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1. A partitioning problem. Boundary regularity of its solutions 

Let Y{ be a bounded convex body in R 3 with boundary T. We consider the following 

partitioning problem ~:  

Determine a rectifiable surface S of  minimal or stationary area, with boundary 

contained in T, which dioides ~ into two parts ~rl and ~r2 such that 

measggl = a m e a s ~ ,  measX2 = ( l -a )meas :~ ,  

where a denotes a preassigned constant with 0 < o < l .  

The existence theory for this problem is still in its infancy. Bokowski and Sperner 

jr. [2] have proved the existence of minimal partitionings of the ball, by employing tools 

from geometric measure theory, and in the same context Almgren [1] has proved 

existence and regularity almost everywhere of minimal partitionings of R n. 

It seems intuitively clear that every solution of ~ must be a surface of constant 

mean curvature (in special situations: a minimal surface) perpendicular to the boundary 

T. This, in fact, will be confirmed here. The main aim of the present paper is the proof 

of boundary regularity for each solution of ~. In view of this emphasis, we shall already 

assume that the interior part S of S is a regular Cl-manifold which divides int X-5r into 

two disjoint parts of preassigned measure. As a consequence, S has a conformal 

parameter representation on some Riemann surface B. Generally speaking, the surface 

S need not be of disc-type. It could, for instance, also have the topological type of an 

annulus, as is the case for a cylinder, a catenoid, or an arbitrary Delaunay surface. 
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Although our  approach can easily be modified to handle this case or more general cases 

as well, we shall restrict  ourselves here to solutions of 3 ~ which can be parametrized 

over a disc. 

In order  to have a clear cut situation, we shall fix the assumptions which will be 

used during the proof  of  the subsequent boundary regularity theorem. 

Assumption (A 1). (i) S has a conformal parameter  representation x: B---~, R 3 of class 

CI(B, R 3) on the unit d iscB (that is, (2.7) holds). 

(ii) S has finite area, so that its representation x is of class H~(B, R3). We assume 

that Y:=x(aB) is contained in T, where the boundary condition X c  T is to be interpreted 

in the sense of  section 2 below. 

(iii) The surface S=x(B) omits a neighborhood of some point p fi T. 

(iv) The map x: B ---~R 3 is an embedding of B into the interior of Y{ such that 

int f f f - S  = f2~ O g22, ~'~1 n ~'~2 = ~ ,  

where g21 and f2 2 are simply-connected regions and 

meas f21 = ameas  X, meas f2 2 = (1 - e )  meas 3'L 

We then shall prove the following 

THEOREM 1. Let T be a regular surface of  class C 3, or c'n'a(m>-3, 0 < a < l ) ,  or 

C ~', respectively. Suppose that S= (x(w)6 R3: w 6B} satisfies assumption (A l) as well 

as the following variational property (A2): 

S is stationary for the area functional (Dirichlet integral) in the class of  all disc- 

type surfaces with boundary on T which partition fff into two parts o f  measures 

cr meas ~f and (1 - or) meas • where 0<cy< I. 

Then x(w) is a real-analytic surface of  constant mean curvature on B. Moreover, 

x(w) is o f  class C1"/3(1~, R3) for every f16(0, 1), or of  class Cm'a(B, R3), or real-analytic 

on B, respectively, and ~r intersects T orthogonally in the points o f  X=x(OB). 

As it stands, assumption (A2) seems to lack orecision. This orecision will be 

supplied in section 4 below. 

It  should be remarked that the convexity of the surface T is not essential for the 

p roof  of  Theorem 1. Our main reason for using this assumption is to obtain a simple 

form of  assumption (A 1). 

We should also like to mention that, for area minimizing solutions of our isoperi- 

metric problem, the assertions of  Theorem I are consequences of results proved in [13] 
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Fig. 1. 

and [17]. Thus the novelty of our statement lies in the fact that we extend the 

consideration to stationary surfaces which may not necessarily be area minimizing. For 

instance, two of the three ellipses generated by the intersection of a three-axes ellipsoid 

with its principal planes are only stationary solutions of the partitioning problem for 

(with o=�89 whereas the third ellipse is area minimizing. 

We note that, for a given value of the parameter or, there may exist solutions of the 

partitioning problem ~ with different mean curvature. For an ellipsoid, this phenom- 

enon has been discussed in [22]. To cite another example, if :K is a solid cube, ~ is 

solved by three planar minimal surfaces as well as by hemispheres. Still other solutions 

are provided by spherical caps around the vertices and by cylindrical caps about the 

edges of the cube~ If one would also admit surfaces of higher topological type as 

solutions of the partitioning problem, infinitely many solutions of different type may 

exist for the same value of the parameter o; see [22]. A particular example is sketched 

in figure 1. It is part of a periodic minimal surface found by H. A. Schwarz. 

The proof of Theorem ! will be given in section 4. It rests on a regularity result for 

an auxiliary problem. This auxiliary problem, which is also of independent interest, is 

formulated in section 2. The pertinent Regularity Theorems 2 and 3 are stated and 

proved in section 3. In the proofs a technique is employed which has already been used 

by the authors to demonstrate the regularity of stationary minimal surfaces with free 

boundaries; see [9], and also [4] and [5]. 
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We finally mention that Grtiter and Jost recently have proved the existence of an 

embedded disc-type minimal surface S within an arbitrary closed and convex surface T 

of class C a that meets T at a right angle. (1) In an earlier paper [27], Struwe had shown 

the existence of a stationary minimal surface within T without reference to the question 

of embeddedness. 

2. An auxiliary problem 

We identify the two-dimensional Euclidean space R 2 with C and write accordingly 

w=(u, v)=u+iv for the points of R 2. The open unit disc B={wEC:  Iwl<l} will be 

chosen as the parameter domain for the surfaces x: B-->R 3, x(w)=(xJ(w), xZ(w), xa(w)), 

which will be considered in the sequel. 

The supporting surfaces T admissible for our discussion are two-dimensional 

submanifolds of R 3 satisfying the following 

Assumption (V). There are numbers •0>0, Ko~>0, and K~ I  such that the following 

holds: 

For each point Xo E T there is a (full) neighborhood U of Xo in R 3 and a C 2- 
diffeomorphism x=h(y) of R 3 onto itself with the following two properties. Firstly, the 

inverse h -1 maps Xo onto 0 and U onto the open ball {y: lyl<Qo} such that TN U 

corresponds to the set {y: lyl<oo, Y 3=0}  o n  the hyperplane {y3=0}. Secondly, if we set 

gO(Y) = 6kt h~,(Y) hlyj(Y), (2.1) 

then 

for all ~, y E R 3, as well as 

for all y E R 3 and i,j, k E { 1,2, 3}. 

K-'I~SI 2 ~ go(y) ~Y ~ KI~I 2 (2.2) 

ayg (Y) ~< K o (2.3) 

Every compact C2-manifold in R 3 satisfies assumption (V). Each submanifold of 

R 3, compact or noncompact, for which assumption (V) holds, is a complete Rieman- 

nian manifold with respect to the induced metric of R 3. For noncompact surfaces T, 

(1) M. Griiter and J. Jost, "On embedded minimal disks in convex bodies", and "Allard-type 
regularity results for varifolds with free boundaries". Preprints 1984. 
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assumption (V) imposes a certain uniformity condition on the metric ds2=gO(y)dyidy j 
at infinity and is thus somewhat more stringent than the sole condition TE C 2. There- 

fore, a C2-submanifold of R 3 satisfying (V) will be called a strict C2-surface in R 3. 

