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Introduction 

At the present t ime a great deal is known about  the general theory of C*-algebras. 

However, little has been done to clarify the precise structure of specific non-commutat ive 

C*-algebras, for example, the group C*-algebras of particular non-commutat ive non- 

compact groups. In  this paper we present a number  of results which together constitute 

program for determining the structure of many  specific C*-algebras; and apply them to 

describe completely the group C*-algebra of SL(2, C). 
Our main tools wilt be algebras of operator fields defined on a locally compact Haus- 

dorff space. Let  T be a locally compact Hausdorff  space, to each t in which there corresponds 

a C*-algebra A ~. For different values of t the At are in general unrelated. By a full algebra 

of operator fields on T we mean a *-algebra A of functions x on T such tha t  (i) x(t)EA t 
for each t; (ii) t---~llx(t)]] is continuous on T and vanishes at  infinity; (iii) for each t, {x(t)[ 

x6A} is dense in At; (iv) A is complete in the norm IIx[[ = sup[[x(t)l I. Evidently A is itself 
t 

a C*-algebra; the At are called its component algebras. 

Algebras of operator fields have been studied by  various authors, for example in [8], 

[6], and [11] (a more complete bibliography will be found in [11]). 

Our paper  is divided into five chapters. The first chapter begins with the basic concept 

of a continuity structure; and then proceeds to the description of the dual space of a full 

algebra of operator fields in terms of the dual spaces of the component algebras. I t  ends 

with a description of all possible full subalgebras of a full algebra of operator f ields--a 

special case of Glimm's generalization of the Stone-Weierstrass theorem (see [5]). 

Chapter I I  takes up the problem of representing an arbi trary C*-a]gebra A as a full 

algebra of operator fields. As usual we denote by  A the dual space (i.e., the space of equi- 

valence classes of irreducible *-representations) of A, equipped with the hull-kernel topo- 
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logy. (1) The transform of an element a of A is the function T - +  Ta on A. Now A is isomor- 

phic with the algebra of all transforms of elements of A; but  the latter fails on two counts 

to be a full algebra of operator fields in the sense defined above. In  the first place A need 

not be Hausdorff; in the second place the "norm-functions" T- II Tall nced not be contin- 

uous. However, in Chapter I I  we construct from A a compact Hausdorff space A r, called 

the regularized dual space of A; and modify the transform of each a in A so tha t  it becomes 

an operator-valued function c7 on Ar with continuous norm-function, called the regularized 

transform of a. The algebra ~ of all regularized transforms is then a full algebra of operator 

fields on A r, called the regularized transform of A, and is isomorphic with A. The set of 

those t in A ~ for which the component algebra A t of A is primitive is dense in A ~, but  will 

not in general coincide with A t. Also, A need not be a maximal  full algebra. I f  it is not 

maximal, then Glimm's theorem (Theorem 1.4) is precisely what  we need in order to 

describe A in terms of the maximal full algebra Amax containing A. 

Thus, the determination of the structure of a C*-algebra A is reduced to the s tudy of 

Amax, or, equivalently, the s tudy of the continuity structure defined by  A. In  Chapter I I I  

it is shown tha t  in certain cases (for example, if the irreducible representations of A are 

of uniformly bounded finite dimension), the possible continuity structures on ~ can be 

analyzed in terms of what  we shall call fibre structures, which generalize the notion of 

fibre bundle. We will illustrate this in an important  special case. Let  T be a locally compact 

Hausdorff space, Mn the n x n total  matr ix  algebra, Gn the group of all automorphisms 

a--*u-lau of Mn (where u is unitary), and B a fibre bundle with base space T, fibre space 

Ms, and group Gn. Then the family C o (B) of all continuous cross-sections of B which vanish 

at  infinity forms a C*-algebra whose irreducible representations are all n-dimensional, 

and whose dual space coincides with T. Conversely, it is shown in this chapter (Theorem 

3.2) tha t  any  C*-algebra A whose irreducible representations all have the same finite 

dimension n (such an A is called homogeneous of order n) is essentially equal to C0(B ) 

for some fibre bundle B with base space ~ ,  fibre space Ms, and group Gn. Using fibre 

structures, we can obtain a similar, though more complicated, description of many  C*- 

algebras which are not homogeneous. 

Let  T be a locally compact Hausdorff space, to each point of which a Hilbert  space 

Ht  is associated; and let a continuity structure F for vector fields (with values in the 

{Ht}) be given. In  Chapter IV  we construct from F a continuity structure for operator 

fields whose values are completely continuous operators on the Hr. The maximal  full algebra 

of operator fields so obtained belongs to a special class of C*-algebras which we call algebras 

with continuous trace. The main motivat ion for this construction lies in its usefulness 

(1) For the definition and properties of the hull-kernel topology, we refer the reader to [1]. 
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for Chapter  V. As a mat te r  of fact, the not ion of an algebra with continuous trace seems 

to be a natura l  and impor tan t  one, inasmuch as every GCR algebra has a composit ion 

series whose quotients are all algebras with continuous trace (Theorem 4.2). The quest ion 

whether  every algebra with continuous trace arises by  the construct ion of this chapter  

f rom a cont inui ty  s tructure for vector fields amounts  to a problem in the theory  of fibre 

bundles; its answer is negative, even for homogeneous algebras. 

Finally,  in Chapter  V, we apply  the preceding results to find the detailed s tructure of 

the group C*-algcbra of SL(2, C). The result (Theorems 5.3 and 5.4), as well as the steps 

by  which it is obtained, is outlined in w 5.1. Observe tha t  Theorem 5.4 can be interpreted 

in the light of Chapter  I I I  as saying tha t  no " twis ts"  occur in the fibre s tructure underlying 

this C*-algebra. 

I. Full algebras of  operator fields 

1.1. Continuity structures (1) 

Let  T be a locally compact  Hausdorff  space called the base space; and for each t in  

T, let At  be a (complex) Banach space. A vector/ield (with values in the {At}) is a funct ion 

x on T such tha t  x (t)EAt for each t in T. Obviously the vector  fields form a complex linear 

space. I f  each At  is a *-algebra, then  the vector  fields form a *-algebra under  the pointwise 

operations; in t ha t  case the vector  fields will usually be referred to as operator/ields. 

I n  this paper, either each At will be a Hilbert  space or each At will be a C*-algebrar 

DE]~I~ITIO~r A continuity structure/or T and the {At} is a linear space F of vecto. 

fields on T, with values in the {At} , satisfying: 

(i) I f  x e F ,  the real-valued function t--->llz (t)II is continuous on T; 

(if) for each t in T, {x( t ) ]xe  F} is dense in At. 

If  each A t is a C*-algebra, we require also tha t  

(iii) F is closed under  pointwise mult ipl ication and involution. 

I f  all At  are equal to the same A, then the set of all constant  functions on T to A forms 

a cont inui ty  structure,  the so-called product structure. 

Let  us fix a cont inui ty  s tructure F for T, {At}. 

DEFINITIO~r A vector  field x is continuous (with respect to F) at t o, if for each s > 0, 

there is an  element y of F and a neighborhood U of t o such tha t  ]]x(t) -y ( t ) ]  t <~ for all 

t in U. We say t h a t  x is continuous on S if it is continuous at  all points of S. 

The following lemmas are easily verified: 

(1) References to previous work on this subject are given in the Introduction. 
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LEMMA 1.1. I /  a vector field x is continuous with respect to F at to, then t-+llx(t)] I is 

continuous at t o . 

LEMMA 1.2. The vector fields continuous (with respect to F) at t o /orm a linear space, 

vlosed under multiplication by complex-valued /unctions on T which are continuous at t o. 

I /  each A t  is a C*-algebra, the vector fields continuous at t o are also closed under pointwise 

multiplication and involution. 

LEMMA 1.3. A vector field x is continuous (with respect to F) at t o i~ and only i], /or each 

:y in F,  the/unction t-->llx(t ) - y(t)H is continuous at t o. 

L]~MMA 1.4. I / a  sequence o/ vector fields {xn} continuous (with respect to F)  at t o con. 

"verges uni/ormly on T to a vector field x, then x is continuous at t o (with respect to F).  

LISMMA 1.5. For every t in T, and every 0: in At,  there is a vector field x, continuous on 

T with respect to F,  such that x (t) = ~. 

DEFINITIO N.  I f  F '  is another  cont inui ty  s tructure for T and the {At}, then  we 

:shall say tha t  F and F '  are strictly equivalent (F  ,,~ F')  if, for all t in T, a vector  field is 

cont inuous  at  t with respect to F if and only if it is so with respect to F ' .  

LEMMA 1.6. I /  F '  is another continuity structure/or T and the {At} , and i / there exists 

a / a m i l y  G o~ vector fields such that 

(i) each x in G is continuous on T with respect to both F and F' ,  and 

(ii) /or each t in T, {x(t) l x 6 G  } is dense in At,  

then F ~ F' .  

Pro@ Let  F"  be the ]inear span of G. Then clearly F"  is a cont inui ty  s tructure con- 

t a ined  in bo th  F and F ' .  Combining the definition of cont inui ty  with Lemma 1.3, we see 

Chat F ~ F";  similarly F '  ~ F".  Hence F ~ F ' .  

F rom here on, until Chapter  IV, the At  will always be C*-algebras. 

As in the Int roduct ion,  we make the following definition: 

DEFINITION.  A /ull algebra o/operator fields is a family A of operator  fields on T 

satisfying: 

(i) A is a *-algebra, i.e., it is closed under  all the pointwise algebraic operations; 

(ii) for each x in A, the funct ion t-+llx (t)H is continuous on T and vanishes at  infinity; 

(iii) for each t, {x(t)] x e A }  is dense in At; 

(iv) A is complete in the norm Ilxll = s pllx(t)ll �9 

Clearly A is a C*-algebra; hence (iii) could be s trengthened to the s ta tement  t ha t  

{ x ( t ) [ x 6 A }  - A  t. The algebra A t will be called the component o~ A at t. We refer to T as 

the  base space. 
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A full  a lgebra  of opera to r  fields is ev iden t l y  a con t inu i ty  s t ruc ture .  I f  Y is any  c o n t i n u i t y  

s t ruc ture ,  le t  us define Co (F)  to  be the  fami ly  of al l  vec tor  fields x which are  con t inuous  

on T wi th  respect  to  F, and  for which t - >  ]1 x (t)II vanishes  a t  inf ini ty .  I n  view of the  preced-  

ing lemmas,  Co(F ) is a full  a lgebra  of opera to r  f i e lds - - indeed ,  a m a x i m a l  one. I n  fact,. 

the  following l emma is easi ly  verif ied:  

LEMMA 1.7. For any lull algebra A o] operator/ields on T, the ]ollowing three conditions ~ 

are equivalent: 

(i) A is a maximal  [ull algebra o/operator/ields; 

(if) A = C o (Y)  /or some continuity structure F;  

(iii) A = Co(A ). 

Such a m a x i m a l  full  a lgebra  A of opera to r  fields m a y  somet imes  be called a continuoux 

direct sum of the  {At}. I t  is c lear ly  separating, in the  sense t ha t ,  if s, t E T ,  s 4-t, aEA~,. 

and  fieAt, the re  is an  x in  A such t h a t  x(s) = ~, x(t) =ft. 

1.2. The dual spaces of algebras of operator fields 

W e  recal l  t h a t  the  dual space of a C*-algebra A is the  f ami ly  A of a l l  i r reducib l~  

*- representa t ions  of A,  topologized so t h a t  the  closure of a subset  W of .4 is the  set of a l l  

those  R in A such t h a t  n Kerue l  ( S ) c  Kerne l  (R). I n  th is  sect ion we inves t iga te  the~ 
S ~ W  

dua l  space of a full  a lgebra  of opera to r  fie]ds. Le t  T be a loca l ly  compac t  Hausdor f f  space;: 

and  le t  A be a full  a lgebra  of opera to r  fields wi th  base space T and  componen t  a lgebraa  

{At}t~r. The following l emma is p roved  as Theorem 1, p. 301 of [11]: (1) 

L ] ~ M A  1.8. I /  A is maximal, then any closed two-sided ideal I o / A  is o/ the ]orm 

I = {x e A I x (t) e I t for al l  t in T}, 

where,/or each t, I~ = {x(t) i x e  I}.  

T H E o R E M 1. ]. To each R in A there corresponds an element s o / T  and a Q in (A z) ̂  such 

that 

Rx=Q~(~) (xeA) .  (D 

Proo/. Assume first  t h a t  A is max ima l .  Le t  I be t he  kerne l  of R, a n d  define I t  as in  

L e m m a  1.8. W e  consider  the  set Z of those  t in T for which I t 4=At. Assume now t h a t  Z 

conta ins  two d is t inc t  e lements  t 1 and  4. Le t  U 1 and  U 2 be d is jo in t  ne ighborhoods  of t 1 

(1) In the lemma as proved by Naimark in [11], T is assumed compact. This causes no trouble as 
we can adjoin the point at infinity to our T, and associate with it the 0-dimensional C*-algebra. Condi- 
tion 2) of Naimark's version follows from the fact that every C*-algebra has an approximate identity. 
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a n d  t 2 respect ively;  and  denote  b y  K~ the  closed two-s ided  ideal  of A consist ing of al l  x 

which vanish  outs ide  U~. Since L~ ~= Ate, i t  follows t h a t  K t ~= I .  On the  o ther  hand,  K1K 2 = 

(0}. B u t  this  con t rad ic t s  the  fac t  t h a t  R(A)  has no idea l  divisors  of 0 (Lemma 2.5 of [8]); 

so Z has  a t  mos t  one element .  I f  Z were void,  L e m m a  1.8 would  give I = A.  Thus  Z has 

exac t ly  one e lement  s; and  b y  L e m m a  1.8 I = ( z E A  I x(s)6I~}. Hence  R fl~duces an  ir- 

reducible  r ep resen ta t ion  of As; and  the  theorem is p roved  for the  case t h a t  A is max ima l .  

I n  the  general  case, le t  B be the  m a x i m a l  full  a lgebra  conta in ing  A.  If  S 6 4 ,  there  is 

an  S '  in /~ which acts  in a space H(S')  containing H(S),  and  such t h a t  S ' I A  (1) coincides 

wi th  S on H(S).  (2) App ly ing  the  preceding p a r a g r a p h  to S ' ,  we f ind a t in T and  a Q in 

(At) ̂  such t h a t  S'~=Qx(t)(x6B).  Since A is full,  S ' I A  is i r reducible .  So H ( S ' ) = H ( S ) ,  

S'  I A = S, and  the  theorem is proved.  

Assume now t h a t  A is max imal .  Then the  uniqueness of the  s and  Q in Theorem 1.1 

is evident .  Thus there  is a n a t u r a l  one-to-one correspondence be tween  ~ and  the  set P of 

a l l  pa i rs  (t, Q), where t6  T and  Q6At .  I n  the  following two theorems we iden t i fy  A wi th  P 

(writing, for example ,  Kerne l  (s, Q) ins tead  of Kerne l  (R), where R is g iven b y  (1)). 

