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1. In a former paper with the same title! (quoted below as “I’’) polar coor-
dinates r and I were employed to represent the orbit, and power series in x=cos 21
were used for satisfying the differential equations. In the present paper the time ¢
will be employed as independent variable, and the expansions will be in powers of
¢t or some simple function of ¢.

We put in I (4)

cos 2l=x, sin2l=y, e=£+4+1% (1)
so that

dz dy o 1.8

1= "2 g7=2%%  atyi=l 2)

and find, taking I (3) into account, the following system of equations?

20 pr-g-t+le ®)
20 —200-3y @
30630 ©)
jll—‘:=_2yw+2y (6)
Y 20022, (7)

1 Acta mathematica, 93 (1955), 169-177.
2 The possibility of reducing to this form was, in principle, already indicated in my thesis
Analytiske Studier med Anvendelser paa Taltheorien, Copenhagen 1912, p. 146-147.
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Jacobi’s integral I (5) becomes
C=@2f—g*—w?+20+iz+] (E+) 4. ®)

The five differential equations (3)—(7) are for sufficiently small |¢| satisfied by
power series of the forms

o= é} a t’ 9
w= éo Bt (10)
&= goy,t” (11)
= ’EO(S,, r (12)
y= ,2, 21,1 (13)

Inserting these series and demanding that the coefficients of #" shall vanish, we

obtain the following recurrence formulas for the determination of the coefficients

n n 3
(n+ 1) Opp1 = Z ﬁ’ ﬂn—y'— Zoav Lp_y _Yn +§ 6”' (14)
=0 =

i 3

n+1)Bry=—-2 Zoa.,ﬂn_,—ixn. (15)
i 3

(n+1)yn=—3 zoac,yn_,—é - (16)
n

(m+1)ny1=~23 3%, Bu_r+ 2% (17
v=0

(n+1)201=23 B, bn_p—26n. (18)

v=0

From 2®+¢*>=1 we obtain furthermore

N+us=1 (19)
and

M=

0y 8-+ 2,5,_,)=0 (n>0). (20)

v=0

The values of (9)—(13) for ¢=0, that is ay, By Ve, 6o %o, may with the reserva-
tion resulting from (19) be employed as constants of integration.
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2. We will now assume that ¢{=0 corresponds to [=0 which leads to certain

simplifications. In that case we have
%=0, =1, =0, ' (21)

the latter because, by I (6), p={ sin 2/. Thus, only the two constants of integration
B, and y, are left for free disposition.
By (21) we obtain at once from (15), (16) and (17)

fr=y,=6,=0, (22)

and (21) and (22) together with the recurrence formulas (14)-(18) then show that
for all »
o2y =%2,=0; Pav+1="V2s41=02,41=0. (23)

We therefore obtain from (14)—(18)

n n 3
2n+1)ognsr= zoﬂ2vﬂZn—2v'— Z A2y —1 “2n—2»+1‘)’2n+§52n- (24)
v= y=1
i 3
2nﬂ2n =2 Z %2y —1 ﬂ2n—2v—§"‘2n—1- (25)
v=1
i 3
2'"«‘}’27» =-3 2 “27~1‘}’2n-2v—§°‘2n~1- (26)
y=1
20 8en=—2 2 #2,-1P2n-20F 22n_1. (27)
v=1 )
2n+1)xons1=2 Zoazvﬁ2n—2v_262n- (28)
. dl .
For ! we find by ﬂ=w——l and (10) the expansion
I1=(8.—1 s _Ber 2041 9
(Bo— D)t ,212v+1t (29)

3. For use in connection with a numerical example we state below the first few
recurrence formulas for the coefficients. These are, taking d,=1 into account:

‘11=ﬂ%“7’o+%}_ (30)
=2 (fo—1)

Ba= — (o Bo+321)

Ya=—8a, (yo+3) } (31)
0 = — 2, (ﬁo_l)
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“3=%(2ﬂoﬂ2_°‘%"72)+%52}. (32)
#3=5[05(By— 1) + fal.