We, moreover, note that every point x E R  3 possesses a foot f on T such that 

[x-f l=dis t  (x, T). 

Next, we introduce the class qg(T) of admissible surfaces S={x(w): wEB} with 

boundary on T by the stipulation 

~(T) = {x(w): x E H~(B, R3), x(OB) c T}. (2.4) 

Here the inclusion "x(OB)~-T" means that the L2(OB)-trace of the Sobolev function x 

on OB maps ~ - a l m o s t  all points of OB into T. 

Let  QECI'#(R 3,R3), 0<f l< l ,  be a vector field on R 3 satisfying 

suprt3{IQl+lQxl}<oo. For any subset fl of B and for any function xEH~(B,R 3) we 

introduce the two functionals 

1 f l u  [vXI2du do ("Dirichlet integral") (2.5) D [x] = - f  

and 

= f foQ(x).(xuAxo)dudo. (2.6) 

If f~=B, the abbreviations DB[x]=D[x], V~s[x]= Ve[x] are used. 

In our applications, it will be known that the surface S omits an open R 3- 

neighborhood U(p) of some point p E T. It is then sufficient that the vector field Q(x) 
has the stated properties in R 3 -  UI(P) where U~(p) is a suitable smaller neighborhood 

of p contained in U(p). 

A surface x(w) of class HI(B, R 3) is said to be parametrized conformally if 

Ixul 2 = IxolL x u . x v  = 0 a.e. in B. (2.7) 

It is further necessary to define the concept of an admissible oariation of a surface 
xE ~(T). By this we mean a family of surfaces xtE ~(T), Itl<t0 for some number to>0, 

where  {Xt}ltl<to is of one of the following two types: 

Type 1. The surfaces x t are of the form xt=x(rt) where {rt}ltl<to is a family of 

diffeomorphisms from/~ to itself such that ro is the identity and that r(w, t)=rt(w) is of 

class C 1 on /~x( - to ,  to). 
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Type 2. The surfaces x t are of the form 

xt(w) = x(w) + tW(w, t) 

where 

(2.8) 

with a bound C independent of t, and 

�9 (w, t) ~ ,I~(w) 

for some r E H~(B, R3). 

as t-->O for a.a. wEB, (2.9") 

and 

L e t  {Xt)ltl<to be an admissible variation of a surface x E ~(T). Then the vector field 

�9 (w) = lim 1 {xt(w)_x(w)} (2.10) 
t--,0 t 

exists for a.a. wEB and is tangential to T at x(w) for Yg~-almost all wEOB, and we 

obtain 

lim,__,0 It {Dtx']-D[x]}-- f ~ Vx.V*dudv (2.11) 

~im +(V~[x']-~[x]}= f f~ Q(x)[xuA 

+ff[Ox(X)~](xoAxo)a.do 
(2.12) 

In the following sections, we shall consider stationary points x of the Dirichlet 

integral in the class q~(T) which are subjected to the subsidiary condition VQ[x]=con - 

stant. It will then turn out that such surfaces are also stationary points, in the class 

~(T), of the modified functional 

D[x] +it W2Ix] (2.13) 

for some real number kt. 

Suppose now that x is a stationary point of (2.13) in C~(T). Employing admissible 

variations of type 1, we may then prove that (2.7) holds (see [21], w 299). If, in addition, 

the surface x(w) is of class C2(B, R 3) N C1(/~, R3), it follows by a familiar argument that 

D[qJ( �9 , t)] ~< C for Itl < to (2.9') 
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Ax=/~divQ(x) x,,Axo in B (2.14) 

and 

ItQ(x)'n(x) =cosa(x)  on aB. (2.15) 

Here n(x) denotes the outward normal unit vector of T at x E T, and a(x) is the angle in 

which the surface S (described by the representation x=x(w), w EB) meets T at the 

point x. In view of (2.7) and (2.14) it is clear that the mean curvature ~ o f  our surface S 

in the point x(w) is given by 

Xe(w) = H(x(w)) for all wEB, 

where the function H E  C~ 3, R) is related to Q(x) through 

H(x) = ~-div Q(x). (2.16) 

We shall investigate the question whether such stationary points of D[x], or of 

D[x]+I~VQ[x], are indeed of class C 1 up to the boundary aB. It will turn out that such a 

regularity theorem can be proved if the surface x(w) meets the supporting surface 

everywhere at a right angle. By virtue of (2.15), this will be assured if the vector field Q 

is tangential to T along the trace E={x(w):wEaB} of x(w) on T. It will be more 

convenient to assume that Q is tangential to T in a whole neighborhood of ~ on T. We 

mention already here that the concrete vector field Q leading to the volume functional 

V Q, appropriate for our partitioning problem, has this property. 

3. Regularity for the stationary solutions of the auxiliary problem 

Throughout this section, we assume that x E ~(T) is a (conformally parametrized) 

stationary point of the Dirichlet integral in the class ~(T) N {z: VQ[z]=r that is, 

lim I {D[xt]-Dtx]} = 0 (3.1) 
t--,0 t 

for every admissible variation x, of x in ~(T) which satisfies the subsidiary condition 

VO[xt] = c. (3.2) 

Moreover, the following assumptions will be made: 

(i) There is an open R3-neighborhood U(p) of some point p E T such that 

x(B)cR 3 -  U(p). 



126 M. GRUTER, S. HILDEBRANDT AND J. C. C. NITSCHE 

(ii) The supporting surface T is a strict C2-surface. 

(iii) For  a suitable open neighborhood Ut(p)c~U(p), Q is of class 

C~(R 3 -  UI(p), 113) and satisfies the inequalities 0<[div Q]~<Ho<~ on 113_ UI(p) for 

some constant Ho>0.  

(iv) Qlr is a tangential vector field on T -  UI(p). 

(v) x(w)~cons tant  in B. 

Assumption (v) implies that D[x]>0. Then, for each w0 E B, there is a number rt 

with 0<r~<�89 (w0, aB) such that 

DB~,,r < �89 

Thus, by taking (2.7) into account,  we find an open disc f~*c~-B-B2r,(w o) for 

which 

ffnlx.Axoldudo=Dn.[xl>O. 
Without loss of  generality, it can be assumed that 

fflJlldudv>O , .  (3.3) 

where  xuAxv={J1,J2,J3}. We now choose ~p=;t~el. Here Z:~0 is a real number, 

el = { 1,0, 0}, and r E C~(fl*, R 3) denotes a nonconstant function to be determined later. 

