z,, we have, setting f=Ah;+h, f' =1k, +}, g=(z g),

(T3 (x(w)), ' (w)) = JG fca(g) [Bz+ 8| e 2| Bz 48" f (;;sz—_:_l;) f(z)dzdg.

Since this integral converges absolutely uniformly in m and g,
(39) is continuous on Z,,. (40)

Next we shall prove the continuity of (39) at points w = o, where 0 <¢ < 1. For this
purpose it is sufficient to show that, for each f, f in L, the integral
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fc L L alg)|z— 2| 22| Pz + 8|22 f (;Z:g) (2 dg dz dz’ (41)

is continuous in ¢ for 0 <o<1. It is convenient to define an auxiliary function
J(o; 2) =f |z —2/ |22 f(2") d2’
c

(z€C, 0<g<1). For each fixed z, the function J(o; z) is clearly continuous in ¢ for

0<o<1. We may write (41) in terms of J as follows:

fc fc al(g) |pz+ 6|22 J(o; 2) | (%%) dg dz. (42)

LeMMA 5.14. There exist positive constants M and p such that, for oll z and all
O0<o<l,
1 M

[J(o; 2)l<6ﬁﬁz|—2:@-

Proof. Let f have upper bound N; and let the support of f be contained in

a circle about 0 of radius R>1. Then
[J(0; 2)| <N f |z —2'| 227 dz’ = K(o; 2). (43)
l&|<B '

An easy geometrical argument, which we omit, shows that, for fixed o, K(o; 2) at-

tains its maximum value when z=0. Now

NR20'
K(o; 0)=" ;
o
26
hence K(o; 2) < nNER . (44)
o

On the other hand, if |z|>2R, we have [z—2'|>}|z| for [¢'|<R, so that

IZ[ —2+20 ) |z| -2+20
K(o; 2)<N (?) 7R =nNR*> (QT{) . (45)

Now we verify that, if |z[/2R<1, then

2aNR*  _aNR”,

M2v20 = G
a(l+(2R

(46)
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while, if |z|/2R>1,

20 -2+20
2"1\( :'T o > TN R (%) ) (47)
(133 )

The lemma now follows from inequalities (43) to (47).

In view of the last lemma, the integral (42) is majorized by

M [ﬁz+6[‘ 2-20 1 oz +y
??Jl J;'““”‘( |z|) [Batof f(ﬁz»+a)1dgdz' (45)

Now an easy calculation shows that the expression {|8z +4| /(1 +|z]| /2 R)}*"* is bounded
uniformly for all 0 <¢ <1, all zin C, and all ¢ in the support of a. Thus, in view of (1),

the integral (48), and hence (42) also, is majorized by a summable function independent
of o. It follows that (42) is continuous in ¢, and hence that

(39) is continuous for 0 <w < 1. (49)
We next show that

(39) is continuous as w =g—>0 +. (50)

For0<w=0¢<1,
(T (@(w)), o' (w)) = f f alg) | B2+ 8] 22 (A - (“Z +7’) Qo; 2)dg dz, (51)

’ cJe Y yYd-0)) \Bz+4b ’
where Q(o; 2) =7—z f lz—=2'| 22 (A, + B (1 —0)7%) (2') d2’ (52)
C

and g=(;C /g ) Exactly as in the proof of (49), we show that the integral (51) is

majorized, uniformly for (say) 0 <o <}, by the convergent integral

. h +
kfc L\a(g)|-|ﬁz+a|- : (/lk1+V(1_G)) (;Z_}_g)‘dgdz,

where % is some constant.

