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ON THE ROOTS OF THE CHARACTERISTIC EQUATION
OF A LINEAR SUBSTITUTION
BY

T. J. TA BROMWICH
in GALWAY, Ireland.

1. The equation in A

a’l,l —-A 3 al,g y a;"g 3 < e ey al’,‘
Q5,1 y gy =R, Qy 3 ) ) a3, n
A3,y Qs O34, ’ Q3,5 =0
@y ) an,2 ) Ay, 3 ) ) Ay, — A

has been discussed by many writers; the following results are well known.
The roots are real in case all the numbers a are real and such that
a,,=a,,; that is, if the matrix of a’s is symmetric.
The roots have the absolute value unity, if the matrix of a’s belongs
to a real orthogonal substitution.?
The roots are pure imaginaries or zero, in case the a’s are real and
a,,=0, a,,=—a,,; that is, if the matrix of a’s is alternate.®
However, in spite of these results relating to special types of the
matrix @, nothing was known of the nature of the roots for a general

! CaucHy, 1829.

* Brioscul, 1854.

® WEIERSTRASS, 1879.
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matrix, until the problem was attacked by BExpixsox' in 1900; he ob-
tained upper and lower limits for the magnitude of the real and imaginary
parts of the roots, taking all the numbers @ to be real. The extension
to the case of complex numbers ¢ was made by Hirscu? in 1902.

In what follows, we shall obtain narrower limits for the imaginary
parts of the roots; incidentally, we also obtain Bexpixsox’s and Hirscu'’s
limits for the real parts of the roots.

2. Take, in the first instance, all the a’s to be real; and then write

I
br,r = ar,r) br,: = ba,r = E(ar,: + a:,r))
. _ I (r,8=1,2,...,0)
Crp == o, Cpy == — c:,r - E(ar,:— a:,r))
A = Ean-‘x'yn B = Ebr,sxrys: C= Ecr,swry:-

It is now obvious that 4 = B - C, and that the bilinear forms B, C,
are, respectively, symmetric and alternate. Following Frosenius, let us
also write E for the unit form Xz,y, and let |4 — AE| denote the de-
terminant written out at the beginning of § 1, while IB——AE l, |C—AE [,
stand for similar determinants with &s, ¢’s in place of a’s.

Suppose that A, 4,, ..., A, are the (real) roots of | B— AE|, it is then
known from a theorem due to WEIERSTRrAsS ° that a real linear substitution
can be found which, when applied to the 2’s and y's, reduces B to the
form B, = XAz,y,, while it leaves E unchanged. This substitution will
change C into C,, another alternate form with real coefficients; but it
will not alter the roots of the fundamental equation. Thus the equation
| B, + C,—AE| = o has the same roots as |4 —AE]|=o.

Suppose now that A= a + 47 is one of these roots; then the bilinear
form B, 4 C, —(a + if)E has the rank* (n— 1) at most. Consequently
values of z,, x,, ..., %, can be chosen which make the form zero, whatever

' Ofversigt af K. Vet. Akad. Forh. Stockholm, 19co, Bd. 57, p. 1099;
Acta Mathematica, t. 25, 1902, p. 350.

* Acta Mathematica, 1. ¢, p. 367.

* Berliner Monatsberichte, 1858; Ges. Werke, Bd. 1, p. 243.

* Rang, according to FROBENIUS.
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values may be taken for ,,y,, ..., y,; naturally, the values for the «’s
will usually be complex, and some of them must be complex, unless g is
zero. Write for these special values

xr=_pr +iQr) (r=1,2,...,n)

and let us choose for the y's the conjugate complex numbers

Y, =p,—1q,, F=1,2,..m)

it being understood that p, and ¢, are real. With these values for z,, ¥,,
we find

B, =3 p+q) E=20+4) (et

further
.Y —x,Yy,=— 2@'(}%93 —D, Qr>)

so that C, becomes a pure imaginary. But, according to what we have
already explained,

2.+ @)+ C— (e + P 20+ @) = o,
thus, since €, is imaginary only, we have

Zh(pr + g0) —aZ(p} + ¢) =o.

Hence
2 (pr + ¢7)
@ =
Zpr + q7)
and consequently a lies between the greatest and least of the numbers A,
Ayy ..., A, which is one of BEexpixson’s results (I. ¢. Theorem II).