Let  us set 

v(t) = V~u,[x+t~0]. (3.4) 

An integration by parts using (2.12) leads to 

<(o,= f fo. divQ(x)V2"(xuAxv)dudv 
(3.5) 

=2ffQ, divQ(x)~Jldudu" 

In view of (3.3) and assumption (iii), we can find a function | * r E C c (f~ , R 3) for which 

0'(0)4:0. By an appropriate choice of  2, we can arrange that o ' (0)=l .  The resulting 

vector  ~0=2~e I E C~(f~*, 113) has compact  support in Q*. 
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3 Set Q-'-Brl(WO), and let r/E C c (fl, R ) be an arbitrary test vector. For sufficiently 

small Isl, Itl define 

CPo = DB[x] 

CPl(S ) = Dt~[x + s~l]-Do[x ] 

q~2(t) = Do.[x +te/]-Do.[x] 

v~(s) = ~ [ x + s ~ ] -  ~ [ x ]  

02(0 = ~,[x+tW]- ~,[x]. 

The functions (Pl, q02, vl, v2 are differentiable, vanish at zero, and v~(O)= I. Moreover, 

~0(S, t ) : =  ~00+~l(S)+~2( / )  = D[x+srl+t~/] 

v(s, t):= c+vl(s)+v2(t) = VQ[x +srl+te/]. 

Since the Dirichlet integral is stationary in the class %(T) N (z: VQ[z]=c}, we may 

apply the reasoning of  the proof  of Lemma 3 in [17] to the functions ~0(s, t) and v(s, t), 
and we obtain the condition 

91(o)+~vi(O) = o, ~ = -~o~(o). 

This condition implies 

f ~ {Vx'Wl+lzdivQ(x)rl'(xuAx~ 
,l(Wo) 

for all r/E Cy(Brl(Wo), R3). Thus, x(w) is a weak H~-solution of 

(3.6) 

Ax = 2H(x) [xuAxo], H(x) = -~-div Q(x) (3.7) 

i n  Brl(WO) which satisfies the conformality relation (2.7). It follows from GrOter's thesis 

[7], [8] that x(w) is of  class C I '~ on Brl(Wo), for each t5 E (0, 1). Since w0 was an arbitrary 

point of  B, we conclude that x E C I'#(B, R3), for each fl E (0, 1). A familiar argument 

[10], [12] implies that the branch points wEB of x must be isolated in B. In view of 

assumption (iii) it is then seen that the Lagrange multiplier/~ in (3.6) or (3.7) above does 

not depend on the choice of  Wo E B. 
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Finally, if HEcm'a(R3,R 3) or HEcm'a(R3-UI(p),R3), where m = 0 , 1 , 2  . . . .  

0 < a <  1, the linear regularity theory yields that x E C"+2'~(B, R3). 

We summarize our results in the 

PROPOSITION 1. The surface x(w) is of  class C l'a on B for every fl E (0, 1). There is 

a real number it such that x satisfies 

f fB{Vx.Vrl+2H(x)rl .(xuAxo)}dudv=O (3.8) 

for all ~1 E let~ nL| R 3) where 

I f  HE C m" a(R3- Ul(p), R3), 

and 

H(x)=-~divQ(x).  

where m=0,  1,2, . . .  and O < a < l ,  then xEcm+Z'a(B, R3), 

It is our main goal to prove the 

Ax = 2H(x) xu A xo in B. 

PROPOSITION 2. The surface x(w) is of  class C~ R3). 

(3.9) 

In order to present a concise exposition of proof, we shall follow the approach of 

[9] as closely as possible. Obviously, it suffices to show that x E C~ U C, R 3) for each 

proper connected open subarc C of 8B. Given such an arc, there is a conformal 

mapping r of the semi-disc 

B + = {w = u+iv: Iwl < 1, v > o} 

onto the discB which can be extended to a homeomorphism of/~ + onto/~ such that the 

diameter 

I= (w= u+iv: Iwl < 1, v=O} 

is mapped onto C. It is then only necessary to prove that z:=xorEC~ R3). We 

observe that the equations (2.7) and (3.9) as well as the functionals D and V Q are 

conformally invariant. Thus z:B+--~R 3 can be treated in the same way as x:B-->R 3. 

For  this reason, we go back to our old notation and replace B +, z by B, x, that is, we 

assume that 

x: B = {w:  [w[ < 1, v > O} ---> R 3 
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is stationary for the Dirichlet integral D[y] in the class ~(T) N {y: VQ(y)=c}, where 

~(T) = {yEH~(B, R3): y ( / ) c  T}; 

see section 2. The assertions of Proposition 1 are assured, and we have to prove 

PROPOSITION 2'. The (reparametrized ) surface x(w) is o f  class C~ R3). 

This new notation enables us to a large extent to refer to the formulas of [9]. 

We begin with three lemmas, the proof of which will be omitted here. Lemmas 2 

and 3 agree with the corresponding lemmas in [9]. Lemma 1 can be proved in the same 

way as Lemma 1 in [9] once one has convinced oneself that conformally parametrized 

weak solutions of (3.9) of  class C~(B, R 3) have the same asymptotic expansions at 

branch points as minimal surfaces (see [10] and [12]). 

LEMMA 1. For each open subset ~ of  B and for every point w*ED, we have 

limsuplffo [Vx'2dudv>~2: t. 
o--,0 - ~  ngo(X*) 

Here x*=x(w*) and 

Ko(x*) = {w E B: Ix(w)-x*l < a}. (3.10) 

In the following, S,.(Wo) and Cr(Wo) denote the sets 

Sr(Wo)= {W: IW--Wol<r, v>0} and Cr(wd= {w: IW-wol=r, v>0}. 

LEMMA 2. For each z E CX(B, R3), for every Wo E I, and for each Ro E (0, 1 -[Wo[), 

there is a number r E [Ro/2, Ro] such that 

os c,,oo, z 

rE(0, 1-1wd) and zECI(B, R3). Assume that, for some LEMMA 3. Let woEl, 

positive numbers al and a2, 

OSCc,(w~lZ ~ a 1 

sup inf Iz(w)iz(w*)l  % 

and 

9-868282 Acta Mathematica 156. Imprim~ le 10 mars 1986 
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Then 

OSCs,two)z ~< 2a~ +2a 2. 

The crucial estimate for the proof of proposition 2' is contained in the following 

LEMMA 4. Let ~o, Ko, K be the constants appearing in assumption (V). Then 

there exist positive numbers Q1 and KI, depending on these constants and on tt and 

Ho, such that the following holds: I f  

wo E I, w* ~ Sr(W0) , 

and i f  

then 

0 < 2 r <  1-1w01, 0 < R < Q I ,  

inf ]x(w)-x(w*)l> R, 
w ~ C,(w o) 

R2~K~ f f s IVxl 2dudv. 
,(Wo) 

We turn to the proof of Lemma 4. Let w o E I, w* E Sr(w o) and 0<R<r :=r -, 

and set x*=x(w*), 6=~(x*)=dist (x*, T). 

Case I. 6(x*)>0. Here we choose some function 2(s)ECZ(R,R) satisfying the 

conditions 2'(s)>0 and 2(s)=0 for s~<0. Let R*=min(6(x*), d2R), where d=l/(2K)~<~. 