Now it is a routine matter to verify that, for any continuous function f on ¢

with compact support,

umffpﬂvawaem»
C

=0+ TT

Applying this to ¢, we obtain
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Hm Q(o; 2) = (A" hy +4') (2).
a—0+

Hence, by the Lebesgue dominated-convergence theorem, (51) gives

. o _9 052"]“)/ YT
61_1)311 (T%( J‘ f )|z +6|72 (Aky +B) (ﬁz_i_a)(lhl—i-h)(z)dgdz
=(T3° (%(0, 0)), z'(0, 0));
and this proves (50).
Finally we shall show that
(39) is continuous at 1. (53)
We begin by observing
1 1y = A : 54
(Ta(@(1), (1)) = Ga(g) dg +(Seh, B'). (54)
For 0 <o <1, by (51) and (52)
(T2 (x(0)), @'(0)) =Ly + I, + I3+ 1, (85)

where Il=:—_ZM7fC fc 'L )|z —2 |22 | B+ 8] 2 hy (,3 +6)h (2') dg dz dz’,

I =L S =2+20 _92-9%¢ “Z‘i‘y)hl—, ,
? ”(I—U)fc fc fca(g)lz /| |2+l h(ﬂz-i—é (') dg dz 2,

A [ [ ot s ol () B agaza,

10')

— ol _ |-2+2¢ -2-20 (“Z“‘V)/_T ‘
1, nl/(l—a)fc fo J{Ga(g)lz 2| |Bz+ 6| hy 23 B (Z)dgdzdz.

Now I, is a particular case of the integral (41). We showed earlier that that integral is
majorized uniformly for 0 <¢ <1 by a summable function. Hence we may pass to the

limit ¢ —1 — under the integral sign, getting by (1) and (26)

. _lf’ 4, ozt
L W R R =

Py

- fGa,(g)dg.; (56)

) hh#)dgdzdz' =
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To deal with 7, I, and J,, we introduce another auxiliary function R(o; 2)
(z€C, 0<o<1):
st —2+20
' f {l—z—‘—zll—_o_%l}hl(z’)dzl for 0<o<1,
R(o;9)=1""
—2f log |[2—2'|4'(z')dz’ for o=1.
c

By the dominated-convergence argument used in the proof of Lemma 7.8, R(g; 2) is

continuous in ¢ for 0 <o<1. In view of f K (z)dz=0, we have for 0<o<]1,
c

+
2 =§ fc fGa(g) R(o;2)| B2 +8P % |pz+8[th (;'Z +§) dyg dz. (57)

LeEMMA 5.15. |R(a;2)| |Bz+ 6> is bounded uniformly for z in C, l<o<1, and

g wn any compact subset of G.

Proof. R(o; z)“=1—i(—r fc|z/l—z+2a"—‘_h/(z,+z) de'

- 1 - fo r7242 Flo v dr, (58)

2:

where 2’ =7re”®, and H(z; r) =rf
0

23 T
h'(z' +2)dB. Denote f H(z; r)dr by G(z;r), and ob-
0
serve that, for fixed z,
Gz r)=0 for large r. (59)
Integrating (58) by parts

R(o; 2) =2f°° 329 Gz ) dr. (60)

0

Let p be the radius of a circle around the origin which contains the support of A’;
then by (59)
G(z r)=0 if r>[z[+@ or r<|z|—o. (61)

Now it is evident that

|6z )| < f |W(2)| de=M (62)
c

for all z and r. Also there is a positive b such that for all z and r

|G(z; )| < br (63)
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Combining (60), (61), and (63), we obtain for |z|<2p
3¢
| R(0; z)]<2bJ‘ r3t2 2 dr K N < oo, (64)
0

On the other hand, if |z|>2¢ and [<o<1, (60), (61), and (62) combine to give

l2l+e »
|R(o; 2)|<2M e tzlr<8 4

(65)
12l-e ’ I I
From (64) and (65) it is apparent that there is a positive number N’ such that

| B(o; 2)| < ¥

(66)

|2]
1+
20

for all z in C and }<o<1. Also, an easy calculation shows that, for i<o<],
|Bz+ 02 <|B] |2| +]0] +1. (67)
Combining (66) and (67), we obtain the conclusion of the lemma.

