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The failure of the Hardy inequality 
and interpolation of intersections 

N a t a n  K r u g l j a k ,  Lech  M a l i g r a n d a ( 1 )  a n d  L a r s - E r i k  P e r s s o n  

A b s t r a c t .  The main idea of this paper is to clarify why it is sometimes incorrect to inter- 
polate inequalities in a "formal" way. For this we consider two Hardy type inequalities, which are 
true for each parameter c~r but which fail for the "critical" point c~ 0. This means that we 
cannot interpolate these inequalities between the noncritical points a--1 and c~ - 1  and conclude 
that it is also true at the critical point c~=0. Why? An accurate analysis shows that this problem 
is connected with the investigation of the interpolation of intersections (NnLp(wo), NNLp(wl)), 
where N is the linear space which consists of all functions with the integral equal to 0. We cal- 
culate the K-functional for the couple (NnLp(wo), NnLp(wl)), which turns out to be essentially 
different from the K-functional for (Lp(w0), Lp(wl)), even for the case when NnLp(wi) is dense 
in Lp(w~) (i=0, 1). This essential difference is the reason why the "naive" interpolation above 
gives an incorrect result. 

O. I n t r o d u c t i o n  

I t  is wel l  k n o w n  (eft [12]) t h a t  if  c~ER, ~ r  t hen ,  t h e  H a r d y  i n e q u a l i t y  imp l i e s  

t h e  fo l lowing  e s t i m a t e  

/0 /0 (0.1) lu(s) Is ~-1 ds <_ C(c~) lu'(s) Is ~ ds 

for all  u E C ~ ( 0 ,  oo), i.e., all  in f in i t e ly  d i f f e ren t i ab le  f u n c t i o n s  u on  (0, o c)  w i t h  

a c o m p a c t  s u p p o r t .  M o r e o v e r ,  t h e  i n e q u a l i t y  (0.1) is not t r u e  for a = 0  a n d  t h e  

c o n s t a n t  C ( a )  goes  to  + o c  as a--~0.  

I t  s eems  to  be  n a t u r a l  t o  ask  w h y  we c a n n o t  " i n t e r p o l a t e "  b e t w e e n  c~=1 a n d  

a = - i  in t h e  i n e q u a l i t y  (0.1) a n d  o b t a i n  it  for c~=0. 

T h e r e  a re  m a n y  o t h e r  i nequa l i t i e s  for wh ich  such  a p h e n o m e n o n  occurs .  For  

e x a m p l e ,  in [7], in c o n n e c t i o n  w i t h  t h e  f r a c t i o n a l  H a r d y  inequa l i ty ,  i t  was  p r o v e d  
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that  for all a c R \ { O }  and any locally integrable function u with compact support 
in (0, oc) the inequality 

(0.2) ~0 ~176 u(t)P d~ <B(oz)~o ~ u ( t ) - t - l f t u ( s ) d s  P dt 
t. T -  t .  T 

is valid and, again, is not true for c~=0. Therefore, we also cannot "interpolate" 

(0.2) between c~=1 and (~=-1 to obtain it for (~=0. 

One of the main purposes of this paper is to show that this phenomenon is 

deeply connected with the fact that the problem of interpolation of intersections 
can have a negative answer in some concrete situations. 

We will formulate this problem in a more general setting. Let (X0, XI) be a 

Banach couple, i.e., X0 and XI are two Banach spaces linearly and continuously 

imbedded in some Hausdorff topological vector space X and let NcX be a linear 

space. We can then consider a normed couple (NnX0, NAX1), where the norm in 

NNXi is just the restriction of the norm from Xi, i=0, i. 

We say that the problem of interpolation of intersections has a positive solution 
(or answer) for the triple (Xo,XI,N) and parameters 0E(0, i), p@[l, oc], if the 

formula 

(0.3) (NnXo, NnX~)o,p = Nn(Xo, X~)o,p 

is true. In the opposite case we will say that the problem has a negative solution 

(or answer). 

As we shall see, the examples for which the above problem has negative solution 

follows from the failure of the inequalities (0.I) and (0.2). 

On the other hand, if X0, XI are Banaeh function lattices and N has also the 

"lattice" structure, then the interpolation of intersections has a positive solution 

(see Remark 2). 

The paper is organized in the following way: In Section 1 we show how the 

failure of the Hardy inequality leads to an example for which the problem of inter- 

polation of intersections has a negative answer. 

In Sections 2 and 3 we analyze this example from the interpolation point of 

view. For this purpose we calculate the K-functional for the couple (NALp(wo), NA 
Lp(Wl)), where N is the linear space which consists of all functions with the integral 

equal to 0. 

In order to avoid technical details and clarify the ideas, we begin our in- 

vestigations in Section 2 by calculating the K-functional for the simple couple 

(NnLI(x),NnLI(X-1)). It turns out that this K-funetionai contains two terms. 

