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1. Introduction.  

In his work on dynamics Poincard was led to focus attention primarily 

upon the periodic motions. He conjectured that  any motion of a dynamical 

system might be approximated by means of those of periodic type, i.e. that  t h e  

periodic motions would be found to be densely distributed among all possible 

motions; and it became a task of the first order of importance for him to determine 

what the actual distribution of the periodic motions was, so as to prove or 

disprove his conjecture. 

Poincar6 employed the method of analytic continuation in his great Prize 

Memoir in the Acta Mathematica, which dealt with the problem of n bodies. In 

the integrable limiting case when the masses of all but one of the bodies vanish, 

there are infinitely many periodic motions: By varying certain parameters he 

passed from this trivial limiting case to the case when none of the masses are zero, and 

showed that  these periodic motions persist as members of analytic families, unless 

two of them combine and disappear from the real domain like the roots of 

algebraic equations with real coefficients. He did not consider the possibility 

of disappearance of such a motion by i ts  period becoming infinite, although:this 

possibility requires consideration also. 

Unfortunately this method of analytic continuation gave very meagre re- 

sults, for the following reason. Although there are infiniteiy many periodic 

families, it is conceivable that  the range of the parameters becomes less and 

less as the type of the periodic motion becomes more and more complicated. 
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This would mean that only a finite number of the periodic motions might exist 

for any particular set of the values of the parameters other than that of the 

trivial integrable case. 

Thus Poincar4 found the method of analytic continuation to be insufficient, 

and was forced to seek other instruments of attack. To begin with, he fastened 

attention mainly upon the simplest possible case with two degrees of freedom, 

namely the so-called restricted problem of three bodies. Ahnost all of the quali- 

tative reasoning in his ~[dthodes ~wuvelle.~" de la ~[~canique e~leste deals only 

with this case. 

Notwithstanding this severe limitation, and despite many years of effort, 

Poincar4 was not able fully to attain his goal. Near the end of his life he 

gave out his last geometric theorem without complete proof)  By its means he 

showed that  in the restricted problem of three bodies and analogous problems, 

an infinite number of periodic motions would exist. In  a recent paper ~ I have 

generalized this theorem and my earlier proof of it, although without giving 

the dynamical application. At the kind invitation of Professor Mittag-Leffler, I 

endeavour to set forth here, with as little technicality as possible, the essential 

facts known to me concerning the distribution of the periodic motions, particularly 

as based on an application of the geometric theorem of Poincar4 and its gene- 

ralization. 

2. The bi l l iard ball  on a convex table. 

In  order to see how the theorem of Poincar4 and its generalization can be 

applied to dynamical systems with two degrees of freedom, I propose to draw 

attention to a special but highly typical system of this sort, namely that  afforded 

by the motion of a billiard ball upon a convex billiard table (Fig. I). This example 

is very  illuminating for the following reason: Any dynamical system with two 

degrees of freedom is isomorphic with the motion of a particle on a smooth 

surface rotating uniformly about a fixed axis and calTying a conservative field 

of force with it. a In  particular if the surface is not rotating and if the field 

of force is lacking, the paths of the particles will be geodesics. I f  the surface 

i Surun thdorbme de G~om~trie, Rendiconti del Circolo Matematico di Palermo, vol. 33, 1912. 
An Extension of Poincard,'s Last Geomelric Theorem, Acta Mathematica, vol. 47, I926. 
See my paper, ,,Dynamical Systems ]Vith Two Degrees of Freedom,,, Transactions of the 

American Mathematical Society, vol. 18, 1917. It is assumed that the Lagrangian principal func- 
tion L is quadratic ill the veh)cities. 
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is conceived of as convex to begin with and then gradually to be flattened to the 

form of a plane convex curve C, the >>billiard ball>~ problem results. B u t i n  this 

problem the formal side, usually so formidable in dynamics, almost completely 

disappears, and only the interesting qualitative questions need to be considered. 

I f  C happens to be an ellipse an integrable system results, namely as a limiting 

case of the geodesics on an ellipsoid treated by Jacobi. 

In this problem one can arrive at the existence of certain periodic motions 

by direct maximum-minimum methods. As of interest in itself I wish to show 

how this can be done. Results which are being obtained by Morse (but not yet 

published) indicate that the scope of these methods, already developed to some 

extent by Hadamard, Poincar~, Whittaker and myself, can be further extended. 

C 

Fig. 1. 

Thus the power of such maximum-minimum considerations in the billiard ball 

problem is likely to prove typical of the general case. 

Any longest chord of the curve C (or boundary of the billiard table) when 

traversed in both directions evidently yields one of the simplest periodic motions. 

