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1. I n t r o d u c t i o n  a n d  s t a t e m e n t  o f  r e s u l t s  

One of the motivating questions for surgery theory was whether every finite H:space  is 

homotopy equivalent to a Lie group. This question was answered in the negative by Hilton 

and Roitberg 's  discovery of some counterexamples [18]. However, the problem remained 

whether every finite H-space is homotopy equivalent to a closed, smooth manifold. 

This question is still open, but in case the H-space admits  a classifying space we 

have the following theorem. 

THEOREM. Let B be a CW-complex and denote by X the loops on B, ~ B .  I f  

H . ( X ) = ( ~ )  i H i ( X )  is a finitely generated abelian group, then X is homotopy equivalent 

to a compact, smooth, parallelizable manifold. 

This condition on H .  (X) is often called quasifiniteness. We will briefly discuss the 

history of smoothing H-spaces in this introduction. 

Suppose given a quasifinite space X=FtB ,  B a CW-complex. It  follows from [22] 

that  X is finitely dominated, since it is a simple space with finitely generated homology. 

Finitely dominated means that  up to homotopy it is a retract  of a finite complex. 

Recall [38] that  an oriented, n-dimensional Poincar4 duality space Y is a finitely 

dominated space Y, together with a class [Y]EHn(Y, Z) such that  if [Y] is the transfer 

of [Y] to H Lf" (Y, Z) then 

[ 9 ] n  �9 * - H n _ , ( 2 , z )  - . H c  s (Y,Z) > 
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is an isomorphism from cohomology with compact supports to homology of the universal 

cover. Obviously all oriented manifolds satisfy this kind of Poincar@ duality, so a first 

step to prove that  a loop space is a manifold is to prove that  it is a Poincar5 duality 

space. 

Since X is finitely dominated, H 1 (X; Z) is a free abelian group. Choose a classifying 

map X--+T k representing a basis. This map has a section, using the H-space structure, 

given by the composite T k --+X k -+X, defining a basis of 7h (X) modulo torsion. Denoting 

the homotopy fiber by X '  it is easy to see that  X '  x T k -+X x X-+X induces isomorphisms 

on homotopy groups, and hence is a homotopy equivalence. Since X ~ inherits an H-space 

structure, it thus suffices to consider X with finite fundamental group for the question 

of Poincar6 duality. 

Assuming Irl (X) finite, we consider H* ()(; F) ,  where F=Fp or the rational numbers. 

The induced product map X • X--+)( induces a Hopf algebra structure on H* ()(; F) .  It 

follows from the classification of finitely generated, connected, graded Hopf algebras over 

a field F [4, Theorem 6.1], [19] that  H*(_~; F )  is a tensor product of exterior algebras 

and truncated polynomial algebras. The top dimension is generated by a product of the 

algebra generators to their maximal nonzero power. Denoting the top dimension by np 

for F=Fp and by no for F = Q ,  it follows that  cap product with the homology dual of 

this top-dimensional class induces an isomorphism 

H*(_X; F )  ~ Hnp_.(-~; F) .  

Clearly no<~np. Since Hi ( ) ( ;  F )  is 0 so is Hnp- l ( ) ( ;  F) .  Hence the top class is the 

reduction mod p of a Z-summand in integral cohomology, which means np~no, SO all 

np's are the same. Denoting this common dimension by n, there must be an integral 

class [)~] CHn(X; Z) so that  cap product with the induced element in Hn()~; F )  induces 

an isomorphism 

H*()( ;  F )  )Hn- . (X;F)  

for all F ,  and hence an isomorphism 

H * ( X ;  Z)  > H n - .  (-~; Z) .  

, Precisely the same arguments may be applied to H* (X; F )  to obtain dimensions np 

for X. The spectral sequence of the fibration X-+X--+BTrl(X) is a spectral sequence of 

Hopf algebras, and analyzing this [5], it is shown that  npt =rip. Hence all np~ 's are the 

same, but that  is only possible if Hn(X; Z ) = Z .  

Denoting the generator by [X], we now only need to see that  the transfer of [X] 

is [)~]. For this purpose we factor )(--+X as a sequence of covering spaces 

);=Xn >Xn_~ >...--+Xo=X, 
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where each Xi--+Xi-1 is a p-fold covering for some prime p. Each of the X/ ' s  are H-  

spaces, and the maps are maps of H-spaces,  so in mod p cohomology we get an induced 

map of Hopf algebras. Since in all cases there will be some class going to 0, and the top 

class is a product  of all classes to maximal degree, it follows tha t  the induced map is 0 on 

the top-dimensional class. In integral homology, transfer followed by the induced map  is 

multiplication by p, but the induced map is 0 in mod p cohomology, so the transfer must 

send a generator to a generator in the top dimension. 

Wha t  we have described here is a slight modification of Browder 's  argument [6], [5] 

that  X is a Poincar~ duality space. 

The S-dual of a Poincar5 duality space is the Thom space of the Spivak normal 

fibration. Being a Poincar5 duality space, X can be writ ten as an (n-1) -d imens iona l  

complex with one n-cell attached. Browder and Spanier [9] used the map X • X - +  X--+ S n 

to show that  X is self-dual in the sense of S-duality, so stably the Thorn space of the 

Spivak normal fibration is homotopy equivalent to S k (X+). This means that  the top class 

in Sk(X+) is spherical, and a transversality argument,  making the map S'~+k--+Sk(X+) 
transverse to X,  sets up a surgery problem 

/JM > g 

M > X,  

where s denotes the trivial bundle. In the case 7rl (X) =0,  Browder now proceeded to show 

that  X is homotopy equivalent to a smooth manifold except possibly in dimensions 4k+2 .  

In odd dimensions this is because the surgery obstruction groups vanish, and in dimension 

4k the argument is that  the rational cohomology of X is an exterior algebra. Hence the 

index of X is trivial. Hirzebruch's index formula shows that  the index of M is trivial 

since stably, the normal bundle is trivial, and it follows tha t  the surgery obstruction is 

trivial, being the difference. In the non-simply-connected case these surgery obstruction 

groups can be very complicated even for finitely generated abelian groups. 

Notation 1.1. We denote by Zp and Qp the p-adic integers and rationals, respec- 

tively. For a nilpotent space X and a commutat ive ring R, we denote by LRX the 

localization of X with respect to H. ( - ;  R). We abbreviate Lz/p by Lp and Lz(p) by L(p). 
Denote the Qp-algebra H*(X;  Zp ) |  by H~p(X). On finite nilpotent CW-com- 

plexes, this agrees with H*(X;  Qp), but whereas the latter functor is not invariant un- 

der Z/p-localization, the former one is. In algebra, this is mirrored by the fact that  

homz (Zp, Qp) ~ Qp, but homz (Zp, Zp) ~ Zp .  

For a quasifinite loop space X,  define the dimension dim X to be the homological 
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dimension, the rank rk(X) to be the number of exterior generators of H* (X; Q), and the 

type to be the multi-set of dimensions of those generators. 

2. Basic cons iderat ions  and out l ine  of  the  proof  

Let X = ~ B  be a quasifinite connected loop space. Since H2(B; Z) is free abelian, there 

is a map B - + K ( Z  r , 2 ) = B T  r inducing an isomorphism on H 2 ( - ;  Z). Let B '  be the 

homotopy fiber. We now have a fibration f~Br -+X-+T ~, and arguing as in the intro- 

duction, we have X~_t2B ' x T L  Since T" is a smooth parallelizable manifold, we may 

without loss of generality assume that  X has finite fundamental group. We shall do so 

for the rest of this paper. 