The first term is just the K-functional for the couple (L1(x),Ll(X-1)) and gives 
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no trouble. The second term contains the Hardy operator. Thus the K-functional 
is essentially different when we go from the couple (L1 (x), Ll(X-1)) to the couple 
(NNLI(x),  NNLI(x-1)) .  This difference of the K-functionals is the reason for the 
negative answer to the problem of interpolation of intersections. Moreover, this 
second term, with the Hardy operator, leads naturally to the appearance of Ces~ro 
function spaces of non-absolute type as interpolation spaces. 

In Section 3, we generalize these interpolation results to the more general 
weighted Lp-couple (NnLp(wo),NNLp(wl))O,p, l < p < o c .  Moreover, we point out 
an example showing that  when the weights are not power functions, then it is pos- 
sible that  the problem of intersections fails on the whole interval [a, b], not only at 
one particular point. 

Finally, in Section 4, we reformulate the inequalities (0.1) and (0.2) as the 
boundedness of some "inverse" operators and explain the reason why we could not 
interpolate them from c~ = 1 and (~ = - 1  to conclude that  they also hold at the critical 
point a = 0 .  

The problem of interpolation of intersections is a particular case of the (impor- 
tant and rather difficult) problem of interpolation of subspaces (see [8], [14], [15], 
[10], [11], [16], [13], [6], [1] and [9]). Lions and Magenes wrote that  the "main difficul- 
ties of the use of interpolation is that  the interpolated space between closed subspaces 
is not necessarily a closed subspace in the interpolated space" (see [8, p. 107]). 

It is still not completely clear under which conditions this problem has a positive 
or negative solution. In connection with this, it seems important  to investigate 
concrete nontrivial cases. For example, it will be interesting to solve the following 
problem: under which conditions does the problem of intersections 

(NNLpo (w0), NNLpl (wl) )O,p = NN (Lpo (wo), Lpl (wl) )e,p, 

have a positive answer, where N is the linear space which consists of all functions 
with the integral equal to 0? 

Let us note that  the intersection with N sometimes appears in an interesting 
way. For example, the Hardy operator H f ( x ) = ( 1 / x ) f o  f (s)ds  is not bounded 
from L1 (I log xl) into L~ but it is bounded from the intersection NNL~ (I log xl) into 
L1 (see [12, pp. 70 72, 106 107] and our Proposition 3, and Remark 7). 

Definitions and notation. For a normed couple (Xo, X1), f c Xo+ X1 and t>0 ,  
we define the K-functional by 

K(t, f;Xo,Xl)=inf{l l folIxo+tll f l l lX,  : f = f o + f l ,  foE Xo, f l C X l } .  

For 0 < 0 <  1 and l_<p<oc, the real interpolation spaces (X0, X1)o,p are then defined 
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as the spaces of gll fEXo+X1 such that  

(/o Ilfllo,p= (t-~ p -- < oc. 

For l_<p<oc and a weight function w on (0, oc), i.e., w is a non-negative and locally 
integrable function on (0, ec), we shall denote by Lp(w) the weighted Lp-spgces and 
by Cp(w) the weighted Cesaro function spaces of non-absolute type given by the 
norms 

Lp(w)= f on (O, oo):llfllL~(w)= If(x)lPw(x)dx//P<oo , 
x p .~ l /p  

o ,0 (/0 
For w ( x ) = z  s with ct E R we denote these spaces by Lp (x s) and Cp (aS), respectively; 

we also write, for simplicity, Lp(x~ and Cp(x~ The last spaces Cp we 

also call the p-Cesltro function spaces of non-absolute type. 
Moreover, by N we denote the space of locally integrable functions on (0, oc) 

such that  f ~  f(s) de=O, or more precisely, 

N =  on (0, oc) : s ) lds<ocfora l lO<a<b<ocand s)ds=O . 
b--~ cx3 a 

By C ~ = C ~ ( 0 ,  oo) we denote all infinitely differentiable functions u on (0, co) with 
compact support.  

Remark 1. If  p < o c ,  then N N C ~  is dense in NNLp(x s) for all c~ and it is 
dense in Lp(x s) for a r  

Remark 2. Assume that  X0, X1 are Banach function lattices and let N be 
a linear space of functions (on the same measure space) possessing the "lattice" 
property: if gEN and f is such that  Ifl<lgl, then f c N .  Then the problem of 
intersections has a positive solution. 

In fact, if we show that  K(t, f; NNXo, NNX1) <K(t, f; Xo, XI) for gll func- 
tions fCNN(Xo+X~),  then we have g non-trivial imbedding NN(Xo,X1)o,pC 
(NNXo,-NNX1)O,p, which gives a positive solution to the problem of intersections. 

The gbove est imate for the K-functional  follows egsily because in the compu- 
tat ion of the K-functional  for the couple of normed lattices (X0, X1) it is enough 

to take decompositions f = f o + f l  with the properties Ifol<_lfl gild Ifll<_lfl. 
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1. The failure of the Hardy inequality and interpolation of  subspaces 

Let us consider the Hardy inequality and its dual in the simplest case p = l .  
This means 

x f(s) - ~1 If(x)lx ~ dx, c~ < O, (1.1) 

and 

fo~ l ~x ~ ds x~ dx < 1 fo ~ (1.2) f(s) _ ~  If(x)lx~dx, a > O .  

