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Preface.

The class of Bohr's [1], [2], [3]? almost periodic functions may be considered
from two different points of view. On the one hand it is the class of continuous
functions possessing a certain structural property which is a generalisation of pure
periodicity, and on the other it is the class of limit functions of uniformly
convergent sequences of finite trigonometric polynomials. The main part of
Bohr's theory of a. p. functions of a real variable developed in his first two
papers [1], [2] was devoted to the proof of the identity of these two classes.

Further development of the theory of almost periodic functions was directed
to generalisations of the theory. Corresponding to the two different points of
view of the class of a. p. functions the generalisations went in two different
directions. On the one hand there were further structural generalisations of
pure periodicity. The first generalisations were very important ones given by
W. Stepanoff [1], who succeeded in removing the continuity restrictions, and
characterised the generalised almost periodicity not by values of the functions
at each point, but by mean values over intervals of fixed length. N. Wiener
studied almost periodicity and gave a new proof of the Fundamental Theorem
by means of representation of functions by Fourier integrals [1], {2] and in-
dependently of Stepanoff he arrived at one of his (Stepanoff’s) generalisations.

! The investigations in this paper were completed in a collaboration between the authors
several years ago. The final redaction of the paper belongs to A. S. Besicovitch. An account: of
the principles of this paper was given by H. Bohr at the Congress at Bologna 1928 and in his paper [4).

* The list of papers referred to is given at the end of this paper.
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H. Weyl [1] also gave a new method in the theory of almost periodic functions
based on integral equations. His method led him to a new structural generalisa-
tion of almost periodicity, which was wider than one of Stepanoff's types of
almost periodicity.

The second direction of generalisations of almost periodicity was that
followed by Besicovitch. Corresponding to the definition of almost periodic
functions as limits of convergent sequences of trigonometrical polynomials, Besi-
covitch enlarged the class of almost periodic functions by considering the con-
vergence of sequences in a more general sense than uniform convergence, and
by defining almost perfodic functions as limits of such sequences of trigonometric
polynomials. The purpose of his generalisation was to enlarge the class of almost
periodic functions to the extent of existence of the Riesz-Fischer theorem.

However, all these generalisations were not just directed by the idea of a reci-
procity between structural properties and the character of convergence of sequences
of trigonometric polynomials, though important results were given by S. Bochner
(2], H. Weyl [1] and R. Schmidt [1].

We give in this paper a systematic investigation of structural generalisa-
tions of almost periodicity and we establish a strict correspondence between
various types of almost periodicity and the character of convergence of cor-
responding sequences of polynomials.'

This question, being of interest for the theory of almost periodic functions,
acquires also its importance on account of the connection of almost periodic
functions with general trigonometric series. The fact is that any a. p. function
f(x) hag a »Fourier series» in the form of a general trigonometric series Ia;e'%®
(4 any real numbers), and the sequences of trigonometric polynomials »convergent»
to f(x) converge formally to this series (i. e. the coefficients of the polynomials
converge to those of the series).

Thus while studying various types of almost periodicity we study at the
same time a large class of general trigonometric series (including for instance
all series for which Z|al’ ds finite) with appropriate character of convergence.
In order to show ciearly the idea of our investigation we shall first illustrate our

problem on some known results concerning purely periodic functions.

! In papers on this question by A. 8. Besicovitch and H. Bohr [1] and by H. Bohr [4] was
given the general idea of the present investigation and the method was carried out on the class
of 8. a. p. functions. Later on was published a paper by P. Franklin (1] in which he arrived
partly at the results published in our paper, and partly at new results.
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CHAPTER T.

§ 1. Auxiliary Theorems and Formulae.

In this § we shall quote some theorems and formulae, which will be
used later.

If f(t) is given in the interval — o < f<< o then the various limits

(lim, lim, lim) of the expression

+T
;ATff(t)dt,- as T— oo,
7

are denoted by the symbols
MA@, MWy, M)

and are called mean value, upper mean value, lower mean value.

If ‘instead of f(f) we have a function of two or more variables then we
indicate the variable with respect to which the mean value is taken by a suffix:
we write for instance M;{f(t, x)}.

In the same way, if f(¢) is a function of an integral variable ¢ given in
the interval — o0 <<#<{ 4 o, we denote the various limits of the expression

i=+n

1 .
E:{ Zf(’b), as n—> %,

=N

by the symbols
My, MY, M{F6).

If f(7) is defined only for positive integers then we denote by these symbols
the limits of the expression

i=n

%g,lf(z'), as n—» .

Holder’s Inequalities.
Let p and ¢ be positive numbers satisfying the condition
i/p+1/g=1

and @(f), ¥(f) two non negative functions: then we have
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(1) f sl par = | f wopae]”| f wioypae] "

a a

Similarly we have

@ S = Segur]” [ S|
From (1), (2) we conclude immediately that

(3) Mg .y} = [M{gry'e [M{y1]

or more generally that

f Mg} = (g (T Gy

g Mgy} = B Lo (1 Gy,

Formulae (3), (4) and (5) hold whether ¢, 1 are functions of a continuous variable
t or of an integral variable <.

Fatou’s Theorem.

Let f(t,n) be a non negative function given for all ¢ in a finite interval
(a, b) and for all positive integral values of ». Then we have

b b
(6) f lim f (¢, ) dt < lim f £t n) dt.

a e e a
This formula also holds if #» is a continuous variable. As an immediate corollary
we have

A ] :
(7) jzgx{f(t, x)}dté]l[x{ff(t, x)dt}.

a a

Lemma I. Swmoothing an integrable function.

Let f(f) be a function integrable (L) in a finite interval (a, b) and let

t+d
fa(t)z—;ff(u)du (a<t<b—d).
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Then for any 8<<b

8
®) tim f 1/ —sD]dt=o.

Remark. We observe that if f(f} is periodic then fj is continuous and
periodic with the same period.

Some Inequalities.

1} If f(t) s a non negative function then

©) fdt—ff vs | ()dt.

2) If f(t) is a non negative function and if p'<p”, then

p ’
<

(10)

bl

(11) MALS@OF = M.

3) If @(t) and W(t) are non negative and if p=1, then

(12) [fb(q)-l-lp)?’dt]l/pé [fqﬂ’dt prdt

a a

CHAPTER 11.

Purely Periodie Functions.

§ 2. Notation and Problems.

We shall consider functions f(x) given on a circle of radius r=1. We
shall always mean by z any amplitude of a point of the circle. Thus the func-
tions f(x) are periodic with period 2.
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We shall talk of functions in terms of geometry. Any function is considered
as a point of a »functional space».

We first .define the distance between two points (i. e. functions). We give
various definitions of the distance and correspondingly we define various »func-

tional spaces».
In the class of continuous functions we define the distance d[f(z), ¢(x)]
between two functions f(x) and @(x) (the uniform distance) by the equation

d[f(z), p)] = up.b.| f(z) — ()].

—aAEr<n

We define further the symbol d [f(z) by the equation

d[f(z)] = a[f(x), o] = up.b.| f(a)].

—a=r<ma

It is obvious that in the functional space defined in this way the Trzangle
Rule holds true, i.e.
if @), p(x), w(x) are any three functions (points) of this space the inequality

d(f(@), yla) = a[f(z), pl)] + dlp(=), Y()

s satisfied.

In the class LP(p=1), i.e. in the class of functions which are measurable
and whose pth power of modulus is integrable (L), we define the distance
dr[f(x), p(x)) between two functions f(x), ¢(x) by the equation

+z p
w176, gl = [ [l —p@bar] "
We define further the symbol d?[f(z)] by the equation

@i = el o = 5 f e paa|”.

On account of (12) the Triangle Rule holds true also in this space, i.e. if
S(z), @(x), w(x) are any three points of this space we have

@ [f(z), (@) = @ [flz), p(a)] + & [p(z), p(2)].
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For the case of p=1 we write d[f(x), p{x)], d[f(x)] instead of d'[f(x), p(x)],
d'[f(z)]. For the case of purely periodic functions we shall consider only the above
distances, i.e. the distances

alf(x), p@)], arlf(x), )] (p=1), dlf(2), pl)].
We have the following formulae
(13) alf (@), gla) = d° [f (@), (@), for 1=p
(14) &' f (@), p(@)] = " [f (), p(&)], for p'<p”
the first of these formulae is obvious and the second ome follows from (10).

‘When we wish to speak of any of these distances without specifying a definite
kind we shall write d,[f(x), p(x)).

Thus we have a general formula (Triangle Rule)
do [f (@), w(@)] = dy [f (), pl)] + dy lp(), ()]

We call a point (a function) f(x)-a limit point (limit function) of a sequence
of points

if dg [f (), falx)] =0, as n— o,

We call a point f(x) a limit point of a set U of points (functions), if the
set U containg a sequence of points {f,(x)} such that f(z) is its limit point.
A set A augmented by the set of all its limit points is called the closure of the
set A and is denoted by

¢ ().
Corresponding to the various definitions of the distance d, d?, d, we have the
closures
(15) c(¥), (), ().

The set U is called a »base» of each of these closures.
We have now to prove a very simple theorem which is of importance for
the further theory.

27—31104. Acta mathematica. 57. Imprimé le 22 juillet 1931.
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Theorem on Uniform Closure of the Base.

The closure of a set N and the closure of the set ¢ () are identical, or in

symbols

eg () = ¢4 (¢ (A)).
1°. It is obvious that
(16) ¢ () = ey (c ()1
2°. Let now f(x) belong to ¢,(c(A)). If it belongs at the same time to

¢(A) then it also belongs to ¢, (), as ¢, (A)>¢(A). If, however, f(x) does not
belong to ¢(A) then ¢(A) contains a sequence of points {@.(x)} such that

(17) dy [f (@), pula)l =0, as n— o,

@n(z) belonging to ¢(¥) we conclude that A contains a point f,(x) (which may
coincide with ¢@,(z)) such that

d g (), falz)] < I

n

and consequently that

(18) dy [n (@), fula)] < — -

n

By the Triangle Rule

dg[f (@), fal@)) = dy [ [ (@), @nl@)] + dy[pnla), fa(@)]

and thus by (17), (18)
dg [f(x)af;x(x)] — 0, a8 n — %,

Jo(x) belonging to ¥ we conclude that f(x) belongs to c,(2).
Thus in either case, whether f(x) belongs to ¢ () or not, it belongs to
¢g(A). Consequently

(19) ¢g (e () =g (A).
By (16), (19) the theorem has been proved.

After having introduced the above notation and ideas we pass to our pro-

blems for the case of purely periodic functions. We have two different problems:

! The equations A > B, A<<B express resp. that A contains B, and that I is contained in B.



Almost Periodicity and General Trigonometric Series. 211

Problem 1. To characterise the classes of functions which can be approximated

in some of the above mentioned ways by finite harmonic polynomials, i.e. by finite
sums of the form

(20) s(x) = Zaje*
where J are amy posilive or negative integers and a; any real or complex numbers.

Problem IT. To find an algorithm for the definition of functions s(x) ap-
proximating a given function of each of the above classes.

In this case we take for the class 9 the class of all finite harmonic poly-
nomials, i.e. the class of functions s(x) defined by (20). We denote this class
by 4. Then our Problem I may be formulated in the following way:

I. To characterise the closures

c(de), cldo), ?(de) (p>1).

We shall. consider each of these closures consecutively.

§ 3. Problem I.

Denote the class of all continuous functions (on a circle of radius r==1,
i. e. continuous functions with period 27) by the symbol {c. f.}. We have
the theorems:

Theorem I, 1. The closure ¢(Ag) is identical with {c.f}, i.e.

c(de)={c.f]).
1°. The fact that

(21) c(do)<{c.f}

is obvious.

2°. The formula
(22) {c. fl=e(do)

exprésses the famous theorem of Weierstrass that any continuous periodic func-

tion can be uniformly approximated by harmonic polynomials.
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Corollary. For the case A =Ae the theorem on uniform closure of the
base may be expressed by the formula

(23) ¢g(Ade) = ¢s({c.f])).

Theorem I, 2. The closure c(Ae) s identical with the class L (the class of
integrable (L) functions defined on a circle of radius 1), 1.e.

(24) clde)=L.

1°. Let f(x) be any function belonging to ¢{dg). Then there exists a
sequence {f.(x)} of functions of A@ such that

d[flx), fal@)) 0, as n— o,
i. e. such that

(25) leﬁflf(x) — ful®)|dz— o0, as n—o.

From the limiting equation (25) it follows that f{z) is a measurable function,
and then from the existence of the integral (25) follows that f(x) is integrable (L).
Thus

(26) c(de)<=L.

2°. Let now f(x) be any function of the class L. Then on account of
the remark to the lemma I of § 1 there can be found a continuous function
fo(x) such that d[f(x), fs(x)] is as small as we please, which shows that f(x)
belongs to the closure ¢({c.f}) and consequently on account of (23) to the
closure ¢(4@). Thus

(27) LCC(A@)
By (26), (27) the theorem has been proved.

Theorem I, 8. The closure cP(Ae) ¢s identical with the class L», i.e.

c? (A@) = L».
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1°. In the same way as in Theorem I, 2 we prove that
(28) e (Ae)< Lr.

2°. Let now f(x) be any function of the class L? and @ a positive number.
Define the function fy(x) by the equations

Jolz) = fx) it |flx)l=¢

and

oSl

To any positive number ¢ corresponds a value of ¢ such that
¢
(29) (7). fola)) <%

Jalx) belonging to the class L there exists a continuous function ¢(x) such that
|p(x)] = @ and that

(30) A1), plo) < (&) ey,

We have
a? [ falx), ()] = {(2 Q) d[folx), p(@)}*

and consequently by (30)

(31) @[ fole), ) < -

By (29), (31) and by the Triangle Rule
ar [fw), plx)] < e

which shows that f(x) belongs to ¢?({c.f.}) and on account of (23} to ¢?(4p).
Thus

(32) Irec?(4g).

By (28), (32) the theorem has been proved.
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§ 4. Problem II.