Surgery arguments are only valid in dimensions ~>5. Clark's theorem [10] states that  

H a ( x ;  Q ) r  and assuming a finite fundamental group, the only instances of quasifinite 

loop spaces of dimension ~<4 are rational homology 3-spheres. By [7, Theorem 5.2], this 

means that  X is homotopy equivalent to S a or SO(3), which are smooth parallelizable 

manifolds. We may thus assume that  the dimension of X is /> 5. 

Our method of proof is to construct an orientable fibration S 1 --+X--+Y of quasifinite 

simple spaces. This suffices to prove that  X is homotopy equivalent to a finite CW- 

complex using the theory of finiteness obstructions [37]. The finiteness obstruction is a 

generalized Euler characteristic defined by considering the chains of the universal cover 

of X as a Z[rr]-module chain complex, which turns out to be chain homotopy equivalent 

to a finite-length chain complex of finitely generated projective Z[rr]-modules. This allows 

for the definition of an Euler characteristic in ,~0(Z[Tr]). The vanishing of this obstruction 

ensures that  the space X is of the homotopy type of a finite complex. 

To deal with the surgery obstructions, the fibration has to have some additional 

properties. We will discuss two slightly different concepts, double 1-tori and special 1- 

tori. In both cases the constructions rely on the theory of p-compact groups and on 

arithmetic square arguments. The construction of a double 1-toms is more elementary 

and needs less input from the theory of p-compact groups. Special 1-tori, on the other 

hand, reveal much more internal structure of finite loop spaces. For this reason, we have 

included both versions of the proof in this paper. 

Our general arguments break down in some special eases, namely when the type of 

X is (3 k, 7~), e=0 ,  1. These cases have to be dealt with by special arguments. 
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3. T h e  s u r g e r y  a r g u m e n t s  

The arguments in this section are modeled on the arguments in [29] and [30]. In those 

papers the fourth author (of this paper) studied conditions on Z(p)-local SLfibrat ions 

making it possible to produce integral Sl-fibrations by gluing. The concept of spaces 

admitting a 1-torus and a special 1-torus, respectively, were used. In this paper, we 

propose a concept somewhere in between: 

Let R be a commutat ive ring. Recall tha t  a nilpotent space X is called R-finite if 

( ~  Hi(X; R) is finitely generated, and R-local if [Y, X] = 0  for every HR-acyclic space Y. 

Note that  Z-finite is the same as quasifinite. For simple spaces, Z-locality is an empty  

condition and Z/p-locali ty is the same as p-completeness. 

Definition 3.1. An R-finite R-local space X is called stably reducible if there is a 

stable map from an R-local sphere to X inducing an isomorphism in the top-dimensional 

homology. 

Definition 3.2. Let R be a ring and X be an R-finite, R-local, nilpotent, connected 

space. We call a fibration of nilpotent spaces X2+Y--+LRBS 1 an R-local 1-torus if it 

satisfies that  

(1) Y is R-finite, R-local and stably reducible; 

(2) 7rl(p) is an isomorphism. 

An R-local l - torus  is an R-local double l-torus if this fibration is the pullback of a 

fibration of nilpotent spaces X ~-~ Z --+ L R B S  1 x L R B Z / 2  satisfying that  

(1) Z is R-finite, R-local and nilpotent; 

(2) the induced map 7r l (Z) -+Z/2  is a split epimorphism. 

We call the R-local l - torus  rationally splitting if the map p rationally has a retract  

of the form h: LQLRS3--+LQLRS 2, where h is LQLR applied to the Hopf map. 

Notice that  when 1 ER there is no difference between a l - torus and a double l-torus. 

1 ~R,  a double 1-torus leads to a diagram of fibrations When 

LRS 1 > LRS  1 > * 

1 l 1 
LRS 1 x Z/2  ~ X ~ Z 

Z /2  ~ y > Z, 

where SI-+x- -+Y is an orientable fibration of 

71" 1 ( Z )  x Z / 2 .  

R-finite simple spaces and 7rl(Y)~ 
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PROPOSITION 3.3. Let X be a Poincard duality space of dimension n>~5 admit- 

ting an integral double 1-torus. Then X is homotopy equivalent to a compact, stably 

parallelizable, smooth manifold. 

Proof. Denote the double 1-torus by X - ~ Y - + Z .  A quasifinite, simple space is 

finitely dominated by [22]. We first need to deal with the finiteness obstruction a(X)E 

/~0(ZTr l (X)) .  T h e  formula of [32] tells us that  p . (a (X) )=x(S i )a (Y) ,  where x(S  1) is the 

Euler characteristic, and hence p.(a(X))=O. But p. is an isomorphism so a ( X ) = 0 ,  and 

X is thus homotopy equivalent to a finite complex. We now let E be the total space of 

the corresponding D2-fibration. It follows from [17] that  Y is a Poincar~ duality space, 

and hence (E, X) is a Poincar~ duality pair. We consider the classifying map of the 

Spivak normal fibration ~E: E-+BG. We have the equation 

- E  - 1  

Now ~,y is trivial since Y was assumed to be stably reducible. Also p is an St-fibration 

classified by G(2). But O(2)C_G(2) is a homotopy equivalence, so p is fiber homotopy 

equivalent to an O(2)-bundle, actually an Sl-bundle since the fibration was assumed 

orientable. We thus get a linear reduction ~ of WE, and the reduction is trivial when 

restricted to X since the pullback of an Sl-bundle to its own total space is trivial. The  

procedure of surgery (see, e.g., Browder [8, p. 38]) sets up a degree-1 normal map 

(M, OM) r  r >~, 

with 7r=Trl(E)~-rcl(Y)-~rrl(X). However, E is possibly not finite, only finitely domi- 

nated. Since Y~-E, a(E)=a(Y) .  This situation was studied in [31], where it was shown 

that  the surgery obstruction of cOM--+X is 5([a(E)]), where 5 is the boundary in the 

Ranicki-Rothenberg exact sequence 

... > H n+l (Z/2; K0(Z~v)) 5 ~  Lh(Z~r ) > Lp(zT~ ) > . . . .  

Since Z is an (n-1)-dimensional  Poincar~ duality space, the finiteness obstruction satis- 

fies the formula a ( Z ) = ( - 1 ) n - Z a ( z ) * .  Obviously, a(Y) is just the restriction Resa (Z) .  

It now follows from [32] or just general covering space theory that  (p l ) .Resa(Z)= 

[(Z �9 Z)Q P], where P is a projective module representing a (Z) ,  and 7rl (Z) acts on Z �9 Z 

through its Z/2-quotient by permuting the two factors. There is an exact sequence of 

~1 (Z)-modules 0 - + Z - + Z O Z - + Z -  -+0 with trivial action on the first term, and nontrivial 

action on the last. This implies tha t  p.Res(r(Z)=[P]+[Z | Let r:~ri(Z)-+zrl(Y) 

be a splitting. We then get 

o'(Y) = Res  o ' (Z)  = r .  ( P l ) .  Res o ( Z )  -- 2 r .  ( o ( Z ) )  

= r. (a(Z)) + ( -1 )~- l r .  (a(Z)*) = r, (a(Z))  + ( -1 )  n - l r .  (a(Z))*,  

from which it follows that  [a(Y)] : 0  in H '~+t (Z/2; K0(Zrr)). [] 
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4. T h e  r e d u c t i o n  to  a Z / p - l o c a l  p r o b l e m  

PROPOSITION 4.1. Let X be a quasifinite loop space such that for every p, L(p)X admits 

a rationally splitting double l-torus. Then so does X .  

Proof. This was shown for ordinary rationally splitting 1-tori in [29, Proposition 3.2]. 