It is impossible to interpolate (1.1) and (1.2) directly because on the left-hand side 
we have two different operators 

/o x 1 f(s) ds, ~<0,  H+f(x) = x (1.3) 

and 

(1.4) 
1 / /  

H f ( x ) =  x f(s) ds, (~>0. 

Nevertheless, if we restrict the operators H+ and H to the space N, where they 
coincide, then we will have the same operator and we can interpolate it. It is clear 
that  H+ and H coincide at 

Note that  NNL1 (x ~) is dense in L1 (x ~) for a ~ 0  and N is a subspace of codimension 
1 in Ll(x~ 

Denote by H the restriction of H+ (or H )  to the space N: 

1 f(s) d s = -  f(s) ds, I ~ N .  (1.6) Hf(x)  = x 

Proposit ion 1. The operator H is bounded from NNLI(x  ~) to Ll(x ~) if and 
only if a e R \ { 0 } .  

Proof. From (1.1) and (1.2) follows that  the operator H is bounded from NA 
Ll(x ~) to L~(x ~) for a # 0 .  Moreover, direct calculations for the functions 

f in  ~-  X[1,2] --X[n,n--1] C N ,  n > 2, 
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show that 

][HfnllLl[[fnllLi -- 1 [ l ~ 1 7 6  l ~  - - ~ ~  as n---+ oc, 

i.e., H is not bounded from NNLI(x c~) to Ll(X a) for a = 0 .  

In particular, Proposition 1 implies the boundedness of the Hardy operator H 
from NNLI(X ~) with the ll - l[LK~)-norm into Li(x~),  for example, for a = l  and 
a = - l .  Interpolation of these two estimates shows only that  the Hardy operator 
H is bounded from (NNLI(x),NNLI(X-1))I/2,1 into (LI(x),LI(x-1))I/2,1, which 
leads to a problem in describing the space 

(NNLI(X), NNLI(X-1))I/2,1 . 

In view of Proposition 1 it is tempting to think that  we have the equality 

(NNLI(x),NNL1 -1 (X))1/2 ,1  NN(LI(x),L1 -1 = (x  ))1/2,1,  

but as we will see below this is not true. 

P r o p o s i t i o n  2. The formula 

(1.7) (NNLI(X), NNLI(X-1))x/2,1 = NN(LI(X), L1 (x-1))1/2,1 

is not valid. 

Proof. Suppose that  (1.7) is true. Then, by interpolation, H is bounded from 
(NNLI(X), NnL l (X  1))1/2,1 into (Ll(X), Ll(X-1))l/2,1 . Since, by the Stein Weiss 
theorem (cf. [3, Theorem 5.4.1]), (LI(x),LI(X-1))I/2,1=L1, it follows that  H is 
bounded from NNL1 into L1, which contradicts the result in Proposition 1. 

Let us observe that  for the case 0 r  �89 the expected formula of type (1.7) is true 

(NNL1 (x), NNL1 (x -1))0,1 = NN (L1 (x), L1 (x -1 ))0,1 = NNL1 (xl-ee), 

see our Theorem 2(b). 

Remark 3. In the above discussion we notice an interesting phenomenon, name- 
ly that  the operator H can be extended to a bounded operator H+ in Ll(X -1) and 
also to a bounded operator H_ in Ll(x) but it cannot be extended to a bounded 
operator in L1. This type of phenomenon was first discovered in [5]. 
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Remark 4. All the above considerations can easily be extended to the case p_> 1 
and the Hardy inequalities corresponding to (1.1) and (1.2), are the following: 

f(s) dx)l/P~ ip_oL_ll ]I(x)IPx ~ p - l ,  

and 

(//11/ v : ( S )  ds dx)l/P~, ip_o~_ll 'lf(x)lpxC~dx) lip o~>p-]_. 

If  we denote, as before, by H the restriction of H§ (or H ) to the space N,  then 
the operator H is bounded from NnLp(x ~) to Lp(x ~) if and only if a C p - 1 .  In 
the sequence of functions f~cN, n>_l, given by 

1 1 
f~(x) = xX[1,2 ] i x) - xX[2~ 2~+~ ] (x) 

we see that  

IEHL~IIL~(:-~) > log 2 ( log( in)) l /p 
IIAIIL (:- > - \ log4 --~oo, as n - ~ o o ,  

i.e., H is not bounded from NNLp(x ~) to Lp(x ~) for a p - 1 .  

In particular, the operator H is bounded from the space NnLp(x~ into Lp(x ~) 
for c t=p and a = p - 2 .  Moreover, by interpolating we only find that  H is bounded 
from (NNLp(xP),NNLp(xP-2))I/2,p into (Lp(xP),Cp(x p 2))l/2,p=Lp(xp-i), b u t  

the formula 

(xnrp(xp), N n c p ( :  2))1/~,~ = x n ( c A : ) ,  Lp( :  2))1/~,p 

is not valid. 