I f  J t  is a l inear  subspace  of A t for each t, let  us define 

l im Jt - {x(s)]x 6 A, x(t) 6 Jt for all t}. 
t--~ S 

The  topo logy  of ~ is t hen  given b y  the  following theorem,  the  proof  of which follows im- 

med ia t e ly  f rom the  defini t ions (and Theorem 1.1): 

THEOREM 1.2. Let A be maximal. I f  W c ~,  we denote by Wttheset (Q6~t[ (t, Q) 6 W}. 

An  element R = (to, QO) o / A  belongs to the closure o/ W i /and  only i/ 

Kerne l  (Q0)~ l im { [7 Kerne l  (S)}. 
t-->t o Se Wt 

(I/  Wt is void, N Kerne l  (S) - A t ) .  
S e  Wt 

COROLLARY. I / A  is maximal and A t is a simple dual C*-algebra (3) /or each t, then 

is homeomorphic with T. 

Proo/. I t  is well  known(a)  t h a t  each At  contains  on ly  one e lement  in this  case. Now 

a p p l y  Theorems 1.1 and  1.2. 

(i) S, IA denotes the restriction of S'  to A. 
(2) See, for example, Theorem 1, p. 274 of [11]. For C*-algebras the hypothesis of a unit element, 

occurring in this reference, is inessential. 
(3) A C*-algebra is dual if it has a faithful representation by completely continuous operators. A 

simple dual C*-algebra is one which is isomorphic with the algebra of all completely continuous operators 
on some Hilbert space. 

(4) This is proved just as in the finite-dimensional case. 
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L]~MMA 1.9. I /  B is any C*-algebra, W a/ami ly  o/closed two-sided ideals o / B ,  and 

J = ['l I,  then 
I e W  

]lx/JlI=sup IIx/Ill (xeB).  
I ~  W 

Proo/. The na tu ra l  homomorph i sm of B / J  into the  C*-direct sum E B / I  is an  iso- 
I E W  

morphism,  hence an isometry.  

L e m m a  1.9 could be rephrased  as follows: I f  {I~} is a decreasing net  of closed two- 

sided ideals of B, and  J = N I~, then  

IIx/Jll = limllx/I~ll (xeB).  

The corresponding l e m m a  for increasing nets  is val id  in a general  Banach  space; and  its 

proof  is ex t remely  e lementary .  

THEOREM 1.3. Suppose that all A t are the same C*-algebra B; and that A consists o/ all 

norm-continuous functions on T to B which vanish at in/inity. Then the topology o / ~  is that 

o / T •  B. 

Pro@ B y  Theorem 1.1, ~ coincides as a set  wi th  T • /~ (see the r emark  following 

Theorem 1.1). 

I .  Suppose t h a t  
(4, Q~)-> (to, Qo) in A. (2) 

I f  t o did not  belong to the closure of {4}, we could find an x in A with x (t~) = 0 for all 

and  QO(~,) ~ 0; bu t  this would contradic t  (2). Therefore  t o E {t~}; and  the  same holds for any  

subne t  of {t~}. Hence  
4--~t o in T. (3) 

Le t  fl be any  e lement  of [7 Kerne l  (Q~); and choose an x in A whose value is fi through-  

out  some neighborhood of t 0. Then,  b y  (3), xCKerne l  (4, Q~) for all large enough g; so 

t h a t  b y  (2) x E Kerne l  (to, QO), f rom which fo]lows/~ E Kerne l  (Q0). This shows t h a t  ['1 Kerne l  

(Q~) ~ Kerne l  (Q0), t h a t  is, Q0 belongs to the closure of {Q~} in /~ .  Since the  same holds for 

a n y  subnet ,  we have  shown 
Q~__~QO in /~. (4) 

Now (3) and  (4) give 
(4, Q~)--~ (to, Q0) in T x / ~ .  (5) 

I I .  Now assume (5), t h a t  is, (3) and  (4). Le t  x be any  e lement  of ['1 Kerne l  (4, Q~); then  

x(t~) e K e r n e l  (Q~) for each ~. (6) 
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B y  (3) and  the  norm-con t inu i ty  of x, for each s > 0 there is an  ~0 such t h a t  

This and (6) combine to give 

IIx(t~) -- x(to)]l < e for all r162 sr 0. 

IiQ~(t~ < s for a>-ao. 

Applying L e m m a  1.9 to the last  inequali ty,  we have  

II x (to)/N Kernel  (Q~)II < (7) 

But ,  b y  (4) [7 Kernel  (Q~)~ Kernel  (Q0); so t h a t  f rom (7), IIQ~ < e. By  the arbi t rar iness  
P~0 

of e, this gives Q~176 = 0, or x E Kerne l  (to, Q0). We have  proved  t h a t  

[7 Kernel  (t~, Q~) ~ Kernel  (to, Q0), 

hence t h a t  (to, Q0) belongs to the  closure of {(t~, Q~)} in z~. Since the  same holds for any  

subnet  of {(t~, Q~)}, (2) mus t  hold. 

Now I.  and  I I .  show t h a t  (2) and  (5) are equivalent .  This proves  the  theorem.  

Now let A be a full a lgebra of opera tor  fields on T with components  {At}, and let B 

be the  max ima l  full a lgebra of opera tor  fields (with components  {At} ) which contains A. 

Theorem 1.2 gives us the  topology of /~. The following l emma  then  gives t h a t  of A, if we 

observe (Theorem 1.1) t h a t  each T in /} is still irreducible when restr icted to A. 

LEMMA 1.10. Let B be any C*-algebra, and A any C*-subalgebra o/ B such that T I A  

is irreducible/or each T in 8.  Introduce into B the equivalence relation ~ such that T ,,~ S i/ 

and only i/ T I A ~- S I A. Then: 

(i) Every R in A is o/ the /orm T I A /or  some T in B. Thus there is a natural identi/ication 

o / ~  with the set o/equivalence classes B / ~ .  

(ii) With this identification, the topology o/z~ coincides with the quotient topology o/B/, ,~ 

derived/rom the topology o/ B. 

Proo/. To prove  (i) we repea t  the a rgument  of the last  pa rag raph  of the  proof of 

Theorem 1.1. The only mildly non-tr ivial  pa r t  of the  proof  of (ii) consists in showing t h a t  

if W is a closed subset  o f / }  and  a union of ~ classes, then  l~ (the set of equivalence classes 

contained in W) is closed in A. Let  I = {x E B I Tx = 0 for all T in W}, S E/}, and  S I A be 

an  e lement  of the  closure of l~. Then A f l  I ~ Kernel  (S); so t h a t  S IA induces an  irreducible 

representat iort  S '  of A / A N  I ~ A / I  ~ B / I ,  which extends  to an  irreducible representa t ion  

T '  of B / I  acting in the same space as S' .  I f  T is the  e lement  o f / }  induced b y  T ' ,  we have  
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T 6 W  (since W is closed), and T I A = S [ A .  So S ~ T 6 W ,  whence Sf iW,  o r S [ A f i ~ V .  

Thus l~ z is closed. 

COROLLARY. 1 / A  is a/ull algebra o/operator fields (on a base space T) whose component 

algebras are all simple dual C*-algebras, (i) then .4 is Hausdor//. 

Proof. I f  B is the maximal  full algebra of operator  fields containing A, /~ ~ T by  the 

Corollary to Theorem 1.2. I t  is easy to show that ,  in the present case, the equivalence rela- 

t ion ~ of Lemma 1.10 is a closed subset of T • T, and tha t  each equivalence class is 

compact .  So T / ~  is locally compact  and Hausdorfi .  Now invoke L e m m a  1.10. 

1.3. Subalgebras of algebras of operator fields 

We conclude this chapter  with an interesting consequence of Glimm's generalization 

[5] of the Stone-Weierstrass Theorem. 

I f  R is a relation, we write xRy  to  mean tha t  the pair  (x, y) belongs to R. 

DEFINITIO N.  Let  A and B be C*-algebras. An  (A, B) correlation is a relation R 

contained in A • B such that ,  for some third  C*-algebra C and some *-homomorphisms 

] and g of A and B respectively onto C, we have 

xRy  if and only i f / (x )  = g ( y )  (for all x in A and y in B). 

An  (A, B) correlation can also be described as a closed *-subalgebra R of the direct 

product  algebra A • B such tha t  {x I (x, y) 6 R for some y)  = A and {y] (x, y) 6 R for some 

x }  = B .  

Now let B be a maximal  full algebra of operator  fields on a base space T, with compo- 

nent  algebras {At}. I f  r and s are distinct points of T and R is an (A~, A~) correlation, we 

define 

B (r, s; R) = {x6B[  x(r) Rx(s) }. 

Clearly B (r, s; R) is a full algebra of operator  fields with the same component  algebras A t. 

T• E O~E • 1.4. (Stone-Weierstrass-Glimm).  Let B be as in the preceding paragraph, 

and A any full algebra of operator fields contained in B, with the same components (A t}. Then 

A is the intersection of those B(r, s; R) (where r =#s and R is an (At, As) correlation) which 

contain A. 

Proof. Let  A ~ be the  iuterseetion of all those B(r, s; R) which contain A. Adjoin(2) 

(1) See footnote (a) on p. 238. 
(2) If A ~ already has u unit element, A ~ is the direct product of A ~ with the one-dimensional C*. 

algebra. 
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to  A ~ a unit  element 1 not  a lready in A ~ getting the C*-algebra A ~ Let  A 1 be the C*- 

subalgebra of A ~ spanned by  A and 1. 

Le t  us denote by  P (A ~ the weak *-closure of the set of all pure states (i.e., indecompo- 

sable positive linear functionals / w i th / (1 )  = 1) of A ~ Suppose now t h a t  / and g are distinct 

elements of P(A  ~ whose restrictions to A 1 coincide. We shall obtain  a contradiction. 

Suppose / I  A~ # 0 .  T h e n / I  A~ is a weak *-limit of pure states {h~} of A~ and, for each 

v, Theorem 1.1 enables us to write 

h~(x) = h: (x(t~)), (S) 

where t~ 6 T and h~ is a pure state of Ate. I f  t~-> ~ in T, then by (8) h, (x) --~0 for each x in 

A ~ w h e n c e / ~ 0  on A ~ which was no t  the case. So t~-~-> c~, and we m a y  pass to a subnet  

and assume tha t  t~---~t in T. Then, whenever xEA ~ and x(t) =0, we have by  (8) /(x) = 

lim h~(x) = 0; so tha t  / induces a continuous positive linear f unc t i ona l / '  on At: 

/ (x)=/ ' (x( t ))  (x6A~ (9) 

I f / - ~  0 on A ~ (9) is tr ivially t rue ( t a k e / '  = 0). So we m a y  always assume tha t  / has the 

form (9). Similarly, 

g(x)=g'(x(s)) (xeA~ (10) 

where s 6 T and g' is a continuous positive linear functional on As. 

Assume t h a t  t = s. Since /-= g on A, and A is a full algebra of operator  fields, (9) and 

(10) imply t h a t / = ~ g  on A ~ and  hence on A ~ This contradicts  the distinctness of / and  g. 

Assume t h a t  t # s. Let  U be the *-representation of A with cyclic vector  ~ such tha t  

/(x) = g ( x )  = (Uz~, ~) for x in A. By  (9) and (10) U,  = 0  if either x(t) =0 or x(s) = 0 ;  so U 

induces representations U' and U" of At and A, respectively. Clearly range ( U ) =  range 

(U')  = r a n g e  (U"), and 

Ux(t) = U~s) for x in A. (11) 

Thus U defines an  (A t, As) correlation R (aRfi if and only if U~ - Uj ) ,  and A c B(t, s; R). 

I t  follows t h a t  A ~  B(t, s; R), so tha t  (11) holds for all x in A ~ Thus, by  (9) and (10), / 

and g coincide on A ~ and hence on A ~ This again contradicts the distinctness of / and  g. 

Thus we have reached a contradiction; and we conclude tha t  A 1 separates the elements 

of P(A~ By  Theorem 1 of [5], A ~ = A 1. Since 1 r ~ this implies t ha t  A ~ = A. 

COROLLARY. (1) A /ull separating algebra o/operator fields is maximal. 

(1) For the definition of "separating" see the paragraph following Lemma 1.7. In case each eompo- 
nent algebra is dual, this Corollary is essentially due to Kaplansky ([8], Theorem 3.3). 
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II. The representation of a C*-algebra as an algebra of operator fields 

2.1. The regularized transform of a C*-algebra 

For  this chapter  we fix an arb i t rary  C*-algebra A. 

Can A be represented as a full algebra of operator  fields on some base space T, with 

components  At? The answer is tr ivially "yes", unless the components  A t are restricted in 

some way. I f  the At are all required to be primitive, (1) the answer in general is "no" .  (3) 

But  if we require only tha t  the t for which At is primitive be dense in T, then  the answer 

is always "yes". I n  this section we construct  this representat ion of A. 

As we mentioned before, the dual space A is the space of all un i ta ry  equivalence classes 

of irreducible *-representations of A, equipped with the hull-kernel topology. (3) Sometimes 

it is convenient  to consider the space A of all primitive ideals (i.e., kernels of elements of 

~) ,  also equipped with the hull-kernel topology; this we will call the ideal dual space. 

-4 is obtained, bo th  setwise and topologically, by  identifying elements of ~ with the same 

kernel. B y  the transjorm of an element a of A we mean the funct ion T - ~  T a On 2~ (or the 

funct ion I--->a + I on A, according to context).  

I f  R is any  *-representation (4) of A, the funct ion Nn on A defined by  1VR (x) = 11Rxll 

is called the norm-junction of R. The space of all norm-funct ions of *-representations of 

A, equipped with the topology of pointwise convergence on A, will be called ~ .  The follow- 

ing lemma is easily verified: 

LEMMA 2.1. I /  {/V ~} is a net o/norm-junctions and lim/V~(x) = M ( x )  /or all x in A,  
i 

then M is the norm-junction o/some representation. 

COROLLARY. Tl is a compact Hausdorjj space. 

Proo/. This follows from Tychonoff ' s  theorem, the preceding lemma, and the fact  

t ha t  M(x) <~ Ilxll for x in A, M in ~ .  

We now define ~ r  as the closure in ~ of the set of all norm-funct ions Na  associated 

with elements R of ~ .  B y  the preceding corollary ~r  is a compact  Hausdorff  space. To 

each N in ~ let A N = A/IN,  where IN is the closed two-sided ideal (x I/V(x) = 0}; and to  

each x in A, associate the operator  field 2 on ~ r  defined by  2(N) = X/INEAN. The family 

of all 2 (xEA) will be called z~. I t  is clearly a full algebra of operator  fields on A~ (with 

(1) A C*-algebra is primitive if it has a faithful irreducible representation. 
(2) Indeed, by the Corollary to Lemma 1.10, a CCR algebra whose dual space is not Hausdorff 

cannot be isomorphic to a full algebra of operator fields all of whose component algebras are primitive. 
(3) See [1]. 
(4) The zero representation is admitted as a *-representation of A. 
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component algebras {AN}), and is isomorphic with A. By the definition of At, {N[ A N is 

primitive} is dense in At. 