The extension to double 1-tori is immediate since B Z / 2  is rationally trivial, so if X admits  

a 1-torus, and X(2) admits a 2-local double 1-torus, then X admits  a double 1-torus. [] 

To reduce the problem further to constructing double 1-tori in Z/p-local  loop spaces, 

we will make use of an easy fact about  p-adic squares: 

LEMMA 4.2. Every p-adic rational number is the product of a rational number and 

the square of a p-adic integral unit. 

Proof. It  is enough to show that  every p-adic unit a c  Zp can be writ ten as a product  

of a rational integer and the square of a p-adic unit. Since the Legendre symbol is a group 

homomorphism, it suffices to exhibit an n E Z  whose image in Zp is a unit with no square 

root. Any lift of a generator of (Z/p) • (or (Z/8)  • to Z will do. [] 

PROPOSITION 4.3. Let X be a Z(p)-local, Z(p)-finite loop space such that L p X  

admits a Z/p-local rationally splitting double 1-torus. Then X admits a Z(p)-local double 

1-torus. 

Proof. Let LpX--+Yp--+LpBS 1 be the rationally splitting 1-torus. Let {el, ..., ek} be 

a basis of the free part  of 7r3(X), thus inducing a basis in 7r3(LQX) and in 7r3(LQLpX), 

and elements in 7r3(LpX). We also denote the induced elements by {el, ..., ek}. Since the 

fibration is rationally splitting we may produce a diagram 

LQS 3 ~ LpLQS 3 > L Q L p X  

LQS 2 > LpLQS 2 > LQYp. 

Let a be the image of a generator of 7r3(LQS 3) in 7r3(LQLpX ). We have a = a l e l  +c~2e2+ 

�9 . .+akek  with c~icQp, and we choose to order the basis so that  c~1#0. 

We first want to show that  we can change the problem so that  the a i  are rational. 

The Hopf fibration h admits an automorphism of the form 

u 2 

LQLpS 3 > LQLpS 3 

LQLpS2 u ) LQLpS2 
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for any uEQp,  so by Lemma 4.2 this means that we may assume that c~1 is rational. 

We may, however, compose the splitting by any homotopy equivalence that can be 

lifted to a homotopy equivalence of LpX. This still gives a rationally splitting 1-torus, 

and it does not change X in its local genus, see Definition 4.5. We now show that  we 

can find such a homotopy equivalence to change c~2,..., c~k to be rational. 

Using the H-space structure on X we may produce a rational equivalence B b X ,  

where B is a product of p-local odd-dimensional spheres. The lifting problem 

B +1 c / b 
/ 

/ pl 

X , X  

may be solved using obstruction theory for sufficiently large l: First try to lift the identity 

map, and use the fact that  the homotopy groups of the fiber are finite p-groups. Whenever 

an obstruction is encountered, we may precompose with a map of degree p~, to kill the 

obstruction. Given any map LpS3---~LpX sending ej to ~ei, expressed in the basis chosen 

above, we now consider a map of the type 

LpX (Lpc,1)) LpB • LpX -----4 LpS3• LpX --+ LpX • LpX -----+ LpX, 

where LpB-+L~S 3 is the projection on the ith 3-sphere. This map realizes the elementary 

matrix on ~3, where the (i, j ) t h  off-diagonal element is of type pt~. To see that we may 

choose all the (~i to be rational, we observe that the element a=o~lel +...+c~kek already 

has ol I rational, and denoting c~1 by ql, the equations 

o~+qlpl/~i = q~ C Q 

are solvable with /~iEZp, but the left-hand side of the equation above is precisely the 

effect of applying an elementary operation. 

We now extend the element aETc3(LQX) to a basis {a, a2, ..., ak}, and denote the 

images of ai in ~3(LQYp) for i>1  by bi. Choose a splitting 

(LQLpX > LQYp) > (LQLpS 3 > LQLpS2). 

Since $3-+$2 --+BS 1 is a principal fibration, we see that we can vary this splitting by any 

compatible pair LQLpX--+LQLpS 3 and LQYp--+LQLpS 2, and after such a variation we 

may assume that the bi map trivially on homotopy groups, without changing the image 

of a. 
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Using the basis {a, a2,. . . ,ak} we may produce a diagram of fibrations with the 

horizontal maps being homotopy equivalences: 

LQLpS 1 LQLpS 1 

LQLpX ~ LQLpS3x YI LQLpS3X LQLpA 

1 1 (h'l'l) 
LQYp ~ LQLp $2 • I] LQLp $3 • LQLpA, 

where h is the Hopf fibration and A is a product of S 2n+1, n > l .  

We complete this diagram to the diagram 

LQLpX ~~< | ~ - ~ ~  LiX 

LQLp $3 • [I LQLp $3 • LQLpA ~- 

LQYp ] (hA) LQS 3 • ]-[ LQS 3 • LQA 

LQLpS 2 x [I LQLp $3 x LQLpA. 

The desired fibration X---~Y is now obtained by presenting X as a pullback mapping to 

a pullback diagram defining Y: 

X > LQX y > LQS2•215 

LpX , LpLQX lip > LQYp. 

The extension to a double 1-torus is obtained by just noting that  the lifting of the 

map to BZ/2 is trivial rationally. [] 

The proof of the main theorem is divided up into some special cases and the general 

case. The special case is when the type of X is (3 k, 7~), c=0 ,  1. 

We first state the general case in the next theorem. Its proof will be given in the 

following section. 
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THEOREM 4.4. Let X be a quasifinite loop space. Then for any p, LpX admits a 

rationally splitting l-torus except possibly when p=2 and X is of type 3 k. The l-torus 

can be extended to a rationally splitting double l-torus unless p=2  and X is of type 
(3 k, 7~), c=0,  1. 

We now turn to the special cases. 

Definition 4.5. Let X be a Z/p-local space. The p-genus Gp(X) of X is the set of 

all Z(p)-local homotopy types Y such that  LpY~_X. 

LEMMA 4.6. If G is a center-free p-compact group which is a rational homology 3- 

sphere, then G~_Lp SO(3). If X is a quasifinite rank-1 loop space, with LpX center-free 

for all p, then X-~SO(3). 

Proof. Mixing with a rationalized sphere produces a Z(p)-local loop space. Mixing 

this with a sphere at the other primes produces an H-space which is a rational homology 

sphere. By Browder's theorem [7, Theorem 5.2] the only possibilities are S 3, SO(3), S 7, 

and R P  7, but L2S 3 is not center-free, and L2S 7 is not a loop space. This at the same 

time proves the statement about X by [10]. [] 

LEMMA 4.7. (1) There is only one element in Gp(Lp SO(3)k). 

(2) There is only one element in Gp(Lp SO(5)). 

(3) There is only one element in Gp(Lp SO(3)kx SO(5)). 

Proof. If YEGp(X),  then Y is obtained as a pullback 

y > LQX 

1 l 
LpX > LQLpX f > LQLpX 

from a self-equivalence fEAu t (LQLpX) .  Precomposing f with an element of Aut(LpX)  

leaves Y unchanged up to homotopy, as does postcomposing with an element of 

Aut(LQX ). Thus there is a bijection 

Gp( npX) ~ Aut( LpX) \ Aut( LQLpX ) /Aut(  LQX ). 

In the case X =  SO(3) k, Aut (LQLpX)~GLk  (Qp), and since every p-adic integer can 

be realized as the degree of a self-map of Lp SO(3), we have that  Aut(LpX)~-GLk(Zp).  

Thus, 

Gp(Lp SO(3) k) ~ GLk(Zp)\GLk(Qp)/GLk(Q) ~- *. 