The billiard ball moving ~long this chord strikes the curved boundary at right 

angles and recoils along it in the opposite direction. If  we seek to vary this 

chord continuously, while diminishing its length as little as possible, so as finally 

to interchange its two ends, there will be an intermediate position of least length 

which will be the chord C where C is of least breadth. Detailed computation 

of the slightly perturbed motions indicates that the first of these two periodic 

motions is unstable, while the second is stable, i.e. with formal trigonometric 

series for the perturbations. 

Next we ask for the triangle of maximum length inscribed in C. Evidently 

at least one such triangle will exist, and can have no degenerate side of zero 
46-- 26404. Acta mathematica. 50. Imprim~ le 27 octobre 1927. 
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length. At each of its vertices the tangent will, of course, make equal angles 

with the two sides passing through the vertex. Hence a harmonic triangle is 

obtained which will correspond to two distinct motions, one for each of the two 

possible senses of description. 

Moreover if we seek to vary this triangle continuously, without changing 

the order of its vertices and diminishing the perimeter as little as possible, so 

as finally to advance the vertices cyclically, we discover a second harmonic tri- 

angle, also corresponding to two periodic motions. 

In this way the existence of two harmonic n sided polygons which make 

]c circuits of the curve C (k less than ?~ and prime to n)can be proved. The two 
2 

motions corresponding to the polygon of maximum type will be unstable, while 

the other of minimax type may be stable or unstable. 

In the case of a circular boundary the totality of regular inscribed polygons 

(simple or cross) form the harmonic polygons. 

We propose next to set up a ring transformation associated ~vith the billiard 

ball problem, and to show how the geometric theorem of Poincard in its first 

form leads to the facts deduced above. The reduction to a ring transformation 

is of fundamental theoretic importance, quite aside from the relation to the 

question of periodic motions. I t  should be noted also that  in the cases of most 

interest like the restricted problem of three bodies1 the method of reduction to 

a ring transformation and application of the theorem of Poincard is available 

for the treatment of the periodic motions, while the method of maximum-mini- 

mum has not as yet been shown to be applicable. 

3. Reduction to a ring transformation T. 

To begin with we suppose the length of C to be 2 z  and to be measured 

from a fixed point 0 to a variable point /) by an angular coordinate ~ (Fig. 2). 

At P, taken as the point of projection of the billiard ball, let t~ denote the 

angle between the positive direction of the tangent and the direction of projection. 

The variable t~ varies between o and z only. These coordinates 8, q~ suffice to 

represent all possible states of projection unambiguously. I f  ~ be taken as an 

angular coordinate in the plane, while t?, augmented by a constant, say z, be 

taken as a radial coordinate, the set of values 8, ~ are represented on a ring 

1 See my  paper  On the Restricted _Problem of Three Bodies, Rendiconti del Circolo Mate- 

matico di Palermo, vol. 39, 1915, and the paper  of Poincard cited above. 
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bounded by concentric circles of radius z and ~ ~ respectively, namely the circles 

0 = o and 0 ~ ~c (Fig. 3). 

Consider now a definite state of projection at P with given 0,~. The 

billiard ball leaves the edge at P to strike it again at P1, there to be projected 

i n n  state 01! ~1, say, and so forth indefinitely. I f  C is an analytic curve, as we 

assume it to be; the correspondence between 0, T and 01,f~ is evidently one-to- 

one and analytic within the ring. When 0 is nearly o or z, the ball is projected 

at a slight angle to the edge, and strikes it again at a nearby, point w i t h 0  

nearly o or z as the case may be. Hence the points on the bounding circles 

correspond t o  themselves with 01 = 0, ~1 = ~. 

One further remark needs to be made about the correspondence along the 

two boundaries of the ring. If we think of each point (0, qv) as being carried 

50 

Fig. 2. 

into (01, ~1) by a transformation or deformation of the ring, this transformation 

T Will effect a certain number of complete rotations of the inner circle, and 

also of the outer circle, since the points of these boundaries are invariant as 

just seen. We may arbitrarily regard the inner circle as having undergone no 

rotation, but the same will not then be true of the outer circle which can at 

once be shown to have undergone a single complete revolution in the positive 

sense. For  let the pro iection angle 0 for a given point P with corresponding 

fixed ~0 vary from o to z. I t  is obvious that  then 01 will increase from o to z 

while ~0 increases by 2 z since the point P1 makes a complete circuit of C in a 

positive sense. In other words, the transformation T takes radial segments 

across the ring into curves starting at the same point of the inner circle but 

winding around the " ring just once while crossing it. Hence the outer boundary 

has undergone a single positive revolution under the transformation T. 

Suppose now that  we have a periodic motion, for example that  correspond- 

ing to one of the harmonic triangles taken in a positive sense. I t  is evident 

that  the transformation T of the ring takes the point of the ring representing 

the state of projection at the first vertex into that  of the second; and likewise 

takes the state for the second vertex into that  for the third, and that  for the 

P 
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third vertex into the first. Thus when T is applied, the triple of points on the 

ring is cyclically advanced, and each point of the triple is unaltered by the 

application of the third iterate T s of T. 