Ba= “é(“lﬂz“l'“sﬁo"l'%”a)

Ya=—3[oy yat g (yo+3)] } (33)
0, = —3 03 (Bo— 1) + By 2]

“5=%.(2.30.54+.3§"2°‘1°‘3_7’4+%54)}_ (34)
”5=%[‘54(ﬁo_1)+13262+ﬂ4]

Bo= —§ (0 Bat g fat+ o5 o) — 525

Ye= "%[“1'}’44‘“3'}’24’“5 ('J’o"‘%)] . (35)
0g = —3[(Bo— 1) 25 + fa 265+ By %]

In order to compare with the earlier numerical example we observe that, since
t=0 corresponds to 1=0, B, is the value of w=1+7 for =1, and y, the value of

E=¢—% for z=1. In this way we find as constants of integration, besides d,=1,

Bo=1362217,  y,=182588I.
The results are as follows:
v o *y
4475416 25'24434
3 — 481-8885 — 2734537
5 1800594 10420257
4 ﬁv Vv d,
0 13:62217 182-5881 1
2 — 7980813 — 12290931 — 31863835
4 4486424 70296°56 18266°383
6 —127337°'5 —2101782'8 —549001°3

It is

sideration

from the expansion!

true that these coefficients increase rapidly, but for the orbit under con-

small values of ¢ correspond to relatively large values of I, as appears

1 J. F. SterrenseN, Les orbites périodiques dans le probléme de Hill. Académie royale de
Danemark, Bulletin n° 3 (1909), 335.
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t =08085761 [
— 00082585 sin 21
+ 00000501 sin 41
00000004 sin 61

(36)

From (29) we obtain
= 12:62217¢
— 2663271 ¢
+ 89728485
—18191°07¢

(37)

For t="01 we find 1=-12619516. If we insert this value in (36), we find to

eight figures ¢=-01000000. For t='02 we find !=-25223319 and, inserting this in
(36), t="02000001.

I have further calculated Jacobi’s constant C' by (8) for various values of ¢ and
found the following results

t=0, C=6'5085378
t="01, (C=6'5085379
t="02, C=65085378

where Bauschinger and Peters’ table of logarithms to eight decimals has been used
for calculating (£+1)—%.

4. In order to examine the convergence theoretically we begin by writing
(24)—(28) in the following form where we have isolated the constants of integration
B, and y,.

n—-1 n 3
2n+1)osni1 =28y fen+ zlﬂzvﬁzn—zu— > d2y-1 “2n—2v+1_'}’2n+§ don. (38)
y= v=1
n-1 3
—nfan=PBy%en_1t+ 2, “‘Zv~1ﬂ2n—2v+1”2n—1- (39)
y=1
2n n-t 1
- ? Yon =Yo&zn_1+ z a2v—1y2n-2v+§a2n—l' (40)
=1
n—-1
—n0zn =ﬁo Hon-1+ Z H2y-1 ﬂzn—zv“%zn—l- (41)
v=1
n—-1

(n+3)xzni1=Po02a + zlﬂzu O2n—_gv t f2n — 2. (42)



30 J. F. STEFFENSEN
We now put

k,,=£;; (A>0, »=1) (43)

and will assume that for 1 <y<2x we have proved that

la|<ak, |B|<BE, Iyulﬁykw}, (44)
[6,|<dk, |w|<xk,

whereafter we find conditions which are sufficient to ensure that (44) is always valid.
The argumentation proceeds on the same lines as the corresponding one in paper I.

