THE PRODUCT OF » REAL HOMOGENEOUS
LINEAR FORMS

By
C. A. ROGERS
of LoNDoN.
1. Let
n
x, = Jla,u,, r=12,...,n
o=1
be n real homogeneous linear forms in the integral variables u,,. . ., u,. Let JT(a,,)
be the lower bound of the product |z, .. .x,| for all sets of integers u,,. . .,u, other
than 0,...,0. Let J1, be the upper bound of dM(a,,) for all sets of linear forms
Z,. .., x, with determinant 1. A well known result of Minkowski! implies that
n!
M, < e (1)
Hence, if
m = lim {31, )", (2
n—-oo
we have
1 1
e S— (3)
e 2-71828. ..
The stronger inequalities
1 1
V3em  357905...
1
m<-—————, (5)
3:65931
1 1

B 6
efe 448168 .. (®)

! Minkowski proved in Geometrie der Zahlen, (Leipzig, 1910), § 40 that one can find integers
Uy, . . ., Uy, DOt all zero, satisfying |2+ - - - +z,| = (n")1/® and (1) follows from this by the inequality of
the arithmetic and geometric means.
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have been obtained successively by Blichfeldt!, Rankin?® and myself®.
But I have recently noticed that the inequality

1 1
me< -——— = (7)

- VZne—\E— 530653 . ..

is implicit in a paper by Blichfeldt* on the minimum value of the discriminant of a
totally real algebraic field.
The main object of this paper is to obtain a new upper bound for o, and to

prove that '
r 1

m< — = . (8)
defe 570626 ..
The method of proof is based on my method for proving (6) which is itself based on
Blichfeldt’s method of proving (4).
- As Minkowski® pointed out; if D, is the least discriminant of any totally real
algebraic field of degree n, then

1
.Dn Z 5&3 .
Hence, if
d = lim {Dn}l/” ,

n—>0o0

we have
1
d> Th

1 H. F. Blichfeldt, Monatshefte fir Math. und Phys., 43 (1936), 410-414.

2 R. A. Rankin, Proc. Kon. Ned. Akad. v. Wet., Amsterdam, 51 (1948), 846-853 (848).

3 C. A. Rogers, Journal London Math. Soc., 24 (1949), 31—39. v

4 H. F. Blichfeldt, Monatshefte fir Math. und Phys., 48 (1939), 531-533. Blichfeldt considers the

linear forms
Wy Ty -+ Wy s k=1,...,n,

of determinant 4, where wyy,. . ., Wy, is a basis of a totally real algebraic field of discriminant D = 42 and
Wprse - > Wiy k = 2,...,n are conugate bases of the conjugate fields. But Blichfeldt proves, without use
of his assumption concerning the nature of wy,,. .., w,,, that for any integer m > 1 there are integers

Uy,. - ., u, Not all zero such that

n n 2n
11 = 11vn ul+~-+wknun)“'5"2[ (1 1)] (m=1)2[1-22-35. ... .m"]P@=D[I(1+ §n)]?
8 t—1 an{m—

Taking m = [n log ] and letting n tend to'infinity one obtains (7).
5 H. Minkowski, Geometrie der Zahlen, (1910), § 42.
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Thus, by our result (8),
3

6e
= 32'561.... (9)
.’7!2

1
d >

This inequality is better than the result
d > 2nel/e = 28°159. ..

of Blichfeldt! corresponding to (7).

I am grateful to Mr. L. A. Wigglesworth for finding for me the function g(x)
satisfying the integral equation (18) and playing a central part in this work. I am also
grateful to Professor Davenport for a number of useful suggestions.

2.'My proof of (6) was based on the following lemma.

Lemma. If m > 1 and

2 <2< oL < 2y, (10)
then ‘ )
2.0 2/{m(m—1} k’m :
g
{ I lza—zgl} == 2l (11)
1<p<o<m o=1
where
m
= (12)

 Wetm—1—log2)’
In this paper we prove the stronger inequality? obtained from (11) by replacing
k,, by

7 [ednim{m—1)2\" ™D
—
2)/e 16

The simple ideas on which the proof is based are obscured by the detailed calculations

(13)

which will be found in the next section. In the present section we give a brief explana-
tion of the ideas behind the proof.