DEFINITION. The compact Hausdor/f  space Ar will be called the regularized dual 

space of A. The operator field 2 is the regularized transform of x; and A is the regularized 

transform of A. 

2.2. The Hausdorff compactitlcation of A. 

For the applications of our theory it is very useful to observe tha t  ~ r  can be obtained 

by  another construction, which uses the topology of A and nothing more. For this construc- 

tion, let us note tha t  A is always locally compact in the following sense: 

DEFINITION.  A (not necessarily Hausdorff) topological space X is locally compact 

if, to each x in X and each neighborhood U of x, there is a compact neighborhood of x 

contained in U. 

THEOREM 2.1. (1) For every C*-algebra A, A is locally compact. 

Proof. Let U be an open neighborhood of an element T of .4. By  the definition of the 

hull-kernel topology there is an element a of A such tha t  II Tall = 1 and S~ - 0 for all S ir~ 

A - U .  Let V={S6AIHSaH>~�89 w={s6~]Hs~H >�89 By Lemma 4.3 of [8], V is 

compact. Since S--->]]S~I ] is lower semi-continuous (Lcmma 2.2 of [1]), W is open. Since 

T E W c V, V is a compact neighborhood of T contained in U. 

Now in a separate note [2], we have given a general construction for passing from a 

locally compact (not necessarily Hausdorff) space X to a compact Hausdorff space H(X). 
Let us review tha t  construction. Starting with a locally compact space X, we define C (X} 

as the family of all closed subsets of X. For  each compact subset C of X and each finite 

family :~ of non-void open subsets of X, let U (C, :~) be the set of all Y in C (X) such t ha t  

(i) Y N C = A ,  and (ii) Y 0 B 4 s  for each B in :~. The set of all such U(C, 5) forms a 

basis for the open sets of a topology for C (X); and C (X) with this topology is a compact  

Hausdorff  space. Now H(X) is defined as the closure in C(X) of the family of all closures 

{x}- of one-element subsets of X. Being a closed subset of C(X), H(X) is compact and 

Hausdorff. As in [2], this H (X) will be called the Hausdorf] compactification of X. 

A net {x~} of elements of X is primitive if x~--~y whenever there is a subnet {x~,} of 

{x~} such that  x;->y. By the limit set of a net {x~} we mean the set of all y such tha t  x~---~y. 

(1) See p. 235 of [8] for the  case t h a t  fl~ is Hausdorff .  I t  is s ta ted  on the  same page of [8] t ha t  fl~ 

need no t  be locally compact  in the general case. Professor Kap lansky  has  informed the a u tho r  that, 

that statement was an error. 
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I t  is shown in [2] that  H (X) coincides with the family of all those subsets of X which are 

the limit sets of some primitive net of elements of X. 

THEOREM 2.2. The space 7t o/all norm-/unctions on A (with the topology o/pointwise 

convergence) is homeomorphie with the space C (~) o/all closed subsets o / 4  (or, equivalently, 

with the space C (zt) o] all closed subsets o] ~). The homeomorphism is implemented by the 

mapping M which sends an element Y o /C  (4) into the norm-/unction M r given by 

My(a)  = sup IISall (aEA). (1) 
s E r  

The image o] H (~) under M is precisely the regularized dual space ~r. 

Proo/. By Lemma 1.9, the right side of (1) is Ila/III, where I = f'l Kernel (S). Hence 
S e Y  

M r  is a norm-function. Conversely, since every norm-function is of the form a--+ila/IlI 

(for some closed two-sided ideal I), and hence equal to Mr  where Y = {SE4  ]Kernel (S) ~ I}, 

the range of M is all of ~/. Let Y and Z be distinct elements of C (4); m fact, let T E Y - Z. 

Since Z is closed there is an a in A for which T a =4= 0 and Sa = 0 for all S in Z. But then 

Mz(a) = O, and Mr(a) # O. So M is one-to-one. 

By the compactness of ~/ (Corollary of Lemma 2.1), M will be a homeomorphism if 

it is continuous, i.e., if Z--->Mz(a) is continuous on C(A) for each a in A. Fix a; and let Y 

be in C(~) and e > O. By Lemma 4.3 of [8], C = {sedl IISoll ~>Mr(a) + e} is compact in 

A; so that  W = {ZE C(4 ) IZ  N C = A }  is a neighborhood of Y in C(A) on which Mz(a) <~ 

Mr(a) + e. I t  follows that  Z-~Mz(a) is upper semi-continuous. Now let T be an element 

of Y such that  ]]T~I I > M r ( a ) -  1~. By the lower semi-continuity of s--~IiSc~ H (Lemma 

2.2 of [1]) there is a neighborhood U of T on which IisaiI > Mr(a) - ~. Thus, if W' is the 

neighborhood of Y in C (-~) consisting of all Z in C (A) which intersect U, we have Mz (a) > 

Mr(a) - s  for all Z in W'. I t  follows that  Z~+Mz(a) is lower semi-continuous. Being both 

lower and upper semi-continuous, Z--~Mz (a) must be continuous on C (4). 

I t  remains only to show that  the image of H (4) under M is 4 r. This follows immediately 

from the fact that, if T E d  and Y = {T}-, then M r  is the norm-function of T. Thus the 

proof is complete. 

In  view of Theorem 2.2, we may sometimes identify the regularized dual space 4 r 

with the Hausdorff compactification H (4) of 4 .  

I t  is of some interest to observe that  the compact Hausdorff topology of C(4)  can 

be transferred to a compact Hausdorff topology for the space of all closed two-sided ideals 

of A, if we use the natural one-to-one correspondence between the latter space and C (~). 



2 4 6  j. 1K. G. FELL 

T~EO~EM 2.3. The regularized trans]orm A o~ a C*-algebra A is a maximal/ull  algebra 

o/ operator /ields i/ and only i / the ideal dual space ~4 is Hausdor//. 

Proo/. Let A be Hausdorff. Then l r  is just the one-point compactification of A (see 

Theorem 2.2); and z~ is the algebra of all transforms of elements of A. To show tha t  A is 

maximal,  it suffices by Theorem 1.4 to show that  there are no correlations between the 

values of the 2 in _A at  different points. Such a correlation would imply tha t  there were 

two distinct points I and J of A, and an irreducible *-representation T of A whose kernel 

contained both I and J .  But  then K = Kernel (T) would belong to the closures of both 

{I} and {J}; and ~f would not  be Hausdorff. Hence there are no correlations, and A is 

maximal.  

lqow assume tha t  z~ is not Hausdorff. Then there is a primitive net {_L,} of elements of 

z~ whose limit set Y contains two distinct ideals J and K. Since closed sets separate points 

in A, one of {J} and {K} does not contain the other in its closure; say K ~ {g}- = Z. Thus 

Z and Y are two elements of ~r  (1) with Z c Y, Z 4 = Y. I f  M is the mapping of Theorem 2.2, 

the fact tha t  Z c  Y implies tha t  Mz<~Mr. So there is a *-homomorphism F of A r  onto 

A z  such tha t  5(Z) - F(g(Y) )  for all a in A. This, however, is a correlation between the 

values of the 5 at  the distinct points Z and Y of A'.  So A is not maximal.  

COROLLARY. 1/ 2[ is Hausdor//, the algebra o/ all trans/orms o/ A is closed under 

multiplication by bounded continuous complex/unctions on A .  

III. C*-algebras and fibre bundles 

3.1. Extension of matrix units 

We begin with two lemmas leading to a theorem which enables us to extend a finite 

system of "matr ix  units" throughout a neighborhood when they are given at  a point. 

Throughout this section we fix a full algebra A of operator fields on a locally compact 

Hausdorff base space T, with component algebras {At}. 

L E P T A  3.1. Let s be an element o/ T, and let 7q . . . .  ,7~ be a finite number o/ pairwise 

orthogonal non-zero projections in As. Then there exist a neighborhood U o/ s, and n elements 

Pl . . . . .  p~ o/ A,  such that 

(i) p,(s) =ze, (i = 1, 2 . . . . .  n); 

(if) for each t in U, the Pt (t) . . . . .  p~ (t) are pairwise orthogonal non-zero projections in A t. 

The proof of this lemma is essentially contained in Par t  A of the proof of Lemma 2.5 

of [1]. 

(1) y 6fig in v i r t ue  of t he  r e m a r k  preced ing  T h e o r e m  2.2. 
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L E ~ M i  3.2. Suppose  that sE T,  7r I and zr 2 are projections in As, and oc is an element of 

A s such that ~*:r =Tel, :r =zr 2. Suppose  further that Pi and P2 are elements of A such that 

(i) pi(s)  =7e~(i = l ,  2); and 

(ii) there is a neighborhood U of s such that Pi (t) and P2 (t) are projec t ions /or  all t in  U. 

Then  there is an  element q in A ,  and  a neighborhood V of s, such that q(s) = o~ and 

(q*q)(t) =Pi ( t ) ,  (qq*)(t) =p~(t )  for t in  V. 

Proof.  Choosing an e lement  h'  in A such t h a t  h' (s) = ~, and sett ing h = p~h'p l  , we have  

h(s) = ~ J r  1 = ~, (1) 

and,  ior  t in U, 

(p2h) (t) = (h pl)  (t) = h(t).  (2) 

Now consider the  posi t ive square root  g = ( h ' h )  t. We have  b y  (1) 

g (8) = ( h  ( s ) )  $ h (8)) "~" : (0~ :~ <x) ~ : :TT 1 : P l  (8) .  ( 3 )  

For  t in U, b y  (2) 

( h ' h )  (t) = P a  (t) (h" h) (t)p~ (t); 

hence, since PI (t) is a projection,  

g ( t ) = p l ( t ) g ( t ) p l ( t  ) ( t e U ) .  (4) 

Now b y  (3) (g - Pi) (s) = 0. Hence,  narrowing U if necessary we m a y  assume t h a t  

I f (g-p~)( t )H <~ (te u ) .  (5) 

Let  ~ be a continuous non-negat ive-valued funct ion on the  reals such t h a t  ~ (0) = 0 and  

~(r)=-lr if ] r - - l l~<  I.  

Forming  the  e lement  q =h.9)(g) ,  we have  for t in U 

(q(t))* q(t) = ~(g(t)) h(t)* h(t) q~(g(t)) = (9?(g(t)) g(t)) 2 = (~fl(g(t))) ~, (6) 

{~ if r = 0 ,  
where ~0(r) = r 97(r) = if [r - 1 [ ~ ~. (7) 



2 4 8  : r .  M .  G .  F E L L  

Combining (4), (5), and  (7), we find t h a t  ~o(g(t)) =pl(t) for t irt U; so, b y  (6), 

(q(t))*q(t)=p~(t)  (tEU). (8) 

N o w  q(s )  = h ( s ) ~  (g (s)) = . ~ q  = a; (9) 

so (qq*) (s) = ~ *  = z~ 2 = P2 (s), t h a t  is, 

(qq* - P2) (s) = O. (10) 

On the other  hand,  for t irt U, b y  (2) 

P2 (t) (qq*) (t) = P2 (t) h (t)cf (g (t))q* (t) = h (t)cf (g (t)) q* (t) = (qq*) (t). (11) 

I n  view of (8), q(t) is a par t ia l  i sometry  for t in U; thus,  (qq*)(t) is a projection,  which b y  

(11) is contained in p2(t). I f  (qq*)(t)~=p2(t) for some t in U, then  [I(P2- qq*)(t)l[ = 1. B y  

(10) and  the cont inui ty  of I [ (P2-  qq*)(t)l[, the  neighborhood V can be nar rowed so t h a t  

for t irt U this cannot  happen.  Then,  for all t in U, 

(q (t))* q(t)  = p~ (t), q (t) (q (t))* = p~ (t); 

and this with (9) completes  the proof. 

T ~ E O ~ E M  3.1. Suppose that s E T, and that B is a finite dimensional *-subalgebra o/ A s. 

Then there is a neighborhood U o/ s, and a mapping fl-+ x~ of B into A,  such that 

(i) x~(s) =fl for all fl in B; 

(ii) /or each t in U, fl-->x~(t) is a *-isomorphism of B onto a finite-dimensional *-sub- 

algebra o / A  t. 

Proof. Let  B ~ . . . . .  B T be the minimal  two-sided ideals of B; and  let {fi~k}S.k=l ... . . .  

form a basis of B t, where 

i i i " 

Using L e m m a s  3.1 and 3.2, we choose a neighborhood U of s, and elements  p~- 

( i = 1  . . . . .  r; j = l ,  . . . , n ~ ) a n d  q ~ l ( i = l  . . . . .  r ; j = 2  . . . . .  ni) of A such t h a t  

(i) p~(s)=fl~, q~l (s)=fl~l; 

�9 i (ii) for each t in U, the  p} (t) are ni or thogonal  non-zero projections; 

(iii) for each t in U, i = 1 ,  . . . ,  r, and j = 2  . . . . .  n~ 

(q~ (t))* r (t) =p~ (t), 

q~z (t) (q/1 (t))* =p~ (t). 
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Now define * * * * q~k =q J1 (qkl) �9 We easily verify tha t  the linear map of B into A which 

carries fl~ into q~k has the required properties. 

3.2. Homogeneous C*-algebras 

DEFINITION. A C*-algebra A is homogeneous o/order n if every irreducible *-repre- 

sentation of A is of the same finite dimension n. 

Here is a way of constructing homogeneous C*-algebras from fibre bundles. Let  M n 

be the C*-algebra of all n • n matrices (with complex entries), and G~ the group of all 

automorphisms of M~ of the form a-~u- lau ,  where u is a unitary matr ix  in M~. Let  T 

be a locally compact Hausdorff space, and B a fibre bundle ([12], p. 9) with bundle space 

B, base space T, fibre space Mn, and group Gn. I f  p is the canonical projection of B onto 

T, A t  = p-1 (t) (tE T), {Vj} is a covering of T by  coordinate neighborhoods, and {~j} the 

corresponding coordinate functions ([12], p. 7), we can transfer to each fibre A t the algebraic 

operations and the C*-algebraic norm of M~ via the mapping zt--~q0s(t , ~) (where j is so 

chosen tha t  tE Vs); this makes each A t into a C*-algebra isomorphic with M~. The opera- 

tions in A t thus defined are clearly independent of the choice of ]. 

Now let C0(B ) denote the family of all continuous cross-sections x of B which vanish 

at  infinity (that is, x is a continuous function on T to B such tha t  p ( x ( t ) ) = t ( t E T )  

and lira ][x(t)H - 0 ) .  Clearly C0(B ) is a C*-algebra under the pointwise operations and 
t-->~ 

the supremum norm. In  fact it is a maximal full algebra of operator fields (1) with component 

algebras {A~}. Thus, by  the Corollary of Theorem 1.2, C0(B ) is homogeneous of order n, 

and C0(B ) ̂  coincides with T (both setwise and topologically). 

Now the converse of this is also true: 

T~]~ORE~ 3.2. Every homogeneous C*-algebra A o/ order n is isomorphic with some 

Co(B), where B is a fibre bundle with base space 4 ,  fibre space Mn, and group Gn. 