Conversely to any triple with this property, or to any point invariant under 

/'~ together with its images under T and T ~, corresponds a motion belonging 

to a harmonic triangle. Evidently then from considerations advanced earlier 

there are at least four such triples. 

I t  is ohvious that  there can be no invariant points under T itself, because 

q~ is increased but by less than 2 z. 

Fig. 3. 

In this way the search for harmonic polygons and the allied periodic mo- 

tions in the billiard ball problem resolves itself into the determination of sets 

of distinct points 1)1, . . .  P ,  cyclically advanced by T, so that in general we have 

= ( i  = n). 
I t  could be shown more generally that  each and  every interesting property 

of the motion of the billiard ball is mirrored in a corresponding property of the 

transformation T. Thus the dynamical problem is effectively reduced to that  of 

a particular transformation of a circular ring into itself. 

4. The invariant  integral .  

There is a further property of the transformation 

T: ~1 = f(O, qp), ~1 = g (0, ~) 

which plays a fundamental part in applying the geometric theorem of Poincar6: 

the double integral f f s i n O d O d 9 ~  taken over any area a o f  the ring has the 

same value as over the images a~, a~ , . . ,  under T and its iterates. 
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Before passing to the entirely elementary proof of this fact, one immediate 

conclusion may be cited in justification of the statement as to the fundamental 

theoretic importance of the ring transformation which was made earlier. Since 

the integrals evaluated over a, al, as . . . .  have the same value, and since its value 

over the entire ring is finite, being 4~ ,  some two of the images ai and aj over- 

lap. Employing the inverse transformation we infer that  aL-1 and aj-1 also over- 

lap, and thus finally that  at-j and a overlap (i >j) .  But, interpreted for the 

billiard ball problem, this means that  the bali can be projected very nearly, with 

arbitrary position and direction, to return subsequently to nearly the same posi- 

tion and direction. As elaborated by Poincar~, this chain of reasoning leads to 

the conclusion that  the ~probability>> is unity for an arbitrary motion to return 

infinitely often to the neighborhood of its initial state. He called this property 

of the dynamical system >>stability in the sense of Poissom>. 

The proof that  the double integral is invariant depends on an explicit eva- 

luation of the Jacobian 

j O01 0~01 001 0~1. 
00 0~  0 ~  0 O 

In fact if f f M(O,q~)dOdqg is invariant, we have 

where the variables 01, ~1 range over the region al just as 0, ~ do over o. But 

according to the fundamental theorem for change of variables, T gives the in- 

tegral on the left the form 

f f M(ol,q~l)JdOdq~. 
u 

Comparing this expression and the integral on the right which are both integrals 

over the same arbitrary region o we deduce the functional relation: 

~/I(01, ~9i)J-~ M(O, qD) 

as the well known necessary and also sufficient condition for invariance. Hence 

toestablishthat ffsinOdOdqDisinvariantwemustonlyprove 
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Let 

sin 0 j =  _ .  
si--~l 10 

x : : F ( ~ ) , y = G ( ~ )  

be the equations of C in rectangular coordinates, so that, if ~ denotes the angle 

between the positive tangential direction at a point of C and the positive x axis, 

we have 

~ tan_ 1 G' (q~) 
~ (~) 

\ , x  / 

Fig. 4. 

Similary let ~1 denote the like angle at the transformed point, which will be given 

by the same expression save that ~v is replaced by q~l. Finally let a designate 

the angle between the positively directed x axis and the direction of initial pro- 

jection (Fig. 4). I t  is evident that  the following two relations will hold 

0 ~ T ,  01 = T1 ~ 0f. 

Substituting in the above value for r and the anMogous value for ~1, and also 

substituting in for a the value 

tan_ ~ c; ( ~ ) -  e (~) 
F(~I)  - -  F (~) 
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evident  by inspection, we obtain the explicit  formulas 

T:  
/ G' (99,) 
( 81 -= tan-1  F '  (99i) 

G (991) - -  G (99) _ t a n _  , G'  (99) = L (9o, 991), 
0 = t a n  - 1  F(99~) - -  F (99 )  F '  (99) 

G (991) - -  G (99) 
tan-1F(991) --  F(99) ~ ~(99' 99~) 

These two equat ions define the t rans format ion  T f rom (8, 99) to (81,991)- 

Taking  differentials we find 

whence at once 

d O =  Lr + L,~,d991, dOl = M~d99  + M,~ld99 1 

M ,L ia9 9 

d 991---- -L-~ d O - -  d99. 