In view of this lemma, we can pass to the limit 6—1- under the integral sign
in (57), obtaining by Lemma 7.10

Tim 1, = ff (9) B(L; 2) | pz+ o] 4&(2217;)@9&

= fGa(g) (Sgh> h’) dg
= (S,h, ). (68)

Finally, we must evaluate lim I; and lim I,. Note that in the calculation of

o—>1— o—>1—

o—>1—

lim I, no use was made of the fact that f h(z) dz=0. Hence the expression obtained
c

from I, on replacing kb by h;, namely I 4/11/(1—0), also approaches a finite limit as
o—~1—. Thus

lim I,=0. (69)
o—=>1—
Now I, = oA (T3 (hy), k') /nV (1~ o);

and I,=o' (T3 (h), by)/nV (1 —0) = 6A (T%x (k) B)/7V (1 — o).
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Thus I; is obtained from I, on replacing i, a, and », by 2, a*, and h. Hence from
(69) follows
lim I,=0. (70)

a1~

Combining (54), (55), (56), (68), (69), and (70), we obtain (53).
Now (40), (49), (50), and (53) give the following lemma:

LemMma 5.16. Bach operator field in C*(G) is weakly continuous with respect to the
continuity structure X.

5.5. The structure of C*(G)

Lemma 5.17. C*(G) is a subalgebra of the algebra A with continuous trace derived from
the continuity structure X,

Proof. Let y be of the form a*a, where a is a complex continuous function on G with
compact support. By Lemmas 3.6, 3.8, and 3.9 of [1], the function

w—Tre(TY)

is continuous on Z and vanishes at infinity. Since ||7'y|| <Tr(7'y), T’y vanishes at infinity
(in w ). Combining these remarks with Lemma 5.16 and Theorem 4.6, we see that w— 7
belongs to 4. Since linear combinations of such y are dense in C*(@), the conclusion of
the lemma follows,

Combining Lemma 5.17 with Theorem 5.2, we obtain the following structure theorem
for C*(G): (1)
THEOREM 5.3. C* (G} conststs of all those operator fields a on Z such that

(i) for each w in Z, a(w) is a completely continuous operator on H,;
(ii) & belongs to the algebra with continuous trace derived from X (see § 5.2);

(iii) the values of a at (2, 0) and af 1 are correlated as follows:
a(l)=D_a(2,0)D e,
where 4, is o complex number (depending on a).

This theorem gives complete information about the structure of 0*(G), but only in
terms of the rather complicated continuity structure X. It is desirable to have a simple
description of the isomorphism type of C* (@), without losing sight, however, of the under-

lying space Z. For this purpose we introduce the general notion of a field of isometries.

(*) This theorem strengthens the Lemma on p. 4 of [10] for the case of the 2 x 2 complex unimodular
group.
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Let T be.a locally compact Hausdorff space, and for each ¢ in 7 let Hilbert spaces H,

and H; be given.

DEFINITION. By a field of isometries (of the {H,} onto the {H;}) we understand a

function U on T which associates to each ¢ a linear isometry U, of H, onto H;.

DEerFiNITION. Let F and F’ be families of vector fields (or operator fields) on 7',
whose values at ¢ are vectors in H, and H; respectively (or bounded operators on H, and
H; respectively). We shall say that F and F’ ave isomorphic under a field of isometries U

if P’ consists precisely of those o’ which are of the form

a'(t) = Ula(t) (@ () = Usa(®) U

for some ain F,

DEerinNIiTION. Let F and F’ be continuity structures for vector fields on 7' with
values in the {H,} and {H 2} respectively; and let ¥, and F. be the families of all vector
fields which are continuous on 7' with respect to F and F’ respectively. Then F and F’

are equivalent if ¥, and F, are isomorphic under some field of isometries.

DeriNiTiON. If all H, are the same H, the continuity structure consisting of all

constant functions on 7' to H is the product structure.

LemmA 5.18. Let F be a continuity structure for T, {H}, and {x,, z,, ...} a countable
family of vector fields on T which are continuous with respect to F and such that, for each t,
the set {x, (1), 2, (t), ...} is linearly independent in H, and spans a dense subspace of H,. Then
F is equivalent to a product structure.