Proo]. In  the first place, ~ is locally compact and Hausdorff by [8], Theorem 4.2. I f  

we identify A with the algebra of its transforms, A becomes a maximal  full algebra of 

operator fields on zt ([8], Theorem 4.1 and Lemma 4.3; also the Corollary of Theorem 1.4 

of this paper). Let  B denote the set of all pail's (T, ~), where T C ~  and ~E T(A).  

We shall construct a fibre bundle with bundle space B. For this we choose (i) a covering 

of ~ by open sets {U~}, and (ii) for each i a map /~ of Mn into A, such that,  whenever 

(1) See w 1.1. 

17 - 61173060. Acta mathematica. 106. Irnprim6 le 22 d~cembre 1961. 
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T E Ui, the mapping a--> TI,(~) is a *-isomorphism of M~ onto T (A). These choices are 

possible by Theorem 3.1. Now let B be the fibre bundle with bundle space B, base space 

A, projection sending (T, a) into T, fibre space M~, group G~, coordinate neighborhoods 

{U,}, and coordinate functions {~,} sending (T, a) into (T, T~,(~)). As a mat ter  of fact, 

for B to be a fibre bundle the coordinate transformations ([12], p. 8) must  be continuous 

on the intersections U, N Uj. This amounts to saying that ,  for each a in Mn, a-->gT(a ) is 

continuous on U, ~ Uj, where gT (a) = b is the element of M~ defined by  the condition tha t  

TI~(a) = Tfj(~). But this follows easily from the continuity of the norm-functions T-->II T~I I 

(xEA). 

Next, we verify without difficulty that ,  if an operator field X on ~ is continuous with 

respect to the continuity structure A (in the sense of w 1.1), then T--> (T, X(T) )  is a contin- 

uous cross-section of B, and conversely. Thus the family C0(B ) of all continuous cross- 

sections of B vanishing at  infinity coincides (1) with the maximal  full algebra of operator 

fields containing A; and this is A, since A is maximal. The proof is now complete. 

Fix an integer n and a locally compact Hausdorff space T. Two fibre bundles B and 

B' with base space T, fibre space Mn, and group G~ will be said to be weakly equivalent if 

there exists a third such fibre bundle B" such Chat (i) B and B" are equivalent in the sense 

of [12], p. 11, and (ii) B" is induced from B ~ by  a homeomorphism of T onto itself. I t  is 

easy to see that,  if B and B' are two such fibre bundles, C O (B) and Co(B' ) are *-isomorphic 

if and only if B and B' are weakly equivalent. Thus the problem of classifying all homo- 

geneous C*-algebras of given order n and with given dual space T is reduced by  Theorem 

3.2 to that  of classifying to within weak equivalence all fibre bundles with base space T, 

fibre space M~, and group G~, or, equivalently (see [12], p. 36), of classifying all principal 

fibre bundles with base space T and group G~. Generally speaking, for given n and T, there 

will exist many  inequivalent such bundles; so that  a homogeneous C*-algebra is not fully 

determined by  its order and its dual space. 

3.3. Fibre structures 

The notion of fibre structure, which we shall now introduce, lies in between the 

general notion of a continuity structure and the special continuity structures arising (as 

in w 3.2) from fibre bundles. I t  permits the "fibre" to vary  essentially from point to point 

of the base space. 

This section is confined to definitions and elementary facts. All proofs are of a routine 

nature, and are omitted in the interest of brevity. I t  seems probable tha t  fibre structures 

(1) Here we are identifying the operator field X with the cross-section T-.->(T, X(T)). 
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will eventual ly  prove to be of some interest; bu t  we have so far not  obtained any  results 

about  them substantial  enough to justify more than  passing mention.  

Le t  T be a fixed locally compact  Hausdorff  base space; and suppose tha t  a C*-algebra 

A t is given for each t in T. An  operator  field is a funct ion x on T such tha t  x( t )6At  f o r  

each t. 

D E F I N I T I O N .  A fibre clement is a triple J = (C, W, I) ,  where 

(i) C = C(Y) is a C*-algebra, called the fibre of Y, 

(ii) W = W(3) is an open subset of T, called the domain of Y, 

(iii) for each t in W, I t  is a *-isomorphism of C into (but no t  necessarily onto) At- 

D E F I N I T I O n .  A fibre structure (for T, {At}) is a family B of fibre elements such t ha t :  

(i) For  each t in T, each s > 0, and each pair  of elements ~1 and ~2 of 21t, there is a~ 

fibre element (C, W, 1) in B, and dements/31,/3 2 of C, such tha t  te  W and IIIt</3 /- < 

(i = 1, 2); 

(ii) I f  3 = (C, W, I)  and 3 '  = (C', W', I ' )  are in B, t 6 W n W', ~ fi C, ~' e C', e > 0, a n d  

III,  - I; '11 < then IIIs  - I  '11 for all s in some neighborhood of t. 

For  the t ime being we fix a f ibre s tructure B (for T, {21t}). 

DEFINITION.  An operator  field x is continuous at  a point  s of T (with respect to B)" 

if and only if, for each e > 0, there exists a fibre element (C, W, I)  in B such tha t  s 6 W, 

and an  ~ in C such tha t  I]It~ - x ( t ) ]  I < e for all t in some neighborhood of s. 

P R O r O S I T I O N  3.1. Let W be an open subset o / T .  The/amily :~ o/operator fields which, 

are continuous everywhere on W (with respect to B) is closed under addition, multiplication,. 

involution, multiplication by continuous complex/unctions on W, and under the operation of 

passing to unilorm limits. I f  x6  :~, t~llx(t)ll is continuous on W. 

Let  C0(B ) denote the family of all operator  fields x which are continuous everywhere. 

on T with respect to B and for which lim Ilx(t)ll = 0. F rom Proposi t ion 3.1 we see thai;  
t-+r162 

Co(B ) is a maximal  full algebra of operator  fields (with the A t as component  algebras).  

A n y  cont inui ty  s tructure ~ which is str ict ly equivalent  to C0(B) (i.e., such tha t  C0(B ) = 

C0(~); see w 1.1) will be said to be derived/rom ~. 

I f  each A t is isomorphic with M~ (for some n independent  of t), then any  fibre s t ruc ture  

(for T, {At}) is str ict ly equivalent  to some fibre bundle with base space T, fibre space  

Mn, and  group G~ (see w 3.2), in a sense which the  reader can easily make precise. 

The question now arises: Are all cont inui ty  structures derived from fibre s t ructures?  

I n  general the answer to this is "no" .  For  example, it is no t  hard  to construct  a cont inui ty  

structure in which one of the component  algebras, say As, is the algebra of all complex: 
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.continuous funct ions  on [0, 1], while al l  the  o ther  componen t  a lgebras  are  f in i te-dimen-  

:sional. Since A~ has  no non- t r iv ia l  f in i te -d imensional  *-subalgebras ,  i t  is clear t h a t  in th is  

case  there  exis t  no fibre s t ruc tures  a t  all .  On the  o ther  hand,  if each A~ has  "enough"  

~ini te-dimensional  *-subalgebras ,  the  answer  is "yes" .  

THEOREM 3.3. Suppose that each A t has the /ollowing property: To each ~, ~ in A t 

and each ~ > O, there are a ]inite-dimensional *-subalgebra C o / A t ,  and elements ~', ~' o / C ,  

 ueh that I1 ' - < and  I1 ' - < e. 

Then every continuity structure (/or T, (A~}) is derived/rom a ]ibre structure. 

The proof  of th is  t heo rem falls  ou t  of Theorem 3.1 a lmos t  immedia te ly .  

I f  each A t is dual ,  the  hypothes i s  of Theorem 3.3 is obvious ly  satisfied. 

IV. Algebras with continuous trace 

4.1. Definition and elementary properties 

I f  S is a r ep resen ta t ion  of an  a lgebra  A,  H (S) will  denote  the  space of S. I f  Q is a l inear  

ope ra to r ,  d im (Q) means  the  d imension  of the  closure of the  range  of Q. Tr  (a) is the  t race  

of  the  opera to r  a. 

D E F I N I T I O N .  A C*-algebra  A will  be said to  have  a continuous trace if i t  is a CCR 

a lgeb ra  (1) whose dua l  space A is Hausdorf f ,  and  if, for each T in ~ ,  there  is an  a in A and  

H ne ighborhood  U of T such tha t ,  for al l  S in U, Sa is a one-dimensional  p ro jec t ion  in H (S). 

The phrase  "cont inuous  t r ace"  will  be jus t i f ied  in Theorem 4.1. 

LEMMA 4.1. Let A be a C*-algebra with continuous trace, U an open subset o / .~ ,  and 

an element o / A  such that Sa is a projection/or all S in U. Then S - ~ d i m  (S~) is continuous 

on  U. 

Proo/. Let  T be in U. Choose an  e lement  b of A so t h a t  S~ is a one-dimensional  projec-  

t i on  for al l  S in some ne ighborhood  of T. F u r t h e r  le t  ~1, . . . ,  ~ be or thogonal  one-dimen-  

~sional pro jec t ions  in H ( T )  whose sum is T~; and,  for i = 1, 2, . . . ,  n, le t  ~ be a p a r t i a l  iso- 

a* = Tb. According  to  L e m m a s  3.1 and  3.2 the re  are  m e r r y  in H ( T )  such t h a t  ~ * ~  =~ , ,  ~ 

e l emen t s  p~, q~ of A (i = 1, 2 . . . . .  n) such t h a t  (i) Tp~ = 7~, Tq~ = ~ ,  and  (ii) for al l  S in some 

ne ighborhood  of T, the  Sp~ are pairwise  or thogonal  pro jec t ions  and  Sq~% = Sp~, Sq~q~. = 

S~. Le t  p =}:i~1 P~. Now since Sb is one-dimensional  for S near  to  T, i t  follows f rom (ii) 

t h a t  the  same holds  for Sp.  Thus  S T is an  n -d imens iona l  p ro jec t ion  for each S suff icient ly 

(~) A CCR algebra is a C*-algebra A such that T a is completely continuous for all T in ~ and a 
in A. For the basic facts about CCR algebras, see [8]. 
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near to 50; and T~ = T~. F rom this ,  the cont inui ty  of the mapping S-->][Sp - S~II, a n d  

the fact  t ha t  Sa is a projection, we conclude tha t  S~ is n-dimensional for all S sufficiently 

close to T. 

An  element a of A is said to be boundedly represented(1) if there is an integer n such  

tha t  dim (T~)~< n for all T in 4 .  

THEOREM 4.1. 1] A is a C*-algebra with continuous trace, the map S-->Tr(Sa) ix 

continuous on A ]or all boundedly represented elements a o/ A. 

Proo/. Since the boundedly  represented elements form a *-subalgebra of A, we m a y  

as well assume tha t  a is Hermit ian.  

Fix an element of T of A. Since dim (Ta) is finite, Sp(Ta) (the spectrum of T~) consists. 

of finitely m a n y  distinct non-zero real numbers  rl . . . . .  rm, together  (possibly) with 0. B y  

Lemma 3.1 there are m elements e 1 . . . . .  e m of A such tha t  (i) for all S near enough to T,~ 

__ m r the Se~(i = 1 . . . . .  m) are m orthogonal projections, and (ii) T~ = T~, where b - ~ - 1  iei. 

Now by  Lemma 4.1 Tr(So) =E?=l r~dimSe~ has a constant  value, namely  Tr(T~), on some 

neighborhood of T. On the other hand, by  cont inui ty  of the norm, T0 = T~ implies 

lim IISo ~11 = 0. Since dim (Sb_,) is uniformly bounded on some neighborhood of T, t h e  
S-~-T 

lat ter  s ta tement  implies tha t  lim Tr (Sb_,) = 0; whence lim Tr (S~) = Tr (T a). 
S-->T S-->T 

TH]SOREM 4.2. Every GCR algebra(s) has a composition series all o/whose quotients 

are C*-algebras with continuous trace. 

Proo/. I n  view of the structure theorem for CCR algebras ([8], Theorem 6.2), it is 

sufficient to assume tha t  A is CCR with a Hausdorff  dual space, and to show tha t  A has  

a non-zero closed two-sided ideal I with continuous trace. 

By  Lemma 3 of [9] there is a non-zero positive element a of A such tha t  aAa is a 

commuta t ive  set. Let  I be the smallest closed two-sided ideal containing a. Since A is. 

CCR and A is Hausdorff ,  the same is t rue for I .  The commuta t iv i ty  of aAa implies t h a t  

dim(T~) ~< 1 for each T in A. Fur ther ,  if T E i ,  a l K e r n e l  (T). I t  follows that ,  for each T 

in Z, T~ is a positive multiple of a one-dimensional projection. Thus, if S C i ,  we m a y  a p p l y  

to the element a some suitable real continuous funct ion ] so tha t  Tf(~) is a one-dimensional  

projection th roughout  a neighborhood of S. Hence I has continuous trace. 

T ~ E o R E M 4.3. Every homogeneous C*-algebra has continuous trace. 

This follows easily f rom Theorem 3.2. 

(1) For this notion, see [1]. 
(2) For the definition of a GCR algebra, and of a composition series, see [8]. 
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4.2 .  Spatially constructed algebras with continuous trace 

All  the  vec tor  fields (see w 1.1) so far  discussed in th is  p a p e r  have  been ope ra to r  fields, 

t h a t  is, the i r  values  have  been e lements  of C*-algebras.  I n  this  sect ion we dea l  wi th  vec to r  

f ie lds  whose values  are  vectors  in H i lbe r t  spaces. 

F o r  this  sect ion we f ix a local ly  compac t  Hausdor f f  space T to  each po in t  t of which 

t h e r e  corresponds a complex  Hi lbe r t  space H t. A vector field will be a funct ion  x on T such 

s  x ( t )EHt (t E T); an  operator field will be a funct ion  a on T such tha t ,  for each t, a (t) is 

a bounded  l inear  opera to r  on H t. W e  also fix a t  the  ou tse t  a con t inu i ty  s t ruc ture  F for 

vec tor  fields (see w 1.1). Con t inu i ty  of vec tor  fields will  a lways  be wi th  respect  to  F .  I f  

~x and  y are cont inuous  vec tor  fields, (1) the  po la r iza t ion  i den t i t y  assures us t h a t  t--~ (x (t), y (t)) 

i s  continuous.  

The G r a m - S c h m i d t  o r thogona l iza t ion  process yields  the  fol lowing lemma:  

LE•MA 4.2. I /  X 1 . . . . .  X~ are continuous vector /ields such that, at some point s, the 

w 1 (s) . . . . .  x= (s) are linearly independent, then x I (t), . . . ,  x~ (t) are linearly independent /or  all 

.t near enough to s. I n / a c t  there are continuous vector/ields Yl . . . . .  y~ such that , /or  all t near 

,enough to s, the Yl (t) . . . .  , y~ (t) /orm an orthonormal set in  H t spanning the same space as 

Xl (t) . . . . .  x n  (t). 

The following easy  technica l  l emmas  will  be useful  in wha t  follows. Their  ver i f ica t ion  

is  left  to the  reader .  