It is convenient to introduce the following convention. In any sum where the
variables of summation and their ranges of variation are not stated in the usual way,
the sum will be taken over all the sets of values of all the Greek suffixes and superfixes
occurring explicitly in the summand, which satisfy the conditions stated under the
gigma and for which the summand is defined. A similar convention will be used for
products.

1 H. F. Blichfeldt, (1939), loc. cit.
2 This result should be compared with the result obtained by C. L. Siegel (Annals of Math., 46(1945),
302-312) for the case when 0 < z; <<z, << ... < z,,. The proofs are quite different.
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Let K,, be the maximum of
] 2/{m(m—1)}

{H Iza-zg' f

R A (14)

l LY
ﬁ ‘)_/ 'zgl
for all numbers z,,. .., z,, satisfying (10). By use of the transformation

&, = %(zr"zm~r+l)
we show (see Lemma 1) that K,, is the maximum of (14) for all numbers z,,...,z,,
satisfying both (10) and
2, = —Z, .15 r=1...,m.
Now we are primarily interested in K, for large values of m. But, if m is large, it is
reasonable to suppose that K, is close to the upper bound K of

1 1
exp {g dxg log ]oc(x)~(x(§)1d§}

*0 0
e e (15)

\ () |dx

Q
for all strictly increasing functions a(x) satisfying
a(x) = —a(l—x), for 0<z<1.
In fact we only show (see Lemmas 1 and 2) that

Km < ( letm(m— 1)2)1/(2m—2) K mim=1) (16)
Writing
6($) = '—a(%x) »

it is easy to show that K is the upper bound of

exp { i S dz g tog |(8(x))2 —(8(£))* df}

g (z)dx

o

(17)

for all decreasing functions é(x) with é(1) > 0. By a straightforward application of
the calculus of variations it is not difficult to show that the expression (17) assumes
its maximum K when d(x) == g(x), where g(z) is the solution of the integral equation

)
A Y g — g, 0 1. 18
\ e = o 0= e
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Once the function g(x) has been determined there is little difficulty in proving that

K (19)

o T

o)/e
The inequality obtained from (11) by replacing &, by x,, follows from the definition
of K,, and (16) and (19).

3. Lemma 1. For any real numbers z,,. .., z,,, which do not all vanish,

{ 17 o }2/{m<m—1>} { 1 o)

}2/(7"(7"—1)}
o<0o é o< , (20)

1 1
— 2l — 3ol
for certain real numbers «,,.. ., «,, satisfying
By < Oy < vee < By (21)
&ty 1 =0, forr=1,...,m, (22)
and
s (NN B for r=1 (23)
—_— J— = n . or r=4...,m.
m—1,%, 0, —w,) lm= e Sgn

Proof. 1t is clear that we may suppose without loss of generality that

7152 ... %z2,. (24)
Write
2f{m(m—1))
L1 )
f(zla- RS zm) = g=¢ - e (25)
L3
— 2
m e
Then f(z,,..., 2,,) is a homogeneous function of degree 0 in z,,..., 2, which is a
continuous function of z,,...,z, except when 2z; =2, = ... = 2z,, = 0. Thus, as
21, . +» %, Vary subject to the condition (24) and the condition
2zl =m,
the function f(z,,. . ., z,,) will assume its maximum value for some numbers {,,...,{,,.
Clearly

L<ly<...<Cp, (26)
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and by the homogeneity of f(z,,..., z,,)
J@ues20) SFC00 00 En)

for all values of z,,...,z,, which are not all zero.

Write .
& = 3, ~Cppsr)y tor r=1,...,m.
Then, using (26),
Ky <Xy < e < By

&+ =0, for r=1,...,m,

BXEDXIAR

and

Further, since

0 < Cs _‘Cr = 0‘3_“,-""%(Cs—cr+cm—s+l—zm—r+l) ’

0< Cm—'r+1_"é-m—s+l = o‘s-o‘r—’%(Cs—zr+cm—s+l—&-m—r+l) s
we have
0< (Cs‘cr)(cm—nl‘—é-m-s-}»l) S (“8—“7)2 H

for all integers r, s with 1 < r < s < m. Consequently

.” (Ca_cg)z = II (CG_CQ)(Cm—Q+1—€m—U+1)—<—II (“d_(xg)g .