By the theorems I, 1; I, 2; I, 3 it has been proved that any function of
each of the classes {c¢.f}, L, L?(p>1) can be approximated in a definite way
by harmonic polynomials. Now we pdss to Problem II of the definition of an
algorithm for the construction of these approximations. For all our classes this
‘will be given by Féjér sums.

Let f(x) be any function of one of our classes. Take its Fourier series

p=—0w0

+oo +n
s 1 .
(33) S 3 dvevs, 4, =L f Fledt,
The Fejér sums oy(x) (IV positive integers) are given by the expressions
N I
14 .
(34) a‘,\-(x) - 2 4, (I ,_ 1\7) £ir®
y=—XY

or by the equivalent integral expressions
(35) oxlz) = - / Fla+ ) Kx(ddt

where the »kernel» Ky(f) is given by
+N

ksl = 3 (1= 13l) = 1 (20"

r=—N

We shall prove that the functions ox(z) give required approximations for
all our classes.

Theorem II, 1. If a function f(x) belongs to the class {c.f} then
d[f(x), ox(x) 0, as N— o,
This is Fejér’s well known theorem; we shall not dwell on its proof.

Uniqueness Theorem. If two functions f(x), g(x) belong to the class {c. f.}
and have the same Fourier series, then
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a(f(z), gla)) =o.

Denote by o (x), o%(z) the Fejér sums for the functions f(x), g{x). The func-
tions f(x), g(x) having the same Fourier series we conclude on account of (34)
that o/ (x), 0%(x) are identical, i.e.

oy () = o%(x) = onlz).
By Theorem 1I, 1
d[f(@), ox(z)] >0, dlglx), ox(@)] >0, as N— oo
Consequently

af(x), g(@)l = a[f(x), onla)] + dlg(x), on(x)] — 0, as N—o,

whence

which proves the theorem.
Theorem II, 2. If a function f(x) belongs to the class L then

d[f(x), on(®)] >0, as N— o,

We prove first the following auxiliary inequality.
If f(x) 4s any function of the class L, then

(36) d [on(x)] = d[f ().

For

oxla) = = ] Flo+ ) Knlt)dt

whence

f|aN o) dz =

e x*flfaﬁ-thN

27
—n
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+n

+n
I I
—;[Kh(t)dt;tflf(x-f-t)ldl’—«
4

=alfte) ), [ Kstoar

—T

which proves the formula (36), since on account of a well known property of

Fejér’s kernel we have
+n

L | E.(t)dt=1.

27

From (36) we obtain the following inequality:

If f(x) and g(x) are any two functions of the class L then

(37) d o} (@), o4 (=) = d[f (), g(=)].

In order to prove the formula (37) we have only to apply the formula (36) to
the function f(x)—g(x) and to observe that of 9(z) = o} (x) — o%(x) and that

[ (2)] = d [0} (x), % ()], d[f(x)—g(@)]=d[f(x), g(x)].
We shall now prove Theorem II, 2 by showing that corresponding to any
fixed positive number ¢ we can choose an integer N, such that
(38) d[f(z), o} () <e for all N> N,.

For f(x) belonging to L we can (on account of the Remark to Lemma I of
§ 1) find a continuous function ¢(z) such that

(39) d1f (), pla)] < §

and an integer N, such that

J

(40) dp(x), of(z)] < for all N> N,.

We have then for N> N,
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alf (@), of(@)] = d[f(x), pla)] + dlp(x), of(z)] +
+ dlo}(@), o (@) = 2d [f(@), p(x)] + dlp(x), of(x)]

whence on account of (39), (40)
d[f(x), of(x)] <e
and thus Theorem II, 2 has been proved.

Theorem II, 3. - If a function f(x) belongs to the class LP (p>> 1) then

dar [f(:r), UN(OC)] — 0, as N— oo,
As in the preceeding case we first prove an auxiliary inequality:

If flx) 7s any function of the class LP then

(41) d? [ox(x)] < dr [f(a)].
We write
() loste) | = [ U+ D) Ko at

By Hélder's inequality

1

jj;f(x + )| Kylt)dt < {jyif(m e KN(t)dt}I/p{f‘lKN(t)dt}g; B

+n
_ (m)’%{ f Ll + 0 |PKN(t)dt} ”
and thus by (42)
+n
lostell = ) [ 17+ b K at

whence

28 — 31104. Acta mathematica. 67. Imprimé le 22 juillet 1931.
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dr lox(x)] = [iflmv(x) Ipdx]llpé [é%fKA(t)th%flf(x+ ) |pdx]1/p_____

—_n

= [fla)],

which proves (41).
Now we pass to the proof of Theorem II, 3. Let @ be a positive number.
We write

S (@) = fo(z) + Relx)

where fo(x) is defined by the equations

folz) =f(=) if |fle)]= @

and
) .
fala) = @5 it 7@I> @,
Given a positive number ¢ we can always find a number @ such that
(43) @ [Rofa)) < -

and then on account of Theorem II, 2 an integer N, such that for N > N,

(44) d%@mmw<6ﬂwwm

From the inequality |oje(z)| = @ we conclude

(45) & [folz), ofelz)] ={(2QP"d [fo(2), ofe(=)]}*?.

By (44), (45)
(46) @ [fol@), afe(x)] < 58 -

Observing that

ol () = oje(x) + oFa(x)

we write
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d? [f (@), of (@)l = d? [f (w), fal@)) + a7 [fol#), ofe(@)] + d¥ [ofe(x), of(x)] =
= d? [Re(@)] + d” [fo(@), ofe(x)] + d?[oxelx)] =
= 2d? [Ro(#)] + d? [folx), ofela)).

By (43), (46)
ar [ f(x), of(x)] < e

which proves the theorem.

Uniqueness Theorem in the Class L? (p=1). If two functions f(x) and g(x)
of the class LP (p=1) have the same Fourier series then

@ [f (), g(@)] = o.

The proof is identical with that for the class {c.f.}.

CHAPTER IIIL.

§ 5. General Closures and General Almost Periodicity.

We now pass to our main problem, i.e. to the investigation of various
classes of functions given in the whole interval — ® <z < 4 o0 which can be

approximated in some way or other by finite trigonometric polynomials

(47) s(x) = Za,eh”

where the exponents A, are any real numbers, and the coefficients a, any real
or complex numbers. We denote the class of all polynomials (47) by 4. We
shall consider only those approximations which preserve the main characteristic
properties of the functions s(x) (those relating to oscillations).

Then we have to consider only approximations which vnvolve some sort of
unzformety tn the whole interval — o <x < + ®,

For, as Besicovitch has shown (1], the class of functions which can be
approximated by a sequence {sn(x)} of polynomials (47), even uniformly in any
finite interval, is too wide: this class contains in fact all continuous functions.

As in Chapter II we shall talk of functions in terms of geometry. We

call a class of functions a functional space, and any function of this class a
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point of the functional space. We first define the notion of the distance of
two points. Corresponding to various definitions of the distance we define
various »>functional spaces».

We introduce the following definitions of the distance between two points
{functions) f{z) and ¢(x).

1°. We define the distance D [f(x), ¢(x)] by the equation

(48) D|[f(x), p(z)] = up.b. | flz)—g(z)].

<+ ®
We define further the symbol D|f(x)] by the equation

(49) D|f(@) = D[f(x), o] = up.b. | f(z)].

—x <<+t w

2°. We define S.distance of the class p (p=1) relating to the length !
Dy [f(x), p(x)] by the equation

—_—m <<t ®

(50) mwmazwav opac|”.
We define the symbol Dy [f(x)] by the equation

(51) mwwdwmx~wijPm

—x<zr<+®

When any of the numbers p, [ is equal to 1 we drop it in our notation. Thus
we write Dg, Dsr, Ds instead of Dy}, Ds?, Dg!

1

If p’<p” we have an account of (10)

(52) Dy [f (@), pa)l = Dy’ [f(z), pl)).

3°. We define W .distance of class p Dy»|[f(x), ¢(x)] by the equation
(53) Dy [f (%), ¢(@) = lim Dep [f (), p(a)], as I—o0

and we write

(54) Dy [f (@) = Dy [f(2), 0.
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For the validity of this definition we have to prove the existence of the
limit on the right hand side of (53). Obviously it is enough to prove the
existence for the case of @(z)==0 and p=1, i.e. to prove the existence of the
Limit
(55) lim Dg [f(x)], as [ —o.

If Dg |f(x)] is infinite for one value of ! then it is also infinite for all
others and thus in this case the limit (55) exists. Suppose now that Dg [f(x)]

is finite for all values of I. Let l,, ! be any two positive numbers and » the
positive integer such that

(56) (n—1)l, <= mnl,.

We have

z+nl,

;f|,f(x)|d$§%%if|f(x)|dx

and thus

(57) Dy 1@} = "2 D 1) <5 2 Dy, /@),
We have evidently

(58) Ds,,,[/(&)] = Ds, [/(2).

By (57), (58)

(50) Ds ) < (1 + ) g ),

from which we conclude

(60) lim Dy /(@) = D, [(2).

(60) being true for all values of I, we conclude that

(61) l@ Dy @) = lli_m Dg,, [f (@)} = lim Dy, [f(x]],
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which proves the existence of the limit (55) and thus the existence of the limit
on the right hand side of (53).

In the same way as in 2° we write Dy instead of Dyr.

4°. We define B.distance of class p (p=1) Dy [f(z), ¢(x)] by the equation

(62) Dy [f (), ()] = [M{] fl) — pla) P10
In the same way as before we write
(63) Dy [flx)] = Dy [f(), o].

If the number p is equal to one we drop it in our notation.
Now we easily find

Dsl" = Dy
and hence by definition
Dyv» =Dy
Thus by (60) we have
(631 l) D[f(T), ¢(CL‘)JZD5§)ZD”J)ZDBP pz L.
By (10), (11)
(63, 2) Dy =Dy, Dy’ = Dy’ Dy’ < Dy for p<p’.

These are the only distances which we shall consider in our general investigation.
When we wish to speak of one of these distances without specifying a definite
kind we shall write

De [f(x), plx)].

It can be readily seen that the Triangle Rule holds in the general case, i.e.
if f(x), p(x), W(x) are any three functions then

(64) D [f(x), w(x)] = D¢ [f(x), plx)] + D¢ lp(), wix)].
If a function f(x) and a sequence {f.(z)} of functions are such that
(65) Dg[f(z), falz)] >0, as n— oo,

then we say that the function f(x) is a G.limit of the sequence {f.(z)}.
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Corresponding to the particular meanings of Dg[f(x), fa(x)], namely

D, Dsf” Dy», Dy,

we write

Sl@) = lim f(x), = SP.lim fo(x), = WPlim fu(x), = BP.lim f,{x).

It is easy to see that if SP.lim f,(x) exists, then SP.lim f,(x) also exists and we
have SP.lim fu(x) = SP.1im fo(z).

Remark. We shall indicate the kind of uniqueness which lies in the
definition of a limit function of a sequence {f,(x)} of functions. We conclude
from (64) that if f(x) is a G.limit function of the sequence {f.(x)} then every
function f(x) which satisfies the condition

(66) D [f(z), f'(x) = o

is also a (.limit function of the sequence {f.(x)} and no other function can be
a (.limit of this sequence. If

D[f(z), f ()] =0
then
fl@)=f"(z) for all z.
If
Dy [f(@), f @) =0

then f'(z) may be any function which is equal to f(x) at almost all points. In
the cases when

Dyr [f(@), fl@)] =0, or Dyr(f(x), f{x)]=o

the functions f(x), f'(x) may differ at a set of points of finite and even of
infinite measure.

Thus, lim f.(x) is defined in a completely unique way; two determinations of
SP.lim fo(x) deffer from one another only in a set of measure zero; but two deter-
minations of WP.Nim fo(x), and a fortiori also of BP.lim fu(x), may differ from one
another at a set of positive and indeed infinite measure.
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We call a function f(x) a limit function of a set ¥ of functions if f(x) is
a limit function of a sequence {f.(z)} contained in %A. The set A with the set
of all its limit functions is called the closure of the set A and is denoted by

CG(‘H).
Corresponding to various definitions of the distance we have the closures
67) C), Cp(N), Cpr(A), Cpr(N) (p=1).

The set A is called a base of the closure Cg(). In the same way as in
Chapter 11 we can prove a

Theorem on Uniform Closure of the Base: The closure of the set U and the
closure of the set C(N) are identical, or in symbols

(68) Ce (A) = Ce[C(A)].

At the beginning of this chapter we indicated the general nature of our in-
vestigation: we can now define their scope precisely by means of the symbols
that have been introduced.

We shall study the closures
(69) C(4), Cp(4), Cyr(4), Cpr(4)
where p=1 and A s the class of all polynomials (47).
We have
(69, 1) CA)cCp(d)c Cyr{d)= Cp(4), p=1
and if p’' <p”
(69, 2) Cop'=Cp, Cpp'< Cypp', Cpp Oy,
As in the case of periodie functions our task falls into two parts:

Problem I. To characterise the closures (69) by structural properties of
Sunctions.
Problem IL. To find an algorithm for the construction of proper approxima-

tions to functions of various closures.
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The solution of these two problems for the general case of the closures

Co(4), Cpr(d), Cpp(4) (p=1)

will be based on the solution for the special case of the closure C(4).

As in the case of periodic functions we shall omit the investigation of this
fundamental case and merely quote its results.

We have first to give the definition of almost periodic functions.

Let f(x) be a function, continuous in the whole interval — o <z <+ o,

and ¢ a positive number. If a real number 7 satisfies the condition
(70) Df(z+7), fla) =

then we call the number 7 a (uniform) translation number of the function f(x)
belonging to . Denote by E.[f(x)] the set of all such numbers z.

Before giving the definition of almost periodic functions we have to give
an auxiliary definition of a property of numerical sets.

If to a set E of real numbers corresponds a positive number | such that every
interval (a, b) of length 1 contains at least one number of the set E then we say
that the set E is relatively dense.

Definition of Uniformly Almost Periodic Functions.