For X=SO(5)  the gluing map is given by two p-adic rationals o~ 3 and aT, which 

describe the induced map on the homotopy groups in dimensions 3 and 7. Looping 
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down unstable Adams operations r LpBSO(5)--+LpBSO(5) shows that  for any p-adic 

unit r, the pair (r 2, r 4) can be realized by a self-equivalence of Lp SO(5). We may also 

realize self-maps of Lp SO(5) of degree (s, s) for any p-adic unit s, and the proof is now 

completed by noting that  it is possible to choose r and s so that  (r28Oe3, r48o~7) is a pair 

of rational numbers. This shows that  Gp(Lp SO(5)) contains only one element. 

In the case of X=SO(3 )kxS O (5 ) ,  the situation is slightly more complicated. We 

have to show that  H3( f )EGLk+I(Qp)  can be turned into the identity matrix by pre- and 

postcompositions as above. We argue similarly to the proof of Proposition 4.3. We have 

that  Aut (LQX) surjects onto GLk+I(Q).  

As noted above, any p-adic integer can be realized as the H3-degree of a map 

SO(3)-+SO(3), SO(3)--+SO(5) or SO(5)-+SO(5). Similarly, there is an integer N > 0  

and a map SO(5)--+SO(3) inducing multiplication by N on Ha ( N = 4 8  is possible, but  

that  is irrelevant to the argument). To see this, represent the 3-dimensional generator of 

H3(SO(5)) by a map g: SO(5)--+K(Z, 3) and consider the obstruction classes for lifting 

this map to SO(3)--+K(Z, 3). They lie in finitely many torsion groups, so precomposing 

g with the product of their orders yields a map that  lifts to SO(3). 

This implies that  in H3 any invertible matrix of the following form can be realized 

as an automorphism of LpX: 

Nbl I * i 

Nbk ' 

where *, biEZp. It remains to show that  a matrix of the form 

( '  * )  
0 1 

can be written as a product of a matrix as above and a rational matrix. This follows 

from the easy fact that  every p-adie rational can be written as a sum of a p-adic integer 

multiple of N and a rational. [] 

THEOREM 4.8. Let X be a quasifinite loop space of type (3 k, 7c), c=0 ,  1. Then X 
is homotopy equivalent to a compact, smooth, stably paraUelizable manifold. 

Proof. In [24] it is proved that  LpX is center-free for large p, and that  the center 

is finite when 7c1(X) is finite (our standing assumption). We may then construct a 

new space from Lp(X)/Z(Lp(X)) so that  the original space is a finite covering space 

of this new space. Hence we may as well assume that  LpX is center-free for all p. 
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By [16], Lp(X) can be written as a product of simple p-compact groups which by the 

classification of reflection groups will be of rank 1 in the case where there are only 3- 

dimensional generators. In this case it now follows from Lemma 4.6 that  Lp(X) is a 

product of Lp SO(3), and from Lemma 4.7(1) that L(v)(X ) is a product of L(p)SO(3), 
and finally it follows from [30] that  X is homotopy equivalent to a product of SO(3). In 

case there is also a 7-dimensional generator, we similarly get that  LpX is a product of 

rank-1 p-compact groups, and one of rank 2. It now follows from Theorem 6.1 that  at 

the prime 2, the 2-compact group of rank 2 is L2Y=L2 SO(5), and by the classification 

at odd primes that  the p-compact group of rank 2 is also Lp SO(5) (ignoring the loop 

structure). As above, we now use Lemma 4.7 (3) to show that  X is in the Mislin genus 

of SO(3)k• Hence by [30], X is homotopy equivalent to a stably parallelizable 

manifold. [] 

Proof of the main theorem. Theorems 4.4 and 4.8 together with the reduction steps 

in this section and the surgery arguments in w imply the main theorem, if we also show 

that  the manifolds obtained are parallelizable, not only stably parallelizable. 

To see this we use the criterion of Dupont [12], [34]. If d i m X  is even, the dif- 

ference between parallelizability and stable parallelizability is determined by the Euler 

characteristic, which is obviously 0 for X being of the homotopy type of a loop space. 

In odd dimensions parallelizability is automatic in dimensions 1, 3 and 7, and in other 

dimensions it is determined by the mod 2 Kervaire semi-characteristic 

x(X; 2) = E dim H2i(X; F2) C Z/2. 
i 

But the cohomology of a loop space with F2-coefficients is a tensor product of truncated 

polynomial algebras F2[z]/(z 2k), so this number is obviously zero. [] 

5. C o n s t r u c t i n g  1 - to r i  in p - c o m p a c t  g r o u p s  

The p-complete analog of a finite loop space is called a p-compact group. This is by 

definition a connected, pointed, Z/p-local space BG such that  G:=f~BG is Z/p-finite. 

We can (and will) choose a topological group model for G and call G itself a p-compact 

group. For a compact Lie group G, we will also write G for the associated p-compact 

group obtained by p-completion. 

Recall [14] that  every p-compact group G has a maximal torus T, a maximal torus 
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normalizer N c  (T), and a Weyl group W acting on T. These loop spaces fit into a diagram 

B T  ~ BNa(T)  " B W  

BG. 

Here, BT~-K(Z~,  2) is homotopy equivalent to an Eilenberg-Mac Lane space of degree 2. 

We call n the rank of G. Let L = z r l ( T ) ~ Z ~  be the associated lattice. The top row of 

the diagram is a fibration and determines the action of W on T, or equivalently, on L. 

If G is connected, this representation is faithful and gives W the structure of a p-adic 

pseudo-reflection group. 

We call a connected G semisimple if 7rl(G) is finite, and simple if the associated 

representation W--+GL(L|  is irreducible. 

The center of a p-compact group G is denoted by Z(G). If G is either simply- 

connected or center-free then it splits uniquely into a product  of simple p-compact groups 

of the same sort. 

For details and further notions we refer the reader to the survey articles [23] and [26] 

and the references mentioned there. 

The main new ingredient in this section comes from the first author's thesis [3]. For 

any connected p-compact group, define SG=(}-]~G) hG t o  be the homotopy fixed-point 

spectrum of G, acting on its suspension spectrum by multiplication from the right. If 

G is the p-completion of a connected compact Lie group with Lie algebra 1~, then SG, 

equipped with the remaining left G-action, is equivariantly homotopy equivalent to the 

p-completion of ~U{oo} by results of Klein I2II. 

THEOaEM 5.1. ([3]) For every p-compact group G, Sa is a p-complete sphere. For 

an inclusion of p-compact groups H<G, we have a homotopy equivalence in the p- 

complete category 

G+AH SH"~ D(G/H)+ASG. 

In particular, if T < G  is a torus, the action of T on ST is trivial, and we have 

a/T+ ~_ D(a /T)+ A S e-~, 

where d=d im G and t = d i m  T. Hence G / T  is a p-complete self-dual space of dimension 

d - t .  In particular, it is finitely dominated and stably reducible. 

LEMMA 5.2. Let G be a nontrivial connected p-compact grow with finite funda- 

mental group, such that if p=2,  G does not have type 3 k. Then rkp(Z(G))<rk(G).  

Moreover, if p=2 and r k2 (Z (G) )= rk (G) - l ,  then G has type (3k, 7). 

Here rkp is the p-rank of the abelian p-group Z(G). 
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Proof. Let T<G be a maximal  t o r t s  with Weyl group G and lattice L=Tq(T) .  

Dwyer and Wilkerson show in [15] that  the p-discrete center of G is always contained in 

the center of I~I(T), the p-discrete normalizer of the maximal  tor ts .  This in turn is the 

same as the fixed points of T under the W-action. Thus the claim follows for p > 2  from 

the classification of odd pseudo-reflection groups. 

Now let p=2 .  In terms of L, the order-2 elements of the center of G are contained 

in the invariants (L/2L) W. 