9<0 0<a 0<06

Now by (30) and (31)
o @i ln) S flogse oy o) .
Hence by (27)

f(zli""zm)—<—f(0‘l7""‘xm)

for all values of z,,...,z,, which are not all zero. Consequently

0
aﬁlogf(le,...,ocm) =0

,
for r =1,..., m, provided «, == 0. Thus
2 | sgno, 0

m(m—1) ;3,0 —a, 2]%!

(27)

(28)

(29)

(30)

(31)

(32)

for r = 1,..., m, provided «, & 0. Hence (23) is satisfied provided «, = 0. But, by
(28) and (29), it is clear that «, = 0 if and only if 2r = m+-1, and in this case it is
clear from (29) that (23) is still satisfied provided we take sgn 0 = 0. We have now
proved that the numbers «,,. .., «,, satisfy all the conditions in the enunciation of

‘the lemma.
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Lemma 2. If «,,..., «, are numbers satisfying

Ky < Ky < vu < Oy (33)
&+, =0, for r=1,...,m, | (34)
_and
1 X 1 1 . :
{ﬁjz’yzx _X}{;ﬁz‘[%[}: tsgno, for r=1,...,m, (35)
Q=7 r (2] <o
then
' ]2/(m(m—1)} J 1 1 1 mf(m—1)
{H (O‘a“‘%)j exp S da:S log loc(x)—oc(f)ldfj‘ ’
= < (tem{m—1)HHem 1 ————— (> (36)
— 3 || S ()| dae
m 0

where ofx) 18 a certain bounded strictly increasing function defined for 0 < x < 1 and
such that

a(x)+tx(l—x) =0, (37)
if0<ax <1

Proof. It is clear-that we may suppose without loss of generality that

2l =m. (38)
We first use (34), (35) and (38) to evaluate the sum -

1 1 1 _ 1
=3 S N
2 0==0 (“Q—(Xo') (g—ay) 2 oy (%) (0‘@"0‘1)
Q==T TH4=0 ‘ b
p=-0
17 1 - 1
()
r=1 ‘gaer %p " &g/ Npooy Kp T &g
1 2{ 1 1 N 1 }
6 G=T (0‘@ ‘xcr) (“Q 0‘1) ((X(;—“O‘-t) ((XU——OCQ) (‘xr_“g) (0‘1:_0‘0')
T==g
Q=0
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(m—1)2 3 {sgn x,)?

1

8

1 .
{(ml)3, if m is odd,

8
= (39)
gm(m—l)2 , 1if m is even
Write
2
(m—1)Ym
Then by (39)
1 1
< (41)
9<2; ((Xa—- 0‘9)2 2172
so that
zx,_+1——<x,_>_[/517, for r=1,...,m—1. (42)
Now define the function x(x) by the conditions
x(0) = ay—4n, a(l) = ap+47,
oc(1> = Y, +oa,,), for r=1,...,m—1, (43)
m
and
r—1 r
x(x) = a,+(mx—r+4)yy, if — <xr<—, (44)
m m

for r = 1,..., m . Then, by (42) and (34), «(x) is uniquely defined for 0 <z < 1 and
is in this interval a bounded strictly increasing function of x satisfying

a@)+ta(l—z) =0, for 0<z<1. (45)

If m is even it is clear from (42) and (44) that

1 Jizm

Sola(x)ldw =2\

If m is odd, then m > 3 and

1 Y
gt mnélds = — 3l = 1.

—1/2m

1 ) 1/2m 1 y 1/2m ,,}
p— v | —_ — 1
| lx@ide = X S—llam‘%%—mnfld& el pnside =140
so that
log Slt @ide =log( 14+ )=log (14— )< < .
* = = — = > = —_—
0 dm € omim—1)Ym’  2mm—1)Ym~ 4m)/3 6m
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Thus, in any case,
1

1
1 S dr < —.
og ol(x(a:)) T < o
Now, using (44),

2log (cxo—~<xQ)—m’S sz log {x(¢)~a(x)} d&

e<q¢
: m 0lm 1
= J'log (ag—a,)—m? 3} S de log {x(&)—u(x)}d&
<o o=1%@-YHm ®
o/m Gim .
o<e  Ye-Him - Y@@-Hm %%
m o/m o/m

—3m S de log {x(§)—a(z)} dé

e=1 (@-Dim x

ggdxglog{m@ e

b

S 2 log (6o

O

-y Sldz leog { 1 {ﬁ:—@—:} de

e<o¥o Yo %g— %)

1 1

—m log nme de log (§—x)dE .