For 0<p<R* we define the function 

l f f  s 2(Q-'x-x*')lVx'  2dudv" 

It follows as in [9] that the function 

f w Sr(wo) 
r/(w) = ~[0, w C B -  Sr(W o) 

is of class H~(B, R 3) and that x(w, t)=x(w)+trl(w) represents an admissible variation of 

our surface x(w) E ~(T), permissible to be substituted in (3.8), to yield 

ffsr wo)(VxV +2H(x) (x.Axv )}dudv=~ 

Set h0=�89 0 so that IH(x)I<~ho . Then a computation similar to those in [8] or [9] leads 

to the inequality 
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~-~ alp(Q) ~< (Q,)-2 e2hoo dp(Q') for 0 < Q ~< 0' < R*. 

We now refine the choice of 2(s) by imposing the further conditions 0~<2(s)~<l and 

2(s)= 1 for s>~e, for some e>0. Then 

l f f  s IVxl2dudv<~(O')-2e2h~ s IVxl2dudu. 
~'2 r(WO) t3 Ko_~(x*) v(Wo) 13 Ko,(x*) 

The sets Ko(x*) are defined in (3.10). By letting first e---~+0 and then Q'~R*, we find 

l f f  s 'Vxl2dud~176 s ,Vx,2dudo. 
Q2 ~(w o ) n Ko(x*) ~(w o) n K~,(x*) 

If we now let ~ go to zero, we infer from Lemma 1 that 

2~ ~ (R*)-2 e2h~ f f s IVx[2 du dv. (3.11) 
,(w o) n KR,(x*) 

It is now necessary to distinguish two possibilities. 

Case I(a). d2R<6(x*), i.e., R*=d2R. Then 

e2h~ s IVx12du do. (3.12) 
RE ~ 2rid4 ,(we) 

This is the assertion of Lemma 4, with the constant 

K I = V~K._____~2ehoOt/(2lo2" 

Case I(b). d2R>6(x*), i.e., R*=6(x*). Then we obtain from (3.11) the estimate 

_< 1 2h 0 6(x*) 
2zc--~x,)2e ffs,(wo)oK~,x.,(x.)lVxl2dudv. (3.13) 

There exists a point f E  T such that 

If-x*l = 6(x*) < d2R <~ ~R. 

We shall choose fas  center of a new system of coordinates as described in assumption 

(V), with the defining diffeomorphism h and with the coefficients go(Y) of the funda- 
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mental  metric tensor  introduced in (2.1). We set y(w)=h-~ox(w)  and define the 

" n o r m "  Ily(w)ll by  

Ily(w)ll 2 --- goty(w))ye(w)yJ(w). 

For  6(x*) ld<o<dR,  we consider the function 

f i~(e-lly(w)ll)y(w), w E Sr(WO) 
r/(w) = ~ " ' [ 0 ,  w E B - S r ( w  o) 

which can be shown to be of  class H~(B, R 3) as in [9], pp. 398-399. Moreover, the one- 

parameter  family 

xt(w) = h(y(w)+tri(w)) = x(w)+t~(w, t), It I < �89 

with 

~(w, t) = A(w, t) rl(w), 

A(w,  t) = ~.. (y(w) + rtrl(w)) dr 
ay 

is seen to form an admissible variation of  x(w). The proof  of  this fact can be carried out 

as in [9], pp. 399--400. 

Next ,  we choose some open disc f~*ccB-Sr~(Wo), r I :=�89 ). Since the branch 

points of  x(w) are isolated in B, we have 

f f l x . ^ xo ldudv>O. ,  

For  sufficiently small Isl and It[ we introduce two real valued functions 

q0(s, t) = q0o+(Pl(s)+q~2(t) 

and 

where  

v(s, 0 = c+v~(s)+v2(t) 

% = DB[x] 

cpl(s ) = Dsr(wo)[h(y+s~l) ] -DSr(wo)[ X] 

q92(t) = D~,[x q- t~O]-Dfl,[x] 
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v,(s) = ~:~a[hfy+srt)]-  ~:woJx] 

vzf t) = V~Q.[X+t~p]- V~.tx] 

where, as at the beginning of section 3, g, E C~(f~*, R 3) is chosen in such a way that 

v~(0)=l. The functions q0~, ~02, v~, v2 are differentiable, vanish at zero, and we see that 

q~(s, t) = D[h(y + srl)+ t~], 

v( s , t) = VQ[ h (y + srl ) + t~p ] . 

As in the beginning of  section 3, we find 

~01(0)+pv~(0)  = 0 ,  

A computation shows that 

~o',(o)= f ~:wo {go~y) Vy'V,~J4 
and 
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1 agii(Y) VyiVyjrlk'~ d u d v  
2 ay k J 

a0 ,ay, . y.^ro,}a.ao 
where we have set 

~:~"~JY 8y3 "' 8yl ' ~ ' - ' - ' "  8yl " 8y2 j 

and, of course, h(y(w))=x(w).  

By virtue of Proposition 1, we conclude that the number li is the same constant as 

in Proposition 1 and hence independent of Wo and r. 

We know from [9] that ~i(w)=O for w6C, (wo) .  Moreover, y3=0 and r/3=0 on 

L(Wo)=(w: Iw-wol<r, v=0}. Since ah/ay lAah/ay  2 is a normal vector field to T in 

Tn U and Q(x) is a tangential vector field to T, it is also true that Q3=0 on {yER3: 

lyl<eo, y 3 = O } = h - l ( T f l  U). In view of this, an integration by parts leads from (3.15) to 

o,,<o)= f f s div(2(Y)ri ' (y ,  Ayo)dudv .  (3.16) 
,(Wo) 

This integration must be carried out with care. First, one approximates y in 

H~(Sr(wo), R 3) by regular mappings y, vanishing on Cr(W o) and satisfying y3,=0 on 

(3.15) 

/2 = -q0~(0). (3.14) 
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Ir(wo). Then one replaces y by Yn in (3.15), while r/ is left unaltered, performs an 

integration by part s and lets n go to infinity. 

We now have arrived at the variational equation 

f f  (go(Y)VYi'Vrl j + l  Ogu(Y) vyi.VyJrlk+ltdivQ_(y)(yuAyo).rl dudo=O. 
J JS~(wo) t 2 Oy g 

Set 

Then we see that 

whence by (3.7) 

and further 

where 

g(y) = det (go(Y)). 

div Q. = (div Q)ohdet (fl~yy ) = (div Q)oh X/-g -, 

/~ div Q(y) = 2H(h(y)) gX/'-~, 

Js,(wo) ~ 2 

ag~ity) ayk Vyi VyJrl k 

+2H(h(y)) gVg-~ (y,,Ayo)'rll dudo = 0, 
) 

IH(h(Y))l~ ~ ho K3/2 = h I. 

Let us introduce the function 

ttt(~) = f fs,,w0 2(Q-IlYII)gti(Y)Vy'. Vy j dudv 

and also note that the conformality relations (2.7) now take the form 

i �9 i j i J w  gij(Y) Yu Y o - in B. g~i(Y) Yu YJu = g u(Y) Yo Y o, 0 

By the same computations as in [9], pp. 400--402, we see that the differential inequality 

do LQ" _1 e" ap 
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holds for 6(x*)/d<o<dR, where we have set 

M 1 = (2Ko+2hl)K 3/2 and M 2= Ko Kin. 