We proceed next to obtain a corresponding theorem for . Let us
suppose that the non-zero roots of the equation |C—AE|= 0 are given
by A= +ip , *ip,, ..., +in, where 2y <n; so that there are (n— 2v)
zero roots of this equation. By a theorem of WEIERsTRASS,' stated in
§ 1, the numbers p, , p,, ..., p, are all real; and they may be supposed
positive without loss of generality. Further the invariant-factors of the
determinant |C—AE|=o0 are all linecar.' Tt is then possible to find a

2 "

! WeiersTRASS, Berliner Monatsberichte, 1870; Ges. Werke, Bd. 3, p. 130.
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real linear substitution, which, when applied to the x’s and y's, reduces
C to the form

Co=m (1;13/2 — x?.’/l) + p (%.’/4 - 974.'/3) + ...+ /lv(x:w—ayzy — xﬂvyw-l))

but leaves E unchanged.’ Owing to the nature of this substitution, B
is changed to B, another bilinear form which is symmetric and has real
coefficients. Then, just as in the last case, values of the #’s can be chosen
so that B, 4+ C,— (a + if)E =0, for all values of the y's. Let these
values of the z’s be given by

r, =p, +1q,, (r=1,2,0y%)
and take
Y. =p,— 'l«q, (r=1,3, .., 1)
Then
xryr =p3 + q:) xr?/.; + 17,!/,. =2 (prpl + qux))

and consequently B

, 1s real; but

T, Y, — £,Y, = — 26(P,q, — P:q)
so that
C,=— 2‘.[#1 (Pgs—1aq) + ...+ llv(pw—lq'n ._p?vq-u—l)]-
Hence, from the equation B, 4+ C,—(a + i) E =0 we deduce

B2(p; + ) =—2{m(p@: — ) + - + (Po19n — PoGa—1)]-

But, in absolute value 2(p,q, — p,q,) is not greater than (p;+q;) + (»;+47),
and consequently

1BlZ@+ ) <[+ @+ + @)+ .. + (P + Gor + 12+ 2]

From which it is clear that the absolute value of B cannot exceed the greatest
of the numbers p, , p,, ..., pr,; which is obviously analogous to BENDIXSON's
Theorem II. We shall now see that this theorem usually gives narrower
limits for [ than Bendizson's Theorem I, and cannot give wider limits.

! That such a reduction is possible is contained implicitly in KRONECKER'S work
on the reduction of a single bilinear form. For an explicit treatment, see my papers,
Proc. Lond. Math. Soc., vol. 32, 1900, p. 321, § 4; vol. 33, 1901, p. 197, § 3;
American Journal of Mathematics, vol. 23, 1901, p. 235.
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For, since +ip, , +4y,, ..., £ iy, are the non-zero roots of |AE— C|=o,
it follows that
R S S 7

is equal to the coefficient of A*~? in the expanded form of the determinant;
thus

B gt =2, =13,
Hence, if g is the greatest coefficient in C, we have!
m+m+. g S nh—1)g
Thus it will usually happen that the greatest of g, , p,, ..., &, is less
1

2
than g[: n(n— I)] ; and the greatest u can never exceed this value, which

is the limit given in BenpIxson’s Theorem I.

3. Suppose now that the numbers a are complex: and write o' to
denote the complex number conjugate to @. Then write

I I
br,.s = 5 (a'r,.s + a.:,r)7 b.v,r = E(Gs,r + ar",s))
(r,s=1,2,..,1)
. I , R I ,
10, s = 5 (ar,s - a.;, r)) 2c.q,r = 5 (ax,r ar,s))
so that,
b;" = ba,r) c;', = C",. (r,s=1,2,..,7)

Further, put
A= Za, .y, B =2b, ,2,.y,, C= X, 2.y, (=1,2..m

Then it is obvious that 4 = B 4-iC, and that the bilinear forms B, C
are forms of HErMmITE’S type.

Suppose now that A, 4,,..., A, are the roots of | B—AE|=o; it
18 known that these roots are all real and that the invariant-factors of the
determinant are linear.” It is then possible to find a linear substitution

' There are only n(n — I) non-zero coefficients in C, because ¢, , = O.
? CuristrorrFeL, Crelle’s Journal, Bd. 63, 1864, p. 232.
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S (usually complex) such that when § is applied to the z's, and the
conjugate substitution to the y’s, the form B is reduced to B, = XAz,y,,
while E remains unchanged.! Further C is changed to C,, another bi-
linear form of HEerMmITE'S type, (in consequence of the relation between
the substitutions on the z's and on the ¥’s).