0
But,if 0 <x <},

—log (1—2) < —— < 2 .
1—x

Hence, using (42) and (41) and writing x—& = X, 246 =Y

_ZS dxsolog {1—(’(”“5)’}@

<@g Xg— o‘g)

<X Sldz S 2n* (z—&)*

<o ¥0 0 (“o‘“o‘g)’

dé

1 x 1 3-X

< Sodxsd(x—é)’dé - }SodX Sx XY = 44 < ;m.

13. Acia mathematica, 82. Imprimé le 20 janvier 1950.

193

(46)

(47)

(48)
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Also, writing £—z = X, f+x =7,
1 1 . 1 2—-X
deg log (—x)dé = éSdX § log Xd¥ = —%. (49)
1] x 1] ‘X ’
Thus, combining (48), (40) and (49) with (47),
1 1
2 log (zxa-—(xg)—mzs de log { (&) — ()} dé
0 z .

_ e<o

2
Sm—imlog ———=+§m

(m“‘l)l/m
= }¢m—+}{m log }m(m—1)2. (50)
Finally by (50), (38) and (46)

2 1
3'log (zxa—ocg)~log; PALE

mim—1) ;75

1

— g\ de{ og fate)—a(@yide+ 7 log | In(alide

m__.

1
< -3+ log im(m—1)*+4)

m_..

1

= 5 (& +1og Im(m—1)?)

1
2m—2

<

(4-+log im(m—1)?),
so that (36) is satisfied. This proves the lemma.

Before we determine the upper bound, for all integrable functions «(x), of the
expression

a0 1
exp { S de log ]a(z)—.a(é)]df} ;

S () dz
0

(81)

occurring in the right hand side of (36), we ihvestiga,te the properties of Wiggles-
worth’s function g(z). We shall see eventually that the expression (51) attains its
upper bound when x(x) is in a certain special relationship to g(x).
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Lemma 3. There is a strictly decreasing function g(x), defined for 0 < <1,
and such that!

T 2g(x) o :

(a.) Somdf—-ﬂ, fO?‘ O<a< 1, (52)
(b) \oeds = =, (53)
o k14

and
1 1
(©) { s 10g 9%@)—g(@)1d = —1og e (54)
0 0
Further, if 0 <z < 1, . ‘
(d) H1—2) < g@) < 1,
g(@) < —#&)1—z, (55)

g'(x)> 0.
Proof. For all g with 0 < g <1 write

1
flg) = cos™ g—g cosh“;,

where
) 1
0<cos'g<in, 0< cosh”lgf. +oo.
Then
F(0) = 4=, f(1)=0
and

1
f'(g) = —cosh™—.
g

Thus, if 0 < x <1, the equation

19 = iz

has a unique solution for g satisfying 0 < g < 1; we use g(#) to denote this solution.
We prove that this function g(x) defined for 0 < x < 1 satisfies the requirements of
the lemma. Clearly g(x) is a bounded continuous strictly decreasing function of z for
0<x<1 and ‘ - ‘

1 2 1
= ——cosh?—, for 0<z<l. (56)

g@ = gx)’

Note that g(0) = 1 and ¢g(1) = 0.

1 We work throughout with the principal values of our integrals; we use g2(x) to denote (g(x))? and
g’(x) to denote the derivative of g(x).
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Now, if 0 <2 < 1 and ¢ = g(x) < }(1—=)3, then

1
f(g) = cos™! g—g cosh™! ;

> cos™? %(l_x)z_%(l_x)i.cosh—l(l_x):

4
> E{l—&(l—x)’}—g(l—x)’log(lﬁz)’

> dr—}(1—a)—}1—2) - 21432

= e+ (1—z)(3n—}—1) > dnx.
This is contrary to the definition of g(z), and so we have
l—2)t<g(z)<1l, for O<z<l.