From (43) we obtain

P (1+ 1 ) (45)
m \y m-—y

and if we write for abbreviation
' 2 1
8"=v§1 g_—l=82n~1—%8n-1 (46)

n
. . 1 .
where, as in the earlier paper, s,= > —, we find
y

v=1

n—1 227
2:1 kay kg n_gv =§—n8n—1, (47)
jg:kzvu kan-2,-1 =§3;, (48)
n-1 a2n-t

Zl koy_1kan-2, =m S2n-2. (49)

We first obtain from (38) by (43) and (47)-(49)

2n+1)]azn1| < (2]B0| B+ +§6)£+ﬂ2)‘2ns +a2£8'
2n+l|= 0 YL on o Snt i

and require that the right-hand side of this inequality shall not exceed
2n4+1) akonyr=a AZ*FL

The condition may therefore, after dividing by A*>*, be written

1 | B sa Y
(2]ﬁo|ﬁ+7+%5)§;+—%+¢2i

50
2 <al (60)



ON THE DIFFERENTIAL EQUATIONS OF HILL () 31

The four other conditions, obtained from (39)-(42) in the same way, are

(2a|ﬂ0|+gx)2n1_1+2aﬂ2‘g;"_’21Sﬂz, (51)
(17""%) 2n1—1+7’ Fai S §—i (52)
(Iﬂo|+1)2nl_l%ﬂ;;":"ls%, (53)
(6|,30|+/3+6)%+/365"n—‘35x1. (54)

It follows from the relations

’ ’
Sp=8p_1+—, Spy1=8p+7——
n’ 2n+1’

Sam = S3n_p -+ e b
BmOUERE T on—1" 20
that none of the quantities s,-1/n, §,/n and 82,_5/(2n — 1) increases with n for n> 1.
Thus, for instance, the inequality

S2n-—2 Sen
2n-1 2n+1
may be written in the form
1
282n_2>2—'2—;;
and so on.
We now assume that (44) has been proved for 1<y<6. We may then obtain
sufficient conditions for the validity of (44) for all » by putting =3 in (50)-(54).
We find first

and thereafter

3 g 23
(2|ﬁ0|ﬂ+’y+§6)+—4—+4—

2
5% <ad, (565)

[~ ]

1 3 5
5(2a|ﬂol+§x)+écxﬁﬁﬂl, (56)
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1 1 A

5(ly0|+§) 12y<” (57)
7y

2 5|ﬂ |+ﬁ+6)+ﬂ— : (59)

3'91Po 2

In our numerical example (44) is satisfied for 1 <»<6 if we put, for instance,
A=20, a=f=1, y=17, Ob=x=2, (60)

and since (55)-(59) are also satisfied, the expansions (9)-(13) are at least convergent
for |t|<1/20.

5. We proceed to show that the system (3)—(7) can be satisfied by expansions
of the form

o= cos (t+0) -20 d, sin” (¢+0) (61)
w= Eoe, sin” (¢+ 6) (62)
£ 3 f, sin’® (¢ +6) (63)
x= 20 g, sin” (¢+ 0) (64)
y= cos (t+0)- 3 h, sin’ (¢+ 6) (65)

where 6 is an arbitrary constant, and |sin (¢+6)| is assumed to be sufficiently small.
Differentiating (61), we obtain after a simple rearrangement of the terms, making
use of cos® ({+6)=1— sin® (¢+6) and interpreting d_; and ~_; as O,

3—?= S [+ 1) dyyu~dy ] sin” (¢4 ) (66)
»=0

and hence, by a simple exchange of letters, from (65)

dy _

T [(v+1)h,.+1—vh, 1] sin® ¢+ 0). (67)

ﬁMs
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Furthermore, we find by (62)-(64)

%’= cos (t+ 6) - § (v+1)e,., sin’ (t+ 0) (68)
r=0

d& Z s

;= cos (t+ 0) -’go (v+1)f,., 80" (¢4 0) (69)

dz z .