If the set E.[f(x)] ds relatively dense for all positive values of & then we say
that the function f(x) is a uniformly almost periodic function (@.p.function).

We shall denote the class of all @.p.functions by the symbol {@.p.}.

The theory of a.p.functions was created by H. Bohr and has been deve-
loped in his three papers in Acta math. [1], [2], [3] and later in a series of his
own and other author’'s papers. We shall not enter here into the theory of
a.p.functions but assume its fundamental results to be known to the reader.

The main result of Bohr's first two papers gives the solution of Problem I
and Problem Il for the case of the closure C(4).

The result concerning Problem I can be expressed as follows:

! New methods in Problem I and in Problem II have been given by S. Bochner [1], N.
Wiener (1], [2], H. Weyl [1], C. de la Vallée Poussin [1].

29—381104. Acta mathematica. 57. Imprimé le 23 juillet 1931.



226 A. 8. Besicovitch and H. Bohr.
Theorem I C(A). The closure C(A) is identical with {a.p.}, 1i.e.
(71) C(4)={a.p).
Corollary. For all closures which are considered in this paper we have

(72) Co(4)= Cs[{a.p.}].

The proof follows from (68), (71).
The study of the general closures ¢(4@) and ¢?(4@) in the case of purely
periodic functions was based on the results concerning the classical closure

¢(A@). Similarly our investigation of the general closures
(73) Cer(4), Cyr(d), Cpr(4)

will be based on Theorem I C(4).

Each of the classes (73) will be characterised by some kind of »almost
pertodie» property.

For this purpose we introduce the following definitions.

S?. almost Periodic Functions.

If for a given function f(r) a real number ¢ satisfies the condition
(74) Dylflw+1), fla)] < e

then we call the number z an SP. translation number belonging to e. Denote by
Sp. E,[f(x)] the set of all these numbers.

If the set SP.E.[f(x) is relatively dense for all positive values of & then we
say that the function f(x) is SP. almost periodic (SP. a.p.).

It can be easily seen that for any I an SP. a.p. function s also an SP. a.p.
SJunction. Therefore we shall in future speak merely of S?. a.p. functions.

Wr. almost Periodic Functions.

If a function f(x) is such that to any e>o0 corresponds an l==1(e), for which
the set SP.E.[f(x)] is relatively dense, then we say that the function f(x) is
W?. almost periodic (WP.a.p.).
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Thus the difference between SP.a.p. functions and W?.a. p. functions is that
in the latter class [ varies with &.

It is easy to see that <f lim (&) ¢s finite then a WP.a.p. function zs an

&=t

SP.a.p. function.

Remark. We shall always assume that SP.a.p. functions and W?. a.p.
functions belong to the Lebesgue class LP.

B?. almost Periodic Functions.

We shall first give a definition of a property of numerical sets.

A set E of real numbers is sard to be a satisfactorily uniform iof there exusts
a positive number 1 such that the ratio of the maximum number of terms of E in-
cluded in an interval of length 1 to the menimum number is less than 2.

It is obvious that a satisfactorily uniform set is relatively dense.

We say that a function f(x) of the class LP zs BP.almost periodic (BP.a.p.)
of to any e>o corresponds a satisfactordy uniform set of numbers

(75) T < T < Ty LT < Ty <

such that for each ¢

(76) M A fo + 7)) — fla)|P) < &

and that for every ¢>o

x+te

(77) 00, [\t w) — flldo < o

We call the numbers 7; of (75) BP. translation numbers of the function f(x)
belonging to &¢. It may seem to be more natural to replace the condition (77)
by the condition

(78) MM\ fle+ v) — fl@) [Py < o2

We shall further investigate also this kind of almost periodicity, but as in the
conditions (77), (78) we use upper mean values the smoothing process by which
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the condition (77) differs from the condition (78) appears to be of importance.

We shall denote by the symbols {S¥.a.p.}, { WP.a.p.}, {BP.a. p.} the classes
of all S?. a.p. functions, W?.a.p. functions, B’.a.p. functions.

When we wish to speak of a function of one of these classes without
specifying a definite one, we shall call it a G.a.p. function.

Thus we have introduced three kinds of almost periodicity beside the uni-
form one. S? almost periodicity is the nearest to the uniform one. It restricts
the class L? as uniform almost periodicity restricts the class {c.f.}. The typical
property of imitation of values of functions, for values of argument increased
by translation numbers, is substantially maintained. But the imitation at each
point characterising @.p. functions, is replaced by »integral imitation» of values
over an interval of a fixed length. In other words, the uniformity of imitation
belongs not to particular values of the argument but to intervals of a definite
length. B’ almost periodicity is as will be shewn the widest generalisation of
the uniform one. The imitation due to this class of almost periodicity appears
only as a general effect of the whole class of translation numbers and over the
whole range of values of x. When we study this class of functions in connec-
tion with Fourier series we shall see that B?.almost periodicity is probably the
generalisation of almost periodicity to its natural bounds.

WP. almost periodicity is intermediate between the S” and B? kinds.

CHAPTER IV.

S?. a.p. Functions and W?. a. p. Funections.

§ 6. S.a.p. Functions.
Theorem I Cs(A). The closure Cs(A) 7s identical with {S.a.p.}, <.e.

(79) Os(4)={S.a.p}.

1°. We shall first prove that

(80) Cs{d)={S.a.p.}.

Let f(x) be any function of Cs(4) and ¢ any positive number. In order to
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prove (80) we have only to prove that the set S. I.[f(x)] is always relatively
dense. Take a function s(x) of A such that

(81) Ds[f (@), @) < § ~

Let = be any number of the set FE:[s(x)]. We have
3

Ds(f(x+9), flx) = Ds(flx+17), sle+1)] + Dsls(x+1), sla)] +
+ Dsls(@), flx)] = 2Ds|f(x), s(@)] + D [s(x+1), slx)) <e

(82)

which proves that
3) E: [s(e)] < 5.1 [/ #).

The set Ee[s(z)] being relatively dense we conclude that so is the set S. E.[f(x)],
3

and thus (80) has been proved.
2°. We shall now prove that

(84) {8.a.p) < Cs(A).

Let f(x) be S.a.p. and consider the functions
z+d
(85) fi(@) :%ff(t)dt for 0<d<1

already studied by Stepanoff. Given &>o0, let = be any number of the set
S.E.s[f(x)]. We have

z+d
Vite 9 =gl = | [[Lrte = o —riogar

(86) 240

é’%flf(tJrz) —fldt =
whence
(87) 8. B f () < E. | fol))

which proves that the functions f3(x) are @.p. functions.



230 A. 8. Besicovitch and H. Bohr.

We shall now prove that

(88) flx)= 8.lim fs(z), as & —o.

Observe that for any x, and for any ¢>0 and z<S. E.(f(x)] we have

o+ 1 29+1 z+d
[+ 0 —pars 5 [ ax [1re+a—reios
(8g) ™ oo

Tot+1+d To+2

1

Za Zg

whence

(90) 8. E:[f@)]<= 8. Ese[fs(x).

Given n>o0, let ! 21(3) be a number such that every interval of length
! contains an §.translation number of f(x) belonging to Z and consequently

(on account of (9o)) an S.translation number of f3(x) belonging to.—;n. Cor-

responding to any number z, we can determine a number

1< 8. By /(@) = S. By [fole)

such that the point z, + = lies in the interval (0, I). Then

f /(@) — fila)| do = f (@) —flo + ) de +
(o1) + f (e +0) — folw+ )] de + j /sl + 1) — fol) | das
o Zotz+1 0 +1
éin + flf(x)—fa(x)ldx + —;néin + flf(m) — fi(z)| d=.

TotT
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By Lemma I of § 1 there exists a number §, such that
141
(92) f ) —folaz <2y for all <4,
0

From (91), (92) we conclude that given #>o0 there always exists a positive

number d, such that for all d<d, and for all x,

Zpt+1

JECRCIEEEE
Ds[f (=), fol@)] <9
which proves (88). From (88) we conclude that

{8.a.pj=Cslla.pjl,

and (84) follows on account of (72). The Theorem I Cs(4) follows from (80)
and (84).

§ 7. W.a.p. Functions.
Theorem I Cw(A4). The closure Cw(A) 2s identical with {W.a.p.}, 7.e.
(93) Ow(4)={W.a.p.).
1°. We shall first prove that

(94) Cw(A)={W.a.p.J}.

Let f(x) be any function of Cw(d4). In order to prove (94) we have only to
show that to any positive & corresponds an ! such that the set S. E.[f(x)] is
relatively dense.

On account of the definition of Cw(A4) there exists a sequence {s.(x)} of
functions of A such that

(95) Dw [f(x), sulx)) =0, as*nm—co.
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Dy being the limit of Dg,, as [ — o, we can say that to the function fl=)
corresponds a sequence {s,(x)} of functions of 4 and a sequence {/,} of positive
numbers such that

(96) Ds, 1f(@), sn(@)] o0, as n—soe.
Then to any ¢>0 corresponds an % such that

(97) Dy, [f(@), slx)] < g :

Now in the same way as in the case of Theorem I Cs(4) we see that

(98) E, [sn(a)] = S, Ee[f ()]

3

and consequently that the set S;.FE.[f(x)] is relatively dense, which proves (94).
2°.  'We shall now prove the converse, i. e.
(99) { W.a. p}c_: Cw (A)

The proof of this part of the theorem in the case of the closure Cw(A4) is con-
siderably more difficult than in the case of the closure Cs(4). We have first to
prove two lemmas,

Lemma 1. W.a.p. functions are » W-bounded», 7. e. for any W. a. p. function f(x)
Dy [ f(x)} 4s findte.

Evidently it is enough to show that there exist two positive numbers L
and ¢ such that

(100) Dy, /()] = @.
Define L by the condition that when ¢=1 the set
(101) Sr. B[ f(x))

is relatively dense. Let >0 be a number such that every interval of length !
contains at least one number of this set. To any real xz, corresponds a number
7z of the set such that the number x,-+ ¢ belongs to the interval (0,l}). We
have then for any «,



Almost Periodicity and General Trigonometric Series. 233

2o+ L xo:l—L zo+ L
1 [ V@l = [ —fesdlaz + 1 [ 1+ )l
(102) o T o
totz+L 1L
SR GRS IVCIEd

which proves (100).

Lemma 2. W.a.p. functions are » W-uniformly continuous», <. e. to any W.a.p.
Junction f(x) and to any ¢ >o0 there exist numbers L>0 and d,>>0 such that

(103) Dg, [flx+9), flx)l <& for all §<4,.

Define the numbers L and [ under the conditions that the set

(104) Si. Eo[f ()]

3
is- relatively dense and that every interval of length [ contains at least one
number of the set (104). To any i, corresponds a number 7 of the set (104)

such that the number z,+ = belongs to the interval (o, I).
We have for any d>o0

%Tff(x-ké) —f(x)|dx§%7+rjf(x+a)—f(x+6+1)|dx
N 2o+ L N mgj—L
(108) +%f|f(x+6+z)—f(x+r)|doc+%j | flx+7) — fla)|da
i 2o+ L+7z ’
:%—F%flf(x‘—:’—&)—f(x)’ldx-i-%
T

§§e+%fuu+&—ﬂmwm

Obviously we can define d,> 0 such that for any d<d,

30 — 31104. Acta mathematica. 57. Imprimé le 23 juillet 1931.
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. U+L
(106) —iflf(x+d)—f(x)|dx<§-
0

By (105), (106) the lemma is proved.
Now we shall proceed to the proof of (99) or of the following statement
equivalent to (gg)

(107) {W.a.p)<=Cw[{a.p.)].

In order to prove (107) we have to prove that to any W.a.p.function f(x) and
to any ¢ >0 corresponds an @.p.fuanction @(z) such that

(108) Dy [flz), px)] < e.

We shall construet a kernel K(f). We first choose the numbers L;,! so that
the set

(109) Sz, B [f ()]

is relatively dense, and that any interval of length [ contains at least one number
of the set (10g9). Define now the numbers d, and L, so that for any |d| < d,

(110) Ds; [f(w + ), f() < § :

Now, by (59), for any function p(x) we have

(111) Dgs,, [p(a)] = 2Dspn [plx)l  if L'z L

and hence when L = max(L,;, L,) we have

(112) DSL[f(w+6),f(x)]<§ for any d < d,
and
(113) Ds, [f(z+7), fz)] <~Z— for any 7 of the set (100).

By (112), (113)

(114) Dg, [fle+7+9), fla)] <e.
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We construct the intervals I, (r=o0, + 1, *2,...) of length 24,

(113) Tn— 0 <X < Ty + 0,
so that 7, belongs to the set (109) and lies between the numbers (I + 2d,) — ;»l

and n(l +24,) + ;l. The intervals I, do not overlap because
(116) n(l+ 20, + él+ 8= (n+1)(l+268,) — ;z—ao.

We now define the kernel K (#) by the equations
_Km:c:g%ﬂ+2%)fthLJn=ij,ia“J
0

K(t)=o0 for all other values of ¢.
Evidently

y+T

(117) jl,—fK(t)dt——»I, as T — oo,
7

uniformly in y.
We shall now prove that there exists a sequence

(118) 1<T<Ty<- - <Tp—oo

such that the meéan value

lim
n—eo 2

+T,
hf}@+medt
-7,

exvsts for all values of x in the whole interval — o <z <<+ oo,

By Lemma 1 Dw[f(x)] is finite. Consequently there exists a number 2> o
such, that Dy, [f(x)] <% for all 2> 1, whence

s
(119) I;%,ff(x-i—t)lf(t)dt‘ < ¢k for T>; and for all =.
7
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Take an enumerable set of numbers x,, x,, ... which is everywhere dense in the

whole interval —ow <z <+ . By means of the »diagonal argument> we can

construct a -set
1< <Ty<Ty <Tp—w
such that the limit

n—aw 2 Ty

(120) lim —; - ff xn+ ) K () dt

exists for every xn. We shall now prove that the mean value

+Ty

: [f(x+ H K () dt

—7Ty

(121)

exists for all values of x. Given 7 there exists d,=d,()>>0 such that

(122) Dywlfit+ 6),f(t)]<2ﬂé for all <4,

(on account of Lemma 2).