This gives us the Jacobian  

j _  Mq, = _ [F(991) - -  F(99)] G' (99) - -  [G (991) - -  G (99)1F (99) 
L~, [F(991) - -  F(99)] G' (991) - -  [G (991) - -  G(@I F '  (991) " 

But  F(991 ) -  F(99), G(991)-  G(99) are propor t ional  to cos a, sin a respectively, 

while we have also 

F '  (99) = cos ~, G' (99) -= sin T, F '  (991) = cos ~:t, G' (991) = sin ~1, 

so tha t  finally we obtain 

as was stated. 

j _ _  sin (a - -  ~) sin 0 
sin (~1 - -  a) - -  sin 0 1 

5. Application of  the theorem of  Poinear6. 

As has been seen, there  are no points of the r ing which are invar iant  un- 

der T. On the  o ther  hand  consider T 2 followed by a ro ta t ion  of the  8, 99 plane 

th rough  an angle - - 2  z which we designate by R-1. The resul tant  t ransformat ion  

of the r ing admits the same area in tegral  as T, of course, but  advances the points 

of the outer  circle by an angle 2 z ,  and those of the inner  circle by an angle 
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- - 2  z of opposite sign. These are the two conditions essential for  the applicat ion 

of the theorem which states tha t  any one-to-one t ransformat ion  of a ring, ad- 

mi t t ing  an invar iant  integral  a n d  ro ta t ing  the boundaries  in opposite angular  

directions, possesses at l eas t  two dist inct  invar iant  points with indices of opposite 

signs. Hence  R _  1 T * (the compound t ransformation)  possesses two such invar iant  

points. This means tha t  T "~ has two geometr ical ly dist inct  invar iant  points of 

oppositely signed indices ~, a l though these correspond to an increase of 2 z for  ~0. 

I f  P is such an invar iant  point, so is T(P)  of course bu t  with the  same 

index. Thus we get  two point  pairs, say 

P,  T(P) ;  Q, T(Q), 

all four  distinct. These evidently correspond to the two fundamenta l  periodic 

motions.  

Fo r  ~he applicat ion of the theorem of Poincar6 to the periodic motions of 

more complicated type it  is necessary to take account  of the fact  tha t  every such 

mot ion is associated with a distinct second such mot ion ob ta ined  by reversing the 

direction of motion, a l though these motions have the same index. However ,  one 

of these motions increases ~ by 2 k z while the o ther  increases i~ by 2 (n - -  k) z.  By 

only considering invar iant  points of T n (n > 2) for  which 9 increases by 2 k z ,  k ~  n 
2 

we clearly obtain each harmonic  n sided polygon only once. I t  may be noted 

in passing tha t  this pair ing of motions in the billiard ball problem is fully re- 

flected in the fact  tha t  T is a product  of two involutory t ransformat ions :  it  was 

the same special proper ty  of the r ing t ransformat ion  in the restr icted problem of 

three  bodies which enabled me to prove the existance of infinitely many symme- 

tric periodic orbits. ~ 

Now turn  to the invar iant  points of the compound t ransformat ion  /~-k T ~ 

where Rk denotes a k fold ro ta t ion  th rough  the angle - - 2  z. The rota t ions  on the 

outer  and inner  circles are clearly 

2 ( n - - k ) z  and 2 k z ,  

which will be of opposite sign if 0 < k < n. Thence we can infer  the existence 
2 

of at  least two geometrically dist inct  series of points 

1 See my recent Acta article (loe. eit.). By the index of an invariant point is meant the total 
changes in angular direction of a line joining a point _P to its image Px when _P makes a small 
positive circuit of the invariant point. 

See my paper in the Rendieonti di Palermo, loe. eit. 
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I P, T(e) .... T.-!(P) 
Q,T(Q), T~-I(Q) 

such tha t  we have T" (P) - -  t ), T '~ (Q) - ~ Q  while ~ has been increased by 2 k ~; it  is 

assumed tha t  k and n are relat ively prime. 

To prove this assertion in detail, we may let  _P be one such invar iant  point,  

such tha t  T ~ increases ~ by 2 k z .  I f  

P,  r ( e ) , . . .  T ~-1 (P) 

are not  distinct, let  T'~(P) ~ P{m < n - -  i) and suppose tha t  ~ is increased by 

2 ] z .  By combinat ion of the two symbolic equations T m (P) ~ P, T n (/)) : P we obtain 

T d ( P ) : / )  where d ( ~  I) is the greatest  common divisor of m and n. Thus P is 

invar iant  under  T~I Suppose tha t  under  T 4 the ~ of P increases by 2 f z .  From the 

equat ion n ~ q d we see tha t  T n will t hen  increase the  ~ of P by 2 q f z  so tha t  

]~ : qf .  Thus ) ~ a n d  n would possess a common factor,  contrary  to hypothesis.  

Also not  only are the first series of n points dist inct  but  these have the  

same index. Hence  there  will be a point  Q invar iant  of T n and with oppositely 

signed index. This with i t s  images under  successive powers of T will necessarily 

be disginct f rom the closed set genera ted  by /), and leads to a second dist inct  

set genera ted  by Q. 