2. Real interpolation of the couple (NNLI(x),NNLI(X-1)) 
Technical difficulties can obscure the main idea and therefore we star t  by con- 

sidering the couple (NNLI(x), NNLI(x-1)). In the sequel we use the notation N~ 

for the space NNLI(Z ~) with the I1" ]lLl(x~) -n~ 
The first main theorem is the following theorem. 
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T h e o r e m  1. For all fENI+N-1 and all t>O we have 

fo t ds . (2.1) K(t,f;N1,N1)~K(t,f;Ll(x),Ll(x-1))+x/t  f(s) 

Proof. We begin by establishing the estimate of K(t, f; N1, N - l )  from below. 
Since N~ cL~ (x ~) it follows that  K(t, f; N~, N_]) >K(t, f; L1 (x), L1 (x-l)) .  There- 
fore it is enough to show that  

~ v7 2K(t,  f ;  N~, N_l)  
( 2 . 2 )  f ( o )  do < V /  

for all fcNI+N_I and t>0.  
For a fixed t > 0  and any c>0,  let f=fo+fl be an almost optimal decomposition 

of f c N l + ~ l ,  i.e., 

[]follN1 +t{[fl [IN_I _< ( l+ r  f ;  N1, N_I).  

Since foCN1CN it follows that  f o  fo(s)ds=O and 

o fo(s) ds = fo(s) ds <_ ]fo(s) s do 

< IIf011N  < (l+c)K(t,f;N1,N_l) 
- - ' 

and also 

foVTfl(s)ds f v 7  x/t (I+r < Ifl(s)l--ds<x/~llflllN_l < 
- - d O  S - -  - -  V / t  

Thus 

fo v7 f(s) ds <_ foV~fo(s)ds + foV~fl(s)ds <_ 2(l+c)K(t,f;N1,N_l)x/t 

and the inequality (2.2) holds. 
To establish the estimate of K(t, f; N1, N-l) from above we need to construct 

a decomposition of f E N I + ~ I .  For fixed t > 0  we consider the decomposition 
f = )CO -~- f l ,  where 

fo(s) = f(s)X(o,4t)(s)-cx[:_~,v~] (s), 
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and 

fl (s) = f(s) - fo (s) = f(s)X[v~ ,~)(s) +cx[vq-,,47] (s), 

with c=e  -1 fo 4t f(u) du and 0<e_< �89 
Since f cNI+N_ICN it follows that f~o f(s)ds=O. The above definitions of 

f0 and f l  show that f~o fo(s) ds=O and f~o fl(s) ds=O, i.e., fo, flEN. Moreover, 

f - r  -~ 47 47 
]]fOiiN1 = L 'fo(s) isds----jo ] ' f ( s ) i sds+L ~ f(s)-l-  f(u) du sds 

L vq l LVq duv~ <_ If(s)lsds+- f(u) c 
E 

-_/o If(~)l~ d ~ + ~  

and 

L 
~ 

t]]fl]]N_~ : t  IA(s)]s -~ d8 

f(u) s -1 ds +t f If(s)ls -1 ds 
-6 Jv~ 

1 Lvq du 1Vt-~ / ;~  <_ t-  f(u) ~ e + t  if(s) is -1 ds 

< 2v~ L ~ f(u) du § 

where in the last inequality we used the assumption 0 < ~ < �89 x/t. Thus 

K(t, f; N1, N - l )  _< lifo IIN~ +tNfl IIN_~ 

_ f ~  f~f(~)d~ < If(~)l~d~+~ Jo 

+247 [./o f(~)d~ +t I/(s)ls ld8 

L~~ L "1~ du = f ( u )  

= K(t,f;Ll(x),Ll(x-1))+3v/t L v7 f(u) du 
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and this also means that  the estimate from above in the equivalence (2.1) is proved. 

Remark 5. Theorem 1 implies that  

(2.3) (NNLI(X))~-(NNLI(x-1)) =NN(LI(x)+LI(x 1)). 

In fact, the imbedding (NNL1 (x)) + (NNL1 (x-l)) c N N  (LI (x)+L1 (x- l ) )  is trivial. 
Moreover, if f E NN (51 (x)+51(x-1)) ,  then the functions f0 and f l ,  from the proof 
of Theorem 1, satisfy foENNLl(x), f lCNNLI(x  -1) and fo+f l=f .  This shows 
that  fC(NNLI(X))~-(NNLI(X-1)). 

Remark 6. Our proof of Theorem 1 gives the estimates 

~t ds �89 1))+~// f0 f(s) (2.4) 
<_ 3K(t, f; N1, ~ 1 )  

for all f c N I + N _ I  and t>0.  Observe that  we can prove the first inequality in 
(2.4) with constant 51 instead of 5"1 In fact, for r/>0 we can take 0<e<v~T?/(l+~]) ,  
repeat our calculations and get 

4i du. 
K(t , f ;N1,N_I)  <_K(t,f;Ll(x),Ll(x-1))+(2+~)v~ ~o f(u) 

We are now ready to present our announced interpolation result. 