Let « be any real number: take a number x, so that |z —zn]| < d,.

conclude on account of (122) and of the definition of Dy that
029 5 [Vt 0= fleat 0lae < Dylfla+ ), flowt )+ 1< ]

for all sufficiently large n, wheuce

+7,

quff$+t dthnffme K()dt

(124)

=cleanf(x+t)—f(xm+t)|dt<n
-7

for all sufficiently large . 7 being arbitrary we conclude that the limit (121)

exists with the limit (120).
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We write
+ Ty
(125) ple) =lim X f Fla+ ) K (0 at.
oy
We have
+ T,
Ile+0) =gl =lim | 0 [ (7l 040 —flo+ 0 Kot
(126) '
+ T,
g@ ca—hflf(x +d+8)—fle+t)|dt = cDwlflx+9), fla)
"

which proves (on account of Lemma 2) that ¢(x) ¢s continuous. Next, to g there

exists a length I, such that the set Sy E,[f(x)] is relatively dense. For each

[

number 7 belonging to this set we get, applying (126) to the case ¢ =7,
lpl@+7) - g = e Dwlflx+), fl@) = ¢ Dy, [f(x+ 1), flR)l =y

which proves that ¢(z) is an a.p. function.
Finally we prove that ¢@(xz) satisfies (108) and in this way complete the
theorem. By (117)

(127) 7l =Jim 7 [ e K0t
-T
and thus
+7T,

tim | [ e =) K]

whence



238 A. S. Besicovitch and H. Bohr.

(128) %flf(&) —glE)lds= %fdg,h'm ;‘-T;flf(g +—/ @K (@ at.

Applying Fatou's theorem and then reversing the order of integration we have

x+ L +Ty z+L
i [Vre—p@lss i b [Koag (10— rolos
x e x

N— &

Assuming now that L has been chosen as in (112), (113), (114), we have

Dy, [flx+ 1), fla)) <e

for all values of ¢ for which K (¢) differs from zero, whence
z+L
1
5 178~ piolas = iy =

which proves (108) and consequently (99). Theorem I Cy(4) follows from (94)
and (99).

Remark. We conclude from (117) and (123) that if [f(2x)] = @ for all x
then also |p(2)] = Q.

§ 8 Srap and W2 a p. Functions, p>1.

Theorems I, (A) and I Cy,(A4) (p>1). The closure Cgy(d) vs ddentical
with {SP.a.p.} and the closure C,p(A) 4s identical with {W?.a.p.}, i.e.

(129) Cp(4)={SP.a.p.},

(130) CyplA)={Wr.a.p.}.

1°. We have first to prove that
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(131) Co(4)={SP. a.p),

(132) CoppA)={Wr.a.p}.

Let f(x) be a function of the closure C;,;,(4). Corresponding to any & > o there
exists a number L >0 and a function s(x) of 4 such that

(133) Dy /(). sl < -
Further we have for any

(134) < Hs [s(x))

(135) + Dgp [s(z +7), s{x)] + Dgp [s{x), f ()]

<§+ Dis(z+ 1), s(z) +§<s,

which shows that

(136) e [sla)] = 84, B[S (@)).

3

Thus the set SP.E.[f(x)] is relatively dense, which proves (132). If f(x) is a

function of the closure Cg(4) then we can putv L=1 in the formulae (133),

(135), (136) and so obtain the result that f(x) belongs to {S?. a.p.}: this proves (131).
2°. We have now to prove the converse

(137) {8P.a.p.j = Cyl4),

(138) {Wr.a.p}<=Chp(4).

Lemma. 7o any WP, a.p. function (SP.a.p. function) f(x) and any ¢>o0 cor-
responds a bounded WP.a.p. function (SP.a.p. function) g(x) such that

(139) Dy [f (@), glll < & (D (), gla)] < ).

Let N be any positive number. We define the function fy(x) by the

equations
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(140) Swlz)=f(x) when |f(x)]=N,
(141) fA(x)=N|~§E2| when |f(z)] > N.

We have for any pair x;, , of real numbers
[fxlaey) — falaes) | = | f (@) — flay) ]

from which we conclude that if f(x) is a W?.a.p. function (S?. a. p. function) then
so is fn(z).

By the definition of WP, a.p. functions, to any ¢ there corresponds an L >0
such that the set

(142) St Ee [f ()]

3

is relatively dense. Let />0 be a number such that any interval of length !
contains at least one number of the set (142). Then to any real z, corresponds
a number ¢ of the set (142) such that the number z,+ = belongs to the interval
(0,7). We have

atl 1 1
p
%f|f( Sl Ipd:v _.<__ flf flz+1) lpdx] +

to+ L Zo+L

(143) + [lflf(x-# 7) — fa(x + 1) I”dx]up%— [_}Jflf”(x"“‘) — fula) Ipdx]”"

/i
f ) — st raz |7

Given the numbers ¢, I, L we can chose N so that

wlm

) I+ w
(144) |7, [1r@—pwra| <
By (143), (144)

(145) Dy [flx), fxx) < e.

ST
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If f(x) is an SP.q.p. function then we can put L=1 in all above formulae.
Thus we see that (139) will be satisfied by taking g(x) = fn(z).

After the Lemma has been proved the proof of both statements (137), (138)
presents no difficulty. The proof being identical in the two cases we shall give
it for the second case only. Given a W?.a.p. function f(z) and a number ¢>o0
we define an N >0 so that

(146) Dy [/ @), fvlal] <

where fn(x) is defined by (140), (141) and is a W?.a.p. function, and therefore
also a W.a.p. function. On account of Theorem I Cw(4) and of the remark
at the end of § 7 to any e¢>o0 there corresponds an @.p. function ¢(x) and an
L >0 such that the conditions

(147 Dy, (fta), ool < (£) o3y

are satisfied. We have

xo+ L

(o) {3 f fxte)=glo)lrdaf = (ZN)I_%{%—TLlLfN(x)—m(x)ld:c}l/p-

By (147), (148)
(149) D (fla), pla)) < -
By (146), (149)

(150) D, f(x), plx)] < e.

The number .¢>o0 and- the WP?.a.p. function f(x) being arbitrary in (150) we
have proved (138). In the same way can be proved (137). By (131), (132), (137),
(138) Theorems I C,(4) and I Oy (A) have been proved.

31—31104. Acta mathematica. 57. Imprimé le 23 juillet 1931.
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CHAPTER V.
B? a. p. Functions.
§ 9. Some Notions and Theorems on Translation Numbers.

We pass now to the investigation of the general closure C,;(4) and of
the class of BP.a.p. functions (p=1). But we have first to quote some theorems
and notions concerning translation numbers of @.p. functions.

Let f(z) be an @.p. function. We denote as usual by

(151) E.[f(x)]
the set of all translation numbers of f(x) belonging to e. We denote by
(152) E.[f(z)]

the set of all integers of the set (151). Instead of the symbol (152) we shall some-
times write only E, omitting the sign of the function. Evidently the set E. is
symmetrical with respect to the origine.

We have the following theorems.

Theorem 1. For any @.p. function f(x) and for any &¢>o0 the set

E. [f(=)]

s relatively dense.

We say that the set FE.[f(z)] is almost periodic with an error < 5(> o)
if there exists a positive ¢ <& and a positive I, such that, {a, b) being any in-
terval of length > I, the points of

E. [f(z)] X (a, b)

translated by any number of K, [f(x)] go over on to points of .| f(z)]

again, with the exception of at most _n(b—a) of them. We shall express this
condition otherwise by saying that the points of E.[f(x)] X (a,b) translated by

any number of K, [f(z)] have a »relative loss» =7.

If a set E. is almost periodic with an error as small as we please then we
say that the set E. is almost periodic (a.p. sef).

! We are indebted to Mr. H. D. Ursell for valuable simplifications of some of the proofs of
this Chapter.
* H. Bohr [1).
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In other words:

A set E, is a.p. if to any 1>0 there corresponds a positive ¢ <& and a posi-
tive I, such that, (a, b) being any interval of length >1,, the points of Ee X (a, b)
translated by any number of E’Q go over on to the points of E. again, with the
exception of at most n(b—a) of them.

It is easily seen that an a. p. set E, is always satisfactordy uniform.
‘We have
Theorem 2.' For any a@.p. function f(x) the set

B, (/@)

is a. p. for almost all &> o.

§ 10. B.a.p. Functiens.

Given any a.p. set B, of numbers 7, we define the function K(t)= K(t, 6)
(0 <1) by the conditions

K(t)=1 for all intervals ;<t=<7;+d,

=0 otherwise.

Lemma 1. The function K(t) is W.a.p.

For given 7> o there exist positive numbers ¢ and L > 1 such that the points
of E,X(c,¢c+ L) for any ¢ translated by any number of K, have a »relative loss»
=7. Then for any ¢ belonging to E(,

2yl +1
L

¢+ L
%f|K(t+r)—K(t)|dt§ <3
C

which proves the lemma, since E, is relatively dense.

Lemma 2. The product u(t)v(t) of a trigonometric polynomial wu(f) and a
W.a.p. function v(t) is a W.a.p. function.

! A. Besicovitch and H. Bohr [2].
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Let D{u(t))=M. Given ¢ we can find an [>o0 and a trigonometric poly-
nomial s(t) such that

Ds, [o(d), s(8)] < 1%[

since v(f) belongs to Cyw(4). We obviously have
Dy, [u(t) v(t), u(t) s(t)]
= MDs,[vlt), s(t)) < ¢

which proves that u(f)v(f) is W.a.p. since u(t)s(¢) is a trigonometric polynomial.

Lemma 3. If f(t)< Cg(A) then also f(t) K ()< Cp(4).

Given ¢ there exists a trigonometric polynomial o(f) such that

Dulf(6), o(6) <
consequently

(153) Ds[fOK(#), o) K(®)] < -

On account of Lemma 2 o(f) K(¢) is W.a.p. Consequently there exists a poly-
nomial s{¢) such that

(154) Dy [o(t) K (1), s(t)] < % .

By (153), (154)
Dy [f(0) K(2), s(t)] <&
which proves the lemma.

Lemma 4. If f(t) belongs to the closure Cp(A4) then M{f(t)} exists.

Given >0 we can always write
S(t)=s(t) + 6(t)

where s(t) is a trigonometric polynomial and M{6()[} < i
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There exists 7,>o0 such that

+T

1 &
5T [|0(t)|dt<z for all 7> T,
=

and

+T

1 &
|5—T" f‘s(t)d't—*M{S(t)}l < Z for al T > T,.
=

Consequently

+
Z—Ifff(t)dt"M{s(t)}|<£2 for all 7> T,.
T

Thus for any pair of numbers 7', 7" each of which is greater than T, we have

|-\-ff T”f;(t)dt|<e

which proves the lemmas.
Corollary 1. M{f(t)} exists for any S.a.p. and for any W.a.p. function f(t).

Corollary 2. If {&} (¢1=...,—2, —1,0,1,2,...; T,==0, T;=—1T—;) 1§ an
a.p. set then the limet

exists (and evidently is > o).
For
MK (1) = lim %‘f a8 i oo

exists, since K (f) is W.a.p.

Remark. An a.p. sét {z;} being satisfactorily uniform there exists a number
b such that »(b)<<2u(b) where u(b), »(b) are the minimum and the maximum
number of numbers 7; on any interval of length 5. We obviously have

B0,
b

n

=

m
2
=

m
[\

S
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where p has the same meaning as in Cor. 2. Denoting by (¢, T') the number
of 7's in the interval (¢t— 7, t+ T) we have for 7>b

(155) %’T—)<(3§+1)2(—%)<3p.

Lemma 5. If f(t) belongs to Cp(A) then so does | f(?)].

Given &¢>o0 there exists a trigonometric polynomial o¢(¢) such that

Dalf o<
BEvidently

Dsllfl, ol < &

As |6(f)] is @.p. there exists a trigonometric polynomial s(f) such that

Dila(b)l, st} < -
Thus
DsllfB)], s <e
which proves the lemma.
Lemma 6. If f(f) belongs to Cp(A) and if {z:;} (—o<i<+ %, 5,=0,

T—i=—1) 1s an arbitrary a.p. set (i.e. an a.p. set belonging to an arbitrary a.p.
JSunction) then

M, { ]'Tf(t +2)— (0] dt}

exists for every x and every §>o0.

Evidently we may assume d< 1. Define a purely periodic function p(#) with
period 1 by the condition

p)=/f({) for z=<t<x+1.

The function p(t) obviously belongs to Cg(4) and consequently f(¢) — p(t) also
belongs to Cp(4). On account of Lemma 5 the function |f(t+ ) — p(t + o))
(as a function of ?) also belongs to Cz(4).

On account of Lemmas 3 and 4 the mean value
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Ml f(t+ o) — plt+ 2) | K(2))

exists. But

M| f( + ) — p(t + 2) | K (8))

Ty +d

_ lim;;nflf(t%—x)-p(t+x)|K(t)dt

—,

tn 7340

— lim 22 2f|f(t+x)—p(t+x)ldt

2T, 2nt 1T

%
4n z+d
. 2n+1 1
= lim 21, 2ntI ,-_z_nflf(H @) —f@ldt.

By Lemma 4, Cor. 2

2n+1
2%Tn

lim

»y a8 n—o>®

exists (and is +o0) and consequently the limit

n  xtd

o Z flf(t+fn)—f(t)|dt

=N
X

lim

also exists, which proves the lemma.

Theorem I Cp(4). The closure Cg(A) s identical with the class {B.a.p.},
i.e. Cp(4d)={B.a.p.}.

1°. We shall first prove that

Let f{z) be a function of Cg(A) and ¢, any positive number, We put

Slw) = s(x) + 0(x)
where s{z) belongs to 4 and

M0} < &
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Choose &<g, so that the set E.{s(z)} is a.p., and let its members be written
7;. Then the condition expressed by (76) is evidently fullfilled; in fact we have
for each ¢

(156) MALO—flt+ ) = M {s() — s(t+ =)}
+ M6} + M6t + )|} < 32.