Hence  we obtain for  every n and every relat ively prime k < _n two geome- 
2 

t r ically dist inct  harmonic  polygons with n sides and making k circuits of the 

curve C. Corresponding to these there  will be, of course, four  periodic motions.  

W e  shall not  a t t empt  to develop here  the characteris t ics  as to type  of stabil i ty 

and instabil i ty dependent  upon the sign of the index. 

I t  is worth  while to point  out the  general  significance of such r ing trans- 

format ions  for  dynamical  systems with two degree of freedom. F o r  such a sy- 

s tem there  are two space coordinates p,q  and two velocity coordinates p',q'. 

These four  quanti t ies  determine a s tate  of motion, or a 'point '  in the four  di- 

mensional  manifold  of states of motion.  Each  mot ion is r ep r e sen t ed  as a 

curve in the manifold  of states of motion.  B u t  the energy integral  shows tha~ 

these curves lie on known three-dimensional  sub-manifolds, upon one of w h i c h  

we fix at tent ion.  Suppose tha t  we can find a two-dimensional  r i n g  in the  sub- 

manifold,  which is bounded by two closed curves of motion and which iS cut  by 

a l l  the  other  curves of mot ion  infinitely often and in the same sense. A point  

P of the ring, followed along its curve of mot ion in a positive sense till  i t  cuts 
47-26404. Ac ta  mathematic,  a. 50. Imprim6 le 27 octobre 1927. 
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the ring again at /)2, defines a transformation T of the ring into itself, namely 

the transformation which takes P into its image P r  This transformation T and 

its powers will in general possess the properties necessary for the aplication 

of Poincar~'s last geometric theorem, and thus there must exist infinitely many 

further periodic motions. Unfortunately such a ring is not known to exist in 

general, although it does in some interesting cases. Furthermore it will be read- 

ily believed that the analytic labor of actually setting up the ring, and the 

transformation, is large. In the billiard ball problem, the integral used is that of 

constant energy, while the auxiliary periodic motions evidently are those obtained 

by a rolling motion of the billiard ball around the ring in either sense. 

6. Application of the generalized theorem. 

For the application of the geometric theorem of Poincar~ used above it is 

essential to have two stable periodic motions corresponding to the boundaries of 

the ring, and then to obtain the ring itself in case it exists. 

The generalized theorem differs essentially from the form so far employed 

here in that only one boundary of the ring, say the inner, is required to be in- 

variant under the transformation. However, it is required that the image of the 

outer circle under T be cut only once by any radius vector, and that its points 

be angularly advanced in the opposite sense from that of the inner circle. To 

apply the theorem it is only necessary to know a single stable periodic motion. 

The conclusion to be drawn from it is that there exist two and hence infinitely 

many other periodic motions in the immediate neighborhood of the given stable 

periodic motion. Thus every stable periodic motion is a cluster motion for infinitely 

many other periodic motions near to it, but in general making many circuits about 

it before reentering. 

We shall make use of the billiard ball problem again in applying the ge- 

neralized theorem, although obviously the method is entirely general. I t  does 

not seem evident that  the same results can be obtained by the maximum-mini- 

mum method. In fact the success in application depends on details which do 

not seem to come into play in the use of maximum-minimum considerations. 

A typical stable periodic orbit with which to start is the simplest one of 

stable type which traces out twice the chord crossing C where it is of ]east breadth. 

To it there corresponds an invariant point under T ~ of stable type. Considera- 

tions based only upon the existence of an invariant area integral show that for 

suitably taken coordinates, the transformation T may be given the form: 



On the periodic motions of dynamical systems. 

{ ul--u cos (~o--Cr~)--v sin (~)o--Crs)+ P~(u,v) 

vl- -  u sin (~Oo--Cr s) + v cos (~0--cr  s) + Q~ (u, v) 
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nea r  the invar iant  point  t aken  at  (o, o). 1 Here  r s stands for  uS+ v s while /)~, Q,~ 

are convergent  power series in u, v beginning with terms o f  the n th  degree  in 

u, v, with n arbi t rar i ly  large. The  constant  ~Po is supposed to be incommensurable  

with 2z ,  and c to be different f rom o. Both  of these conditions are in general  

satisfied. W h e n  they fail  to be satisfied a l though the mot ion  be of stable type, 

the generalised theorem remains applicable, but  this fact  cannot  be touched 

upon here. 