T h e o r e m  2. (a) If 0 < 0 < 1  and 07s189 then 

(NNL1 (x), NAL1 (x -1 ))0,1 = NNL1 (xl-2~ 

(b) (NNLI(x), NNLI(X-1))I/2,1 =C1NL1. 

Proof. (a) We have 

( L1 (x), L1 (x- 1) )o,1 = L1 (x 1-~176 = 51 (x 1-2~ 

and, according to Theorem 1, the norm of fE(NNLI(x),  WF)LI(x-a))o,1 is equiva- 
lent to 

. )+[~ ,$ilJo ~ f(~)d~ I d 2 llfH~lW Jo t o t 
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Therefore, for O# �89 

II/II(N1,N-1)0,~ ~ llfllLl(xl-~o)+ x -2~ dx. 

By using the Hardy inequality we can estimate the second te rm by the first one. In 
1 fact, for 0 > ~ we have 

x 1 xa-2OIf(x)[ dx, x -2~ f(s) dx <_ 20-~ 

and, for 0<�89 and fCN we obtain 

/jx O/o  /o /o f ( s )  d z =  x -2~ d x <  1 ~  x ~ 2 ~  
- 1 - 2 0  

Therefore, 

Ilfll(N~,N_~)o.1 ~ IlfllL~(xl-~O) �9 
(b) Now, if 0=  �89 then 

[~[~ ds dt IIIII(N~'N~)I/~'I~IIIIIL~+jO ,JO I(S) ~- 

or, by changing variables, 

HfH(NI,N ~)~/2,~HfHLI-t- fO ~ l ~oXf(s) ds dx=HfHLI +HfHc~. 

Observe tha t  C1NL~CN. In fact, if fcC~NL~, then f o  I f(x)l dx<oe. Moreover, 

for every c >0  there exists t l > 1 such that  ft7 ]f(x)]dx<r Then, for t3 >tu > t l ,  

f l l t3f(x)dx-Jt~f(x)dx = ~[3f(z)dx <f[3, f (x) ,dx<~t; , f (x) ,dx<e,  

i.e., g(t) ~ f(x) dx satisfies the Cauchy condition and so limt~o~ g(t) exists. Since 
f E C~ it follows tha t  

~(fol f (x)dx+ f t f ( x ) d x )  ELi 

and this means that  

(/01 ) lira f(x) dx+ f(x) dx :0,  
t ----~ oc~ 
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i.e., f~  I(s) ds=O and so fCN. The proof is complete. 

Remark 7. If a>0,  then Ll(x-~)CCl(x -~) and LI(x~)NNCCI(x~). 
The following Hardy type estimate will illustrate the usefulness of the class N 

in the imbedding NNL1 (I log xl) cC1. 

Propos i t ion  3. If SENNLI(I logxl), then 

/0o~ 1 ~  ds ~o~ (2.5) x f(s) dx<_ If(x)l ]logxldx. 

Proof. By using the assumption fEN and changing an order of integration we 
obtain 

fo~176 l s ds dX= fol l foXf(s)ds d x + s  f ~ f ( s )  ds dx 

~ol 1 ~o x / C ~ l / x  ~ 
<_ - I f ( s ) l d s d x +  - I f ( s ) l d s d x  

x x 

11 s = I log sl I f (s) l  d s +  I logs l  I f (s) l  ds 

= I logs l  II(s)lds. 

Remark 8. The inequality (2.5) means that the Hardy operator Hf(x)= 
x- l fo  I(s)ds is bounded from the intersection NNLI(I logxD into L 1 o r  that we 
have the imbedding NnLI(I  logxDcC1. Let us also recall that H is not bounded 
from all of the space LI(I logxl) into L1. 

By using estimates from [12, Example 8.6(v) and Remark 8.7] ,  w e  c a n  prove 
the following more general result: If fCNNLp(xP-ll logxlP), l_<p<oc, then 

(2.~) /2 /0 x /0 f(s)ds xP-ldx<C If(x)[PxP-lllogxlPdx. 

This estimate says that the Hardy operator H is bounded from NnLp(xP-lllog xl p) 
into LB(X p-l) or that we have the imbedding NnLp(xP-ll log xlP ) c Cp(xP-1), p> 1. 
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3. C o m p u t a t i o n  o f  t h e  s p a c e s  (NnLp(wo) ,  NNLp(Wl))O,p 

For l < p < o c  and a weight function w on (0, oc) we denote by Np,~. the space 
Np,~v=NnLp(w) with the [[ �9 [[Lp(~)-norm. We need the following technical assump- 
tions about  the weight functions w0 and wl: 

(i) for p = l ,  w0 is an increasing function and Wl is a decreasing function with 
wl(�89 for all s>0 ,  

(ii) for p > l ,  w0 is an increasing function and 

fx  ~ WO(8) -1/(p-1) d8 ~_ CZWo(X) -1/(p-1) for  al l  x > O; 

wl is either a decreasing function with wl(�89 for all s>O or w I is an 
increasing function such tha t  wo(s)/wl(s) is increasing and 

f f  wl(s) 1/(P-1) ds<Bxwl(x)-l/(P-1) f o r a l l x > 0 .  