= = ¢os £+ 0) -Zo (v+1)g,.q sin” (£+6). (70)

If we insert all these expansions in (3)—(7), the factor cos (¢+ 0) disappears, and
only power series in sin ((+6) remain. We now demand that the coefficients of

sin™ (¢+ 0) shall vanish, and find in this way the recurrence formulas

n n
(’I’I,—I— I)dn-l—l =ndn71+ z €, lny — Z dv dn~v+
v—0 »=0

> (1)
+v§0dudn—v-2’fn+%9n

() enis= =23 dyen b (72)

@40 o= 33 s -bdn (73)

(n+1)gp.1=-—-2 é)h,, enp+2h,. (74)

-+ by a=nh,_1+2 an,,e,l‘,—2g,,. (75)

v=0

6. We now assume that sin ({+ 0) =0 corresponds to I=0, so that, corresponding
to (21),
hy=0, go=1, dy=0. (76)

As arbitrary constants of integration besides  there are, then, only left ¢, and f.
We first obtain from (72)—(74) e, =f, =¢, =0, and (71)—(75) show thereafter that
for all »

dsy = hy,=0; €211 = fav+1=gors1 =0. (77)

The recurrence formulas may therefore be written as follows:

n n
2uo+1)don1=2nden 1+ 2 €r,€30-2,— 2 doy18an_0,01 +
v=0 v=1
. (78)
n-1
+ Z ds, 1 dzn-zv—l“fzn +%92n
»=1

3 —563801. Acta Mathematica. 95. Imprimé le § mars 1956,
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n

2ne,=—2 2 day_q e2n—2v_%h2n—l-

v=1

2”/271: -3 zldzv*l f2n—2v_%d2n—1-

2”92’, = —2 Z h27-1 827;_2‘.+2h2n..1.

r=1

”
(2n+ 1)h2n+1=2'nh2n—-1+2 Z g2, €2n-2,— 2 G2n.

»=0
7. The first few of these recurrence formulas are

d1=e(2)—fo+%}.
hy=2(e,—1)

fo= _%dl(fo"'%)

€= —(d; e0+%h1)}
go=—hy(e,—1)

ds=%(2d1+2eoez_d%“fz)+%gz}.
hy=%[h,+g,(eo— 1)+ 6]

f4= —%[dlfz'*'ds (fo"'%)]

€= _%(dlez+dseo+%hs)}
ga= —3[hr e+ hs(e—1)]

d5=g(4d3+2eoe4+e§—2dld3+d%—/4+%g4) .

hy=%[2hs+ey+grea+ g, (eg—1)]

fe= ‘%[d1f4+d3fz+ds(/o+%)]

€= —%(dle4+d3e2+dseo)—%h5}
ge= —5[h eyt hyey+hy(eg—1)]

(79)

(80)

(81)

(82)

(83)

(84)

(85)

(86)

(87)

(88)

Now a comparison of (62) and (10) shows for t=0=0 that e¢;=pf,; and (63) and

(11) show in the same way that f,=y, Using the same initial values as above, we

therefore have

eo=1362217, f,=182:5881

and obtain the following results:
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v d, hy
4475416 2524434

3 — 4789049 — 2717707

1752643 101481°48
v €y fv 9
0 1362217 1825881 1
2 —79-89813 —1229-0931 —318'63835
4 4459791 6988687 18160168
6 — 1243607 —2055136°1 — 5368802

A few of the first of these coefficients are identical with the corresponding ones
in the expansions in powers of ¢; the remaining ones do not differ much from them.

The calculation of Jacobi’s constant C' for various values of sin (¢+ 6) produces
the following results:

sin (t+ 0) =0, € =6"5085378
sin ((+0)="01, C=65085378
sin (¢t +0)="02, C=6'5085381.