Proof. By the Gram-Schmidt orthogonalization process, the x; may be replaced by
a countable set {y,, ys, ...} of vector fields continuous with respect to F such that, for each
t, the y, () form an orthonormal basis of H,. It follows that the H, are all of the same dimen-
sion. Let H be a fixed Hilbert space of this dimension, with an orthonormal basis {e,, e,, ...}.
If U, is the isometry of H onto H, which sends e, into y,(¢), it is clear that the product
structure (for vector fields on 7' to H) is equivalent with F under U.

We now apply these concepts to the continuity structure X for vector fields on Z
(see § 5.3); and show that X is equivalent to a product structure.

The following lemma is easily verified:

LeMMA 5.19. There exists a sequence {h1, hs, ...} of elements of Ly such that, for each
h in Ly, we can find a subsequence {hn} of {hy} which converges to h uniformly with bounded
support (that is, hn;—h uniformly on C, and the supports of the hn; are all contained in the

same bounded set).
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Now let us pick out from the h; a subsequence {hy, kg, by, ...} Which is linearly inde-
pendent in L, and spans the same subspace as the k,. Further, let 4, have the same meaning
as in § 5.3. Then the k,(n =1, 2, 3, ...) are linearly independent in L, and are dense in L
in the sense of uniform convergence with bounded support. Recalling from § 5.3 the defini-
tion of the x;, 5, let us put:

2® =z, o, &™ =g, 1, for n > 1.

Lemwma 5.20. For each w in Z, the z™ (w)(n =1, 2, ...) are linearly independent in H,,

Proof. Assume first that w +1; and let

n

z A 2® (w)=0 in H, (% complex). (71)

Now a non-zero element of L is also non-zero in H,. Hence

n

Z Aix® (wy=0 in L. (72)

It w€Z1, (72) states that >/ 1 4,h; = 0; so that the 1, =0, since the &, are independent in
L. A similar argument holds for 0 <w < 1. Thus, for all w &1, (71) implies 4, =0.
Now let w =1. Then (71) becomes

(E/l k) Vn =0;

from which we have 2, = 0and Xi_51,%; = 0 in K. But the latter clearly implies X} 22;h; =0
in Ly; so that again 4, =0.

Lemma 5.21. For each w in Z, the 2™ (w) (n =1, 2, ...) span a dense subspace of H,,.

Proof. Let w€Z, w+1. Since the 1k, +% (A complex, RE€L,) are dense in H,, it is
enough to show that 4, and each % in , can be approximated in H, by linear combinations
of the ™ (w).

hy if weZ,

But P (wy=1 /5
V—hl if O<w=0<1.
7

Thus A, can be so approximated. That each % in L, can be so approximated follows from
the definition of the A, (see Lemma 5.19), together with the fact that, if f,->f in L, uni-
formly with bounded support, then f;—f in H,.



280 J. M. 6. FELL

Now let w =1. Since #V(1) =0e1/ Vo, it is enough to show that each 2 in L, can be
approximated in K by linear combinations of the A,. But this is possible by Lemma 5.19

as before.

LEMMaA 5.22. X ¢s equivalent to a product structure.

Proof. Combine Lemmas 5.18, 5.20, and 5.21.

THEOREM 54. Let H be a fixed separable infinite-dimensional Hilbert space and A
the algebra of completely continuous operators on H. Suppose that H = K® C, where C is the
one-dimensional Hilbert space, and K is a closed subspace of H of co-dimension 1. Let M be
any tsometry of K onto H.

Then C* (@), the group C*-algebra of the 2 X 2 complex unimodular group, is isomorphic,
under a field of isometries on Z, to the algebra of all those norm-continuous functions a on Z

to A such that a vanishes at infinity and
a(l)=(M1a2,0)M)0A

{where 1 is complex and depends on a).

Proof. By Theorem 5.3 and Lemma 5.22 there exists an M for which this is true. But
it is obvious that the particular choice of M does not affect the validity of the result.
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