One important  example here is the case when Wo(X)=z ~ and W 1 (X)=X/3, where 
/ 3 < p - 1 < a  and p > l .  

In the sequel we also use the notation W0a (x)=Wo(X)/Wl (x) and r(t)=Wo~ ~ (tp). 
We are now ready to formulate the main result of this section. 

T h e o r e m  3. Let l < p < e c .  Assume that the weights wo and Wl satisfy the 
above assumptions. Then 
(3.1) 

I rr(t) 
K(t, f; Np,~ o, Np,~ 1) ~ K(t, f; Lp(wo), Lp(w~))+r(t)t/P-lwo(r(t)) 1/p [ f(s) ds 

Jo 

for all f in Np,~oo +Np,~ and all t>0 .  If, in addition, s(d/ds)wol(S)~Wol(s), then 

(3.2) ( N n L p ( w o ) , N n L p ( W l ) ) O , p  1-o  o 1 o o =NnCp(Wo wl)nL (wo wl). 

Pro@ We first note tha t  since Np,w~ CLp(wi), i=0 ,  1, it follows that  

K(t, f; Np,~o, Np,w~ ) >_ K(t, f; Lp(wo), Lp(Wl)). 

Therefore, in order to prove the lower est imate in (3.1) it is sufficient to prove that  

jr( t) f(s) ds (3.3) <_ cr(t)a-1/Pwo(r(t))-l/PK(t, f; Np,wo, Np,~l) 
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with the constant c>0  independent of fENp,~ o +Np,~o~ and t>0 .  

For a fixed t>0,  let f = f o + f l  be an almost optimal decomposition of f c  
Np,wo + Np,~, i.e., 

IIf0 IIN,,~o +tllfx IIN~,~I --< 2K(t, f; Np,~o, Np,~,~ ). 

Since foCNp,~ocN it follows that  f ~  fo(8)d8 0 and, by the HSlder inequality 
and the assumption on wo, we find that  

/o  s/F f0(s) = fo(8) ~_ Ifo(s)lwo(s)l/Pwo(s)-l/p ds 
(t) (t) 

ds\a/p oo , \I/p' < (t) (,) w~ /p ds) 

<_ cllfo IINp,~o r(t) i-~/P~o(~(t)) -lIp 
<_ 2Cr(t)~-~/Pwo(r(t)) l/P.l~(t, f; Np,~o, Np,~). 

Similarly, we find that  f l  E N  and 

fo r(t) f1($) d8 <_ fo r(t) Jfl(s)lWl(S)~/Pw~(s) -~/p ds 

Q~or(t) ,~l/P Q~or(t ) ,I/p' 

<_ BIIf~llNp,~ 1 r(t) ~ i/Pw~(r(t)) -1/p 

<_ 2Br(t)~-'lPw, (r(t))-~lPK(t, f; Np,~o, Np,~,)/t 

2Br(t)l-1/Pwo(r(t) )- l/PK (t, f; Np,~o, Np,~ ), 

where in the last equality we have used that  wl(r(t))-l/P/t=wo(r(t)) -1/p. Thus 

s < f f )  So(s)~s + f f )  sl(~)ds 
< 2(C+B)r(t) 1 1/Pwo(r(t))-l/PK(t, f; Np,~o, ~p,u;1) 

and the inequality (3.3) holds. Thus, the lower estimate in (3.1) is proved. In order 
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to establ ish the  upper  e s t ima te  in (3.1) we fix t > 0  and consider the  decomposi t ion  

f=fo+f l  of fENp,~o+Np,w~ with 

and  

where  

fo (8) = f(s)X(o,~(t))(8)- cx[~(t) . . . .  (t)] (8), 

fl(s) = f(8) =- fo(8) = f(s)x[,,(t),o~)(8) -kcX[,,(t)_e,r(t) ] (s), 

l(~ff (t) / 
c = - f(u) du , ~'(t) ~- WO11 (t p) l~,Ild C = �89 

C 

Since fcNp,~, o +Np,wl c N  it follows t h a t  f o  f(s)ds=O. By using the  defini- 

t ion of f0 and f~ we obta in  f o  fo(s) ds=O and j0 ~176 f l ( s )  ds O. Therefore  f0, f l  E N  
and 

[[follNv,~o = (~o~ [fo(s)[Pwo(s) dsl 1/p 

fr(t) du p d8~ 1/p 
/ 

~ ~1_1/p (~or(t)  'f(s)IPwo(s)ds@ ~ ~r(t)f(~t)d~t pit(t) Wo(S) ds)l/p 
Jr(t) --E 

If(s)lp 0(8) ds+  f0 P  l/p 

<_21-1/P ( fo~(t) lf(s)lPwo(8) dsZ/p 

~-21 I/pE(I P)/Pwo(r(t))x/P'f r(t) f(u) du 

= 2 x -a lp  ] f ( s ) ]Pwo(8 )  ds) 

]-41--1/"r(t)1/p--Xwo(7"(t) )1/plj~or(t) f ( u )  du . 