The determinantal equation then becomes |B, 4 iC, — AE| = o; thus,
if a root is A = a -+ ¢, we can choose the z’s so as to make

B, 4 iC, —(a + ) E = o,
whatever values we give to the y's. Suppose that these values for the
x’s are given by
z, =p, -+ iqr) (r=1,%,...7)
and then take
Y, =p,— 1q, = T,. (re1,3,..%)

Thus

B =2 i+ q), E=Z{p+ )
also, if C = Xy, ,x,y,, we have that p, 2.y, and y, z,, are conjugate
complex numbers, because y,,=7.., 2, =y, y,=x,; further 7, 2y, is
real; hence B,, C,, E are all three real. Consequently the relation

B, +iC,—(a+ i E=o0

gives B, = aFE, so that
_ 20+l
Xpr + )

Thus, just as in § 2, a lies between the greatest and least of A, Ay, ..., 4,.
This is Hirscu’s Theorem II.
But it is now clear that, if A=y, p,, ..., are the roots of

|C—JE|=o0, we can similarly transform C into the form C, = Xp x.y,,
leaving E unchanged, while I becomes I, another HermrTk's form. Thus,
by an exactly similar argument, we find that g lies between the greatest
and least of p,, pty, .-, ftn; which is the extension to complex coefficients
of the theorem proved in § 2 for real coefficients.

We proceed mow to show the connection between these theorems and

! See for example § 6 of the first, or § 5 of the last, of my papers gquoted above.
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Hirsce's Theorem 1. Since 4,, 4,,..., 4, are the roots of the equation
| B—AE|= o, by comparing coefficients of i*~!, A*?, we find
er = 2"br,r) EA,.A, = Z(br,rb:,l - br,.tb:,r)' (r,a=12,...,n)
Thus
213 = sz,r + zbr,:b:,r'
Hence, if g, is the greatest absolute value of any coefficient in B, we have

IR L g + n(n—1)g1,
or
1< (ng,)".
Now we have seen that a® is not greater than the greatest of A}, 4, ..., A%;
and consequently o’ is usually less than (mg,)?, while it can never be
greater than this limit. That is, a is not greater, numerically, than ng,.
Similarly, if g, is the greatest absolute value of any coefficient in C, it
can be proved that' 8 is not greater, numerically, than ng,.
From the inequality proved above

a2 i Ebz,, + Xb,‘,b,’,. (r,a=1,3,...,n)
and the corresponding one

ﬂgizcir + z'cr,lcs,r)

we find ,
ol + LI, + )+ 20,0, + .0,
Now
‘ bf‘,r + cz,r = ar,ra’f,‘,r)
and
br,sbs,r + CT,JC.',r = é(ar,:a;,r + as,r“l",:)’
so that

a2 +/92i2a7‘,7‘a;‘,1‘_+ Ear,xa.:,r' (r,s=1,2,..., n)
Thus, if g, is the greatest absolute value of any coefficient in 4, we have
o’ + B* < ngi + n(n— 1)gl,

! If it happens that the coefficients in C are pure imaginaries, so that ¢, . = 0O,
Cr s = — €, », it can be proved (as in § 2) that

1

181<a[3nm—n]
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or
|a + | <ng,.
That is, the absolute value of (a 4 if) is not greater than ng,.
The results
lal<ng,,  [BlZng,,  |a+iB|<ng,

constitute Hirscu’s Theorem I, which is therefore included in the general
theorem obtained previously.

4. T have also attempted to obtain some relation between the indices
of the invariant-factors of |4 — AE|, and those of ' |AB 4 xC|; but hitherto
I have not succeeded in finding any general theorem in this connection.
The two following examples show that the relation (if there is ome) is
not very obvious.

If
1—A, 2 , 4 l
[One invariant-factor
|4—I1E|=| o ,1—21, 6 |, d— 1)
o, o , 1—-)&‘
then
! A, Atp 2 A+p| T .
1B + 40| — ree invariant-

A—p A ’ A+ﬂ| factors A(A? — 2p%)]
2()"—,“); 3@—#))

‘o

aA) — M

Again if |A—2E|= , then [AB + pC|=

’

, ©O

In this case both determinants have a squared invariant-factor if a’ = 4;
but if @ has any other value, the first has two different invariant-factors
(A*—ai-+ 1), while the second has always a squared invariant-factor (u?).

Dublin, 11th October, 1904.

! It is obviously hopeless to use the invariant-factors of | B — AE | and | C — AE |,
because these are always linear; while | 4 — AE | may bave invariant-factors of any
degree up to n. In this paragraph the a's are supposed real, so that B and (' are
deduced from A4 according to § 2 (not § 3).