Wo now proceed to prove the condition (77). By Lemma 6
x+c
M,.{g f 170 — f(t+1[)|dt}

exists. By (6) and (9)

—T

i j ;Ii {EI ]Tf(t) — flt+ )| dt} dx

zt+e

gz?,-ﬁ ( {iflf(t)~—f(t+ri)|dt}dx

I

T+e
= M; Tflf(t)—f(t—*—’ti)ldt.
Zr

2

Hence for every ¢>o0 we have

MM{% flcf(t) — flt+ )| dt}

T—®

+T
< Tim ML f LF() — £(t + =)l dt.
=7

In this relation we write

/() —ft+ )| =&+ [6(0)] +|6(¢+ =)

and so obtain
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z+e
— i
(157) i, 30,4 10 —rte 4
+T
<&+ g+ kim M; "f|0t+'rl)|dt .
Te—w
2T
Now
+n +T o+ T
1
A < -
2n+1 Z ZT |0(t+%)|dt___ZT(2n+I)f|0(t)|n(t, T)dt.
T_y—T
By (155)
Tt T
(158) 2"+11—2*712T flﬁt—l—u M dt < 3p2 T fle ) dt
vy—T
and by Lemma 4, Cor. 2
Tt T
(159) lim 7~f|0 |dt——~M{|0 ).
" LA——
y (158), (159)
+T
(160) hmM 6t +z)|dt =3 M{Y6(1)]} < 38
VAT
=7
and so finally by (157), (160)
z+c
(161) ZILMi{—;fV(t) —f(t+w,~)|dt}< ‘6.

Since ¢, is arbitrary, (156) and (161) show that f(x) is B.a.p.

2°. We have now to prove that {B.a.p.}< Op(4). We commence with
an important lemma
32—31104. Acta mathematica. 57. Imprimé le 23 juillet 1931.
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Lemma 7. If f(t) s a B.a.p. function and

t+d
fil= 5 [ e,

then
MAf&) — s} =0, as § >0,

The function f(f) being B.a.p., to any &>0 corresponds a satisfactorily uniform
sequence {7,y such that the inequalities (76), (77) hold with p=1.- Denote by
u(b), »(b) respectively the minimum and maximum number of numbers 7; in an

interval of length J: we choose b (as we may) so large that

(162) v(b) < 2u(b).

The fact that the function f; approximates the function f in mean in any fixed
interval arbitrarily closely is stated by Lemma I of § 1. Let 5 be any positive
number less than b and put ¢=0b+19 in (77). It follows that we can choose a
so that

at+b+y

fvm—ﬂmwmw<&

I

(163) Mim

‘We shall deduce from (163) that both f and fs »imitate»,in mean over the
whole line from — o to + o, their values in the interval (@, a+b) with an ap-
proximation arbitrarily small with ¢&. Combining this result with lemma I of § 1

we shall obtain the result desired. We have

Mif|f(y(t+zi)—f(t-i—u-)|dté]mflfa(t+n) — falt)| dt

+vamwamwt+ﬂmw4ww

a+b+d a+b

ézﬂiflf(t+'n)—~f(t)|dt+ fm(t) — f)at

«
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by (9). If d<= is so small that the last integral is less than be we at once
obtain
a+b

Mflfd‘(t+’vf)—'f(t1‘-ri)ldt< be + 2(b+1n)e < 5be.

a

Thus for = sufficiently large we have

n a+b

L3 f|fa(t+'5i)~f(t+n)|dt< be.

t=—n
a

Writing this in the form

a+btz,

I

(164) sur | HOLBO =1t < sbe

atr_y

we see that in the interval (a+7—,+b, a+17,) the factor A(f) lies between u(b)
and »(b) and that in the rest of the range of integration, it lies between o and
v(b). Write

Tn=min (@ + T, —a—b—17_,);

for n sufficiently large both the terms in the bracket are positive. Then (164)
gives

20 1= sonae < soe

_Tn
Writing this formula for » + 1 we have

RRATES
_ 5be(2n+3)
[ 10— glar < 5 2R

“Tn+1
Hence for 7 =T < Thia

+7T Ty e
o [u—soran< 3 [10 - siotae< 3Lt

2
—Tyt1
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and thus

_ sbe(2n+3) _ 5ev(b)
(163) M) fo(t) — S1 t)|;<1 T Tan) = nlb)

H/\

10e¢.

Thus the left hand side is arbitrarily small with d: this proves the lemma.
We now suppose as we may f(¢) is real and positive and define a function

@s(f) by putting
t+d
— 1
=Mi§ff(u+'n)du
¢

Then

flf utz) — £ )] du.

t+d 1+4
1 f5(t) — @a(t)] = I%ff(u)du — Jf[,%ff(u +)du| =

By (77)
M fol) — o) = e,

in particular @g(¢) is summable with the continuous function f3(¢). By (165) we

now have

(166) Milf I<IIE

But if 7 be any real number we have

t.+J+1i
% f |flw+7)— fu)|du

t+z;

| @alt + o) — @s(t)| = M;

t+z,+d
1

—_ I
= _ . —
= g lim o | flut o) ~ /() | du
t+7_p
Yy \ o,
§ IS ) — F) i 2

If % be the value of lim ; then every B.translation number of f(£) belong-
In}—w

. J . . .. .
ing to % is a uniform translation number, a fortior:i an S. translation number,

k
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of @s(t) belonging to 9. It follows that ¢@s(f) is an S.a.p. function (we do not
assert that it is an @.p.function because we have not proved it continuous).
Thus we can find a polynomial s(f) such that

Dsls(t) —pslt) < ¢
and a fortior: that

M| s(t) — palt)[} < e.
Combining this with (166) we obtain
M f—sl) =< 12¢

and since ¢ is arbitrary f(t) belongs to Cy(4).

§ 11. B? a p. Functions.

Theorem I C,,(4). The closure Cyy(A) vs identical with the class {BP.a.p.},
ie. Cp(d)={B.a.p.}.

Given a function f(x) we define fn(x) by the equations

Jr(@)=r(x) when |f@)|=N
fN(x)':N-f(x) when |f{x})]> N

and we write

fle) = fr(@) + By(x).

1°0 Lemma 8. If flx)< Cpyp(4) then

D[ Ry(x) =0 as N— oo,

Given ¢ we can find a polynomial s(x) such that

For any N= D[s] and for all z we have

[ By @)] = |f (=) —fy @) < | fle) — sla)]
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and therefore

D];P[f_fl\'] = D;;P[f'—s] =e,

which proves the lemma.

Since f(x) belongs to Cp;(4), it belongs also to Cp(4) and so does fn(x).
Now in proving that Cp(d4)< {B.a.p.} we showed that, given a function fx of
Cp{A) we can find corresponding to any 7>o0 an a.p. sequence {z;; (where z

runs from — o to + o) such that
Ml fx(t+m)—fxO) <n for all 5

and

a+¢

Mzil[,--é-flﬁv(tntn)—fx(t)ldtg77 for all ¢>o.

We choose n=¢? (2 N)*” and find for all
Dy ifs(t+o)—fat) =,

(167) Dy lf(t+2)—f(O) = e+ 2Dpp [Bu ()] = 36.
We also find for any ¢>o0

[' Yo r ) — P e
\Mlecflf(H ) —fF] dt}

2+ z+c¢

¢
. i/p — — * 1/p
= {MxMi%flRy (t+1,~)lpdt} + {MxM;;Ij [fx(t+ ) -—fN(t)lpdt}

z+e
— 1/p
+ {Mfo;IflRN(t)lpdt}

I_ _ r+C 1p
=2&+ lMxMizfiRN(t-i—'ziHPdt} R
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since it is easily seen that

x4

{3 [\mabar = B0 R 0F).

Now Rx(f) belongs to Cpp(4) and hence

| B (8) P
belongs to Cp{4).
As in the proof of Lemma 6 of § 10 it follows that

x4

c
Mi%f|RN(t+'z,-)|Pdt

exists, and hence by Fatou's theorem

+T7 x+-c I +Td z+e
1 1 I X
—_— P g . < AP g - R
. fzm{cf|RN(t+u)|vdt}dx=1@lsz : fle»(H—fn)I”dt}
€z -7 x

-7

=37

T+e
I
NP
21,f|RN(t+u)| at
-7

Ty +T+e

1 A(d)
ot f'RN““"ﬁdt

T

= lim

N—sx0

where A(t) is non-negative and does not exceed the number of numbers z; in the
interval (t—7T—¢, t+ T). Choose b as in § 10, (162) so that »(b)<2u(b). Then

) < (?—Tbj—c + I)ﬁ/(b)
and
x+c
g v(b) .. Tn
Mg; l; |RN(t+’E[)|pdt§T lim ;J_‘{x{IRN(x)Ip}gle[x{lRN(x)lp},

x
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the argument proceeding exactly as in Lemma 7 of § 10. We now have
z+c
— [I ] 1/p
]‘[J;Mi‘l;flf(t+’[f)’_‘f(t) Ipdtj = (24 2W)e = 4e.

Since & is arbitrary these results combined with (167) show that f(x)is B”.a.p.

2°. Lemma 9. If f(f) is B.a.p. then

Dy(f— /5] =0, as N> oo,

Given any ¢>o0 we can find a satisfactorily uniform sequence {z;} such that
for every b>o0

xz+b
Jl—[,]l_[i—;flf(mn) —flt)fpdt < er.

As in Lemma 7 we choose b so large that »(b) <2u(b): we can then find an a
such that

a+b
Mi;)flf(é+zi)—f(t)li’dt<s?’.
Hence also

a+

b
]r[i%flﬂ‘v(t‘f"[f)“fN(t)I”dt< & for every N.

Take now N so large that
a+bd
_;flf(t) —fyBfpdt < e,
It follows that

a+b

(168) M,%ﬁf(tﬂ,-) — feltm) Pt < (36
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Now

a+b

——Z |£(t+ ) — f (t+) P dt

ZR+T1,

atdtez,

B bml_ﬁ) flf(t) — ()P A) at

atz_y

where A(f)= u(b) in the interval (@+b+ 17—, a+7,). Hence

]E-Zflf(Hr,—) —fN(t+zi)|rdtg&bb) lim @ MA S — fx @O

nl-—»oo

> é M) —fr )

and so by (168) MASD — D) < 2(36).

Since this holds for all N sufficiently large, the lemma is proved.

Now fx being BP.a.p. is clearly also B.a.p. and therefore belongs to
Cg(A). Being bounded it also belongs to C,,(4). Thus we can find a polynomial
s(f) of A such that Dgp[fy—s] is arbitrarily small: since, by Lemma 9, D, [ f—f»]
is arbitrarily small so is Dy, [f—s], and thus f belongs to Cpy(A4). Combining
1° and 2° we obtain the Theorem.

CHAPTER VI.
Algorithm for Polynomial Approximation.
& 12. Problem II in the Case of a.p. Functions.

In Chapters IV and V we have given a solution of Problem I of Chapter
IIT. Let us now pass to Problem II, i.e. to the construction of an algorithm
for the approximation by finite trigonometrical polynomials to functions of
various types of almost periodieity.

33—31104. Acta mathematica. 57. Imprimé le 23 juillet 1931.
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For the solution of this problem in the case of purely periodic functions
we started from Fourier series. The required approximations were given by
Fejér sums.

The solution of Problem II for various types of a.p. functions will be
based on that for the class of a@.p. functions. In the theory of a.p. functions
the notion of Fourier series is a fundamental one. It has the following meaning.
If a function f(z) is @.p. then it can be shewn that the mean value

M{f({) "

exists for all real values of i, and that it may differ from o for at most an
enumerable set of values of A

Ay, Ay, ...
Writing
M{f e = 4,

we call the series
S 4,67

the Fourier series of f(z) and write

flx)oo T4, et4v%,

It will be shewn further that the Fourier series exists in the same sense
for all types of a.p. functions, which have been considered.

In the case of a.p. functions a solution of Problem IT was given by
H. Bohr [2]. In this case it is a problem of a construction of a sequence
{sn(z)} of finite trigonometrical polynomials, which approximate the function
f(x) uniformly in the whole interval — o<z <+ . Bohr's sums s.(z) con-
tained as exponents only the Fourier exponents of f(x), a fact of importance
for the extension of the theory to the case of functions of a complex variable.
An essentially simpler method of obtaining such approximation functions s,(x)
was given by Bochner [1], who succeeded in extending the Fejér summation
method of classical Kourier series to the class of a@.p. functions. In a later
paper ([3] p. 205 footnote) he extended the Fejér summation also to the class of
S. a. p. functions, giving thus a solution of Problem II for this class. Like Bohr,
he started from the representation of the »Fourier exponents» .4, with the help
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of a »base» ¢, @,, ... By a base we mean a sequence of linearly independent’
positive numbers «,, «,, ... (which generally is infinite but in particular cases
may be finite) such that every exponent .4, may be expressed as a finite linear
form in the «’s with rational coefficients,

A/y: Ty, 104 + Ty, 20y + -+ 7‘1;,%(1%.

As was explained in Chapter 1I, Fejér in his summation of Fourier series
of purely periodic functions f(x), with period 27, used as approximation sums
the expressions

(160) o) =1 f Flaot ) Knlf)dt — M{f o+ 0 Kule)

where the »kernel> was given by

2
r=+n
!

K.(t)= D) (1— L) vt — 1 ilin_z
" n 2

_ n .
y=—n sin —
2

Bochner replaced Fejér's simple kernel by a finite product of such kernels

(170) K ()= K(Zl;;h ,,,,, Zp) () = K, (817) - K,, (Bpt) =
15 Bes o Bp

— Z (I“‘ ml) (I_Iﬂ)_l)e_i(%ﬁx*"'"““’pﬂp)t
(G #p

—ny =Sy

-—npé'vp< +’l’lp

where the §’'s are linearly independent numbers. This composite kernel has the
same characteristic properties as the Fejér kernel: it is always positive and its
mean value is equal. to 1 {the constant term in the polynomial expansion of
K (f) being 1 on account of the linear independence of the #'s).