Assume that  rk2(Z(G))>~rk(G)-l. This means that  (L/2L) w has codimension 1 

or 0. We then know tha t  the image of the representation W-+GL(L/2L) consists entirely 

of 2-torsion. Let K be the kernel and consider the diagram of short exact sequences 

1 > K  c > W  > W / K  " 1  

1 > I d + 2 E n d ( L )  , GL(L) > GL(L/2L) > 1. 

Since Id +2 End(L) is a 2-group, so is K ,  and since W/K is also an (elementary abelian) 

2-group, W must be a 2-group. By inspection of the Clark Ewing list of 2-adic pseudo- 

reflection groups, we see that  the only possibilities are 

W = (Z/2) k x ((Z/2)  2 ~ Z/2)  l = W(SU(2) k x Spin(5)z). 

It  follows from the classification of 2-compact groups up to rank 2 given in w that ,  

indeed, G/Z(G) ~_ L2 (SO(3) k x SO(5)l). Since Z(Spin(5)) = Z / 2  and rk(SO(5)) =2,  only 

l = 0  or 1 can occur, and l - 1  if and only if rk2(Z(G))=rk(G)-l .  This concludes the 

proof since in this case the type is (3 k, 7). [] 

PROPOSITION 5.3. Let G be as in Lemma 5.2 and assume that H~p(G)r Then 

G has a circle subgroup S, not meeting the center, such that H~p(G/S)~--A(t)| for 
some ring R and a 2-dimensional class t. 

Proof. Let T"  be a subtorus of G which is minimal containing Z(G). Extend to a 

maximal  to r t s  T=T '  x T". Let r '  be the dimension of T' .  

By Lemma 5.2, r '  ) 1. Choose coordinates t~: S 1 -+ T in such a way that  {ti I 1 <~i <<, r' } 
span T' .  Let W be the WeyI group of G with respect to T. Rationally, 

H~,(BG) ~-H~€ W and H~,(G/T) ~ H ~ , ( B T ) / / H ~ ( B G ) .  

Since H~(BG)=O,  we know tha t  H~,(BT)~+H~,(G/T)~Qp{t l , . . . , t r} ,  and since 

H~p(BG)r we know that  there is a nontrivial quadratic polynomial f ( t l , . . . , tr)E 

Qp[tl, ..., t~] such that  f - 0  in H~,(G/T).  
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Define SC_K(Zp, 1 ) = T  by the coprime coordinates a l ,  ..., C~TEZp. Note that  S will 

intersect Z(G) trivially if c~1, ..., aT, are also coprime. Let tEH~p(G/S) be a generator. 

Under the map H~p(G/T)--+H~p(G/S), ti is mapped to ait. Therefore, the polynomial 

0 = f ( t l ,  ..., t ~ ) e H ~ ( G / T )  is mapped  to f (a l t ,  ..., c~Tt)=f(al, ..., aT)t 2, which then must 

be 0. Since f is nonzero, we can choose a/  such that  f ( a l ,  . . . , a r ) # 0  and a l ,  ...,c~T, are 

coprime, whence t 2 =0.  Thus S satisfies the rational cohomology condition. [] 

Proof of Theorem 4.4. Let G=LpX.  Then G is a p-compact  group, and by [10], 

H ~ ( G )  50. By Proposition 5.3, there is a circle subgroup SI--+ G not meeting the center. 

By Theorem 5.1, G/S 1 is stably parallelizable. The quasifiniteness condition on Y and 

the orientability of X--+Y are clearly satisfied. 

The 1-torus is rationally splitting because the 2-dimensional class in H~p(G/S 1) 

produces a split map to LQLpS 2 making the following diagram commute: 

LQG ~ > LQLpS 3 

LQG/S 1 > LQLpS 2 

K(Qp,  2). 

Now let p=2 .  By Lemma 5.2, the dimension of a maximal  torus T r not meeting the 

center is at least 2. We may choose T / in such a way that  the constructed S 1 is contained 

in T ~. This can be extended to an $1• Z / 2 < T  t, thus giving a rationally splitting double 

1-torus. [] 

6. 2 - c o m p a c t  g r o u p s  o f  r a n k  2 

In this section we will classify all simple 2-compact groups of rank 2. For the purpose of 

this paper, we really only need the uniqueness of Spin(5), but little extra  work will also 

deal with the general case. 

THEOREM 6.1. Any simple 2-compact group G of rank 2 is isomorphic to the 2-adic 

completion of SU(3), Spin(5)=Sp(2) ,  SO(5) or G2. 

The rest of this section is devoted to the proof of this statement.  

Let U be a finite-dimensional Q2-representation of a finite group W. A W-latt ice L 

of U is a Z2-1attice L c U  of maximal rank fixed under the action of W; i.e. L is a Z2[W]- 

module and L |  Two W-latt ices L and L / of U are called isomorphic if L-~L r as 
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Z~[W]-modules. A Wl-lattice L1 and a W2-1attice L2 are called weakly isomorphic if 

there exists an isomorphism W1 ~ W2 such that  L1 and L2 are isomorphic as Wl-lattices. 

We say that  two p-compact groups G and G ~ have the same Weyl group data if the 

representations W c - ~ G L ( L c )  and Wc,--+GL(LG,) are weakly isomorphic. Renaming 

the elements of Wa,, we can always identify We, with WG and assume that  the two 

lattices are actually isomorphic. 

From the Clark-Ewing list [11] we get a complete list of all irreducible reflection 

groups of rank 2 defined over Q2. They are the dihedral groups D6, D8 and D12 with 

their standard representations as reflection groups. In fact, these are the only dihedral 

groups which can be represented as reflection groups over Q2. They correspond to the 

rational Weyl group representations of SU(3), Spin(5) or SO(5), and G2, respectively. 

The classification of Clark and Ewing only works up to weak equivalence. 

The Lie groups Spin(5) and Sp(2) are isomorphic, hence they have the same Weyl 

group data. In the following, we will always use the one of these two which seems more 

natural. 

If a p-compact group G has finite fundamental group then the universal cover G is 

again a p-compact group, and G and G have the same rational Weyl group data. In that  

case, G~-G/Z,  where Z C G  is a central subgroup [24]. Simple p-compact groups have 

finite fundamental groups [24]. Therefore, Theorem 6.1 is a consequence of the following 

classification result for simply-connected simple 2-compact groups. 

THEOaEM 6.2. Let H be SU(3), Sp(2) or G2. A simply-connected 2-compact group 

G has the same rational Weyl group data as H if and only if G and H are isomorphic 

as 2-compact groups. 

For the proof of this theorem we first have to classify all 2-adic lattices of the 

representation WH --+ GL (LH | Q). 

LEMMA 6.3. Let W--~GL(U) be a reflection group, where U=Q~.  

(1) I f  W- -D6  or W=D12 then, up to isomorphism, there exists exactly one W-  

lattice of U. 

(2) I f  W = D 8 ,  each W-lattice of U is isomorphic either to Lso(5) or to Lspin(5). 

Both lattices are weakly isomorphic. 

Proof. Case (1) follows from [2, Proposition 4.3 and Theorem 6.2]. 

Now let W = D s ,  and let L be a W-lattice of U. For r large enough, the lattice 2rL, 

i.e. the submodule of all elements divisible by 2 ~, is a submodule of Lso(5)~Z2GZ2.  We 

choose r minimal with this property, i.e. 2rLCLso(5) but 2~L~2Lso(5). Since L |  

Lso(5)|  we get a short exact sequence of Z2[W]-modules 

0 > 2~L > Lso(5) _A+ Q > 0. 
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The minimality of r implies that Q is a finite cyclic group; i.e. Q~Z/2 s generated by 

~)(1, O) or o(O, 1). The dihedral group Ds is generated by the three elements al, as and T, 

where cri multiplies the ith coordinate by -1  and ~- exchanges the two coordinates. 