As in [9], pp. 402--403, this implies 

(~2(X*) r(WO) flKN(x*) (f) d4 R2 ,(~o) 

where 

C(R) = (1 + dRM2) e dRMt. 

Considering that K 3 ( x , ) ( x * ) c K 2 ~ x , ) ( f )  , a combination of (3.13) and (3.19) gives 

g 2 J  C ( R ) 2 h o d 2 R f f  [VxlZ du do. 
2~----~ e J Js,(wO 
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(3.19) 

If we set 

Case II. 6(x*)=0. Then x*=f. As in the previous case I(b), we can derive the 

differential inequality (3.18) for all 0 E (0, dR). We integrate this inequality between the 

limits 0 and dR and find 

" "ffs • IVxl 2 du dv ~ ~ IVxl 2 du do. 
Q 2 r(wo) n Kolr(X*) ,(wo) 

By employing once more Lemma l, we conclude that 

! C(oi) K, = 4K 2 e h~176 ~,] 
2~ ' " 4  

we can combine the inequalities (3.12), (3.20) and (3.21) to give the assertion of Lemma 

4. Lemma 4 is thus proved. 

(3.21) 

Regarding the constant on the right hand side, recall that we had restricted R to the 

interval 0<R<Q0X/K=01. 

(3.12) and (3.20) contain the desired inequalities for the case 6(x*)>0. We must still 

consider the 

(3.20) 
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Proposition 2', that is, the continuity of x(w) on BUI, is a direct consequence of 

Lemmas 2, 3 and 4. To see this, choose an arbitrary point Wo E I and an arbitrary 

number R E (0, 01). Then there will exist a number ro with 0<2ro< 1 -  Iw01 such that 

f ]Vx]2dudv<R 2". 
,o (Wo) 

Lemma 4 implies that 

sup inf [x(w)-x(w*) I < R 
w* E S ,( w o) w E C r( w o) 

for all r E (0, ro). On the other hand, Lemma 2 guarantees the existence of a number 

r E [ro/2, ro] for which 

OSCc,(wo) X <~ K2 ]Vx]2 du dv <~ R, where K2 = zc 
,o (W O log 2 

An application of Lemma 3 shows that 

K2 
~ ~ ~ ~ 2 ( l +-~l ) R 

and therefore 

lim OSCs/w0 )x = 0. 
r----~0 

The desired continuity of x(w) is a consequence of this relation. 

The continuity of x(w) is the starting point for the proof of the higher regularity. As 

a first step toward this goal, we shall now prove 

PROPOSITION 3'. The (reparametrized) surface x(w) is of class c~ R3) for 
some a E (0, 1). 

Let w0 El, and choose f=x(wo) as center of a new system of coordinates as 

described in assumption (V), with the defining diffeomorphism h. Set y(w)=h -1 ox(w). 
Then y E C~ UI, R3), Y(Wo)=O and y3(w)=O for w E IRo(W o) if R 0 E (0, 1-Iw01) is chosen 

so small that ly(w)l~<Oo for w E SRo(Wo). As in the derivation of (3.17), it can be shown 

that 
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f fs { gij(y)Vyi'Vcpj41agO'(y) Vyi'Vyjcpg 
,(Wo ) 2 Oy ~ 

(3.22) 

+2H(h(y)) gV"~ff (y~ A y~)" q~J du do = 0 

for each test vector qg={qgl,qo2,q~3)EH~flL| 3) with ~=0  on C,(w o) and 

q03=0onl~(w0), where 0<r<Ro.  Let  RE(0,R0/2), and choose a function 

~EC~(B2R(Wo),R) with 0~<~1,  2=1 on BR(w o) and IV~I~<2/R. For r=2R, q~ be the 

vector with the components 

where 

qJ = (yi--(.Di) 1r z, i = 1,2, 3, 

m j = ~ y:'du do for j = 1,2, ~o 3 = 0, 
3s 2n(Wo)- Sn(w o) 

and the symbol ~ indicates the mean value. We note that q0 is admissible for (3.22). 

Therefore,  

f f s  1 Og~ vyi'VYJ { gij(y) Vyi" VYJ+ [ 2 
~(wo) aY k 

+ 2H(h(Y)) ~ g(Y) (YuA Yo)k] (yk-ogk) } ~2 du dv 

= - 2r (y -~o ) Vy i '  V~ du do 
zuCwo) 

<~t~f f  s go'(Y)VYi'VYJ~2dtldv 
2s(Wo) 

+ 4 - " ~ f f  S gii(y)(yi-ogi)(yJ-~oJ)dudo 
~R 2 ~(wo)- SR(wo) 

for every 6>0.  Since y(wo)=0 and y E C~ O I, R3), we can make ly-ogl 2 on s2n(Wo) as 

small as desired by selecting a sufficiently small R>0.  Thus, in view of (iii) and of 

assumption (V), we can find a number R1 E (0, Ro/2) and a constant/(3 independent of  

Wo and R such that the above integral inequality can be transformed into the inequality 

_< K3 
f fsR~w lVYl2 dudv ~--~ f fs~<wo)_sR~wo)}Y-wl 2 dudv 

10-868282 Acta Mathematica 156. Imprim6 le 10 mars 1986 
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valid for all R E(0,R~]. In view of Poincar6's inequality, the right hand side of this 

inequality can be bounded by a term of the form 

K4ffs~,wo)_S,,~Wo) 'Vy'2dudv 

where K4 denotes another constant independent of Wo and R. With the help of the 

"hole-filling" technique of [18], [31], we can now conclude the existence of numbers 

a E (0, 1) and/ (5>0, / (6>0,  independent of w0 and R, such that 

R(wo)lVyl2dudv<.K,(---~o ) D[y] 

and, as well, 

f fsR~wo) lVxl2 du dv <" K6 (-~o ) 2aD[x] 

for all woEL RE(0, l-lwol). 
By combining the last inequality with appropriate interior estimates, which can be 

derived in a similar way, a well known device (see e.g. [14], pp. 259--260) yields that for 

all r>0, for all dE(0,1) and for all woEZd, where Zd={W:wEB, iwl<l-d}, the 

following estimate holds 

f fB  /r\2a n.,(Wo)lVxl2dudv< KT(7) Otxl. 

Here K7 is a constant similar to the previous constants. This implies x E C O, a(B U I, R3). 

Let us return to our original notations and assumptions from the beginning of this 

section. Then Proposition 3' leads to the following result: 

PROPOSITION 3. The surface x(w) is of class C ~ a(B, R3), for some a E (0, 1). 

The higher regularity of our surface is expressed by the 

PROPOSITION 4. Suppose, that the supporting surface T also belongs to class C a. 
Then the surface x(w) is of class CI"a(B, R 3) for every fl E (0, i), and it intersects T 
orthogonally in its trace curve Y.= {x=x(w); w E aB }. 

