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In the preceding paper [1] it was shown by Finn and Gilbarg that if u satisfies
the elliptic differential equation
(@ u;);=0 (1)

in an n-dimensional domain D containing the exterior S, of a sphere of radius r,

and if the coefficients o'/ and the solution u behave suitably at infinity, then
A)=[a"u;u,dV (2)
ST

exists for r>r, and

o\
Atn<dw (2, 0

where 1=min [(n-—2), 2l/m] In the case of Laplace’s equation, it is casily seen
that (3) holds with A replaced by n—2, which is greater than A for large n. Thus,
(3) is not sharp.

We shall replace (3) by a sharp asymptotic estimate under the assumption that
o' approaches the unit matrix at infinity. As is pointed out in [1], if a'/ approaches
any positive definite matrix, one can make this limit the unit matrix by means of a
coordinate transformation.

We define the two functions
2. () £:;
- (4)

ay(r)= inf "
Eps v £ 2
ix |2rn izlgi
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and
1
2

a (")=r

sup Ya' 22, (5)
Jz1=r i3
where |z| is the length of the vector z.

We assume that @ approaches the unit matrix in the sense that a, and a,
approach 1 as r —>oo,

Let Dg(r) be the Dirichlet integral of » over the annular region between spheres
of radii r and R>r. Clearly Dg(r) increases with R, and by (4)

D(r)=rlim Dr(r)< A (r)/ay(r). (6)
We now write
R R
— ﬁ" z n-1 n—s[f 2d ] 7
Dy (r) S(I[ [J(ag) 0 dg] dQ+jQ S(l)[gradg u?dQ | do, 7N

where S(1) is the surface of the unit sphere, dQ its surface element, and gradg »
the projection of the gradient of u on the unit sphere.

|rada uft = | grad uf - (32) ] ®)

By Schwarz’s and Wirtinger’s inequalities

r 69 1 2
Dg(r)> N dQ+(n—1)f[fu2dQ~—( Judﬂ)]g"‘sdg
§(1) fdé’ T s n s(1) ©)
Qn—l I
£ 2
>(n—2>r"'2f[u(R)—u(r)]mmm—l)f[fumg—i( fum)]gn—sdg,
s 3 sty Wn

where w, is the area of S(1). Since both integrals on the right are non-negative,
each is separately bounded by Dg(r) and hence uniformly in R by D(r). By consid-
ering the first integral for r sufficiently large and R>r, we see that u(r) considered

as a function on the unit sphere converges in the mean square sense as r —>oco. This

implies that the limit of j u(r)dQ exists. By adding a suitable constant to u, we
Sy

may make this limit zero. We suppose this to have been done.
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The second integral on the right of (9) must converge, and hence its integrand
must approach zero. Thus we find

lim | «?(R)dQ=0.

R—c0 S1) (10)
Neglecting the second term in (9) and letting B —>co shows that
n-2 2 (n—2) 2
Dir)z(n—2)r u (r)dQ=—r— ffu a8, (11)

S S(r)
where S(r) is the surface of the sphere of radius r.

It is easily seen from Schwarz’s inequality together with (10) and the Dirichlet
integrability of u that

lim §ua”u,w,—d8=0. (12)
R-—>00 SRy

Hence, using Schwarz’s inequality

2
[4@) = [ f ua”u,wjds] <ay(r) ff @ ugu,d s ff wdS= —al(r)?-gl—r@ 45 wds.
S(r) S(r) S(r) S(ry

Using (11) and (6) gives

—ra,(r) 04
[A ('I‘)]2 < amg; A (1‘). (13)

This means that for r>r,
r

A(r)< A (ry) exp {—(n—z)fﬁ%@}- (14)

To

Weakening this inequality, we find
@

A{r)<A(ry) (770)("—2) gil‘l, (a.(e)). (1)

If we assume that a,(p)/a,(p) -1 as g oo, the exponent in (15) is arbitrarily
close to n—2 for sufficiently large r,.

In general, (14) can also be written in the form
T
r n-2
A=409 (%) exp (-2 [ a-an/apde/e) 16)
rﬂ
which clearly displays the effect of the deviation of ay/a, from one.
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