Since the automorphism group of Q is abelian, the action of W on Q factors through 

the abelianization of W. It follows that the element O'IO'2=CrlTO'IT acts trivially on Q. 

Hence the elements (1, 0), (0, 1) ELso(5) are mapped onto elements of order 2 in Q. Thus, 

either (2=0 or Q=Z/2.  In the first case, we have L~Lso(5). In the second case, Ds acts 

trivially on Q with 0(1, 0)--L)(0, 1)r in Z/2, and consequently L~Lspin(5). This proves 

the first part of (2). 

The second part follows from the facts that Lsp(z) and Lspin(5 ) are weakly isomorphic 

and that nsp(2 ) and Lso(5) are isomorphic. [] 

Proof of Theorem 6.2. If G and H have the same rational Weyl group data, the 

above lemma shows that they also have the same 2-adic Weyl group data. We can 

assume that W:=Wc=W• and that L:=La=LH. We can also identify the maximal 

tori T:=Tc~--TH. 
This implies that H~-G for H=SU(3) [25] and for H=G2 [36]. 

For H=Sp(2), uniqueness results are only known in terms of the maximal torus 

normalizer [28], [35]. We have to show that BNG~-BNsp(2). 
Since G and Sp(2) have the same rational Weyl group data, they have isomorphic 

rational cohomology. Hence, H~(X)  is an exterior algebra with generators in dimensions 

3 and 7. If H*(G; Z2) has 2-torsion, then G and G2 have isomorphic mod 2 cohomol- 

ogy [20]. The Bockstein spectral sequence then shows that G does not have the correct 

rational cohomology. Therefore, G has no 2-torsion, and H*(G; Z2) is an exterior al- 

gebra with generators in dimensions 3 and 7. Hence H*(BG;F2)~-F2[x4,xs]. Since 

H*(BG; F2) is a finitely generated module over H*(BT; F2), the composition 

H*(BG; F2) ~- H*(BG; Z2)| > H*(BT; z2)WQF2 

~ H*(BSp(2); F2) > H*(BT;F2) 

is a monomorphism. 

The isomorphism H* (BT; z2)WQF2 ~ H* (B Sp(2); F2) follows from the fact that G 

and Sp(2) have the same 2-adic Weyl group data (Lemma 6.3). Since the first and third 

terms are both polynomial algebras of the same type, 

H*(BG; F2) ----+ H*(BT; z2)W| ~- H* ~B Sp(2); F2) 

is an isomorphism. 
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Let t CT denote the elements of order 2 and K:= Sp(1) x Sp(1)C Sp(2) the subgroup 

of diagonal quaternionic matrices. We have a chain of inclusions tCTCKCSp(2) and 

K=Csp(2)(t). The action of Ds on t factors through the Z/2-action on t given by 

switching the coordinates. 

Now we use Lannes' T-functor theory (see e.g. [33]). We get a map f :  Bt--+BG which 

looks in mod 2 cohomology like the map Bt--+BSp(2). This map is Z/2-equivariant up 

to homotopy. The rood 2 cohomology of the classifying space BCG(t):=map(Bt, BG)f 

of the centralizer CG(t) can be calculated with the help of Lannes' T-functor and 

H*(BCu(t); F2) ~- H*(BCsp(2)(t); f2)  -~ H*(BG; F2). 

Moreover, the Weyl group of Co(t) is given by the elements of Ds acting trivially on t. 

Hence Wcc(t)-~Z/2xZ/2. By [13, Theorem 0.hB], this implies that  BCc(t)~-BK. We 

will identify Ca(t) with K.  The Z/2-action on t induces a Z/2-action on K.  Since 

Bt-+BG was Z/2-equivariant up to homotopy, the inclusion BCc(t)--+BG extends to 

a map BL:=BKhz/2-+BG. In this case, the homotopy orbit space BL happens to be 

a 2-compact group and has the same Weyl group as G. That is, NL =Nc. Moreover, the 

space BL is part of a fibration 

BK ~ BL ~ BZ/2, 

which is classified by obstructions in H* (BZ/2; ~r, (Baut l  (BK))). 
Here, au t l (BK)  is the monoid of self-equivalences of BK homotopic to the identity. 

Since autl  (BK) ~- (BZ/2) 2 [15] and since Z/2 acts on ~r2 (B 2 (Z/2) 2) ~ (Z/2) 2 by switching 

the coordinates, all obstruction groups vanish and the above fibration splits. This shows 

that  BL~B(K>~Z/2)=:BK' and that  BNc=BNL~--BNK,=BNsp(2). That is, G and 

Sp(2) have isomorphic maximal torus normalizer, and hence G~Sp(2).  [] 

Remark. The only simply-connected 2-compact group of rank 1 is S 3. Hence we get 

the following complete list (up to isomorphism) of connected 2-compact groups of rank 2: 

S I x S  1, S 1 x S  3, V(2), S I x S O ( 3 ) ,  S 3 x S  3, $3xSO(3), 

S0(3)•  S0(4), SU(3), Sp(2), S0(5), a2. 

COROLLARY 6.4. For any simple, connected 2-compact group G of rank 2, there 
exists a homomorphism S 3-+G such that the composition $3--+ G--+ G is a monomorphism 
and such that H~2(BG ) ~H~2(BS3 ). 

Proof. Because of Theorem 6.1 we only have to check this for the compact con- 

nected Lie groups SU(3), Sp(2), SO(5) and G2. There exists a chain of monomorphisms 
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S 3 = S U ( 2 ) c S U ( 3 ) c G 2 .  Both groups, SU(3) and G2, are 2-adically center-free. This 

proves the claim in these two cases. Let $3C Sp(2) denote the inclusion into the first co- 

ordinate. Since the intersection of S 3 and the center of Sp(2) is trivial, the composition 

$3cSp(2)--~SO(5) is also a monomorphism. This proves the claim in the other cases. 

The condition on the rational cohomology is obvious. [] 

7. Geometric  properties of  loop spaces 

In the final sections we describe a different proof of our main theorem, which is based on 

the concept of special 1-tori. This concept was exploited by the fourth author to prove 

that  fn i te  loop spaces in the genus of a compact connected Lie group are homotopy 

equivalent to stably parallelizable manifolds [29], [30]. 

Definition 7.1. For a subring of the rationals R, a nilpotent R-local space X ad- 

mits an R-local special 1-torus if, up to homotopy, there exists a diagram of orientable 

fibrations of nilpotent spaces 

L R S  1 > L R S  3 > L R S  2 

1 ,1 
L R S  1 > X > Y 

* " Z  Z 

such that  

(1) Z is R-finite; 

(2) Y is R-finite and stably reducible; 

(3) localized at O, the diagram is homotopy equivalent to 

L Q S  1 > L Q S  3 > L Q S  2 

L Q S  1 > L Q Z •  3 > L Q Z X S g  

�9 > L Q Z  L Q Z ,  

where all vertical fibrations are trivial. 

In [30] the fourth author showed that  for a quasifinite Poincar6 complex X, the 

existence of rationally splitting Z(p)-locat special 1-tori implies the existence of a global 
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special 1-torus and that ,  as a consequence, X is homotopy equivalent to a compact,  

smooth, stably parallelizable manifold. The next proposition, which will be proved in w 

allows us to establish Z(p)-local special 1-tori. 

PROPOSITION 7.2. Let X be a connected quasifinite loop space which is not of 

type 3 k. Then there exists a loop space Y and a fibration A-+ L(p)BS3 ~ L ( p ) B Y  such that 

A is simple, Z(p)-finite and such that Y and X are homotopy equivalent spaces. More- 

over, localized at O, there exists a left inverse s: L Q B Y - +  L Q B S  3 of f ,  i .e.  8fo-~idLQSS 3 . 