F rom the form of this t ransformat ion  i t  is apparent  t ha t  the circles r ~ -  ]~ 

are carried into curves 

rS + / ~  (u, v ) - - k  

where R,~ is of the n th  order  in u, v. Such a curve will differ only very sl ightly 

f rom the  circle f rom which it came. In  general  it  is apparen t  t ha t  in polar co- 

ordinates  the t ransformat ion  T is very closely like the following: 

r~=r, ~ - ~ 4  ~ 0 - - c r  ~ 

near  the origin. But  the n th  power of this t ransformat ion  rotates  the radial  

directions at the invar iant  point  by n~Po and on the circle r = Q o  by n(~Po--CeoS). 
Hence  if n i~ so large tha t  for  some in teger  k 

n (~po- ce0 ~) < 2 k z  < n~0 

the original  theorem of Poincard would be applicable, with the r ing bounded by 

the circles r ==- o and r =  eo, and with the t rans format ion  R-k  1"~ where R-k  stands 

for  a ro ta t ion  th rough  an angle - - 2 k ~ ,  and ~" for  the t ransformat ion  wri t ten  

explicitly above. Of course this r ing may be expanded radially by a constant  

distance so  as to yield the usual form of r ing t ransformat ion.  

Now it  may be established tha t  for  suitably t aken  ]~ and n the approxima- 

t ion of the actual  t ransformat ion  R-k T ~ is so close tha t  the outer  boundary,  

a l though not  the original  circle r :  Q0, is a curve met  once and only once by any 

See my earlier article Surface Transformations and Their Dynamical Applications, Acta 
Mathematica, voL 43, 1922. 
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radius vector, while the inner and outer boundaries are still advanced in oppo- 

site sences. The details cannot of course be given here. 

Thus the generalized theorem shows that there exist two invariant points 

of T '~ within the circle r =  (~0, which advance ~ by 2kz  in an angular sense. 

Evidently the periodic motions so obtained are uniformly near to the stable mo- 

tion which we began with. In this way we can infer the existence of infinitely 

many periodic motions in the immediate neighborhood of the simplest periodic 

motion of stable type, so that  there are infinitely many harmonic polygons lying 

in the immediate neighborhood of the chord crossing the curve C at its narrowest 

part. A more careful examination of the asymptotic form of the transformation 

T near the invariant point shows that  such further invariant points obtained with 

positive index are stable, while those of negative index are unstable. Hence it 

may be said in addition that  infinitely many nearby motions are of stable type and 

infinitely many other are of unstable type. 

We may now start afresh with these new stable motions or with a stable 

motion corresponding to a known harmonic polygon with n > 2 ,  and discover 

further periodic motions by another application of the generalized theorem. In 

the next section we shall show how such a repetition leads to nearly periodic 

motions in the sense of Bohr, such as have not been proved hitherto to exist in 

dynamical problems. 

Before doing so, however, it is of especial interest in the billiard ball problem 

to discuss the limiting periodic motions corresponding to the rolling of the bull 

around the table in the two possible senses. We propose to outline how an 

application of the generalized theorem leads to the conclusion that  there exist 

infinitely many periodic motions umformly near to these rolling motions, so that  

the corresponding harmonic polygons of n sides lie in the immediate neighborhood 

of C. For this purpose it is essential to examine the explicit formulas given for 

T in the case when O is small. A direct computation leads to the result 

2 ,b' 01=0-- ~ 02+103+ ..., 

I 2 4k' 
~ l : g P + ~  O-- ~k ~ O~+mO 8 + ..., 

where the function k(~) denotes the curvature of C at the point with given ~ and 

where the functions 1, m , . . .  depend on ~ only. Proceeding entirely formally and 
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replacing 81--8 and ~1--~0 by d8 and d~0 respectively, we obtain the approximate 

differential equation: 

dO i k' 
8 

dq~ 3 ]~ 

which gives by integration 

1 

0 = o0 

Here 8 o is a value of 8 for a point of curvature unity. This result indicates that, 
1 

to a first approximation, the curve 8 ~  00k~(~) near the inner boundary 8--=0 of 

the ring is nearly invariant under  T, and can undoubtedly be modified slightly 

in higher order terms so 'as to be sti l l  more nearly invariant. Evidently the 

limiting motions formed by C must be regarded as analogous to stable periodic 

motions on this account. 

Also if the variable n represents the number of iterations, we have the 

approximate differential equation 

whence by integration 

2 

d_~_: k -  ~ 
dn 2 (q~) 0 o 

- - k 

I t  follows that  ~0 will increase by more than 2 z  along the approximate invariant 
2 

curve if 0on exceeds 2z  k y where k denotes the maximum curvature of C. 

I t  thus appears as highly probable that  the generalized theorem is applicable 

to prove the existence of infinitely many periodic motions uniformly near to C, 

although I have not as yet worked through all of the details. 

A number of further interesting geometric properties of nearly rolling 

motions of the billiard ball follow from these analytic facta. I will cite only one: 

if the ball is projected from a point P of C at a small angle 8 with the tan- 

gent so as to return to P after a large number of collisions with the boundary, 

then it will leave P the second time at an angle which is 0 to an arbitrarily 

high order in the infinitesimal 8. 
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7. Existence of  nearly periodic motions. 