Proof. Let us return to the proof of proposition 3' and, in particular, to equation 

(3.22). If (g~/(y)) denotes the inverse of the matrix (gu(y)), and if ~/,= {~0 z, ~02, ~03} E 
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C~(S,(wo), R3), then the vector 9 =  {~0 t , tp 2, q03 } with components qDi=g~i(y) q,J is admissi- 

ble for (3.22). Substitution into (3.22) yields 

( f {VYi'v~i-F~(Y) VYi'Vyj~k+2H(h(Y)) x~ g(y) gU(y) (y.A yo)~pJ} du dv = O. 
J J s  ,(Wo) 

(3.23) 

Here  F~ are the Christoffel symbols of  the second kind with respect to the metric (go), 
and (y,,Ay,,) i denotes the ith component  of the vector product y,,Ayo. An application of  

the fundamental lemma of  the calculus of  variations shows that 

Ay*+F~(y) Vy'.VyJ= 2H(h(y)) gV'~gJk(y)(yuA yv) i, k= 1,2,3, in Sr(WO). 

(3.24) 

where  

~(wo)= {w: weS,(wo), v=O), b>O. 

We extend y(w) from S,(wo) to Br(wo) by setting 

yl(w) = yl(t~), y2(w) = y2(t~), y3(w) = -y3(W), if v < 0. 

The extended vector  y(w) is of  class H~ N C o, a(Br(wo), R3), and (3.23), (3.26) imply that 

f f B [ V y ' V ~ P + f ( w , y ,  Vy)'~2]dudv =0 
,(we) 

Since T is assumed to be of class C 3, the local coordinates y can be chosen in such a 

way that, in addition to the condition of assumption (V), also 

go(Y) = 0 for i , j ,  lyl < Oo, y3 = 0. (3.25) 

(Details of  the necessary construction can be found in [14], pp. 265-266.) Then also 

every test vector  q ,={q : ,  q,z, ~03} with 

2 ~ 3 V/l, V,t, ~. C c (B,(wo), R), tp ~. C c (Sr(wo), R), 0 < r < R 0 

is admissible in (3.23). In view of  (3.24), we therefore obtain the condition 

lim f I i 2 (wo) [yo V/ + yo ~2] du = O, (3.26) 
,~---, + o & 
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for all ~0 E / ~  nL| R3), 0< r<R 0. The vector functionf(w, y, Vy) can be comput: 

ed from (3.23); all we need to know here is the inequality 

Iflw, y(w), Vy(w))l ~< alVy(w)l 2, w Enr(wo), 

for a suitable constant a~>0. 

The assertion of regularity is now a consequence of a regularity theorem 

of F. Tomi [18]. Moreover, we have y3=0 on Ir(WO), and (3.26) implies that 

ylo=y2v=O on Ir(wo). It follows from this that the surface y(w) is perpendicular to the 

plane {y3=0} along the curve {y(w): WEIr(WO)}. Going back to our original coordi- 

nates and remembering (3.26), we see that x(w) intersects T orthogonally along Z. 

Proposition 4 is thus proved. 

The main result of the present section can now be formulated: 

THEOREM 2. (a) If, in addition to the previously stated assumptions, T is of  class 

C m'a, where m>>-3, 0 < a < l ,  and Q is of  class C m-l'a in R3-UI(p), then 
X(W) E C m' ct(j~, R3) .  

(b) I f  T is real analytic, and if  Q is real analytic on  R 3 -  UI(p) ,  (2) then x(w) is real 

analytic on B. 

In both cases, x intersects T orthogonally along its trace ~,={x=x(w): w E aB}. 

The proof follows from Propositions 1--4 by the techniques employed in [14]. For 

the applicability of the Agmon-Douglis-Nirenberg results, one has to check that the 

complementing condition with respect to (3.24) is satisfied for the boundary conditions 

of y; cf. [14], pp. 304-307. However, this is an immediate consequence of assumption 

(iv). Combining the above results with the reasoning of [14], we obtain 

THEOREM 3. I f  T is also o f  class C 3, then the solution surface x(w) possesses only 

finitely many branch points in B. Every branch point woEB is associated with a 

constant vector b E C, satisfying b*O and b . b=0, and an integer v~  l such that 

xw(w) := �89 = b(w-WoY +O(IW-WoD, (3.27) 

for w-->Wo. The tangent plane o f  x(w) tends to a limiting position as w-->Wo. Finally, if 

Wo E OB, then the nonoriented tangent o f  the trace Z moves continuously through Wo. 

The oriented tangent o f  Z is continuous at branch points of  even order v, while for 

(2) It clearly suffices to assume that Q(x) is real analytic in a neighborhood of x(/~). 
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branch points of odd order, the tangent direction jumps by 180 degrees, that is, the 
trace Y. has a cusp at X(Wo). 

There are, of course, special situations for which more extensive information is 

available regarding the existence of branch points. For instance, it follows from the 

asymptotic expansion (3.27) that if T is the boundary of a conoex body, any solution 
surface of the partitioning problem formulated in section 1 is free of boundary branch 
points. 

Let us consider such a convex supporting surface T=a~,  and let S={x(w): wEB} 
be a solution of our partitioning problem. Denote by Ro the radius of the largest sphere 

inscribed in X, and assume that the principal curvatures ~l,X2 of T satisfy the 

inequality I~11, 1~21-<l/R for all points of T. 

Green's formula gives 

fox~(ei~ A x d u d v n  (3.28) 

and, for any test vector y(w) E H~(B, R 3) I1 L| R3), 

f J ' x o ( e ' ~  (3.29) 

As before, let n(x) be the outward normal unit vector of T at xE T; also introduce the 

arc length parameter s=s(O) on the trace curve X and set ~(s):=x(ei~ Then 

xo(ei~176 I n(x(ei~ so that 

foBx~(e'~ dO = fxn(~(s)) ds, 
(3.30) 

fonY" xe(e'~ dO = fxY" n('(s)) ds. 

Since 

2 f fBx~Ax.dudv= foBxAdx= fz~Ad~, (3.31) 

it follows from (3.28) and (3.30) that 

fx {n(~) A 0 (3.32) ds-H~ d~} 
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if x=x(w) is a minimal surface. 

Denote by 

the length of 5~, and let 

f n(~(s)) ds = 0 (3.32') 

L = fan Ix~176 dO = f~ Idol 

fo L := ~(s) as 

be the barycenter of the parameter representation ~=~(s) of E with respect to the arc 

length parameter s. Now we employ an idea due to Croke and Weinstein [3]. First, we 

infer from Wirtinger's inequality that 

I$-~12ds~< ~ I~'l zds = 4zt2. 

We can assume that the ball {zER3: Izl~<Ro} is contained in X. Then the support 

function p(z)=z, n(z) satisfies p(z)>~Ro for all z E T, whence 

f: f: R o L -  ~.n(~)ds~ (~-~).n(~)ds 

/ fL \ J/2 L~ 

By virtue of (3.32), we arrive at 

RoL <~-~-~+H (~,~,~')ds, 

where (a, b, c)=a. (bAc) for a, b, c E R 3. Since 

(~, ~, r = (L ~-~ ,  g'), 

we obtain 

2 ~ RoL~ ~ + l n l  L L~ I~11~-~11~'1 ds 
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~< ,2 +IHII~ I ~  / r L \,,2 IJo :as) 
L 2 

~ (i+l/-ll Ill) 2." 