The proof of this proposition will be given in w 

COROLLARY 7.3. Under the above assumption, the localization L(p)X admits a 

Z(p)-Iocal special 1-torus. 

Proof. Since the loop space Y of the last proposition is equivalent to X,  we only have 

to prove the claim for Y, or equivalently, we may assume that  there exists a fibration 

L(p) B S  3 ~ L(p) B X  with the desired properties. 

Let S 1 c S  3 be the maximal  torus of S 3. Passing to classifying spaces and localiza- 

tions, and taking homotopy fibers, we get a commutat ive diagram of fibration sequences: 

L ( p ) S  1 , L ( p ) S  3 - L ( p ) S  2 

L(p)S 1 > L(p)X , y 

* ~ Z  Z. 

L(p)BS 1 

> L(p)BS 1 

Z 

1 
i ~ L ( p ) B S  3 

g > L (p )BX  

(,) 

Here Y is the homotopy fiber of the composition L(p) B S  1 --+ L(p) B S  3 --+ L(p) B X .  As the 

homotopy fiber of maps between simply-connected spaces, Z and Y are simple. 

The three left columns of diagram (*) will establish a Z(p)-local special 1-torus for 

L(p)X. All rows of this 3 • 3-diagram are given by principal fibrations and are therefore 

orientable. The same holds for the two left columns. For the right column we have a 

pullback diagram 

L(p)S 2 > Y > Z 

L ( p ) S  2 , L ( p ) B S  1 , L(p)BS 3. 
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The bot tom row is an orientable fibration. Hence, this also holds for the top row. This 

shows that  the 3 • 3-part of diagram (*) consists of orientable fibrations. 

Since Z is Z(p)-finite, a Serre spectral sequence argument shows that  the same holds 

for Y. 

Localized at 0, there exists a left inverse s:LQBX-+LQBS 3. Since SLQg= 

sLofLQi=LQi  , this left inverse establishes rationally compatible left inverses for all 

vertical arrows between the second and third row of (*). In particular, this shows that,  

localized at 0, the vertical fibrations of the 3 • 3-diagram are trivial and that  this diagram 

satisfies the third condition of special 1-tori. 

To complete the proof it remains to show that  Y is Z(p)-stably reducible. We pass 

to completions. Then LpX becomes a p-compact group. We get a fibration LpY--+ 

LpBS 1 -+LpBX. Since Y was Z(p)-finite and simple, Y and LpY have isomorphic mod p 

homology. This shows that  LpY is Z/p-finite, that  LpS 1--+LpX is a monomorphism of 

p-compact groups and that  Y is equivalent to the homogeneous space LpX/LpS 1. By 

Theorem 5.1, Y is Z(p)-stably reducible. This completes the proof and shows that  L(p)X 

admits a Z(p)-local special 1-torus. [] 

Second proof of the main theorem. The passage from stably parallelizable to paral- 

lelizable is already discussed in w If L2X is not of type 3 k, then the statement follows 

from Corollary 7.3 and [30, Theorem 1.4]. The exceptional cases were already discussed 

in w [] 

8. P a r t i c u l a r  s u b g r o u p s  o f  p - c o m p a c t  g r o u p s  

In this section we will construct particular subgroups of p-compact groups whose center- 

free quotient contains one simple factor of rank at least 2. 

PROPOSITION 8.1. Let G be a semisimple connected p-compact group such that 

r=dimH~p(BX)r If p=2 ,  assume that G is not of type 3 k. Then there exists a 

compact Lie group H and a map f: BH--+BG such that the following hold: 

(1) The Lie group H~-S3xH ~, with H ~ semisimple and its universal cover FI ~ iso- 

morphic to ($3) r-1. If p is odd, we can choose H = ( S 3 ) L  

(2) The induced map H~p(BG)--+H~p(BH) is an isomorphism. 

(3) The homotopy fiber G/H of f is simple and Z/p-finite. 

For the proof we need the following lemma. 

LEMMA 8.2. Let G be a simple simply-connected 2-compact group satisfying that 

H~2(BG)~O. Then there exists a map BS3-+ BG such that 



26 T. BAUER, N. K I T C H L O O ,  D. N O T B O H M  AND E .K .  PEDERSEN 

(1) H~(BG)-+H~2(BS3 ) is an isomorphism; 
(2) /f rk(G)~>2, then BS3-+ BG-+ BG:= B(G/Z(G) ) is a monomorphism. 

Proof. Since G is simple and since H~:(BG)r the Weyl group WG is an honest 

reflection group and already defined over Z. This follows from the classification of ir- 

reducible pseudo-reflection groups. Actually, the Weyl group is isomorphic to the Weyl 

group of a compact Lie group. 

If Wc is abelian then BG is either BSO(3)  or BS 3, and the first part  is obvious. 

Hence we can assume that  Wc is nonabelian. Let W ' c W c  be a subgroup of the Weyl 
W' group of G generated by two noncommuting reflections. Let T c T ~  c T c  denote the 

connected component  of the fixed-point set of the We-act ion on To, which has codimen- 

sion 2. The centralizer C=CG(T) is a connected 2-compact group whose Weyl group Wc 
contains W' [24]. There exists a finite covering of C which splits into a product K x T, 

w h e r e / 4  is a simply-connected 2-compact group of rank 2 with Weyl group isomorphic 

to We. The action of W' on the maximal  torus TK of K gives rise to an irreducible 

representation over Qu. Otherwise, W'  would split into a product,  and the two chosen 

reflections would commute.  Hence, the 2-compact group K is simple and of rank 2. 

Let G' be the simple simply-connected compact  Lie group with the same Weyl 

group. The above construction is only based on the Weyl group action of Wc on TG. 
Hence, applying the construction to G'  establishes a map  BK'-+BG', which, as a map  

between classifying spaces of compact  Lie groups, is defined globally, and which in rational 

cohomology induces the same map  as the composition BK-+BC-+BG, which is only 

defined Z/p-locally. By [1], H~p(BG')-+H~ (BK') is nontrivial, in fact an isomorphism. 

And the same holds for BK-+BG. 
Let S3CK be the subgroup constructed in Proposit ion 6.4. 

The subgroup S3cG is constructed via the composition S3-+K-+G, where K is a 

2-compact group of rank 2. We get a diagram 

S 3 > K > G 

S a , K/A > G, 

where A denotes the kernel of the composition K-+G--+G. The bo t tom right arrow is 

a monomorphism. And since S3--+K--+K is a monomorphism, the same holds for the 

bo t tom left arrow as well as for the composition in the bo t tom row. This proves the 

second part.  Par t  (1) also follows from Proposition 6.4. [] 

Remark. The same s ta tement  holds for odd primes. In this case, the proof for the 

second claim is even simpler. Since S 3 is center-free at odd primes, we do not need to 
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construct a subgroup of rank 2. Choosing a subgroup of Wa generated by one reflection 

will produce a monomorphism S3--+G with all the desired properties. This clarifies a 

detail overlooked in [27]. The argument for the first part given there is not complete. 

Proof of Proposition 8.1. We can compare the statement with [27, Proposition 3.1]. 

For odd primes there is no difference. Hence we have to prove the statement only for 

p=2.  In this case we have an extra assumption on the rational type, and the additional 

output  is that  H contains a factor S 3. 

Since H~p(G) has a generator of degree greater than 3, the Weyl group Wa is non- 

abelian [13, Theorem 0.5B]. The universal cover G of G splits into a direct product 

G ~ I ] i  Gi of simple simply-connected pieces [16]. Since G and G have isomorphic Weyl 

groups, we can assume that  G1 has a nonabelian Weyl group W1. If H~p(BG1)r 
Lemma 8.2 will produce a monomorphism f :  BS3--+BG1 such that  4 H~,(f) is an isomor- 

phism and such that  BS3--+BG1---~Bd~ is a monomorphism. 