L E p t A  4.3. I / Q  is a bounded operator on a Hilbert space H,  and P and P '  are projec- 

t ions with P <~ P ' ,  then 

[[P 'QP' - -PQP[]  <~ IIQ - P Q P I [ "  

I n  particular, 

IIP'Q p '  - QH <~ 2]tQ - PQP]]" 

LEMMA 4.4. Let ul, . . . ,  u~ and u~ . . . . .  u'~ be two orthonormal sets o] vectors in  a Hilbert 

space, such that Iln  - u , l l  < (i  = 1, 2 . . . . .  n )  Then 

liP'-Pll<2n , 
where P and P '  are the projections onto the spaces spanned by the u~ and the u~ respectively. 

D E F I N I T I O N .  A n  ope ra to r  field a will  be called almost / inite-dimensional (a.f .d.)  

around a po in t  s of T if, for each s > 0, there  exis t  (i) a ne ighborhood  U of s, (ii) a posi t ive  

n u m b e r  k, and  (iii) a f in i te  set  xl . . . . .  x~ of cont inuous  vec tor  fields which are  l inea r ly  

i ndependen t  a t  each po in t  on U, such tha t :  

(1) A vector field is continuous if it is continuous at all points of T (with respect to F). 
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(a) Ha(t)][~</c for t i n  U, 

(b) ]]P( t )a( t )P( t )  - a ( t ) ] ]  < s  for t in U, 

where P ( t )  is the  project ion onto the space spanned by  x 1 (t) . . . . .  x~ (t). 

L~M~IA 4.5. I]  a and b are operator ]ields which  are a.].d, around s, then a + b, ha,  ab, 

and a* are also a./.d, around s (where ~ is  a complex constant).  

P r o @  Let  s > 0. Choose a posit ive k, a neighborhood U of s, and  two finite sets x 1 . . . . .  x~ 

and  x~ . . . . .  x~ of continuous vector  fields l inearly independent  a t  each point  of U, such 

t h a t  for all t in U: 

]]a(t)][ <~ ,  [[5(t)l[ <k; 

]]P(t) a(t)P(t) - a(t)  ll < e/a; 

lIP' (t)b (t)P' (t) - b (t)II < s /6 .  

(1) 

(2) 

(3) 

(Here P (t) and P '  (t) are the  projections onto the  spaces spanned b y  x I (t) . . . . .  x ,  (t) and  

x~ (t) . . . . .  x~ (t) respectively.)  

Now the x 1 (s) . . . . .  x~ (s) need not  be l inearly independent .  Assume t h a t  

xl(s)  . . . . .  x~(s), x;(s)  . . . . .  x;(8) (4) 

are l inearly independent ,  while, for i = r + 1 . . . .  , m,  x~" is such a l inear combinat ion  of 

the x 1 . . . . .  x~, x~ . . . . .  x~ t h a t  

x7 (8) = x; (s). (5) 

Nar row the neighborhood U, if necessary,  so xl, . . . ,  xn, x~ . . . . .  x~. are l inearly independent  

everywhere  in U. Define P0 (t) as the  project ion onto the space spanned b y  x I (t) . . . .  , x~ (t), 

x~ (t) . . . . .  Xr (t); and P"( t )  as the  projectiort onto  the space spanned b y  the x~ (t) . . . . .  x~ (t), 

x~+l (t) . . . .  , Xn' (t). Ev iden t ly  

P (t) ~< P0 (t), P "  (t) < P0 (t) (t E U). (6) 

F r o m  (5) and  L e m m a  4.4, it follows t h a t  

Now, for t E U, 

l im[ lP"(t  ) - P '  (t)[[ = 0. (7) 
t-->s 

liP" (t) b (t)P" (t) - P '  (t) b ( t)P '  (t)II ~< I1 (P" (t) - P '  (t)) b (t)P" (t)II + I[P' (t) b (t) (P" (t) - P '  (t))II 

< 2 klIP" (t) - P '  (t)][. (8) 
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I t  follows f rom (3), (7), and (8) t h a t  U m a y  be fur ther  nar rowed so t h a t  for all t in U 

I]P"(t)b(t)P"(t) - b(t)ll < e/3. (9) 

Now combining (6), (9), and  L e m m a  4.3, we obta in  

liP0 (t) b (t)P o (t) - b (t)I] < 2s /3 .  (10) 

Again b y  (2), (6), and  L e m m a  4.3, 

IlPo(t) a ( t )p o (t) - a (t) l[ < ~/3. (11) 

Adding (10) and  (11), we get for t in U 

liP0 (t) (a (t) + b (t))P o (t) - (a (t) + b (t))[I < ~" 

Therefore a + b is a.f.d, a round  s. 

Observe f rom (10) and (11) tha t ,  for t in U, 

H b (t)P o (t) - b (t)II < 4s /3 ,  

]lPo (t)a (t) - a (t)II < 2 s /3.  

B u t  then  

liFo (t) a (t) b ( t )P  o (t) - a (t) b (t)II <~ II (Po (t) a (t) - a (t)) b ( t)Po (t)II § H a (t) (b ( t )P  o (t) - b (t))I] 

< 2 k s  

Therefore ab is a.f.d, a round s. 

Next ,  it follows from (2) t h a t  

lIP (t) a* (t)P (t) - a* (t) ll < v /6  (t e V). 

Hence  a* is a.f.d, a round  s. Now it is t r ivial  t h a t  the  a./.d, prope r ty  is preserved on multi-  

pl icat ion b y  a scalar. This completes  the  proof.  

D ~ F I N I T I O ~ .  An opera tor  field a is weakly continuous a t  s if, for all continuous vector  

fields x and y (or, equivalent ly ,  for all x and  y in F), the numerical  funct ion t--> (a (t) x (t), y (t)) 

is cont inuous a t  s. 

We shall say s imply t h a t  a is weakly continuous if it is weakly  continuous everywhere  

on T. The following l emma is easily verified. 

LEMMA 4.6. / /  {a~} is a sequence o/operator/ ields each o /which  is a./.d, around s and 

weakly continuous at s, and i /a~(t)--*a(t)  (in norm) uni/ormly on a neighborhood o/s ,  then 

a is a./.d, around s and weakly continuous at s. 
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LE~IMA 4.7. Suppose that a is an operator field which is a.fld, around s and weakly 

continuous at s. Then t--->]la(t)] I is continuous at s. 

Proo]. Fix s > 0; and choose a positive k, a neighborhood U of s, and continuous vector  

fields x 1 . . . . .  x~ which are linearly independent  everywhere ia  U, such that ,  for all t in U, 

I[a(t) H <k, 
I I P ( t ) a ( t ) P ( t )  - a(t)ll < s/2, (12) 

where P(t)  is the projection onto the space spanned by  the x~(t). By L e m m a  4.2, we m a y  

assume tha t  the x~(t) form an or thonormal  set for each t in U. Then the cont inui ty  at  s 

of the n 2 matr ix  elements (a(t)x~(t), xj(t)) assures us t h a t  t--+llg(t)a(t)P(t)ll is eont iauous 

at  s. Combining this with (12), we see tha t  U can be fur ther  narrowed so that ,  for all 

t in U, I]la(t)l I -IIa(s)]l I < s. This completes the proof. 

LEM~tA 4.8. Let a and b be two operator fields which are both a./.d, around s and weakly 

continuous at s. Then a + b, 2a (2 complex), ab, and a* are all a./.d, around s and weakly 

continuous at s. 

Pro@ I n  view of L e m m a  4.5, the only non-trivial  step is to  show t h a t  ab is weakly 

continuous at  s. 

Choose k > 0, a neighborhood U of s, and projections P0 (t) (t E U) as in the proof of 

Lemma 4.5, so tha t  (1), (10), and (11) hold. I f  we define 

q (t) = (Po (t)a (t)Po (t)) (Po (t) b (t)P o (t)), 

then  by  the  cont inui ty  at  s of the  mat r ix  elements of Po (t) a (t)Po (t) and Po (t) b (t)P o (t), we 

conclude tha t  q is weakly  continuous at  t 0. Bu t  by  (1), (10), and (11), 

I]q( t ) -a( t )b( t ) l  I < k s  (tEU). 

From this and the weak cont inui ty  of q at  s, we deduce tha t  of ab at  s. 

D E F I N I T I O n .  We denote by  A the family of all operator  fields a on T which are 

a.f.d, and weakly continuous everywhere on T, and which vanish at  infinity ( that  is, 

lim II a (t)II = 0). 
t-->~ 

A is a *-algebra in vir tue of L e m m a  4.8. B y  Lemma 4.7 we m a y  introduce into A the 

sup norm 

Ilall =~Plla(t)ll; 

then  by  Lemma 4.6 A is complete. I n  fact, A is a C*-algebra. 
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LEMMA 4.9. For each t, A t = { b (t) I b E A } consists o/all  completely continuous operators 

o n  H t . 

The proof is easy and is omitted. 

Using Lemmas  4.9 and 4.7, we verify: 

T H E o n e  M 4.4. A is a maximal/ull  algebra o/operator/ields, whose component algebra 

A~ at t is the algebra o/all  completely continuous operators on H t. 

T H E O R E M  4.5. A i8 a C*-algebra with continuous trace. 

Proo/. By Theorem 4.4 and the Corollary of Theorem 1.2, .4 can be identified with 

T. Thus A is CCR and d is Hausdorff .  I f  s E T, and x is a continuous vector  field not  vanish- 

ing at  s, there clearly exists an element of A coinciding on a neighborhood of s with projec- 

t ion onto the one-dimensional space spanned by  x(t). So A has continuous trace. 

Thus, to every cont inui ty  structure F for vector  fields on T there corresponds an 

algebra A with continuous trace, constructed as above, and having T as its dual  space. 

This A will be said to be derived from F.  

At  this point  it is na tura l  to ask whether  every algebra A with continuous trace is 

derived from some cont inui ty  s tructure F for vector  fields on 4 .  Also, if A is derived from 

some F,  is tha t  F in a ny  sense unique? Bo th  these questions can be answered in the negative 

by  considering homogeneous algebras (see Theorem 4.3). 

Indeed,  let T be a locally compact  Hausdorff  space, n a positive integer, and for each 

t in T let an n-dimensional Hilbert  space H t be given. I f  F and F '  are two cont inui ty  

structures for vector  fields on T (with values in the {Ht}), we shall say tha t  F and F '  are 

equivalent if for each t there is a uni ta ry  operator Ut on H t such tha t  a vector  field x is 

continuous with respect to F if and only if t-->U~(x(t)) is continuous with respect to F ' .  

I t  is left to the reader to verify tha t  there is a natura l  one-to-one correspondence between 

equivalence classes of cont inui ty  structures F (for vector  fields) and equivalence classes 

of principal fibre bundles with base space T and group U~ (all n • n un i ta ry  matrices). 

Now let F be a cont inui ty  s tructure for vector  fields on T (with values in the {H~)), 

and Bu a corresponding principal bundle with base space T and group Un. Fo rm the algebra 

A~ with continuous trace derived from F,  and let B~ be a principal bundle, with base 

space T and group (1) G~ = Un/Z,~ (see w 3.2), corresponding to AF. On the other hand, the 

na tura l  homomorphism of U~ onto G~ induces a natura l  mapping (I) which carries principal 

bundles with group U~ into principal bundles (with the same base space) with group G~; 

and it is easy to verify tha t  d)(Bu) is equivalent  to B~. Thus the passage from a cont inui ty  

(1) Zn denotes the center of Un. 
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s t ruc tu re  for vec tor  fields to  the  de r ived  a lgebra  wi th  cont inuous  t race  will  be s imilar  in 

s t ruc tu re  to  the  mapp ing  r f rom Un..bundles to  Gn-bundles. I n  par t i cu la r ,  for f ixed T and  

n,  the  quest ion whe ther  every  homogeneous  a lgebra  of degree n wi th  dua l  space T is de r ived  

from a con t inu i ty  s t ruc ture  for vec tor  fields amoun t s  to  asking whe ther  qb is onto, i.e., 

whe ther  every  pr inc ipa l  bundle  wi th  base space T and  group G~ = U~/Z n can be ob ta ined  

b y  the  mapp ing  r f rom a pr inc ipa l  bundle  wi th  base space T and  group Un. The au tho r  is 

: indebted to  Professors Spanier  and  S teenrod  for an  example  of a T for which the  answer  

to  this  quest ion is negat ive .  Again,  the  ques t ion whe ther  a con t inu i ty  s t ruc ture  for vec tor  

f ields on T is de t e rmined  to wi th in  equivalence b y  the  der ived  homogeneous  a lgebra  a moun t s  

to  asking whe ther  (I) is necessar i ly  one-to-one.  The answer  here is aga in  negat ive .  The  

same  homogeneous  a lgebra  can be  der ived  f rom essent ial]y different  con t inu i ty  s t ruc tures  

for  vec tor  fields. 

W e  conclude this  chap te r  wi th  a theorem which will  be of impor tance  in Chapter  V. 

As before,  let  T be a local ly  compac t  Hausdor f f  space, H t a H i lbe r t  space for each t in T, 

a n d  F a con t inu i ty  s t ruc ture  for T, {Ht}. 

T H E o R E ~ 4.6. Let a be a positive operator ]ield on T (i.e., each a(t) is a positive operator 

on Ht); and let s be an element o/ T such that: 

(i) a is weakly continuous at s (with respect to F);  

(ii) a(t) has a trace/or all t in some neighborhood o/s ,  and the map t---~ Tr (a(t) ) is contin- 

uous at s. 

Then  a is a.].d, around s. 

Proo/. F i x  e > 0; and  choose a p ro jec t ion  z~ on Hs, of f inite d imension  r, such t h a t  

re(s) - ~ a ( s ) n  is pos i t ive  and  

Tr  (a(s) - ~ z a  (s)ze) < s~/9. (13) 

Choose a ne ighborhood  U of s in which Tr  (a (t)) is bounded ,  and  r cont inuous  vec tor  fields 

xl  . . . . .  xr, o r thonorma l  everywhere  in U, such t h a t  P(s)  =~r (where P(t)  is the  p ro jec t ion  

on to  the  space spanned  b y  x 1 (t) . . . . .  xr(t)). 

I f  b is a posi t ive  opera to r  field and  ts U, let  us set 

b n (t) = P (t) b (t)P (t), 

b ~2 (t) = P (t) b (t) (1 - P (t)), 

b 21 (t) = (b lz (t))* = (1 - P (t)) b (t) P (t), 

b ~2 (t) = (1 - P (t))b (t) (1 - P (t)). 
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Now, for t in U, 

so b y  (13) 
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Tr(a(t))  = Tr(all(t))  + Tr(a~(t)) ;  

Tr  (a 22 (s)) < s2/9. 

(14) 

(15) 

Now the weak cont inui ty  of a a t  s implies t ha t  Tr (a 11 (t)) is continuous at  s. Combining this 

with (14) and (15), and the cont inui ty  of Tr(a(t))  at  s, we can narrow U so tha t  

Hence, since a 2~ (t) is positive, 

Tr(a2e(t)) <se//9 for t in U. 