' e, ey, ... are said to be linearly independent if no equation of the form

"'1“1+7'2“2+"'+TN“N=0

holds in which N'= 1 and the rp are rational and neot all zero.
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We form an expression similar to (169)

(171) @) =0opm, m, .. np)(x):M{f{x+t)K(’nl,nz,“.,np)(t)}.

We have
Sl + oS 4,6 4w gl dot,

Multiplying f(x-+t) by each term of the right hand side of (170) and taking mean
value we find

|"1|) ( |Vn|) A
172 Tiny,n,, ..., 0\ \ L) = ] ——} 1 —— A«,e“‘v.l
w7 g aye= (-

-----
— S =y

—np‘__’-vpénp

where
(173) Ay =+ -+

and A, is to be interpreted as zero when the linear combination (173) of f's is
not an exponent in the Fourier series of f(x).

We call the kernel (170) »Bochner-Fejér kernel> and the polynomial {172}
»Bochuner-Fejér polynomial>. We call the numbers 8, 8,, ..., 8y »basic numbers>
and the numbers #,, n-é, ..., np »indices> of Bochner-Fejér kernel {or polynomial).
We shall further use the notation oz (x) instead of the detailed notation

and wé shall use the notation oy (z), 0s,(2), ... for Bochner-Fejér polynomials
corresponding to different systems of basic numbers and indices. Bochner takes
as basic numbers for his polynomials, numbers formed from «'s (base of f(x)).
In fact he puts

= N .
ﬁl_NI!’ 182_‘N2!’ ’181) Np'
where N,, N,, ..., N, are positive integers. His result is

Theorem II C(A). The sum op(x) tends uniformly to flx), as p— oo,

n
N, — o0, Ng—'w,...andﬁL — o0 o0

7y
N T N,! T



Almost Periodicity and General Trigonometric Series. 261

A sequence of Bochner-Fejér polynomials
(174) op,(x), og,(x), ...

is called »Bochner sequence» if the basic numbers and the indices satisfy the
condition of the above theorem.

Remark. From the expression (172) it can easily be seen that

(175) 6( Ny, My, ..., np)(’x) = G( ny, M, ..., np,wpﬁkl,“.,ﬂp_{_q)(x)

% Loz I “p % g} ﬂ_, 1y e
PANS AL EAIb AR AU fa
if all o’s of the base of f{x) and the numbers 3, ..., 8; form a linearly in-

dependent system. Thus the sequence (174) remains unaltered if we add new
basic numbers, linearly independent with the base of f(x), and with arbitrary
indices, in other words the sequence (174) is identical with the sequence

(176) oz; (%), op; (), ...

if for any 7 B/ contains all basic numbers of B; with the same indices plus
any number of other basic numbers which form a linearly independent system
with all ¢s.

The notion of a base of the exponents of the Fourier series was introduced
by H. Bohr (2] in order to connect the theory of @.p. functions with that of
purely periodic functions of infinitely many variables: it was by means of this
connection that he gave a solution of Problem II. It was also used for the
investigation of the set of values which an «.p. function may take. These
investigations of Bohr and the above Bochner-Fejér summation show how im-
portant is the notion of a base of the Fourier exponents and how close is the

connection between an @.p. function and its Fourier series.

& 13. Problem II in the General Case.

We shall now show that generally for all types of a.p. functions, which
have been considered in this paper, a solution of Problem II can be given by
Bochner’s sequences.

We have first to prove
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Theorem I on Existence of Fourier Series.
For all types of a.p. functions the Fourier series exists.

According to the definition of a Fourier series we have to show that
1° for any a.p. function f(x) the mean value

+T

M{f(x)ei*z) = Th_lg 2h11—'/ fle)e itz d

exists for all real values of A, and that
2° it may differ from nought for at most an enumerable set of values of 4.
As the classes {SF.a.p.}, {W?.a.p.} (p=1) and {B?.a.p.} (p> 1) are included
in the class {B.a.p.} the proof given for the latter class will be a general proof.
The statement 1° is an immediate consequence of lemma 4, § 10, since
for any real A the function f(x)e—'** belongs to the class {B.a.p.} = Cp(4)
together with the function f(x). We now determine a sequence {s.(x)} of finite

trigonometrical polynomials such that

B.lim s,(x) = f(x), as n— o,

whence
(177) B. lim sp(x) 4% = f(x) %%, as n — .

It follows at once from (177) that
lim M {sa(z) e=*%) = M {f () e~}

For any fixed » the number M {s,(x)e***} may differ from o only for a finite
number of values of A namely the exponents of s,(x}, from which we conclude
that

lim M {sp(x) %7}, as n—

may differ from o for at most an enumerable set of values of i, which proves
the statement 2°.

Theorem II. If a function f(x) belongs to the closure Cg(A) then any Bochner
sequence

(o}, (=)}
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satisfies the condition
(179) Dalf(e), o}, @] >0, as n—ce.

We shall first prove the theorem jointly for the case of the closures Cg,(4),
Cpp(4) (p=1) and then for the case of the closure Cp,(4).

1°. In the same way as in the case of Theorem II, 3 of Chapter Il we
can prove the following

Auxiliary Inequality.
If w(x) is a function of the closure Cp,(A) then for any Bochner-Fejér poly-
nomial o (x) and for any L >0 we have
(179) Dy (o)) = Dsg ().
Let now f(x) be a function of C,(4), and let
(180) o} (%), of (@), ...

be a Bochner sequence. We shall prove the theorem for the case of the closure
C,»(4) by showing that given ¢ there exists a number L>o0 and an integer n,
such that

(181) Dy /@), o}, ()] < ¢
Jor all n>n,.
We know that to a given ¢ there corresponds a number L and an a.p.

function @(x) such that

(182) Dy [f(a), glel] <

We shall show that we: can satisfy (181) by this value of L.
We form a base of @(x) by taking all numbers of the base of f(x) and by
adding if necessary some other numbers. We form a Bochner sequence of ¢(x)

(183) o4 (2), 0f, (@), . ..

in such a way that for all » B’ consists of all basic numbers contained in
B, with the same indices and possibly of numbers of the base of ¢(x) which do
not belong to the base of f(x). Then on account of the remark to § 12 we have

a{;n (x) = a@.n (x) for all =

(we shall use this fact also for the proof of the formula (196)).
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Putting in (179) Y(x)=¢(x) —f(z), B=B'» and observing that
o (@) = o, (2) — o, (0

n

we shall have on account of (182)

L n

(184) Dg» [04, (), “{zn(“”)] < % .

The sequence (183) being a Bochner sequence and ¢(x) being an a.p. function
we have

(185) up. b. [p(x) — o (@] <

w | m

for all » greater than a certain integer #,, whence

(186) Dy [pla), of, ()] < -

By (182), (186), (184) the inequality (181) is proved, which shows that

(187) Dw[f(x),aén(x)}—»o, as n — .

In the case when the function f(x) belongs to C(;(4) we may put in the
inequality (182) L=1 for any & and thus we shall have the inequality (181)
satisfied by L==1 for all values of ¢. Consequently in this case

(189) Dy /(0), o, (@) o, as n—o.
Thus the theorem II has been proved for the cases of closures Cgp, Cppp (p=1).

Remark. In the case when the function f(z) belongs to Cy,;, (but not to
Cy) the inequality (181) is somewhat sharper than the limiting equation (187)
which we had to prove. For it shows some feature of uniformity of the
approximation to the function f(x) by the functions of the sequence (180). We
have really that for a given ¢ the inequality (181) is satisfied by the same value
of L for all n>n,, a fact which cannot be deduced from (187).

In the case of p=2 this property of approximation by.trigonometrical
polynomials was discovered by R. Schmidt [1].
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2°. We pass now to the proof of the theorem in the case of the closure
Cpp (p=1). As before we shall first prove the following

Auxiliary Inequality.

If a function P(x) belongs to C,p(A) then for any Bochner-Fejér polynomial
oY, (x) we have
(189) ngzi [0'% (93)] = DBp ["/’(W)]
We have

o (@) = M {ylx + t) Kg(t)},

|0} @) = M plz+ )] Kn(t)}.
By Hélder’s theorem

[} @) = M{|p(x+ &)l Kn(t)}
and thus

(100) {Dyplof@}r = Mo M| iz + ) I Ku(t)} = Mo M| ()| K (t —)}.

To any 7>o0 correspond values of L as large as we please and such that
L
o) M MAlpOP Kalt—)y < [ [ MAlwiol Kot—a)yda + 1.
0
By (190), (191) and by Fatou's theorem
L
- 1
(192) (Dyplaglalye < Fllwidl . [ Kple—z)ia) + 5.
0
But for sufficiently large values of L
L
(193) %fKB(t—x)dx<M{KB(t)}+n:I+n.
0
By (192), (193)

{Dpp o3 (2)]}? < (1 + ) MA@ (O) ) + 1.

34—31104. Acta mathematica. B57. Imprimé le 23 juillet 1931.
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n being arbitrary we have
Dy oh )} = Ml wit)]P

which proves (189).
Now we can arrive immediately to the proof of our theorem. We know

that to any ¢ corresponds an a.p. function @(x) such that
&
(194) Dy [f (), o)) < 3
We define further a Bochner-Fejér polynomial ¢%(z) such that

(195) up. b. | p(x) — o4 ()| <§-

Putting in (189) y(x) =f(z) — () we have
Dyp o (), o) ()] = Dy [flx), ()]
and by (194)

(196) D, 0% (), ol ()] < § :

By (194), (195), (196)
Dy fl2), o) (x)] < &

which proves the theorem.

Uniqueness Theorem.

If two G.a.p. functions f(x), g(x) have the same Fourier series then
Delf(2), gla)] = o.

The proof is identical with the one for the class {c.f.} of § 4.
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Appendix.
B. a.p. Functions.

When giving the  definition of B.a.p. functions, we mentioned a possible
variation of conditions by which the functions have been defined. By this
variation we obtain a new class of a.p. functions, defined as follows.

Definition. We call a function f(x) a B.a.p. function if

M)/ (@)1}

s finute and if to any ¢ >0 corresponds a satisfactorily uniform set of numbers w;
such that

(1) M\ f(@)—fla+ )] <s
Jor all — oo <i<< o, and

(2) M, M| f(x) — flze + )| < e.

We call numbers 7; B . translation numbers of Jf(x) belonging to ¢.

The- class of all B.a.p. functions is denoted by {B.a.p.}. The conditions
by which B.a.p. functions are defined seem to be simpler and more natural than
those by which B.a.p. functions are defined, as the condition (2) does not involve
the smoothing integration -in the definition of B.a.p. functions, but the class
{B.a.p.} has the advantage of being identical with the closure Cp(4). It will
be proved that {B.a.p.} is coutained in {B.a.p.) and that they are very near
each other, in fact from some point of view identical to each other. For though
{B.a.p.} is not contained in {B.a.p.}, but to every B.a.p. function corresponds
a B.a.p. function with the same Fourier series. On account of this conmnection
we consider the study of the class {B.a.p.) as a study of {B.a.p.} from point
of view of a.p. properties given by (2).

Lemma 1. If A, 4, ... is a set of finite real numbers such that M; A;> ¢
then to any 7' corresponds an ¢" >4 as large as we please and such that

A[’+1 + A;"+2 + - 4+ Ai” > (’&.”"—Z.’)C.
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The proof is obvious.

Theorem 1. {B.a.py<={B.a.p.}.
In order to prove Theorem 1 we first prove the following lemma.

Lemma 2. If f(x) is a B.a.p. function and {v)} are B.a.p. translation
numbers of f(x) then

(3) flf flx+ w) tlx<fM1|f fle+w)|dx.

Lemma 2 is true when we mean by M; in (3) the upper mean value corresponding
either to all 7; (— o <7< ) or only to z; with positive indices (0 <7 < ). The
proof in both cases is idemtical, but as the writing of formulae is slightly simpler
for the second case we shall prove the lemma for this case.

Proof. Suppose that the lemma is not true and that

1

(a) Mflf x+z,|dx~fM|f( St )|dz + a

where a>o0.

We shall first give the idea of the proof. On account of (4) we conclude
that to any positive number & corresponds an integer » as large as we please
and such that

f[ 2|f Sflz+ )| = M| f(x) — flz+ ) |}—e]dx>a—ze

1]

For sufficiently large values of n the integrand is negative in the whole range
of integration except a set €< (o, 1) of arbitrarily small measure.
Thus

f[ Zlf flo+ ) = 07 —f o+ )l — e[ do= a2
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The functions

M S @) = Sflo+a)ly and 21/ =170

being summable and independent of # we conclude that for sufficiently large
values of #

iZlf(w+zi)|dx>a—3e.

=1

The meaning of this inequality is that we can construct in each of the intervals
(i, i+ 1) (=1, 2,...,n) a set & congruent with € and such that

I L
;Z |f(x)|dx > a — 3e.
i=1

€;

By choosing a suitable » we can take for & a set of arbitrarily small measure.
It follows that we can construct in each of the intervals (zm, =+ 1) ({=1,2,...)
a set €; such that

M; | |f(@)|de > a— 3¢

and that

mE; >0, as ¢ —>»,

These sets naturally are no longer congruent. Let E— > G; and let ¢()

i=1

be the characteristic function of . We have
(5) M{g@)} =0, M{p@|f@[} >b

(we call the second of the above numbers »the upper mean value of | f(z)]| along
the set E») where b>o0 is some constant.