An elementary consideration yields I~l~<diam ~ -R0 .  Thus we conclude that the length 

L=L(Y.) of Z is estimated from below by 

L(~:) >~ 2ztRo[1 +(diam :g-Ro)In, l - ' .  (3.33) 

If x=x(w) is a minimal surface, we have in particular 

LO:) ~> 2~tRo, (3.33') 

and also 

ztR 2 <~ D[x], (3.33'9 

since 

RoL<~foL~'n(Ods=foBx'xodO=ffBIVxl2dudv=2D[x], 

and thus, by the isoperimetric inequality, 

R 2 L 2 ~< 4D[x] D[x] <~ 4D[x] L 2 = - -  D[x]. 
7t 
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k0(x)l ~ 1, Igradq0(x)l ~ l + e  
R 

Using y(w)=q)(x(w)) in (3.29) and (3.30), and observing that 

IVx" Vyl ~< Igrad ~01 [Vxl 2 ~< 2 (1 +e). �89 2, Ix, A xol -- �89 2, 

we obtain the estinaate 

L(E) <~ 2 (]HI+ I ) D[x] (3.34) 

For an estimate of L(Z) from above, let us, as in [191, choose a vector field qg(x) 

which coincides with the normal vector field n(x) on T and which vanishes outside a 

suitable parallel strip of T. Then, for every e>0, one can construct ~0(x) in such a way 

that 
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as e--,,O, since there are no branch points of x(w) on OB. For H=0, this inequality was 

found in [16] and [19], and, for H4:0, the same estimate has been stated in [20]. 

If H=0,  we may apply the isoperimetric inequality 4~D[x]~L 2 to (3.34), whence 

we get 

L(Z) ~> 2arR. (3.34') 

Since RoaR, this estimate is slightly worse than (3.33'). 

It seems generally to be a difficult task to determine the area D[x] and the mean 

curvature H by the geometric properties of Y( and by the value of tr. As we have seen, 

there can exist stationary solutions of the o-partitioning problem with H=0 and H#:0. 

Moreover, the plane minimal surface 

x(w) = (Re w m, Im w m, 0) 

(m= 1,2, 3 .. . .  ) is stationary for the partitioning problem of the unit ball {z E R3: Iz[~ < 1} 

with o= 1/2, and 

D[x] = m~. 

Thus it is impossible to bound the area in terms of Y{ and ~r if x is allowed to have 

interior branch points. One might, however, conjecture that the area of embedded 

solutions of the partitioning problem can be estimated from above. 

A general stationary solution S={x(w): wEB} of a partitioning problem for a 

convex body Y~, as defined in section 2, has no boundary branch points and only finitely 

many interior branch points WjEB, j = l  . . . . .  1, of order mj~>l, and, by [11], we have 

2zr I+ Z m j  = xeds+ KdA (3.35) 
j=l / 

where x e is the geodesic curvature of the boundary curve Z of S with respect to S, ds 

its line element, and where K is the GauB curvature of S and dA its area element. 

If  H denotes the (constant) mean curvature of S, then we have K<~H z. Since 

1%l<~x, we then obtain 

2~ l + Z m  j ~ xgds+H2D[x]. (3.36) 
j=l / 

Let us collect the results. 

THEOREM 4. Let 5E be a convex body with a smooth boundary T which contains a 

ball o f  radius Ro. Assume also that the principal curvatures xl, x2 of  T satisfy I 11, 
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1~2[~ 1/g. Let S= {x(w): w E B} be a stationary solution o f  a partitioning problem for 5( 

which has the free trace E= {x(w): w E aB) on T and the (constant) mean curvature H. 

Then the length L(Z) o f  Y, can be estimated by 

2~Ro[ 1 + (diam 5(-Ro) [HI] - 1 ~< L(Z) <~ 2(IHI + g -  1) D[x]. 

Moreover, S has only finitely many branch points o f  order mj, and 

where x denotes the curvature o f  the curve ~. 

4. Proof of Theorem 1 

Let  us return to the notation of section 1, and suppose that the surface S={x=x(w): 

w E B }  satisfies assumption (A1). It is assumed that an Ra-neighborhood U(p) of a 

specific point p E T is omitted by S, and we choose a smaller neighborhood 

Ul(p)ccU(p) .  It is our aim to construct a vector function Q(x)=(QI(xI,x2,x3), 
Q2(x1, x 2, x3), Q3(xI, x 2, x3)) which satisfies conditions (iii), (iv) of section 2, and for 

which 

measQT=ffBQ(z).(z.̂ zo)dudv (4.1) 

holds for every embedded regular surface z(w)ECI(B, R 3) which maps B into the 

interior of 5(dividing int 5(-z(B) into two open simply-connected parts f2~' and fl~, and 

which is omitting U(p). 

Remark. We prefer to present a direct and explicit determination of the vector field 

Q(x) which is tangential to T except in the neighborhood U1(p) N T. For  the reader who 

prefers a minimum of explicit calculations involved we shall indicate an abstract 

existence proof at the end of this section. There is a wide freedom in the choice of a 

suitable vector function, see [23]. As an example, we mention that for an ellipsoid 

ff{: (xl/a)2+(x2/b)2W(x3/c)2<l, Q(x) can take the interesting form 

1 2c-x~3 {--XIx3, --X2X3, C2--(X3)2} (4.2) 
Q(x) = 3 (c-x3) 2 
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r~g. z. 

(or analogous expressions with one of the other axes preferred). (4. I) is applicable i fp  

is the point (0, 0, c). For  the general case, we proceed as follows. 
We select two points - ~ 2 3 l 2 3 pI-- (XI ,XI ,XI)  and p2=(X2,X2, X2) on T s u c h  that the chord 

l=plP2 is contained in U~(p) and that the planes tangent to T at these points intersect 

in a straight line lo outside of ~ .  (3) A simple foliation of ~ will be used considering ~ as 

the union of shells, much like an onion, by taking the line I as the stem and the point p~ 

as the stemplate; see figure 2. In a suitably chosen coordinate system, the line lo 

becomes the x2-axis, the body ~rlies in the halfspace xl>0,  and Pl is situated "be low" 

P2 so that x]/xl~ = -x~/x~. Each plane in the pencil of planes with carrier line lo intersects 

in a convex region, and we obtain the following representation for the points of ~: 

I Yc I = x l (a)+2R(a,  q~) cos ~0 cos a 

.~(a, 2, q~) = ]c 2 = x2(a)+,~R(a, q~) sin q0 (4.3) 

~ 3  = x3(a)+ AR(a, q~) cos q~ sin a 

(3) It is a s s u m e d  here  that  Y~ is not  flat in the neighborhood of  p. 
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Then it turns out that 

a(w)  = a(z~(w), z2(w), z3(w)) 

,~(W) ----- ,~ (ZI (w) ,  Z2(W),  Z3(W)) 

r  = 99(z~(w), zZ(w), z3(w)). 

a(2, q~) = A-~(d, )~, ~)k~ "(z, A zo). (4.6) 
0(u, v) 