Ila2~<t>ll < ~ V 9  for t in U. (16) 

Let  b (t) be the positive square roo t  of a (t). Then (16) becomes 

II(b'2(t))*b12(t) + (b~2(t))2ll < e2/9(tC V); 

f rom which we obtain, for t 6 U, 

lib ~ (t)II < ~/3,  lib 1~ (t) ll = IIb~l(t) ll < ~/3.  (lV) 
Hence, for t 6 U, 

lib(t) - P(t)b(t)P(t)]] = HbX2(t) + be~(t) + b22 (t)l[ < s. 

I t  follows tha t  b is a./.d, around  s. By  L e m m a  4.5, b 2 = a is also a.f.d, a round s. 

COROLLARY. I] a is a positive operator/ield on T which is everywhere weakly continuous 

with respect to F, and i /Tr(a(t))  exists and is continuous everywhere and vanishes at c~ (in 

T), then a belongs to the algebra with continuous trace which is derived/tom F. 

V. The group algebra of the 2 x 2 complex unimodular group 

5.1. Introduction 

I n  this last chapter,  with the help of the preceding chapters, we deduce the precise 

s t ructure  of the group C*-algebra of the 2 • 2 complex unimodular  group G, t ha t  is, the 

group of all complex 2 x 2 matrices of determinant  1. We shall first remind the reader of 

some concepts and results which will be used. 

The irreducible un i ta ry  representations of G have been known for some time (see [3] 

and [4]). They  are int imately related to the fractional linear t ransformations of the complex 

plane C. We note here for later use the followingfact.(1) If g= (~ fl~) EG, the eorresponding 
7 

t ransformat ion 

(1) See p. 420 of [3]. 
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~ z +  7 Z - - > ' - -  
~z+O 

of C induces a transformation of Lebesgue measure described by  the factor I~z+~t  -4. 

In  fact, if / is summable over C with respect to Lebesgue measure, 

f c/(z)dz= f c lflz + ~l" / , ~ /  dz (1) 

Now, apar t  from the trivial identity representation, which we will call I ,  the irreducible 

unitary representations of G are classified into two series, the principal and the supple- 
mentary series. The representations Tm' e of the principal series are indexed by  an integer 

m and a real number  ~. The space Hm. e of T m' e is the Hilbert  space L 2 (C) of complex func- 

tions square-summable on C with respect to Lebesgue measure; and, if g = ~' 

(T~" ~ I) (z) = I~z + ~ I m +~o-2 (~z + ~)-m i [ ~ ]  

The representations T ~ of the supplementary series are indexed by  a real number  a 

with 0 < a < 1. The space H~ of T ~ is obtained as follows. Let  H~ be the linear space of 

all complex measurable functions ] on C such tha t  

fc fc I~'- ~1-~-~" ll(~l) I lt(~')t 4 ~ < ~' 

equipped with the inner product 

('1, ]~)= f c  f c  Iz~ -z2]-2+2~ ]1(Zl)]~(z2) dzl dzr 

Clearly H~ includes all continuous functions on C with compact support; in fact these 

are dense in Hi.  I f  g =  7 

- 2 - 2 a  ~Z + 7 

Then T~ preserves inner product on H~, and so may  be extended to a uni tary operator (also 

called T~) on the completion Ho of H~. This T ~ acting in H~, is then a representation of 

the supplementary series. 

Two representations of the principal series corresponding to distinct parameter  pairs 

(m, ~) are (m', ~') are unitarily equivalent if and only if m'  = - m, ~' = - q. Representations 
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Of the  s u p p l e m e n t a r y  series corresponding to  d is t inc t  r are  inequ iva len t  to  each other,  and  

to  al l  members  of the  pr inc ipa l  series. I n  view of this,  le t  us agree a lways  to  index  the  

p r inc ipa l  series wi th  pai rs  (m, ~) for which m >~ 0, and  ff >~ 0 when m = 0. 

The  group C*-algebra C* (G) of G is def ined as the  comple t ion  of L 1 (G) wi th  respec t  

to  i ts  min ima l  regula r  norm.  (1) I t  is well  known  t h a t  the  i r reducible  u n i t a r y  r ep resen ta t ions  

of G are  in  one- to-one correspondence wi th  the  dua l  space of C* (G). Hence  this  dua l  space  

will usua l ly  be deno ted  b y  G; and  corresponding represen ta t ions  of G and  C* (G) will  be  

deno ted  b y  the  same let ter .  

Now the  hu l l -ke rne l  topo logy  of G was worked  ou t  in Chap te r  3 of [1]. The resul t  was 

as follows: 

T ~  E 0 RE ~ 5.1. Let Gp, G~ denote the principal and supplementary series o/representa- 

tions o /G respectively, so that G = G, U G~ U {I}. 

(a) The topology o/ G relativized to G, (or G~) is the natural topology o/ the parameters 

(m, e) (or (~). 

(h) Gp and  {I} are closed subsets o/G. 

(c) Let X be a subset o/ G~, with closure X (in G); and set S = {(;I T ~  �9 Then (i} 

X c d ~ U  {T ~176 T 2'~ I}; (ii) T~176 i / a n d  only i / 0  is a limit point o / S ;  (iii) T2"~ if 

and only i / 1  is a limit point o /S;  (iv) 1 6 X  i/ and only i / 1  is a limit point o/ S. 

W e  shall  now represent  C* (G) in t e rms  of i ts regular ized t r ans fo rm (see w 2.1). Le t  Z 1 

be the  space of al l  the  pa r ame te r s  (m, Q) (m a non-nega t ive  integer,  ~ real ,  r ~> 0 if m = 0), w i th  

the  n a t u r a l  topology;  Z 2 the  closed un i t  in t e rva l  [0, 1] wi th  the  n a t u r a l  topology;  Z '  t he  

d i s jo in t  union  of Z 1 and  Z2; a n d  Z the  space ob ta ined  f rom Z '  b y  iden t i fy ing  the  po in t  

(0, 0) in Z 1 wi th  0 in Z 2. Clear ly  Z is a loca l ly  compac t  Hausdor f f  space. To each w in Z 

we associate  a r ep resen ta t ion  T ~ of C* (G) as follows: (a) if w = (m, ~) 6Z1, T ~ is the  repre-  

sen ta t ion  T ~' q of the  pr inc ipa l  series; (b) if w = ~ 6Z2, 0 < ~ < 1, t hen  T ~ is the  represen ta -  

t ion  T ~ of the  s u p p l e m e n t a r y  series; (c) T 1 = T2 '~  Using Theorems 2.2 and  5.1, t h e  

reader  will  now verify:  

LEMMA 5.1. For each x in C*(G), let & be the operator/ield w--> T~ on Z.(~) Then the 

/amily A o/all & (where x 6 C* (G)) is a /u l l  algebra o/ operator /ields on Z, and is isomorphic 

with C* (G) under the mapping x-->~. 

(1) See [11], p. 235. The minimal regular norm of an element f of LI(G) is the supremum of the 
[[ Tf]l, where T ranges over all *-representations T of L l (G)- 

(2) Z is not quite the regularized dual space of C* (G); the latter consists of Z together with the 
point at infinity plus one other isolated point. The ~ of this lemma is the restriction to Z of the regularized 
transform ~. 
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I n  fu ture  we iden t i fy  C* (G) wi th  A.  The componen t  a lgebra  Aw of A a t  w is jus t  

Tw(C*(G)). Since C*(G) is a CCR a lgebra  (see, for example ,  [4]), Aw consists of al l  com- 

p le t e ly  cont inuous  opera tors  on H ( T  w) prov ided  w + 1. F o r  w = 1, we have  t h a t  H ( T  1) = 

H(Te'~ where C is the  one-dimensional  H i lbe r t  space; and  A1 consists of al l  a e ~ ,  

where a is a comple te ly  cont inuous  opera to r  on H ( T  s' 0) and  ~ is a complex  n u m b e r  (operat-  

ing on C). 

Note  t h a t  A is no t  max ima l .  Indeed ,  the  values  of the  ~ a t  (2, 0) and  1 are  correla ted:  

T~x = T2x'~162 I~ (xeC*(G)). (2) 

Clearly,  however,  because of the  inequivalence  of the  T w for di f ferent  w + 1, this  is the  

only corre la t ion  be tween  the  values  of the  & a t  d i s t inc t  po in ts  of Z. F r o m  this  observa t ion ,  

Theorem 1.4 enables  us to  d r aw  the  following conclusion: 

T n E O R E •  5.2. Let Am~x be the maximal lull algebra o/operator/ields on Z (with values 

in the {Aw}) which contains C* (G). Then C* (G) consists precisely o/ all those operator fields 

x in Am~x such that 

x(1) = x(2, 0 ) e l  (3) 

/or some complex ~. 

Theorem 5.2 embodies  al l  the  in format ion  a b o u t  C* (G) t h a t  is ava i lab le  f rom an  im- 

med ia t e  app l i ca t ion  of the  preceding chapters .  However ,  the  s t ruc ture  of C* (G) is st i l l  

no t  de te rmined .  B y  Theorem 3.3 C* (G) is de r ived  f rom some f ibre  s t ructure ;  we do no t  

y e t  know wha t  k ind  of " twis t s" ,  if any ,  th is  f ibre s t ruc ture  has.  Nor  do we know jus t  how 

the  r ep resen ta t ion  T ~ " jo ins  on"  to  T 1 = T~ '~  as a - + l - .  Indeed ,  we def ined T 1 as 

T2'~ only  in  order  to  sa t i s fy  the  condi t ion  {IT, ll = 2.0 snp(llT  ]1, IIIxll).(1) The same end 
would  have  been served b y  defining T 1 = n T 2' 0 $ m I (n, m a n y  posi t ive  integers).  B y  wha t  

n and  m is the  l imi t ing behav ior  of T ~ (as a - - ~ l - )  bes t  described? 

I t  is the  ob jec t  of the  following sect ions to  answer  these quest ions.  The answers are  

as s imple as t h e y  could be. The f ibre s t ruc ture  associa ted  wi th  C*(G) has no " twis t s " ;  

i t  is equ iva len t  to a "p roduc t  s t r uc tu r e "  (see Theorem 5.4). A n d  i t  is T 2' ~  I ,  r a the r  t h a n  

a n y  o ther  n T 2' 0~ m I ,  which describes the  l imi t ing  behav iour  of T ~ as a - ~  1 - .  

W e  arr ive  a t  these answers in four  steps.  I n  the  first  s tep (w 5.2), T 2' 0 is expressed in  

a new form, more su i tab le  for the  def in i t ion  of T 1 as the  l imi t  of T" as a--> 1 - .  The second 

s tep  (w 5.3) consists in  defining a con t inu i ty  s t ruc ture  X for vector fields on Z. I n  the  t h i rd  

s tep (w 5.4) i t  is shown t h a t  C* (G) is weak ly  cont inuous  wi th  respect  to  X.  F ina l ly ,  in 

(1) This will be clear to the reader who has verified Lemma 5.1. 
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w 5.5 we show that  C* (G) is a subalgebra of the algebra with continuous trace derived from 

X, and combine this result with Theorem 5.2 to obtain the complete description of C* (G). 

5 . 2 .  A n e w  d e s c r i p t i o n  o f  T ~'~ 

As usual, C denotes the complex plane. If / is a complex function on C, we write D 1 / 

and D J  for the first partial derivatives of [ with respect to the real and imaginary parts of 

the argument, and introduce 

D_ = �89 1 + iD2), 

D+ = �89 1 - iD2). 

(D+ and D_ are commonly called ~/~z and ~ / ~  respectively). We denote by L the family 

of all complex functions h on C with compact support which are everywhere infinitely 

differentiable; and by L 0 the subset of L consisting of those h for which 

h( z )dz=O.  (4) 
c 

Further,  E will be the set of those functions in L 2 (C) which are infinitely differentiable at 

all but  finitely many points of C; and F will be the image of E under D_. If /E F and 

(~ fl~)EG, we shall define 
g =  7 \ - - i  

(so/) (z) : l Z z +  (5) 

The reason for this definition lies in the following 1emma: 

LEMMA 5.3. Each operator T~'~ leaves E invariant. I /  l E E ,  

Proof. We recall tha t  

D_ T~ ' ~  (6) 

(T~ '~ /) (z) = (flz + (~)-~ / \ ~ +  ~]. (7) 

I t  is clear tha t  T~' o leaves E invariant. The verification of (6) is straightforward, and is 

left to the reader. 

I t  follows from (6) tha t  F is invariant under the Sg (g E G), 

LE~MA 5.4. D_ is one-to-one on E. 

Proo/. Suppose that  / E E, D_ / = 0. I t  is enough to show / = 0. 
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B y  the  hypotheses ,  / is analyt ic  (except perhaps  for f ini tely m a n y  singularities) and  

square-summable  on C. For  simplici ty of nota t ion,  let 0 be a typica l  s ingulari ty o f / ;  and  

expand ! in a Laurent series about 0, valid in {~10 < I~1 < R} = B :  

/(z)= ~ a,~zL 
n ~ c~ 

P u t  ]l(z)=E~_~r a~zL Now the different z ~ are or thogonal  in each annulus  

A={z i~<~lz l~R } ( 0 < r  

Hence  

f A  - 1  ( R - 2  ~2~+2 _ R2rt  +2 
I/l(Z)12dz = ~ I~=1 ~ Iz l~dz=la_1122~log-+ ~. 2~z[anl ~ 

n=-~ JA ~ n=-~ - - 2 - - 2 n  

Since / is square-summable  and / - / 1  is bounded on B, /1 is square-summable  on 

B; hence 

oo > ~+o+lim fA 1/1 (z)12 dz. 

(s) 

But  by  (8) this is impossible unless a~ = 0  for n < 0. I t  follows t h a t  / can have  no 

singularities in the  finite pa r t  of the  plane.  A similar a rgumen t  shows t h a t  i t  has no 

s ingular i ty  a t  ~ either. Hence  / is identical ly 0. 

L E M ~ A  5.5. LoaF.  Further, the inverse image o/ L o under D_ is dense in L2(C ). 

Proo/, Certainly L c  E, and  D_ (L) c L 0. Since L is dense in L 2 (C), the  last  s tate-  

men t  of the  l emma is proved.  

Now let h be a funct ion in L 0. I t s  Fourier  t rans form 

is infinitely differentiable and goes to  0 a t  ~ faster  t h a n  any  lwl -~. Also b y  (4) 

~(0) = 0. Hence,  pu t t ing  w 1 = R e  w, w 2 = I m  w, 

~(w) = wl(c 1 + sl(w)) + w~(c2 + ~2(w)), 

where the e, are cons tant  and l im s~(w)=0. F r o m  this it  follows t h a t  
W-->0 

yJ(w) = 2 i  -~(w) (9) 

18 -- 61173060.  Acts mathematica. 106. I m p r i m 6  le 27 d6cembre  1961. 
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is bounded, besides going to 0 at  oo faster than any ]w] -n. In particular, F belongs 

to LI(C ) N L~(C); and we may  take its inverse Fourier transform 

/(z) = ~ ~o(w) e - ~ " ~  dw. 