Now we take into account the almost-periodicity condition (2). On account
of this condition the values of the function |f(x)| on almost any interval are

roughly speaking imitated throughout the whole range of values of x.
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By (5) we conclude that we can find an interval (¢, d) such that

a

f 9@ /()] dz = f (@) dz > b(d—o)

¢ {e,d). E

and that the mean density of  on (¢,d) is as small as we please. On account
of the above »imitation property» we can construct a set G of arbitrarily small
density, imitation of the set (¢, d). E in the whole range of values of z, on which
the mean density of |f(x)| is greater than . We define in some way a sequence
of non overlapping sets

Gy, Gy, ...

similar to &, of decreasing mean density, on each of which the mean density
of |f(x)| is greater than a fixed constant, and thus we come to the conclusion
that M. {|f(x)[} is infinite which is impossible on account of the definition. In
this way we shall prove the lemma. We shall prove it in four stages.

1°. We first prove that there exists a set E of values of x such that if

#{x) is its characteristic function then

©) M (0} =0 and M6 /()] > 5
where >0 is to be defined later.
Let
a
O < &< —
(7) £ 4

and let >0 be such that, & being any set of points in the interval (o, 1), we
have

(8) f|f(x)|dx<e, if m€ <.

We can evidently find a number 7, such that the set € of all values of x in
{0, 1) for which the inequality

(0) S 2@ = flot )| > M| fla) — flo+ )| + e



Almost Periodicity and General Trigonometric Series. 271

is satisfied for at least one value n=n,, is of measure less than . We have
then for any n=mn,

(10) 2|f oc+n|dx<fﬂi|f(x)—f(x+zi)|dx+s

(0, 1)-—@'5 (0, 1)—€
1

S_fﬂilf(x)—f(xwtnﬂdx—k :

0
or

) L flf(x)—f(x+u)|dx§f]l[|f( fla+ )| de + ¢

(0,1)—€ 0

and consequently

1

(12) ]Eflf(x) —f(x+1i)|dx§flr[,~|f(x) — et )| da + e

0, 1)—6 b
‘We have
(13) jlf x+zl|d1"<Mf|f(x)—f(x+1,)|dx
(0, )—¢
+JV[f|f fle+z)|de.
By (4), (12), (13)
(14) Zi[f]f fload+w)]|de=a—e
and consequently
(13) flf(x)ldx+]E~f‘|f(x+zi)|dxza~e.
& &

By (7), (8), (15)

(16) Mif|f(x+u)|da:>§-
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Denote by %; the number of all z; satisfying the inequality
(17) —1b=n<jb

and suppose that b is so great that the ratio of the greatest of Z; to the smallest
is < 2, which is possible, since the sequence of numbers z; is satisfactorily uni-

form. Thus there exists an integer £ such that
(18) k= kj < 2k

for all j. We take now those numbers 7;, which satisfy (17) for an odd j and
denote them in order of their greatness by

’ 14
A A

We denote the other z; by

144 r”
T, Ty g -

Then at least one of the two inequalities

(1) l!?,-flf(x+n’)|d:c>g’ ﬂ,-flf(x+n")|dx>g
[ [

is satisfied. Suppose that it is the first one. Put in (17) j=21—1 and denote
by # that one (or one of those) of the numbers z; of (17) for which the integral

(19,1) [1re+alaa
[
has the maximum value. We shall have by virtue of (18)
(20) 2Icf|f(x+t,)|dxz 2 flf(x+r,~')|dx
(21—2)b = 77 < (20—1)D
& s
2+t X |[Ifete)lde
i=1 . 0=z <2nb
€ >
(21) n = 2kn

2 | e+ ) ax

Ioé1,~'<2nb

2 kgt kgt o+ kans
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But &, + &3+ - -+ kan—t is the index of the largest 7, which is < 2nb. Then
we conclude from (21)

(22) ﬂiflf(x—l—ti)ldxzé]lz-fm(x%- _m')|dx>§-
& 0

Thus corresponding to any 7>o0 we have a set €<=(o0, 1) of measure <1y, for

which (22) is satisfied. Let us give to 9 a sequence of values
(22, 1) B> M0
and let us denote the corresponding sets € by

€, G, ...

Denote by #) the value of # corresponding to €—=G;. We have for all j

(23) 2(6—1)b =t < 24b

and

(24) Miflf(x + 0| dx > ia.
@.

From (24) we conclude on account of Lemma 1 that we can choose numbers
2, <4y <<23<<--- such that

(25) flfx—ftl |dx>—a B - 2 |z + ) |dx>—a
211 1 gy — I, =4, +2
— x+t3) da:>—a,...
2_22_1%2 |/ + ) de > -,
and that
(26) In—in—1—>00, a8 7 —> 0,

The difference between any two consecutive numbers of the sequence

(27) HO, 40 g g0 )

% ) U6 +2) Y5432

o)

iy ) Y427 7 "

36 — 31104. Acta mathematica. 57. Imprimé le 24 juillet 1931.
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is always greater than b. Denoting by [€+ «] the set of the numbers of €
each increased by the number %, and observing that all the sets €&; are included
in the interval (o, 1), we see that no two sets of the sequence

(28) (€, + 8], [€, + 8], ... [C + 8], [Ca+ 82 ,), . .

have points in common. Denote by E the sum of all sets of (28) and by 6(x)
its characteristic function. Remembering that m&; <7; we conclude on account
of (22, 1) that

M {8(z)} = o.

We conclude further on account of (25), (26), (23) that
- a
(29 B0 ) 2

Definition. If F s a set of points and 0(x) its characteristic function then
we call the numbers

M:{8()}, M.{0()}, M.{0(x)}
the upper density of F, the lower density, and simply density and we denote then by

D(F), D(F), D(F).

As we said before we call the number (29) the upper mean value of |f(x)| on the
set /. In the same way is defined the lower mean value on the set E.

2°. We now proceed to construct a certain class of sets of arbitrarily
small density on which the upper mean value of |f(x)| is greater than some

fixed number. Let d be an arbitrarily small positive number. Take ¢,

a
(30) o <<g < ﬁ

and let o; be B.translation numbers of f(x) belonging to iel, so that
(31) M, M| f(x) — fle+o)] <&

(where M, and M; are taken only over positive values of z and 7). We choose

a number ¢> o0 satisfying the following conditions
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52) ¥ mlE-lo.0l _ g
(53) 2 o[ Mo — et )bz <
(54) 3) s [ralrae > &~

0

4) the ratio of the maximum number of numbers ¢; lying on a segment of

length ¢, to the minimum number is < 2.
Let ¢,>0 be such that

(35) f 0)| f) | das < o,

&

for any set €' <(0,¢) of measure less than . We can find an integer n, such
that the set € of all values of z of the interval (o, ¢) for which the inequality

(36) ~ 21f@) =Sz + o) = M| f(w) — flw + 0)] + &,

is satisfied for at least one n=n,, has a measure <¢&,. We have then

) 23 [l x+al)|dx<fM|f flw+a)ldz + &c.
= {0, c)—¢’ {0, 0)—¢'
(33), (37)
— ]
(38) Mi; f|f(x) —fle+a)|dx < 2¢
(0, c)—€’

and a fortior

(39) |f (@) — fle+ o) | da < 2¢,.

E {0, )—¢’
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In a way analogous to one used in 1° from (17) to (22) for definition of

numbers #; we can find a set of numbers

Sy, Say .-
such that
(40) 2tc =8 <20+ 1)e, sip1—si>c¢ for 1=1,2,3,...
and that
(41) Il_[,% f|f fle+s)|dx < 4¢,
EN0, 06

(s is that of o; which renders the integral
|fl@)— fle+ a)]dz
E . (0,c)—-G'

minimum (and not maximum as in (19, 1)} when ¢ varies in some interval).
Observing that

(42) M;| Bi| = M;| A;| — M:| A:— Bi]
and putting

| flx)|dz, B,-=~;f|f(x+s,-)|dx
E.(0,0)—-C E. (0, 0)—G'

we shall have
fvx+&wx> fU'hm—wq jkvmr—vw+wnm
E. (0, ¢)—G' (0, c)—C' E.(0,0)-¢
and a fortiori
) ﬂfmm4w>—j] «u——fv o) da
E. (0, ¢})—¢' (0, ¢)

— iy, [17@) = s+ s)laz.

E.(0,c)—€'
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By (34), (35), (41), (30)

I a u
(44) Mf;f|f(x+sf)|dx>%—6sl>T6z.
E.(0,¢)
The sets
(45) [E(O,G)'I_S;] Z’:I’Z,s’.”

are non overlapping. Denoting by G the sum of all sets (45) and by ¢(z) the
characteristic function of G we shall have

(46) w gl =" 0
and also on account of (44)
(47) MA@l > g

Thus corresponding to any number d >0 we can construct a (»segmentwise periodic»)
a

set G of density <d on which the lower mean value of |f(x)| is > 32b

Remark. Let H be any subset of G. Define the function f;(x) by putting
Jilx)=flx—s) x< (s, si+¢). H i=1,2,...
Silx) = f(x) for all other values of x.

We evidently have for any z in the interval (o, ¢)
(48) |filw) — file + )| = |f (@) — flz + s3)]

and consequently the inequality (41) remains true if we put in it fi(z) instead
of f(x). But then (47) remains also true. Thus we have

a

(49) M {g(x)| file) |} > 32b

3°. We shall now show that corresponding to any &¢>o0 there exists
a number § such that the lower mean value of |f(x)| on the set G— H is
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> 3‘2%) —e¢, if H is any subset of G subject to the only condition that DH <.

Given ¢>0, let § be a number such that for any set U<(o, ¢
(50) f|f(x)|dx < 2¢¢
U

if only mU < 2d¢. Let H=G be a set such that D(H) < d. Define now a
function f,(x) in the following way

Solz) = flz —s) sisx<sitec i=1,2,...

=0 for all other values of x.

At all points of H we have
(s1) Solz) = fi(x)

where fi(x) is the function defined in the above remark. Let »,” be such that
for all n=n,”

(52) m{H .(0, sn + €} < 2ned.

Consider the integral

fmww%

H.(0,8,+c¢)

the function |fy(z)| has the same positive values on #» intervals (s;, s; + ¢
¢=1,2,...;n (the values of |f(x)| in (o, ¢)) and is zero for other values of x

in (0, .+ ¢); therefore the above integral is less than n-times the maximum of

fvmwx

m[H . (0, sn+¢)] < 2¢0 and thus on ac-

the integral

for any set U in (o,c) of measure =

I
n
count of (50)

1

e [lrElan<

H . (0, 8p+c)

2ncd
Sn+c

(53)
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Denote by w(x) the characteristic function of H. By (53), (51), (40)

(54) @A = e.
By (49)
(55) M {gle) = wl)l A > 25—«

But at the points of G—H fi(x)=f(x). Therefore

(56) ¥m¢w—mwuum>§g—s>£zﬁg<éﬁ.

Thus corresponding to a set G lhere exists a number 0 such that the lower
mean value of |f(x)| on any set G—H is greater than & if only H s a subset

of G of upper density less than ¢.

4°. Let G, be one of the above sets and J, the corresponding value of ¢.
We take a set G5 of density d, <% and denote by d, the value of d cor-
responding to the set G = G,. We construet further a set Gy of density
dy <62—2 and so on. Consider now M.{|f(x)|}. Evidently it is greater than or

equal to the lower mean value of |f(x)| on the set
(57) Gy + Gy + -+ Gy
for any s. But the set (57) consists of the s non-overlapping sets

G, — G (G + G+ + Gy,
Gy— Gy(Gy + G, + - + Gy,
(s7,1)
Go1— Gy Gy,
Gs.
Observing that
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(58) DGi(Gis1+ Gis + -+ Go) = D(Gi1 + Giz + - + Gy)
Sdivi+ digs + o do< g 6"2“ I
<éi+(ii+(i‘+ <4
2 4 8
we conclude that the lower mean value of |f(r)| on any of the sets (57, 1) is
greater than ﬂ and thus the lower mean value on the set (57) is greater than
s, and uentl
645 2nd conseq y
a
ML f )]} > S6ab’
s being arbitrary we have
(59) A f@) [} = o

which is impossible since f(z) is a B.a.p. function. Thus Lemma 2 is proved.

Evidently we may replace in (3) the limits of integration o, 1 by any two
numbers ¢ <8, so that the lemma should be formulated as follows.

Lemma 2. If f(x) és a B.a.p. function then for any a, 8>«

(60) Mflf fle+7) |d£<j M f(w) — flx+ w) |} de.

Proof of Theorem 1. Let f(x) be a B.a.p. function. Then to any £>o0
corresponds a satisfactorily uniform set of numbers z; such that

(61) M| f(x) — flx+7)| <e for all &
and
(62) Mo M| f@) = fle+o)]} <e

Remembering that if f(x) = o then
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(63) fb dx%ft;(t)dt < fH;(m) da

we conclude that

(64) fdfozlf flx+ 7) dx<fM|f (z+w)|dx.

Applying Lemma 2 to the left hand side we obtain

(65) Tf flf x+¢l|dx <*fM|f flw + )| de

and passing to the limit we have

T T f|f Flo )| de < B, B\ f () — fla + 7).
By (62)
x+e
(66) MM% |f (@) = flac + )| dz <

for all positive values of ¢.
The existence of the inequalities (61) and (66) proves Theorem 1.

Theorem 2 (converse theorem). To any B.a.p. function corresponds a B.a.p.
Junction differing from the first function only by a function the mean value of
whose modulus s zero.

Let f(x) be a B.a.p. function. We consider the set of functions
S+ o)
for a given function f'(z) and for all functions @(x) which satisfy the condition.

M{ g =o.

36 — 31104. Acta mathematica. 57. Imprimé le 24 juillet 1931.
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We call this set a B. a. p. functional class (B.a.p.f.c.) Al functions of a (B.a.p.f. c.)
are B.a.p. functions. Two such classes are either identical or have no function
in common. All functions of a B.a.p.f.c. have the same Fourier series. Our

theorem may be formulated as follows.

Theorem 2. Any (B.a.p.f.c.) contains a B.a.p. function.

Thus on account of this theorem we shall conclude that with respect to
Fourier series the classes of B.a. p. functions and of B. a.p. functions are identical.
We shall give the main idea of the proof without entering into every detail.

The proof will be based on the following lemmas.