On the surface z(w) we consider the vector xa=xa(a(w), A(w), r and we define 

the open subsets of  B, 

where lal~<ao, 0~<2<~1, 0~<99~<2~r while {x=x(a): lal~<ao} is a representation of l: 

I 3 I 3 
x l (a  ) = (x 2 Xl --Xl X2) COS a 

(x~-x~) sin a-(x~-x])  cos a 

1 2 1 2 �9 2 3 2 x2(a ) = (x2x ~ - x  I x2) sm a +(x2x ~ -X l  x~)cos a 

x,,) sin a -  x]) cos 

I 3 l x~)sina x3(a ) = ( x 2 x l - x l  

(x~-x~) sin a-(x~-x~) cos a 

Every point (xl,xZ,x 3) in the interior of X, not in UI(p) (and thus not on / ) ,  corre- 

sponds to a unique triple (a, 2, ~): 

a = a(x I , x 2 , x 3) = arc tan [x3/x I ] 

99 = 99(x I , x 2, x 3) = arc tan [(x 2-x2(a))/v'(x t -xl(a))2+ (x 3-x3(a)) z ] (4.4) 

2 = 2 (x I , x 2, X 3) = R-l(a(x), 99(x)) ~/(x I -xl(a))  2 + (x 2 - -x2 (a ) )  2 + (x 3 --  x3(ct)) 2 �9 

In the second and third formulas it is understood that tan a=xa/x ~ is substituted in the 

expressions xl(a), X2(a) ,  x 3 ( a ) .  A computation shows that 

A(a, 2, qg) : = xa" (3r A Yr = ~'RE(a' 99) xl(a) +22R3( a, 99) cos 99. (4.5) 
COS a 

The various leaves of  the foliation are the loci 2=constant;  for 2=1 we obtain a 

representation of  the boundary O~=T. 

Let  now z(w) be the surface under consideration and assume that the orientation is 

chosen so that the point p lies on the boundary of f ~  and that the normal vector zuAzo 
points toward fl~. We use the abbreviations 
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and the set 

B + = {w: w fiB, 2(w) > 0, fc~. (zu A zv) > 0} 

B -  = {w: wEB, ):(w) > 0, k,~'(z,,Azv)<O) 

B ~ = (w: w e B ,  ;((w) > 0 ,  ~a'(zu/Xzo) = 0). 

The sets B + and B -  define those portions of  z(w) which are intersected transversaUy 

by the curves 2=cons tant ,  ~=cons tan t  of  our foliation. In figure 2, the points zi=z(w) 
on z(w) are images of  points wj in B + for j = 5 ,  6, 7, 11, in B -  for j =  1,2, 3,9, and in B ~ 

for j = 4 ,  8, I0. 

Consider a small neighborhood o in B +. Its image z(o) on the surface z(w) is the 

base of  a curved cone with vertex Pl (in the negative direction from z(w)). The volume 

element is (3ca, Ycz, k~o)da d2 dcp; thus the volume of the cone comes to 

Here  (3ca, jz, Yc.)=ja'(3c,tAk.) , O is the image of  a in the (2, qg-plane and 

d(2, tp)=d(u, v). In view of  (4.5), (4.6), by a change of  variables, the above integral is 

equal to 

l ] 
A(O, X, q~) .,-% A(fl, X, qS) dfl (fc~, z., zv) du do 

o r  

if we define generally 

f f~ Q(z)" (z,, A zv) du dv, 

1 A(fl, 2, 9) dfl ~c~(a, 2, q~) (4.7) 
Q(x) = A(a, ~., 9)  ,~o 

where on the right hand side the values a(x), ~,(x), q0(x) must be substituted from (4.4). 

For  the change from the parameters 2, q~ to the parameters u, v, the inequality 

8(,(, q3)/a(u, v)>0 has been used. 

Near  its base,  the cone lies in the domain f2*, but its generating lines may intersect 

the surface z(w) repeatedlymalternatingly in the images of points in B -  and B +. Since 

8(2, q3)/a(u, v)<0 for w 6 B - ,  the contribution to the volume will be negative for a base 

z(ty), c rcB- .  Therefore,  ultimately only those parts of the original cone which lie in Q~' 
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will be recorded. Formula (4.1) is obtained by an extension of the integration over all of 
B. (Employing an approximation argument, if necessary, it may be assumed that the set 
B” has measure zero.) 

The vector function Q(x) of (4.7) has the following properties: 
(1) Q(x) is continuously differentiable in X-U,(p); the precise regularity of Q(x) 

depends on that of T. 

(2) div Q(x)= 1 in X- Ur(p). 
(3) For x G T- U,(p), Q(x) is a vector tangent to T. 
Property (1) is clear. Property (3) is a consequence of the fact that the curves A= 1, 

q=constant lie on the boundary T and can be parametrized with the. help of the variable 
a. As for property (2), let us set 

and observe that 

grad a(x) = i (iA A iv) 

grad n(x) = d (iv A i,) 

grad q(x) = i (i, A i,) . 

Then 

K,*grada = 1, &.gradl=O, i,.gradg,=O 

~~~.8rada+f,-pradl+f~~.~ad~=~ 

and 

It follows that 

dive(x)=%=%- 3Q 3Q grada+T.gradl+ap,.gradg, 
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Our vector function Q(x) of (4.7) and the surface T satisfy the conditions (i)-(iv) 

stated at the beginning of section 3, and the volume formula (4.1) applies to the 

representation x: B---~R 3 of S. Let now qg(T) be the class of surfaces defined in section 

2, and set 

~r 

We shall now give the precise formulation of 

Assumption (A 2). x(w) is stationary for the Dirichlet integral within the class cr 

By virtue of our construction, the assertion of Theorem 1 follows from the 

Theorems 2 and 3. As had been already mentioned, x(w) cannot have branch points on 

OB. 
Let us finally give an abstract reason for the existence of a vector field Q as in 

assumption (A 2). We can try to find a solution of 

div Q = 1 in ~,  Q,, = 0 on T-  U l ( P )  , (where Qn = n. Q), (4.8) 

which is of the special form 

Q(x) = gradf(x). 

For this purpose, we determine the scalar functionf(x) as solution of a boundary value 

problem 

A f = l  i n k  
(4.9) 

Of+Tf=O on T = O ~  
On 

where y is some sufficiently regular function on T which satisfies y~>0, y~0, and y=0 on 

T-UI(p). The boundary condition in (4.9), which was suggested by Fanghua Lin, has 

been selected to make sure that a unique regular solution f(x) exists; see, for instance 

[6], especially p. 124. 

This approach has the advantage that it can also be applied to nonconvex sets Y(. If 

x(w) is a solution of the partitioning problem for Y(, we infer from (4.8) that 

meas r=fff .ax'a. , x =fff./ iveax' x .x  
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Added in proof. Mario Miranda has kindly pointed out to us that interior regular- 

ity for  minimal solutions of  partit ion problems was proved by E. Gonzalez,  U. Massari 

& I. Tamanini:  On the regularity of  boundaries of  sets minimizing perimeter  with a 

volume constraint .  Indiana Univ. Math. J., 32 (1983), 25-37. 
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