Suppose now that  we start with the infinite series of stable periodic motions, 

which are numerable in the general non-integrable problem. Let  these be 

S I  ' S 2  q " " " 

Choose a stable periodic motion Sk near to $1 but distinct from it (which exists 

in virtue of the generalized theorem as indicated above). Now choose an Sl extra- 

ordinarily near to Sk and distinct from S~ also. In this way we can construct 

a series 

8k,  St ,  S. ,  . . . .  

approaching a limit motion uniformly, call it S, and yet itself necessarily distinct 

from any periodic motion. Such a motion may be represented in the form 

p = lim j~ (.), t ---- lim gj (3) 

where p is any coordinate of the motion, where ~ denotes a periodic variable of 

period 2 z  along S 1 say, and where 

r I (3) and V~(3) 2~b 

are periodic functions of 3 of period 2zlj. The integer lj denotes the number 

of times the j th motion of the sequence circulates about S1 before reentering, 

and  3j denotes its period. The convergence is uniform in ~. 

I t  is clear from the manner of formation of these nearly periodic motions 

that  they are non-denumerable, and constitute the class of uniform limits of 

periodic motions. 

8. The exceptional case. 

I t  has been stated that  in order to apply the generalization of Poincar6's 

geometric theorem to the neighborhood of a stable periodic motion, either an 

invariant c must not vanish, or at least one of an infinite set of similar con- 

stants must be different from zero. The exceptional case is that  in which the 

period of the perturbed motion is independent of the constants of integration. 
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The following example illustrates this category; there are only two stable periodic 

motions, and no other periodic motion whatsoever. In particular the example 

shows that  the conjecture of Poinear5 concerning the dense distribution of the 

periodic motions is not correct. 

Imagine a particle of mass m to move in a plane subject to a force derived 

from a potential energy: 

I 
- m (k~x  ~ + l~y  ~) 
2 

where x and y are the rectangular coordinates of the particle. 

equations of motion are then 

d2x d2y 
d t  ~ -  + k ~ x = o ,  ~ t  ~ + l~y=o .  

The differential 

The particle moves so that its projections on the x and y axes describe harmonic 

2 ~  27g  
motions about the origin of periods ~ -  and ~ -  respectively. 

I f  we fix the energy constant K s, we consider those solutions for which the 

relation 

m . d x V  

holds. This equation shows that  the motions all take place within an ellipse 

2K ~ 
k~ x ~ § l~ y ~ -~ 

m 

Through each point of the ellipse there is one and only one motion in a given 

direction, for this particular value of the energy constant. Thus we obtain a 

dynamical problem somewhat analogous to the billiard bali problem, although 

the velocity is now a known function of position and not a constant. Further- 

more the problem is, of course, integrable with general solution 

x = A cos k t + B sin k t, y = C cos l t + D sin I t 

with the constants A,  B, C, D subject to the condition 

,_n [k~(A~ + B~ ) + l,  (C ~ + D~)] = KS" 
2 
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I f  we assume further that  ]c and l are incommensurable with one another, 

obviously there can be no periodic motions except the two corresponding to the 

s table  motions along the axes. 

This problem can be reduced to a ring transformation, but such a reductio~ 

is not necessary for our purposes. We merely note that  the transformation T is 

essentially a rigid rotation of the ring through an angle incommensurable with 2 z. 

9. Some further results. 

Associated with the instable periodic motions are the two analytic families 

of motions asymptotic to them. Poincar6 pointed out that  in the restricted 

problem of three bodies and for sufficiently small values of the parameters in- 

. A  

P 

Fig. 5. 

volved, these families intersect one another infinitely often, giving rise to ,,homo- 

clinic,) motions, asymptotic to the given unstable periodic motion as time increases 

and as it decreases. I t  is certain that  this intersection of the two families (in 

cases where they do not coincide identically) is a phenomenon of general oecurrenee, 

although I have not as yet been able to treat certain exceptional cases. 

I will prove here that  every homoclinic motion is always in the immediate 

neighborhood of infinitely many periodic motions. 

The fact just stated implies incidentally that  the unstable periodic motion 

approached by the homoclinie motion lies in the immediate neighborhood of 

infinitely many other periodic motions, which cannot of course be entirely within 

a uniformly small neighborhood of this unstable motion. 

In proving the result we shall confine attention to the case in which a 

ring transformation is at hand, although this is not really essential to the argu- 

ment. In the figure the invariant point under T it represented by P, with the 

asymptotic branches a und w intersecting at Q by hypothesis. Now it is a pro- 
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perry of such an invar iant  point  P tha t  the  behavior  of near ly  points under  

i terat ion of T is essentially the same as if T were of the type 

I cur Vl= e-c,,v (o<p< i). U l n a 0  e , 

In  par t icu lar  there  will exist a family of invar ian t  curves like uv : constant ,  

not  perhaps analyt ic  but  possessing a h igh degree of regulari ty.  The curvil inear  

pentagon P A B C D  represents  a region near  the invar iant  point  analogous to a 

region : 

a ~ u ~ o ,  a ~ o  u v ~ c  

with A B, C D analogous to v ~ a, u : a, with P A, P D analogous to u = o, v ~ o, 

and with B C analogous to u v ~ c. The dot ted line within this pen tagon  re- 

presents one of the invar iant  curves. 