Let w(z) be an @.p. function and E an a.p. set of translation numbers 7;
of some function (not necessarily of w(x)). We denote by the symbol

M; {’l,U(.Z‘ + 'l’i); (e, ﬂ)}

the mean value of nimbers Y(x+ ) corresponding to all 7; satisfying the
condition
e=zx+ =4

Lemma 1. M;{y(x+ 7)) exists.
Lemma 2. The difference

M; {TP(x + Ti)a ((Z, ﬂ)} - ]'[1{1/)(97 + 11)} =& (3’), a, (3)

tends to zero, as 8—a — + oo, uniformly in x and «.

Lemma 3. To any B.a.p. function fi(x) and to any sequence {exy of positive

numbers corresponds a series of @.p. functions

@, () + @al) + @yla) + -

such that
(67) M. {)f1(%) — () — @ol@) — - — (@) [} < &n
(68) M {|gn@)|]} <& n>1.

Lemma 1 has been proved in the preceding part of the paper. Lemma 3 is
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quite obvious. The proof of Lemma 2 is similar to those relating to the existence
of mean values connected with a.p. sets.

Passing now to the sketch of the proof of Theorem 2 let f;(x) be a B.a.p.

function and

(69) .(x), @sl), ...

a series of Lemma 3 corresponding to fi(x). We assume that the series Sen is
convergent. We take a sequence of rapidly increasing numbers

(70) h=o<l<ly<- lpi—oe.
We define a function f(x) by the equations
(71) Slx) = @:(x) + @ola) + - + gnlz)

for & belonging to the intervals

hase<l, —Lh<x=—1Il.

Let {¢:'} be another set of positive numbers (¢;,' — 0, as n — =). We study
the behaviour of the expression

(72) o1)= 7 [ 176 ge)— = pulell .

It can be shown that if the numbers of (70) increase rapidly enough then
for values of T belonging to the interval

InE=T=1lyy1 NZ=Zn+1
(73) | u(T) — M{] pussf) + -+ @n(a) + Opxni(@) ] < &'yas

where |0] = 1.' Hence

! A similar result is proved in detail in Besicovitch’s paper [1].
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(74) LA @) — i)~ — gu(@)y = 2 M) i) ]}

i=n+1

< 2 En-
i=n+l
By (67), (74)
M fi(x) — fl)]} = o.
Thus [(x) is a B.a.p. function of the same functional class as f,(x).

We study now the behaviour of the expression
(75) P, T)= M| fl2) — Sl +w)|, (=T, +T)}.

In a way similar to that which had to be employed for the proof of (73), and
on account of Lemmas 1 and 2, it can be shown that, if the numbers of (70)

increase rapidly enough, then for values of T in the interval (ln, ln+1),
(760 1¥ 1) — MAf@) — e+ w) — - —gala+ @), (=T, + T}
< s'n+1 + M; {I q>n+1($ + Ti) I}

We write (76) for
Ix

IA

T =y (N>n + I)

and we conclude that
(77) |# (@, T) — M:{| f(2) — @, + 0) — - — gule +7) |, (=T, +T)}|
<é&ni1+ J[i{llpn+1($0+'fi) + ot 974\’(1"*‘71‘)', (_T> +T)}
+ M; {I q)N+1(x + Ti) l}

A certain rapidity of increase of the numbers of (70) can secure the inequality

(78) ]l[,-{l(pnﬂ(x-i—r,-) + -+ ¢A\'((L'+Ti)|a ('—T) + T)} <
<2M;{|guirlz+w)[} + -+ 2Mi{|px(x+ )]}

for any #, N and T<(ln, ly+1).
Thus

(79) |# (@, T) — M:{lf(z) — g+ 5) — - — gale + 7)], (=T, + T)}]
< 6"1\'+1 + 2]V[i{[gpn+1(x+ Ti) l} + -+ 2]’[;{' q)l\url(.’lf + 'Ki) l}
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Suppose that for a given value of x the series

(80) Mgz +w)|} + M{ galw+ )|} + -

converges. Then, as the second term of the left hand side expression of (79)
tends to a limit, as T — oo, it is not difficult to conclude that ¥(x, T') tends to
a limit, as T — o,

Take now an interval (d, d + 1) of values of x. Consider the question on
convergence of the series (80). We have

d+1 a+

(81) fMiﬂ(pn(x—k1i)|}dx§J_‘[if|¢n(x+n)|dx
a

< LM gule)[} < Len

where L denotes the maximum distance between two consecutive ;. ~ Denoting
by sj(x) the sum of first j terms of (80) we conclude on account of (81)

(82) fsj(x)dx < LM Al @)} + &, + &5+ -] for any j.

d

The series Ze, being convergent we conclude that the series (80) converges
for almost all values of z, and consequently the limit of ¥(x, T), as T — o,
exists for almost all values of 1, i.e.

(83) Mi{lf(x) — flo + )]}
exists for almost all values of x.

In Chapter V we have proved that if f(x) is a B.a.p. function then to any
&> 0 corresponds an a.p. set of numbers ¢; such that the condition

z+ce
(84) Mmﬂz%flf(x)—f(x+zl)ldx<e

for all ¢>o0 is satisfied.
On account of the existence of mean value (83) we can apply Fatou's
theorem to the inner mean value of (84). We have
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z+c

(83) j]l[|f fle+z)|de < M~ f|f flx+z)|de.

T

By (84)

z+c

Jql%fllfilf(z) —fle+w)|dr<e

x

and consequently’
(86) M, M| f(x) — fle+w)]| < &

which proves that the function f(z) is B.a.p. Thus Theorem 2 has been proved.

Example of a B.a.p. Function which is not B.a.p.

Let a, b,1 be positive numbers such that m=al is an integer. We

+b
define the function ¢ in the following way

(1) plz,l,a,bc)=c¢c ka+b)=z<kla+bl+a k=o0,1,....m—1

=o0 for all other values of x.

Define now the function

o

(2) f(x) = 2’ (}/(x—Z", ln, @n, b, Cn)
n=1
where
- . o r o (2233 _ i’ S Vo
(3)  In==1[Vn] (integral part of V), it e T =2 Va.
We have
M fa)y =

and thus f(z) s a B.a.p. function.

xz+c

U If p(x) = o then Zl_lx{%fp(w)dx} = M {p(x)}.

x
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Let now

(4) 01 < Ty <<+

be an arbitrary »satisfactorily uniform» (and consequently relatively dense) sequence
of numbers.?

Then there exists 7, such that for all n=n,
(5) nk <1, < 2nk

where £ is some positive members. We shall prove that

(6) f Milf(x) — flx+2)|de =

for any value of d.
Let ! be a positive number such that any interval of length [ contains at
least one of the numbers (4).

Let d have a fixed value and let A be an arbitrarily large positive number.
Choose n,=n, such that

") i) Max | /(o) + 4 < Vi,
(8) i) Ly=[Vn >1+1.

Then each interval (2%, 2"-+1,) for n = n, contains at least one of the intervals
(zs+d, s+ d+ 1); denote such an interval (or one of them, if there is more
than one) by

(mi, + d, 5, +d + 1).
Let n, =%, and n,>2. Consider the values of the functions

(9) fle+1,) for n=ny, ny+1,...,8n —1

in the interval (d, d+1). In the interval (d, d + 1) the function f(x + =) takes
the same values as the function

' The meaning of terms »satisfactorily uniform», »relatively dense» for one sided sequences
like (4) is clear. Obviously when (6) has been proved for any one-sided s.u. set, it is also proved
for any two-sided s.u. set of numbers ;.
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¢(1’, ln, @n, ba, Cn)

does in a certain interval of length 1 belonging to (o0, /») and thus f(x+ %) is

4 .

equal either to o or to 2"V»u. Denote by GV the set of values of « in the
interval (d, d + 1) for which at least one of the functions (g) differs from zero.
We shall prove that

(10) A=mEW =

Let €. denote the set of values of x in (d, d + 1) for which f(x + %,) #0. Then
(11) GO =G, + Gy + -+ Cgner.
We have
mE, = 712 .
@, consists either of 22" equal intervals or of 22" + 1 intervals of which all

interior intervals are equal to one another and the sum of the two extreme

intervals is equal to the length of an interior interval. Define now

(12) m [@n-f-l X (@1}, + Q«:n,+1 + -+ @n)]-
The set
(13) Gnl‘*"@nla}—l ++(§n

is a set of non overlapping intervals, whose number is =

(14) 22 ¥t g o P

Now if 0 is any interval, then it is easy to see that

5 = - " 41 -
{15) m|€ni1 X 8] = AT + a1
Therefore
(16) m [@n{-l >< (@71‘ + @71,1-1 + -+ @n)] ’

< MG+ Gy + - + Gl ania

+ 2.2 a1
Ap+1 + bn+1
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and by (11)
Alinty 2.2 A 1
an+1 + baga (n-|— I) 22n+1 n+1 22"
We have
(17) m [@nl + ®n1+1 + -+ ®n + @n+1] -

=m [@"’ + @nl'H +oet @n] + m €y
—m [Cui1 X (Ep, + Cnyy1 + - + €n))

1—A I
> —
m(Cn, + Cupyr + - + €] + Wi
1 I 1 I 1 1
g p— N - . —— e — e — N
(I l) ("1 + R+ 1 ™ + 7+ I) QM amtl H2"
1 1 1 2
> (11—~ 4o —
4 )(”1_’_"1""I +"+1) 22"
Putting in (17) #+ 1=8n,—1 we shall have (observing that — + —— +
ny  m+1
I
>
+ 8n—1 2)
(18) }.>2(I—l)—é

which shows that 1 > %

Now let « be any point of €, for n=n,. We have
4 4«
fleto)=2"Vn=22Vn,

£ () — flo + ) | = 22 Vg — Max [ £(a)] = 2 (Vg — Max |£(@)])

d=r=d+1 d=z=d+1
and by (7)
(19) |fl@) = fle+m,)]>2"4
and a fortiori
2@ —fle+z)| > 224
=1

37—31104. Acta mathematica. 57. Imprimé le 24 juillet 1931.
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whence
21/ @) —fla+ )l )
=1 o -~ ]CA
Tn wk
By (5)
2@ —fle+ )] .
(o) Sy 2k g 2k gk
in T, 2% 4 [Vn] 2.2" 2

Denote by M (x, ', n”’) the maximum of

S1/)—fla+ ol

n

as n varies from 7, to 7, —;. We conclude from (20) that
k
(21) M(x,n‘,8n1)>EA

for all values of x belonging to .
We take now a sequence of integers

Ny, Mg, Mgy .- -
such that n, = 8n,, 73 = 8n,, . ..
Write
(22) W = Gy, + Cnjs1 + -+ + Cany j=1,2,3,...).
At any point z of GV
(23) M (z, nj, 8n;) > %A.

Let € be the upper limit of the sequence of sets
(24) G, GO, ...

i.e. the set of points each of which belongs to an infinite number of sets of
(24). Then
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(25) mE

v
N |-

Let « be a point of € and let
EU | @

be the sets which contain x; then for any s=1,2,3,...

M(x, N S’ﬂjs) > lZCA

i=n

Zlf x+'zl)|

—>%4
n 2

for at least one » in any interval 1'% =n= igﬂjs_l, which proves that
k
(26) Ml flx) —fle+ el = LA

By {25) and (26)

(27) sz{If fle+ |}dw> ky.

A being arbitrary we have

d+1

(28) fle Pl + )| da = oo,
a
and thus
Mo M{lf (@) — fla + )|} = oo
for any satisfactorily uniform set of numbers 7,, 7,, ..., which proves that f(x)

is not a B.a.p. function.



292 A. S. Besicovitch and H. Bohr.

Memoirs referred to.

A. BESICOVITCH:
[1] »On generalised almost periodic functions». Proc. London Math. Sec. (2),
25 (1926), pp. 495—512.
A. BrsicovitcH and H. BoHr:
(1] »Some remarks on generalisation of almost periodic functions». Det Kgl.
Danske Videnskabernes Selskab. Math.-fys. Meddelelser. VIII, 5, pp. r—31.
[2] »On almost periodic properties of translation numbers», Journal London
Math. Soec. V. 3, pp. 172—176.
S. BOCHNER:
[1] »Beitrige zur Theorie der fastperiodischen Funktionen». Math. Ann. 96
(1926), pp. 119—147.
[2] »Properties of Fourier series of almost periodic functions». Proc. London
Math. Soc. (2) 26 (1927), pp. 433—452.
[3] »Konvergenzsitze fiir Fourierreihen grenzperiodischer Funktionen.» Math.
Zeitschrift 27, pp. 187—z211.
H. BoHR:
[1], [2], [3] »Zur Theorie der fastperiodischen Funktionen» I, II, III. Act. math.
45 (1924), pp. 29—127; 46 (1925), pp. 101—214; 47 (1926), pp. 237—281.
(4] »Uber die Verallgemeinerungen der fastperiodischen Funktionen». Math.
Ann. 100 (1928), pp. 357—366.
P. FRANKLIN:
[1] »Approximation theorems for generalised a. p. functions.» Math. Zeit-
schrift 29, pp. 70—86.
‘W. STEPANOFF:
[r] »Uber einige Verallgemeinerungen der fastperiodischen Funktionen». Math.
Ann. 95 (r926), pp. 473—498.
R. ScHMIDT:
[1] »Die trigonometrische Approximation fiir eine Klasse von verallgemeinerten
fastperiodischen Funktionen». Math. Ann. 100 (1928), Pp. 333—356.
H. WeyL:
[1] »Integralgieichungen und fastperiodische Funktionen». Math. Ann. g7
(1926—27), pp. 338—356.
N. WIENER:
[1] »On the representation of functions by trigonometrical integrals>. Math.
Zeitschrift 24, pp. 575—616.
[2] »The spectrum of an arbitrary function». Proc. London Math. Soc. (2)
27 (1927——28), pp. 483—496.
C. DE LA VALLEE PoUSsIN:
[1] »Sur les fonctions presque périodiques de H. Bohr». Ann. de la Soc. Sc.
de Bruxelles 47 (1927), pp. 140—158.

— ———