If for all factors with nonabelian Weyl group this rational cohomology group van- 

ishes, there exists a factor G2 of rank 1 with H~,(BG~)~H~,(BS3). This implies that 

G2~S 3. We define G~:=GlxG2. Since the Weyl group Wc1 is defined over Q2, it is 

an honest reflection group, and the arguments of Lemma 8.2 show that  the second part 

does hold in this case. Hence, we can then define a map BS3~BG~I=BG1 x BG2 which 

is the identity on the second factor and satisfies the claims of Lemma 8.2. 

Now we can proceed similarly as in [27]. For all other pieces with H~p(BGi)r 
there exist monomorphisms BHi-+ B Gi inducing an isomorphism on H a ( - ; Z p ) |  Q such 

that  Hi is isomorphic to S 3 or to SO(3) (see [27]). This produces a homomorphism 

l~iHi--+l~iGi~X-+X of p-compact groups. The kernel K of this homomorphism, 

which might be nontrivial, is a central subgroup of Ht  x l-[i>1 Hi. Since the center-free 

quotient G is isomorphic to l-]i Gi we have a homomorphism G ~ G 1 .  By construction 

the composition S3-+GI-+G~ is a monomorphism. We get a commutative diagram 

K > S3x I~ i> lHi  > G 

K " S a " G1, 

where the right arrow in the bot tom row is a monomorphism. Since G1 is center- 

free, the composition K-+S3x[L>IHi-+S 3 is trivial. Therefore, K is a subgroup 

of [Ii>lHi and the map S3x[L>IHi--+G factors through a monomorphism H : =  

S3x ((1-L>l Hi)/K)-+G with all the desired properties. [] 
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9. P r o o f  o f  P r o p o s i t i o n  7.2 

The proof of Proposition 7.2 is based on an arithmetic square argument. First we need 

a statement about the existence of a particular sub-loop space. Actually, a Z(p)-loeal 

version of the next proposition would be sufficient for our purpose, but with no extra 

effort we can prove a global result. 

PROPOSITION 9.1. Let X be a semisimple Z-finite loop space not of type 3 k. Then 

there exist a semisimple compact Lie group H - ~ S 3 •  ~, loop spaces U and Y, and a 

fibration 

A--+ BU -+  B Y  

such that the following hold: 

(1) the universal cover of H is isomorphic to a product of S3's; 

(2) H 4 ( B y ;  Q)-+ H4(BU; Q) is an isomorphism; 

(3) A is simple and Z-finite; 

(4) the spaces H and U as well as X and Y are homotopy equivalent; 

(5) for each prime p there exists a commutative diagram 

LpBU > L p B Y  

l 1 
L p B H  > L p B X ,  

where the vertical maps are equivalences. The same holds for the rationalizations of the 

classifying spaces. 

Proof. This statement is a refinement of [27, Proposition 1.4]. The proof of that  

statement is an arithmetic square argument which uses its p-completed version as input 

[27, Proposition 3.1]. The proof carries over word by word. We only have to replace that  

proposition by a p-completed version of the above claim, namely by Proposition 8.1. 

Claim (5), which is not part of [27, Proposition 1.4], follows from the arithmetic square 

argument and Proposition 8.1. [] 

Remark. The above proposition establishes an oriented fibration H--+X-+A. The 

existence of such an oriented fibration is sufficient to show that  the finiteness obstruction 

vanishes and that  every quasifinite loop space is actually finite (see [27]). The existence 

of a special 1-tori is needed for the vanishing of the appropriate surgery obstruction. 

For the proof of Proposition 7.2 we need a higher-dimensional version of Lemma 4.2. 
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LEMMA 9.2. Let A EGL(n, Zp). Then, there exists a vector v =  (Vl ,  . . . ,  Vn)~Zp such 

that vi is a square of a p-adic unit for all i and such that Av is a vector whose components 

are given by elements of Z(p). 

Proof. Let B = A  -1. We have to solve the following problem: Find a vector wEZ(np) 

such tha t  BwT~O has squares of p-adic units as components. The question whether a 

p-adic unit is a square can be decided by reducing to Zip for p odd or to Z /8  for p=2 .  

In both  cases the reduction B of B is an invertible matr ix  and therefore induces an 

epimorphism on V =  (Z/p) n. In particular, if V E V is a vector with components given by 

squares mod p such that  all entries are units in Z/p, there exists a vector w E Z  ~ such 

that  Bw=v. Hence, Bw is a vector whose components are squares of nontrivial p-adic 

units. For p=2 ,  the same argument works, we only have to replace Zip by Z/8.  [] 

Proof of Proposition 7.2. Let U and Y denote the loop spaces and H the Lie group 

constructed in Proposition 9.1. 

pullback diagram 

Since LpBU~_LpBH and LQBU~_LQBH we have a 

L(p)BU :- LpBH 

LQBH ~ LQLpBH a > LQLpBH. 

The map a is an equivalence and induces a continuous map in homotopy. The homotopy 

groups 7r,(LQLpBH) carry a natural  topology since 7r,(LpBH)~Tr,(BH)| (details 

may be found in [39]). The space LctLpBH~-K(Q~, 4) is a rational Eilenberg Mac Lane 

space. Since self-maps of rational E i l enbe r~Mac  Lane spaces are determined by the 

induced maps in homotopy, and since a induces a continuous map in homotopy, we can 

think of a as a matr ix  in GL(n, Qp) inducing a continuous self-equivalence of Q~. Such 

matrices can be writ ten as a product 7~, where 7EGL(n ,  Zp) and 0EGL(n;  Q). 

Since o can be realized as a self-equivalence of LQHG, replacing a by 7 does not 

change the homotopy type of the pullback. Hence we may assume that  a E G L ( n ,  Zp). 

Every square unit of Zp, considered as a self-map of 7r4(LpBS 3) can be realized by a 

self-equivMence LpBSa--+LpBS 3. Since H ~ S 3 x  H ~ and since the universal cover of H r 

is a product  of S3's, Lemma 9.2 shows tha t  there exists a map BS3-~LpBS3xLpB~F 

such that  the composition LpBSa-+LpBS3xLpBfiF-+LpBH is a monomorphism and 

such that  the composition 

L(p)BS 3 > LpBS 3 ---+ Lp(BS3xBffF) 

0:--1 
> LQLp(BS 3 x BH') ~_ LQLBBH < LQLpBH 

lifts to a map L(p)BS3--+LQBH~LQ(BS3xBH').  Moreover, localized at O, composi- 

tion with the projection on the first factor is an equivalence. This establishes a map 
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L(p)BS3--+L(p)BU such t h a t  the  comple t ion  of L(p)BS3--+L(p)BU is induced by the  

m o n o m o r p h i s m  LpS3--+LpS3xLpH'~LpH of p - c o m p a c t  groups.  This  shows tha t  the  

h o m o t o p y  fiber of L(p)BS3---~ L(p)BU is s imple and Z(p)-finite, as is the  h o m o t o p y  fiber of  

the  composi t ion  f :  L(p)BS3-+L(p)BU-+L(p)BY. Since H4(By;  Q)~-Ha(BU; Q),  there  

exists a left inverse s: LQBY--+LQBU for LQg. Projec t ion  onto the  first factor  gives a 

left inverse of LQBSn-+LQBU~--LQBS3xLQBHq This  shows tha t ,  localized at  0, the  

m a p  f :  L(p)BS3--+L(p)BY has a left inverse and finishes the  proof  of the  proposi t ion.  [] 
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