Then /EL2(C ) and is infinitely diffcrentiable (since ~fl vanishes rapidly at  ~ ) .  T h u s / E E .  

The lemma will be proved if we show 

D _ / = h .  (10) 

Let  m be an arbi trary function in L. Then (10) will be proved if we show 

re (D_ 1) (z) m(z) Jc h(z) m(z) 
[ .  

dz dz. 

Integrating by  parts,  we obtain 

f c (D- / ) ( z )m(z )dz=- fc / ( z ) (D+m)(z )dz .  

Now, if the Fourier transform of m is #, that  of D+m is �89 iw#(w). 

with (12) and (9), we obtain from the Plancherel formula 

i f~(w) ~v ~ (w) dw f c (n_ /) (z) = re(z) dz I 

= Sc  (w)dw = h(z) dz, 

which is (11). The proof is complete. 

In  view of Lemma 5.4, the inner product ( , 

to F.  In  fact, if h~ 

we define 

= D-I~(I, EE), 

(11) 

(12) 

Combining this 

) in L 2 (C) can be transferred via D_ 

(hi, h~)o = (/1,/~), (13) 

I lhdlo = IIt111. (14) 

Then F is an incomplete Hi]bert space under H H0; its completion will be called K. By 

Lemma 5.5, L 0 is dense in K. By Lemma 5.3, the operators Sg (g E G) are linear isometries 

of F into itself, which can be extended to unitary operators, also called So, on K. Thus 

we have: 

Lv, MMA 5.6. S is a unitary representation o/ G acting in K; and S ~  T 2" o. In/act, extend- 

ing D_ to an isometry (also called D_) o] L~(C) onto K, we have T~ ~  D=ISgD_ (gEG). 
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I n  L e m m a  5.8 we shall ob ta in  an  explicit expression for (h D he) 0 in case  hi, h 2 EL o. 
A fundamen ta l  tool  for this and  much  of wha t  follows is the  following known result: (1) 

LEMMA 5.7. If hi, h2EL, and ~ is the Fourier  t rans form of h~: 

1 f h~(z)e~Be(z~)dz, 
~ (w) = ~ Jo 

then  for  all 0 < a < 1, 

~ :  f c , z - z' l- 2 2" hl (z) h2 (z') dz dz' = 2~" ~ - -  

L E ~ M A  5.8. I] hi, h2ELo, then 

(hl, 0O=-2f f -  C c 

r((T) f I~f)l-2" (~l(W)~2(w)d"w. ( 1 5 )  
F(1 - a) J c  

log Iz - z'[ hl(Z ) h 2 (z') dz dz'. (16) 

Pro@ The proof  of (16) consists essential ly in passing to the  l imit  a - - > l -  in (15). 

Le t  us denote  ei ther side of (15) b y  I~. I n  view of (4), we have  

l - a  I-~ 

Now, if z~=z', ( [~-~ '1-=+2~ ~ ) - ~ - 2  log I~-~'l as ~ - ~ 1 - .  An easy dominated- 

convergence a rgumen t  applied to (17) therefore gives 

l im I~ 2 f f log lz_z, lhi(z)h2(z,)dzdz," (18) 
o-~l- 1 -  O" J c J c  

As in L e m m a  5.7, let ~ be the  Fourier  t r ans form of h~. B y  (4) we have  ~ (O)=O, 

so t h a t  the funct ion [ w [ - 2 ~ l ( w ) ~ ( w ) i s  bounded.  Applying  the  dominated-convergence  

a rgumen t  to  the  r ight  side of (15), we have  

Io 
= 4 z f  lwl-2~l(W) ~2(w) dw. (19> lira 

a ~ l -  i - -  G c 

Now suppose (see L e m m a  5.5) t h a t  h~ =D_]~, where /~ E E.  I f  % is the Four ier  

t rans form of ]~, we see f rom the proof  of L e m m a  5.5 t h a t  

~p~(w) = 2i q~(w) 

(1) T h i s  is  t h e  L e m m a  o n  p.  454 of [3]. 



2 6 8  ~. M. G. FELL 

Hence JclWl 2 v,(w)v2(w)dw=i Jc ,(w)v2(w)dw=i(l. h:)o. (20) 

Combining (18), (19), and (20), we get (16). 

Observe that,  if hELo, Sgh need not be in L 0. We shall need to know that  (16) is valid 

:in the more general case that  h~ is replaced by Sgh~. To see this we note the following easy 

consequence of Lemma 5.8: 

L E p t A  5.9. Let (/~} be a sequence o/ /unctions in Lo, all vanishing outside the same 

,:ompact set, all bounded in absolute value by the same number, and such that 

lim ~ [/~(z)] dz = O. 
n-->oo , ]  (2 

Then lira I[l.llo =0 .  
n-~oo 

(o~ ~ ) 6 G ,  then L E p t A  5.10. I /  h , h ' 6 L  o, and g= Y 

(S~h, h ' ) 0 = - ~  c c 

Pro@ If fl = 0, then Sgh6L o, and Lemma 5.8 applies immediately. 

Assume fl 4= 0. By the definition of Sg, it is clearly possible to pick a sequence {/n} 

of  functions in L 0 satisfying the hypotheses of Lemma 5.9, and such that,  for each n, 

h(z) +/~(z) = 0  in some neighborhood (depending on n) of z 0 = o~/fl. Define h n = h +/n" 

"]?hen, by Lemma 5.9, 

h~-~h in both L 1 (C) and in K. (21) 

:Now let ~ ,  ~, and ~' be the inverse images of h n, h, and h' under D_. By (21) 

~ - + ~  in L2(C ). (22) 

:kNow, by the definition of h~, Sr has compact support. By (1) and (4), _I~ (Sah~) (z)dz 0. 

I t  follows that  

S~hn6L o. (23) 

Since by (1) Sg is an isometry in LI(C), (21) gives 

Sghn-+Sgh in LI(C ). (24) 

Tg ~n--~Tg ~. (25) B y  (22) 2,o 2.o 

:Now, by (23), (24), (25), and Lemma 5.8, 
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(S~h, h')0 =(~'~ ~') 
= l i m  ( T ~ ' ~  ~ ' ) = l i m  (Sghn, h') o 

n n 

='i" (-  fo fo'o  ,=- =', 

(For  the  las t  step, we use (24), and  observe t h a t  fclog I~-~'[h'(~')d~' is b o u n d e d  

in z because  h 'ELo.  ) 

5.3. A continuity structure for vector fields on Z 

Le t  Z1, Z2, Z be as in w 5.1, and  L, L0, K ,  S as in w 5.2. F o r  wEZ, w ~= 1, le t  T w be a s  

in w 5.1, and  p u t  Hw =H(TW). F o r  the  case w = 1, we shall  p u t  T 1 = S e I , ( 1 )  and  H 1 = 

H (T 1) = K $ C (C being the  one-dimensional  t I i l b e r t  space). 

F o r  the  res t  of th is  p a p e r  le t  us  f ix an  e lement  h 1 of L sa t is fying 

f oh~ dz = l. (z) (26} 

F o r  each complex  n u m b e r  X and  each h in Lo, we define a vec tor  f ield x~. h on Z, wi th  values.  

in t he  Hw, as follows: 

I f  (m, @)EZ~,, 

if O < a < l ,  

x~.h (m, @ ) = 2 h i + h ;  

1[ x~.~ (~) = ~  ~;~hl + 

x~,h(1) =he~. 

(Since L o c K  , h e ~ E K e C = H r )  

DEFINITION. W e  shall  deno te  b y  X the  f ami ly  of al l  x~.h where  I ranges  o v e r  

C a n d  h over  L 0. 

Clear ly  X is a l inear  space of vec to r  fields. 

LEM•A 5.11. For each w in Z, {x~.h(w) lx~.h6X } is dense in H~. 

This follows f rom the  fac t  t h a t  L is dense in  Hw for each w6Z,  w # l ,  w h i l e  

L o is dense in K.  

Thus,  X will be a con t inu i ty  s t ruc tu re  for Z, {H~}, if the  following l e m m a  ho lds :  

(1) In w 5.1 T 1 was defined as T~'~ The present definition (which will be maintained 
throughout the rest of the paper) is unitarily equivalent to the former one by Lemma 5.6. 
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LEM~A 5.12. 

Proo/. This is 

J. M .  G. ~'ELL 

2 h ~ / ~ t i o ~  ~-~[[x~. ~(~)[[~. i~ ~ o ~ t i ~ o ~  o~ z / o ~  ~ h  x~, ~ in x .  

evident for all points of Z except 0 and 1. We consider first 

the point 1. Let x=x~.hEX.  Now 

On the other hand, for 0 < ~ < 1, 

1 (11 + i2 + 18 + i3), (28) IIx(~ = 5  

where I'=~ fc fc  [z-z'[-2+e~hl(z) h'(z')dzdz" (29) 

V ( 1  - 

For z~z', ]z-z'[-2+2o-->l as a - + l - ;  also, for all a near to 1, the integrand in (29) 

is uniformly majorized by a summable function. I t  follows from (26) that  

lim 11=[2] 2 fc  fc  hl(z) hl(z')dzdz'=]2]2" (32) 
~--~1 - 

Also, it was shown in the proof of Lemma 5.8 that  

lim l2= - 2 f c f c log l z -  z'l h(z) h(z') dz dz'. (33) 
a - ~ l  -- 

Now, since f h(z) dz = O, 
d( 2 

~2I~ = ~ ( 1 -  a ) f c  f c  []z-z']-2+Z~-l} h l ( z ) h ( z ' ) d z d z ' ' l  - o  (34) 

I t  follows as in the proof of Lemma 5.8 that  the integral in (34)approaches a finite 

limit as o - + 1 - .  Therefore 

lim I3=O. (35) 
a - - > l  - 

Combining (27), (28), (32), (33), and (35), we have 

lim Hx(a)]]=]]x(1)H. (36) 
o ' -+1  - -  
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Next  we 

1 

consider the point 0 = (0, 0) in Z. Let  ~ ,  be the Fourier t ransform of 

Then by  Lemma 5.7, for 0 < o <  1, 

lim [[x(a)[[~= lim 22a~ (~F(C;) f iwi  Olwo(w)l dw=n f [~v(w)]2dw ' (37) 
o 

where ~ is the Fourier transform of Jim x((r) /~aa=x(0)/ /~.  Thus (37) gives 
a--~0 -4- 

lira II = II  (0)11. (38) 
tr-+O + 

Now (36) and (38) complete the proof. 

As we have already mentioned, this lemma implies the following consequence: 

L]~=MA 5.13. X is a cont inu i ty  structure for vector fields on Z w i th  values  i n  the {Hw}.  

5.4. The weak continuity of  C * ( G )  with respect to X 

I n  Lemma 5.1 C*(G) was identified with the algebra of operator fields w - - > T  w onZ .  

We continue to make this identification, reminding the reader of the slight alteration in 

the definition of T 1 made in w 5.3. In  this section we prove tha t  each operator field in 

C* (G) is weakly continuous with respect to X. For this purpose it is enough to consider 

only those which arise from continuous complex functions a on G with compact support; 

for these are dense in C* (G). 

Let  a be a continuous complex function on G with compact support; and let x = x~i h, 

x '  = x~,. h. be elements of X. We shall prove tha t  the function 

is continuous on Z. 

I f  w = (m, ~) E Z 1, we have, 

w-+(T~ (x(w)), x ' (w))  

setting ] = ~ h x + h ,  ] '  = ~ ' h x + h ' ,  g =  ~' , 

(39) 

(~z + Y~/, 

Since this integral converges absolutely uniformly in m and ~, 

(39) is continuous on Z~. (40) 

Next  we shall prove the continuity of (39) a t  points w = o, where 0 < a < 1. For this 

purpose i t  is sufficient to show that ,  for each f, ] '  in L, the integral 
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(41) 

is cont inuous in a for  0 < ~ <  1. I t  is convenient  to define an  auxi l iary  funct ion 

J (a ;  z) = f c l z  - z ' l - e+e" / ' ( z  ') dz' 

(zEC, O < a ~ < l ) .  For  each f ixed z, the  funct ion J (a ;  z) is clearly cont inuous in a for 

O < a ~ < l .  We m a y  write (41) in t e rms  of J as follows: 

f o f o a(g) + dg (42) 

LEMMA 5.14. 

0 < a ~ l ,  

There exist positive constants M and p such that, /or all z and all 

i j ( a ;  z ) [ ~ < l  M 
1 +p{z{ 2-2~" 

Proo/. Le t  / '  have  upper  bound N; and  let the  suppor t  of ]' be contained in 

a circle abou t  0 of radius  R>/1 .  Then  

IJ(~; z)l<N f Iz-z'[ 2+e~dz'=K((~; z). 
Iz'l<R 

(43) 

An easy  geometr ical  a rgument ,  which we omit,  shows tha t ,  for  f ixed a, / ( (a;  z) at-  

ta ins  its m a x i m u m  value when z = 0. Now 

~ N R  2~ 
K(a; O)= 

(~ 

~r N R 2~ 
hence K(a ;  z) < - -  (44) 

(Y 

On the other  hand,  if ]z[>~2R, we have  ] z - z '  1>~�89 for I z']~<R, so t h a t  

K(~; z) ~< N :~R 2 = ~ N R  2~ (45) 

Now we ver i fy  tha t ,  if IzI/2R<~ 1, then  

2 ~ N  R 2~ xe N R 2~ 
~> - - ;  (46) 

I 
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2~NR2'~ >~ ~NR2~ \ ~ l  " (47) 
[ 
~1 + \2R] ] 

The lemma now follows from inequalities (43) to (47). 

In  view of the last lemma, the integral (42) is majorized by  

[I t ~ + ' ~ _  I\ ~-~ 1 [ {~= + Y] dg d=. (48) 

Now an easy calculation shows tha t  the expression {lfiz + Ol/( l  + I z I/2 R)}2-2~ is bounded 

uniformly for all 0 < a < 1, all z in C, and all g in the support  of a. Thus, in view of (1), 

the integral (48), and hence (42) also, is majorized by  a summable function independent 
of o. I t  follows tha t  (42) is contimmus in o, and hence tha t  

(39) is continuous for 0 < w < 1. 

(39) is continuous as w = a-->0 +.  

(49) 

(50) 
We next  show tha t  

For 0 < w  = o  < 1, 

Q(G; z) = ~ ( l z - z'r -2§ O.'hl + h' (1 - ~ ) -~ )  (z') dz' (52) where 
3c  

,o . ow i.  and g =  7 

majorized, uniformly for (say) 0 <  ~<~,  by the convergent integral 

fc fola(g)I'IZ=+~I-"l(~hxq V(i~.))',~](~z+'~ lag az, 
where k is some constant. 

Now it is a routine mat ter  to verify that ,  for any continuous function / on C 

with compact support,  

( J~ - ~' 1-2+~/(~ ') d~' =/(~). lim 
~--~0 + 2l: J c  

Applying this to Q, we obtain 
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lira Q(~; z) = (~'h 1 + h') (z). 
a->O+ 

Hence, by the Lebesgue dominated-convergence theorem, (51) gives 

lim ( a (x(a)), x ' (a))= It~+~l ~(~h~+h) {~z+~ aa(g) \ ~ ]  (2'h 1 + h') (z) dg dz 
if-->0 -~- 

=(~ .o  (x(o, o)), x'(o, o)); 

and this proves (50). 