Next  we note  t ha t  

~HflHNp,wl =~(~~176 
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Now, when w~ is decreasing we have 

/ I f~(t) P tllf~llN~,~ <tke-P ]o f(u) du wl(r(t)-e)e+ j~ tf(s)lPwl(s)ds) 1/p (t) 
I pr(t) 

f(u) du +t ds) "/p- <~tc1/p-lAl/Pwl(r(t))l/P]o (fr(t) lf(s)lPwl(8) 

= 2M/~dl/P~(t)l/~-%o(~(t) )~/P~ fo ~(~1 f(~) d~ 

§ If(s) IPWl (8) ds~ , 
~(t) 

and when wl is increasing we find tha t  

tllfll]i%,~ <t( _p p foo If(~) I~wl (s) ds//~ f(~) d~ ~(~(t))~+j~(,) 

<_ 21-UPr(t)l/p-lwo(r(t))i/Pl.~(t) f(u) du 

+t If(s)lPWl(S)ds] . 
(t) 

Thus  

<_ c lf(s)tPWo(S) ds+t p lf(s)lPwl(s) ds]/p 
(t) 

+r(t)l/p-awo(r(t))l/Pl fo~(t) f(s) ds ] 

=c[ ( fo~ lf(s)lP min(wo(s),tPwl(s)) ds) 1/p 

+"(t)l/P-lwo(r(t))l/P'fo'*) J(s)es ] 
c IK(t, f; Lp(wo), Lp(Wl)) <_ 

+r(t)l/p-lwo(?'(t)) lip for(t) f(8)d8 ] 
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and also the upper estimate in the equivalence (3.1) is proved. Moreover, the 
equivalence (3.1) for the K-functional gives an identification of the corresponding 
real interpolation spaces for f cN. More exactly, we have 

ttfll(NNLA~o),NnL~(~I))O,~ ~ Ilfll<L~(~o),L~<~))o,p 

+ E ffo~t~p (r(t)l/p-lwo(r(t) ) 1/p for(t)f(s) ds )P d__tt ]l/P 

; \ 1 / ;  

= I l f l l L p ( ~  Y)+llfllc~(w~ of) .  

Hence (3.2) is proved. 

By applying Theorem 3 with Wo(Z)=X ~ and Wl (x )=x  ~ we obtain the following 
formal generalization of Theorems 1 and 2. 

C o r o l l a r y  1. If p>_l and/3<p-1<c~, then 
tP / (  c~ P) 

(3"4) K(t'f;NP'~'NP'~)~K(t'f;Lp(x~)'Lp(x~))+t(~+I-P)/(~-~) fo f(s) ds 

for all f in Np,~+Np,~ and all t>O. Moreover, 

(NNLp(x~), NnLp(xfl) )O,p = NNLp(x(l-~176 if 0 r (c~+l -p ) / ( t~ - f l )  

and 

(NNLp(x~), NNLp(xZ))O,p = Cp(x p X)NLp(xP-1), if 0 = ( a + l - - p ) / ( a - f l ) .  

Finally, we present the following remarkable consequences of Theorem 3. 

C o r o l l a r y  2. Let Wo(x)=max(x a~ x ~1) and Wl(X)=min(x -z~ x -~  ) with O< 
.o<_.1, 0<Z0_<91 and ~o/~1_<9O/Zl. If ac(0, 1)\[~o/(~o+Zo),al/(~l+91)] and 
f E N  we have both Hardy inequalities 

/o /o /o _1 f(s)ds w~ ~ [f(x)lw~-~176 
X 

and 

/o x f(8) ds w~-~176 dx ~ C If(x)lwl-~176 d~, 
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and therefore 
( N NL1 (Wo ), N NL1 (wl))o,1 = N AL1 (w~-~ w~ ). 

For O e [~0/((t0+~0), c~1/(cq+/91)] no one of these Hardy inequalities is true and 

(NNLI (wo),NNLI (wl) )o,I = NACI(w~ ~ W~ (w~-~ w~ 

Remark 9. The result in Corollary 1 shows tha t  if w0 and wl are power weights, 
then we obtain the usual interpolation result except for one value of the parameter .  
This situation corresponds to the Hardy inequality for power weights and its failure 
for one value of the parameter.  Corollary 2 shows that  with other choices of weights 
we can even have an interval of parameters  where the usual interpolation formula 

fails and also tha t  this phenomenon is connected with the failure of the Hardy 
inequality. Moreover, our results give the appropriate  interpolation results in all 
these exceptional cases. 