I t  should be observed tha t  as c approaches zero, the curve u v  ~-- c approaches 

the axes, and the number  of i terat ions of T dur ing  which a point  on the curve 

remains within the pentagon becomes exceedingly large. 

Choose now a value cl of c so small tha t  the curve u v  ~ cl remains uni formly  

near  the a and eo asymptot ic  branches unt i l  they intersect  a t  Q. There  is thus 

formed a curvil inear  quadri la tera l  of intersect ion Q R S T each point  of which 

corresponds to a pair  of parameter  values c', c", namely the parameter  c' of the curve 

along the a branch passing th rough  the point, and c" the paramete r  of the curve 

along the ~o branch passing th rough  the same point: Thus there  will be a curve 

Q S (see the figure) for  which c ' - ~ c " ,  i.e. of points of intersect ion of one of the 

curves u v  ~ c constant  wi th  itself. 

But  the outermost  segment  of these curves u v  ~ c cut off by Q S  contains 

a certain number  of segments, each of which is carried into the adjoining one 

by T, while a single par t ia l  segment may  remain.  Along another  such segment  

with .a smaller constant  c, there  will be many more such segments, at least if the 

constant  is sufficiently small. Hence  for  some in termedia te  value o f  the constant  

there  will be an exact in tegral  multiple k of such segments, a n d  the  point  of 

Q S lying on the curve will be carr ied into itself by the )~th i terate  of T. 

I t  is in teres t ing to note  tha t  the maximum-minimum method  (for the case 

of the billiard ball problem at  least) gives some informat ion  of the same sort. 

Suppose tha t  the longest  chord of the  convex curve C has a length l, and 

suppose tha t  the harmonic  polygon of q sides (q odd) be sought  which has maximum 

4 8 - - 2 6 4 0 4 .  Acta mathematica. 50. I m p r i m 6  le 28 oc tob re  1927. 
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length. This maximum length exceeds (q--I)l  because a polygon may be chosen 

made up of the longest chord taken q- - I  times together with one side of length 

zero. The length cannot be as much as q l, since 1 is the length of the longest 

chord. Nor can the maximizing polygon lie near the longest chord throughout 

its length, or it would, of course, have an even number of sides. On the Contrary, 

one side of it must be at least as long as ( q -  i)I, and so will be very near to the 
q 

longest chord if q is large. Consequently there are infinitely many harmonic 

polygons lying in general very near to the longest chord, but leaving its imme- 

diate vicinity at least once. A refinement of this argument leads to the conclu- 

sion that there exist motions homoclinic to the fundamental unstable periodic 

motion also. I t  is not obvious that the maximum-minimum method will lead 

to like conclusions for the more complicated harmonic polygons corresponding 

to unstable periodic motions. 

The successful application of the above method for the derivation of addi- 

tional periodic motions of dynamical systems with two degrees of freedom re- 

quires the existence of motions homoclinic to unstable periodic motions. 

I t  will be noted that the requirement of an invariant area integral has not 

entered into the above reasoning, so that the criterion may be applied to diffe- 

rential systems, which are not associated with a dynamical problem. 

10. The to ta l i ty  of  periodic motions. 

Thus if a dynamical system with two degrees admits of a single stable 

periodic motion of non-exceptional type, it admits of infinitely many other stable 

periodic motions in its immediate vicinity. Consequently the totality of such 

stable periodic motions forms a set dense in itself, with nearly periodic limiting 

motions of the Bohr type. Each stable periodic motion has also infinitely many 

other unstable periodic motions in its vicinity, which in turn will be approached 

(but not uniformly) by infinitely many periodic motions, at least if certain homo- 

clinic motions exist. 

I t  still remains an open question as to whether or not the periodic motions 

are densely distributed throughout the possible motions. This cannot be true 
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u n c o n d i t i o n a l l y ,  as  t h e  e x a m p l e  g i v e n  a b o v e  m a k e s  c lear .  O n  t h e  o t h e r  h a n d  I 

h a v e  s h o w n  t h a t  t h e  p e r i o d i c  m o t i o n s  t o g e t h e r  w i t h  t h o s e  a s y m p t o t i c  to  t h e m  

a re  e v e r y w h e r e  dense  in  t h e  t r a n s i t i v e  case.  1 

See my earlier Acta article. A system is transitive if motions can be found passing from 
nearly one assigned state to nearly any other arbitrarily assigned state. This property is probablj T 
satisfied ,,in general,, by non-integrable dynamical systems. 

A 