8. We now write (78)-(82) in the following form, corresponding to (38)-(42):

n-1 n-1
2n+1)deni1=2¢€e2n+ 2 3,630 0,— 2 doyy1dan oy 1+
p=1 p=0
n~1 (89)
+ Zld27—1d2n—2.-—1+2”d2n—1“f2n+%92n
n-1
_ne2n=eod2n—1+ Z day_4 ezn—20+%h2n—l- (90)
v=1
2n n-1
_?,f2n=fod2n—1+ 2 oy ifen_2,+iden 1. (91)
y=1
n-1
—NQ2n =eo h2n—1+ z h2v—1 02,,_2,.——’&271_1., (92)
v=1
n-1
(n+8 hensi=nhon.1te€gsn+ D g2r€3n_2,+€an—gon. (93)

=1
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We assume next that for 1<y <2n we have proved that

|d,| <Dk, |e,|<Ek, |f,|5Fk,,} 04)
0l<Gh, |hl<HE
k, being defined by (43).
We then obtain from (89)-(93)
n—-1
2n+1)|densi|<2|e| Elon+ B2 S ko, kon o, +
v=1
n-1 n-¥
'*'-D2 Z k2v+1 k2n—2u—l+D2 z k2v~1 k2n—2v—1+J' (95)
v=0 v=1
+2’ﬂD’C2n_l+Fk2n +%Gk2n
n-1
nlegnISIeole‘gn'l-I-DE z kgv,lkgnhz,.*‘%HanAP (96)
v=1
2n e
—3-|f2n[S]f0'Dk2n_1+DF Z koy_1kon_ g, +53Dkon . (97)
v=1
n—1
nIQangleolHkmt—l'*'HE Z koy 1kon o, t Hkon_ ;. (98)
v=1

n-1
(n+%) |h2n+1|5 Ieol G’an +GE z kg, kgn‘gv'l‘E’an +Gk2" +nHk‘2n_1. (99)
v=1

By (47)-(49) and the relation
n-1 A‘Zn—2 , :
Z k2ﬂ—1 k2h—27Al= n‘_isnfh (100)

»=1

resulting from (48), writing n —1 for =, (95) may be written

2‘21: 1271
(2n+1)]d2n+11§(2|eOIE+F+§G)2—7L+E2ﬁ8n-1+
. 2n , y 2n-2 , lzn_l (101)
+ D ~n—sn+D n_ls,‘,,+2nD2n_I

We require that the right-hand side of this shall not exceed (2n+1)Dkoy, =
=D J*"*!, so that, after dividing by A2"~2

PRI L P SN 'y Sn_
sy 2L A S pagedn g e St
(2|e0|E+F+2G)2n+ 5 +D* 2 n+D i

(102)

1 3
+D/1(1+2 _1)51)1
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In precisely the same way we obtain from (96)-(99) the sufficient conditions

1 S2n-2
3 — — <L
(2leo| D+3H) —~+2DE =L <E, (103)
1 8an_2 F}.
1 <= 104
(fol+D 57— 3,153 D’ (104)
1 S8on—2g G},
< =
(|60|+1)2n_1+E2n_1_2H, (105)
). Sp-1 1 2
(leg] G+ E+ @)=+ EGA +H(1+——)<HMA (106)
n n 2n—1

None of the quantities depending on » increases for n>1. If therefore (94) has
been proved, for instance, for 1<yp<6, we may find sufficient conditions for the
validity of (94) for all » by putting =3 in (102)-(106). We thus find

22 3 3 ,.46 .\ 2 . 6

4 2 2 e Z e <D2a?

5 (2[60|E+F+2G+2E +15D)+3D +5DA_D1, (107)
1

5(2|e0|D+gH)+gDESE}., (108)
1 1 5 Fi

5(|10|+§)+EFS3—5, (109)
1 5 G

B(Ieo|+1)+EE§ﬁ, (110)
i 3 6 .

3 [eolG—l—E—l-G—l—éEG +5HSH}.. (111)

In our numerical example (94) is satisfied for 1 <»<6 if we put, for instance,
A=20, D=E=1, F=17, G=H=2, (112)

and since (107)-(111) are, then, also satisfied, the expansions (61)-(65) are at least
convergent for |sin (£+0)|<1/20.