4. W h y  we  c a n n o t  i n t e r p o l a t e  s o m e  inequa l i t i e s  

We shall again consider the inequalities (0.1) and (0.2). First  we consider (0.1), 

/2 /2 I~(s)l~-ad~<C(~) lu'(~)ls~ ds, u~C~,  

which is true for c ~ O  and fails for ~--0.  
We have to explain why it is impossible to interpolate it from c~=1 and c~=-1 ,  

and obtain it for c~=O. We note tha t  the above inequality has the form 

IlullLl(~ 1)<C(o,)IIDUiiLI(~.), ucC~, ~#o, 

with the operator Du=u'. 
If we wish to interpolate it, we, first of all, have to rewrite it as boundedness 

of the inverse operator,  

(4.1) IID-lulIL~(~-I) <C(a)IlulILI(~), uzD(C~), c~#O. 

In fact, it is possible to do this because D has no kernel oil C ~ .  Moreover, as 

(4.2) D(C~) =NNC~ ~ 

which we will prove later on, it follows from Remark  1 tha t  D(C~) is dense in 
f l ( x  ~) for c ~ 0  and in NALI(x  ~) for ~ = 0 .  Therefore, for each c ~ 0 ,  (4.1) implies 
tha t  D -1 has a unique extension to the bounded operator 

(4.3) D~I:LI(X ~ ~ f l ( x ~ - ' ) ,  c~/~O. 
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Furthermore, if the inequality (4.1) is true for (*=0, then we would have the bounded 
extension 

(4.4) Dol:NNL1----* LI(x 1). 

Therefore the problem to interpolate (0.1) from (~=1 and c~=- l ,  and obtain it for 
c~=0, can be reformulated as follows: Is it possible to interpolate (4.3) for a = l ,  
c~ =- I  and obtain (4.4)? 

In our case the operators D~ 1, c~r can be written explicitly (and the bound- 
edness of them follows from the Hardy inequality) 

fo r D g % ( x ) :  ~(s) ~ for ~ < 0 a~d D g % ( ~ )  : - ~,(~) ds for ~ > 0. 

We see that D11 and D-~ are two different operators and to interpolate them, as 
in Section 1, we have to restrict them to the subspace where they coincide. This 

space is exactly N={v: fo  v(s)ds=0}. By interpolation we obtain only that  

Do1: (NNLI(x),NNLI(X 1))1/2,1 ) (L1,Ll(X-2))1/2,1 =LI(X -1) 

is bounded. From our-Theorem 2 it follows that  (NNLI(x),NNLI(X-1))I/2,1 = 
C1NL~, and therefore we can only say that  

(4.5) Do1: CINL] ) LI(x -1) 

is bounded, instead of (4,4). 
In terms of inequalities (and going back to the operator D) the boundedness 

(4.5) of course only gives a trivial estimate. 
We finish this part with the missing proof. 

Proof of (4.2). If uEC~, then f o  Du(s) ds=fo  u'(s) ds=O and so D ( C ~ ) c  
NNC~. The reverse imbedding follows from the fact that  if vCNNC~, then the 
function 

Jo t ~(t )  = ~(~) ds = -  ~(s )  ds 

belongs to C ~  and Du=v. 
Let us now consider the inequality (0.2) which has the form 
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and holds for functions uCLlo ~ (locally integrable functions on (0, oc) with a com- 
pact support) if a r  For a = 0  it fails. 

The situation here is quite analogous to the previous case. The key to under- 
standing this analogy is to define the operator D by 

u( t ) - t  -1 fo n(s) ds 
(4.6) Pu(t) = 

t 

The reason for such a definition of D is that  DuCN for uELlo ~ Indeed, since the 

derivative of t -1 fo u(s) ds is Du(t) it follows that  

// ;0 Du(t) = ~ u(s) ds = O. 

In terms of the operator D the inequality (0.2) can be written as follows 

H~I]Lp(X ~p-1) ~ B(oL) llDull~,(x-(~ 1)p-l), 

where de0 and ueL~~ oc). 
The inverse operator of D can be written explicitly (see [7, Remark 5] applied 

with sv(s) instead of v(s)), 

// D21~(~)=x~(~)+ ~(~)d~ fo~<0,  

and 

D~lv(x)=xv(x)  - v(s) ds for o~>0. 
J X  

Moreover, the Hardy inequality implies that  D~l:Lp(x-(~-l)P-1)---~Lp(x ~p-1) is 
bounded for all a-~0. Again, we see that  D~ -1 and D-~ are two different operators 
and to interpolate them we have to restrict them to the space of functions where 
they are equal. This happens exactly in the space N = { v : f ~  v(s)ds=0}. By 
interpolation we get only that  

Dol :  (NALp(x 1), NALp(x2p-1))l/2, p ~ (Lp(xP-1), Lp(x-p-1))l/2,p : Lp(x-1). 

Further, by our Theorem 3, it follows that  

(NNLp(x 1), NnLp(x2p-1))l/2, p = NNCp(xP-1)NLp(xP-~), 
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and therefore we can only say that 

(4.7) Do1: N n C p ( x P - 1 ) n L p ( x  p- l )  ) Lp(x 1) 

is bounded, and that Do  I is not bounded from N A L p ( x  p 1) into Lp(x 1), which 

corresponds to the invalidity of (0.2) for a = 0 .  
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