Finally we shall show that  

(39) is continuous at 1. (53) 

We begin by observing 

(T~a (x(1)), x'(1)) = ~  ( a ( g )  dg+ (Sah , h'). (54) 
2~ J a  

For 0 < o < 1 ,  by (51) and (52) 

(Tg(x(a)), x'(a)) = I  1 + I 2 + I  a + 14, (55) 

where Zl= X fcfcfGa(g) hl(z')dgdzdz'' 

I 3 - ~ l / ( 1 - a ' , J c  f c  f~a(g) lz-z'l-~§ hl(z')d~'azaz'' 

Now I x is a particular case of the integral (41). We showed earlier tha t  that  integral is 

majorized uniformly for 0 < a ~< 1 by a summable function. Hence we may pass to the 

limit a--~l - under the integral sign, getting by  (1) and (26) 

li_.lm 11 = 2,~':t a a(g) I fZ ~- (~1-4 h I ~ )  h I (z ) d~ dz dz 2"g, .]G 
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To deal with 

(z6C, O < a < l ) :  

I2, 13, and 14, we introduce another auxiliary function R(a; z) 

i( ijz- 'j-2+2o- ,Jc[ 1 - ~  } for O < a < l ,  R(a; z)=" 1 h'(z')dz" 

/ -2  c log{z - z ' l h ' ( z ' ) d z  ' for a = l .  

By the dominated-convergence argument used in the proof of Lemma 7.8, R(a; z) is 

continuous in a for 0 < a ~ l .  In view of fch ' (z)dz=O, we have for 0 < a < l ,  

L~MMA 5.15. IR(a;z)l I /~+~l  ~-2~ is bounded uni/ormZy /or z in C, l < a < l ,  and 
g in any compact subset o/ G. 

Proo/. R(a; z) " = ~ 1  f 1-2+2o 1 - a  c ]z' h'(z'+z) dz' 

- 1 1 af:r_e§ r)dr, (58) 

where z' = re ~~ and H(z; r) = r h'(z' + z) dO. Denote 

serve that,  for fixed z, 

a(z;  r) = 0 

Integrating (58) by parts 

H(z; r)dr by G(z; r), and ob- 

for large r. (59) 

R(a; z) = 2 f /  r -3~2~ G(z; r) dr. (60) 

Let  ~ be the radius of a circle around the origin which contains the support of h'; 
then by (59) 

a(~; ~)=0 if ~>[~I+~ or ~<]~I-Q. (61) 

:Now it is evident that  

] G(z; r)] < fc  ]h'(z) ] dz = M (62) 

~or all z and r. Also there is a positive b such that  for all z and r 

[G(z; r) l ~< br ~. (63) 
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Combining (60), (6]), and  (63), we obta in  for ] z l < 2  @ 

IR(u; z ) ] < 2 b  r-~+2~r~dr<N< oo. (64) 

On the  other  hand,  if IzL>~2e and  1 < ~ < 1 ,  (60), (61), and  (62) combine  to  give 

/'lzl+~ 8M~ 
[R(a; z) l < 2M Jl.l-e r-~+2" dr <<. i z I " (65) 

F r o m  (64) and  (65) it  is appa ren t  t h a t  there  is a posi t ive n u m b e r  N '  such t h a t  

AT' 

q_lzl ]R(o; z)] 41 (66) 
2~ 

for all z in C and  �89 < ~ < 1. Also, an  easy  calculation shows tha t ,  for �89 < a < 1, 

Iflz + 812-2~< I/~ ] I z l + l ~ [ + l .  (67} 

Combining (66) and  (67), we obta in  the  conclusion of the  lemma.  

In  view of this lemma,  we can pass to the  l imit  ~ - - > 1 -  under  the integral  sign 

in (57), obta ining by  L e m m a  7.10 

-f f l im 12 = 1 a(g) R(1; z) I flz + c5 [ ~ ]  dg dz 
c;--->l - trg C G 

= f a(g) (S~ h') dg 

= (Sah, h'). (68) 

Finally,  we mus t  eva lua te  lim I s and  lim I a. Note  t h a t  in the  calculation of 
a--->l - a-+l - 

lira 12 no use was made  of the  fact  t h a t  f h(z) dz = 0. Hence  the  expression ob ta ined  
~--~1 - , ]  C 

f rom 12 on replacing h by  h 1, name ly  I 4 / A V ( 1 -  a), also approaches  a finite l imi t  as  

a--> 1 - .  Thus  

l im I a = 0 .  (69) 
~--~1 - 

T ~ h ' ) / ~ V ( 1  - ~); N o w  I a = G A  ( a ( h i ) ,  

and  i 3 = cr,~' (T~ (h), h~)/= V(1 - a) = ~)L' (T~, (h~) h) /~l / (1  - ~). 
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Thus 13 is obtained from ! a on replacing A, a, and h', by ~', a*, and h. Hence from 

(69) follows 

lira / 3 = 0 .  (70) 
G-->I 

Combining (54), (55), (56), (68), (69), and (70), we obtain (53). 

Now (40), (49), (50), and (53) give the following lemma: 

LEMMA 5.16. Each operator /ield in C*(G) is weakly continuous with respect to the 

continuity structure X .  

5.5. The structure of C* (G) 

LEMMA 5.17. C* (G) is a subalgebra o/the algebra A with continuous trace derived/tom 

the continuity structure X.  

Proo/. Let y be of the form a* a, where a is a complex continuous function on G with 

compact support. By Lemmas 3.6, 3.8, and 3.9 of [1], the function 

---N w w Tr (Ty)  

is continuous on Z and vanishes at infinity. Since ]1T~ II < Tr (T~), T~ vanishes at infinity 

(in w ). Combining these remarks with Lemma 5.16 and Theorem 4.6, we see that  w - , T ~  

belongs to A. Since linear combinations of such y are dense in C* (G), the conclusion of 

the lcmma follows. 

Combining Lemma 5.17 with Theorem 5.2, we obtain the following structure theorem 

for C* (G): (1) 

THEOREM 5.3. C* (G) consists o/all  those operator fields a on Z such that 

(i) /or each w in Z, a (w) is a completely continuous operator on Hw; 

(ii) a belong8 to the algebra with continuous trace derived/rom X (see w 5.2); 

(iii) the values o /a  at (2, O) and at 1 are correlated as/ollows: 

a(1) = D_a(2, 0 ) D - 1 5 ~ ,  

where ,~ is a complex number (depending on a). 

This theorem gives complete information about the structure of C* (G), but only in 

terms of the rather complicated continuity structure X. I t  is desirable to have a simple 

description of the isomorphism type of C* (G), without losing sight, however, of the under- 

lying space Z. For this purpose we introduce the general notion of a field of isometries. 

(1) This  theorem s t rengthens  the L e m m a  on p. 4 of [10] for the case of the 2 • 2 eompIex un imodula r  
group.  
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Let T be  a locally compact Hausdorff space, and for each t in T let I-Iflbert spaces H t 

and H~ be given. 

DEFINITIOn.  By a field of isometries (o/ the {Ht} onto the {Hg}) we understand a 

function U on T which associates to each t a linear isometry U t of H t onto H~. 

DEFINITION. Let F and F '  be families of vector fields (or operator fields) on T, 

whose values at t are vectors in Ht and H~ respectively (or bounded operators on H t and 

H~ respectively). We shall say that  F and F'  are isomorphic under a field of isometries U 

if F '  consists precisely of those a' which are of the form 

a' (t) = Ut(a(t))(a' (t ) = Urn( t )Ut  1) 

for some a in F. 

DEHZ~ITIOZe. Let F and F '  be continuity structures for vector fields on T with 

values in the {Ht} and {H~} respectively; and let Fo and 2'~ be the families of all vector 

fields which are continuous on T with respect to F and ~v' respectively. Then F and F '  

are equivalent if Fc and 2'~ are isomorphic under some field of isometries. 

DEFINITION. If all Ht are the same H, the continuity structure consisting of all 

constant functions on T to H is the product structure. 

LEMMA 5.18. Let F be a continuity structure/or T, {Ht} , and {xl, x~, .:.} a countable 

/amily o/vector/ ields on T which are continuous with respect to F and guch that , /or  each t, 

the set {x I (t), x 2 (t) . . . .  } is linearly independent in Ht  and spans a dense subspace o / H  t. Then 

2' is equivalent to a product structure. 

Proo/. By the Gram-Sehmidt orthogonalization process, the xi may  be replaced by 

a countable set {y~, y~, ...} of vector fields continuous with respect to F such that, for each 

t, the Yi (t) form an orthonormal basis of Hi. I t  follows that  the Ht are all of the same dimen- 

sion. Let H be a fixed Hflbert space of this dimension, with an orthonormal basis {el, e2, ...}. 

If  Ut is the isometry of H onto H t which sends e~ into y~(t), it is clear that  the product 

structure (for vector fields on T to H) is equivalent with F under U. 

We now apply these concepts to the continuity structure X for vector fields on Z 

(see w 5.3); and show that  X is equivalent to a product structure. 

The following lemma is easily verified: 

LEMMA 5.19. There exists a sequence {h~, h~ . . . .  } o/ elements o / L  o such that, /or each 

h in Lo, we can / ind  a subsequence {h',j} o/ {h'~} which converges to h uni/ormly with bounded 

support (that is, h'j-->h uni/ormly on C, and the supports o / the  h'j are all contained in the 

same bounded set). 
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Now let us p ick  out  f rom the hn a subsequence (h2, h3, ha . . . .  } which is linearly inde- 

pendent  in L o and spans the same subspace as the h~. Further ,  let hi have the same meaning 

as in w 5.3. Then the hn(n = 1, 2, 3 . . . .  ) are l inearly independent  in L, and  are dense in L 

in the sense of uniform convergence with bounded support .  Recalling f rom w 5.3 the defini- 

t ion of the x~. h, let us put :  

Z(1) : Xl ,  0, X (n) = Z(}, hn f o r  n ~ 1 .  

L~MMA 5.20. For each w in Z, the x(~)(w) (n = 1, 2 . . . .  ) are linearly independent in H~ 

Proo]. Assume first t ha t  w ~= 1; and let 

n 

~ x (~) (w) = 0  in Hw (~ complex). (71) 
iffil 

Now a non-zero element of L is also non-zero in H~o. Hence 

~ x (0 ( w ) = 0  in L. (72) 
i = l  

h I f  wCZ1, (72) states t h a t  ~ = 1 ~  ~ = 0; so tha t  the ~ = 0, since the hn are independent  in 

L. A similar a rgument  holds for 0 < w < 1. Thus, for all w ~: 1, (71) implies 2~ = 0. 

Now let w = 1. Then (71) becomes 

n 

from which we have ~1 = 0 and Zi~2~h~ = 0 in K. Bu t  the lat ter  clearly implies Z~2~h~ = 0 

in Lo; so t h a t  again ~ = 0. 

LEIVIMA 5.21. For each w in Z, the x(~)(w) (n = 1, 2, . . .) span a dense subspace o/ H w. 

Proo/. Let  wEZ, w ~ 1 .  Since the ~h I -~h (~ complex, hELo) are dense in Hw, it is 

enough to show tha t  h 1 and each h in L 0 can be approximated  in H~ b y  linear combinations 

of the x (n)(w). 

h if wC:Z~, 

But x l'tw) =i 
[V~ ~ if 0 < w = a < l .  

Thus h 1 can be so approximated.  Tha t  each h in L o can be so approximated  follows f rom 

the definition of the ha (see Lemma 5.19), together  with the fact  that ,  i f /~ - -> / in  L 0 uni-  

formly with bounded support ,  t h e n / i - ~ / i n  H~. 
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Now let w = 1. Since x a) (1) = 0 �9 1/V~, it  is enough to show tha t  each h in  L 0 can be 

approximated  in  K by  l inear combinat ions  of the h n. Bu t  this is possible by  Le mma  5.19 

as before. 

LE~MA 5.22. X is equivalent to a product structure. 

Proo]. Combine Lemmas  5.18, 5.20, and  5.21. 

THEOREM 5.4. Let H be a [ixed separable in/inite-dimensional Hilbert space and A 

the algebra o/completely continuous operators on H. Suppose that H = K $ C, where C is the 

one-dimensional Hilbert space, and K is a closed subspace o / H  o/co-dimension 1. Let M be 

any isometry o / K  onto H.  

Then C* (G), the group C*-algebra o/ the 2 x 2 complex unimodular group, is isomorphic, 

under a / i e ld  o/isometries on Z, to the algebra o/al l  those norm-continuous ]unctions a on Z 

to A such that a vanishes at in/inity and 

a(1) = (M- l a (2 ,  0 ) M ) e ~  

(where ~ is complex and depends on a). 

Pro@ By Theorem 5.3 and  Lemma 5.22 there exists an  M for which this is true.  But  

i t  is obvious t ha t  the par t icular  choice of M does no t  affect the va l id i ty  of the result.  

References 

[1]. J. M. G. FELL, The dual spaces of C*-algebras. Trans. Amer. Matte. Soc., 94 (1960), 365- 
403. 

[2]. - - ,  A ttausdorff topology for the closed subsets of a locally compact non-ttausdorff 
space. Submitted to Proc. Amer. Math. Soc. 

[3]. I. M. GELFAND ~5 M. A. NAI1VIA/~K, Unitarnye predstavleniya gruppy Lorentsa, Izv. Akad. 
Naulc SSSR ,  Ser. Mat., 1I (I947), 411-504. 

[4]. - - - ,  Unitarnye predstavleniya klassicheskikh grupp. Trudy Mat. Inst.  Ira. V. A. Stek- 
lova, 1950. 

[5]. J. GLr~M, A Stone-Weierstrass theorem for C*-algebras. Ann. o]. Math., 72 (1960), 216- 
244. 

[6]. I~. GODEMENT, Sur la th6orie des repr6sentations urdtaires. Ann. oJ Math., 53 (1951), 
68-124. 

[7]. I. KA~,ANSKY, Normed algebras. Duke Math. J., 16 (1949), 399-418. 
[8]. - - . ,  The structure of certain operator algebras. Trans. Amer. Math. Soc., 70 (1951), 

219-255. 
[9]. - - - ,  Group algebras in the large. Tohoku Math. J.,  3 (1951), 249-256. 

[10]. M.A. NAIMA~K, Kont inualnyi  analog lemmy Shura i ego primenenie k formule Plansherelya 
dlya kompleksnykh klassicheskikh grupp. Izv. Akad. Naulc SSSR ,  20 (1956), 3-16. 

[ l l ] .  - - ,  Normirovannye koltsa. Gos. Izdat. Tekh.-Teor. Lit., 1956. 
[12]. N. STEENROD, The topology o]/ibre bundles. Princeton University Press, 1951. 

Received Oct. 2, 1959, in revised ]orm May 10, 1961 