Using this result in (56), if 0 <z < 1,

, in in iz
A -y 7 16
cosh™ — log— log
g(x) g(x) (1—2)*

__.__y.l.__.___ > ZZ_ }.:E > 1“0“/1_3"
4 8 l 4
Slog —l-—;

We have now proved the first two of the inequalities (55). The last of these inequalities
can be obtained immediately by differentiating (56).
We now prove that g(z) satisfies the integral equation (52). Write

. sech @ = g(x), sech 6 = g(&), (57)
so that by (56)
26 _ dgté) [dgle) _ 2

aé _ 2 tanh 0 .
26 a0/ dE 0 echOtanh
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Hence
do

Sl 29(x) & — ** 4 gech @ - § sech § tanh 0
09 x)—g2E) 50 n sech® ®—sech? 6

> § sinh 0 cosh @

S cosh? § — cosh? @ a0
——ES 6 {sinh (64 ©)--sinh (6— 9)}d6
nd, sinh (6+6)sinh (6—-6)
2> ]
= 6
7 So {smh {(CES)] " sinh (@—0)}d
_25“’ 0
n _oosmh (0+0)
ns smh 0
=m.

Also, by the substitution (57) and integration by parts,

1 )
S g(&ydé = ES 6 sech? 6 tanh 0d6
0 Tty

00

1 1
= —S sech? 6d0 = —

197

(58)

(59)

We have now to evaluate the double integral (54). Writing g(x) = y, ¢(¢) = 7,
integrating by parts and using the substitutions y = sin @ = sech &, # = sing =

sech 6, we have
1

! 2 !
{ 1og l97x) —g*(e)1de — = cosh - log y*—n2d
0 G Y]

1

2
= S—-—{(n+y)logln+yl+(n —y) log [n—y|—2n}dy
onl/ 1—?
2¢! L n+yl
log [n2—y?|—2}dn+ 2\ — 1 d
"Sol/l 0B It =yt b So’?l/l—— % ly=y™
sech 0+4sech @

2 .7!'2 g(x)
S {log | sin® p—sin® B| —2} dp+ SO log gsech 6—sech @

.

(60)
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Now

7T/2 /2

| 1og sin® g —sin® Gldp — { " log lsin (p+) sin (p—@)dp

] 0

JL/2

= 3| {logsin® (0+9)+ log sin* (0—p)} dp
[

e
= ;S log sin? gpdp = —n log 2 . (61)
0

But also, integrating by parts and using (58),

S log
0

Substituting from (61) and (62) into (60),

sech 64 sech @l _ S°° 20 sech 0 tanh 6 sech @

- = 40 = §n?. 62
sech 0 —sech @ o  sech? @®—sech? 0 L (62)

1

| 1og Ig#(e)—gP(@)]dt = —2 log 2—2-+g(z)

0

Integrating this result with respect to # and using (59) we have
1 1 1
S de log lg*(z) — gX(£)|dé = —log 4f2+ns g(z)dz = —log e . (63)
0 0 ' ' o

We have now proved that g(x) satisfies all the requirements of the lemma.

Lemma 4. Suppose x(x) is a bounded strictly increasing function satisfying

a(@)toa(l—x) =0
Jor 0 <ax<1. Then

exp {S s\ log jae)— 0{(_§)ld5}
o Y : <

Slla(x)[dx T e
. Yo,

(64)

Proof. Write 6(x) = —«(}z). Then é(z)+d(2—=2) = 0 for 0 <2 < 2 and

1 2 1
S (o(z)|dor = %S 16(z)|de = S&(z)dx . (65)
(1] T Yo 0

Further
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1 l i
| @2 tog 1a@)—a(1as
Yo Yo

~ %S de log |8(x)—d(&)|dE

1 2 2

Sldx SO+ Sldx Sl} log [8(z)—8(&)|d&

f

%

H

1

dxg log [0%(x)— 6%(&)|d£ . | (68)

[

%

I

Sodxs log |8%(z)— 6%(£) 2dE
\

Thus, by (65) and (66),

exp { S dx S log lzx(x)—oc(é)(df} » exp {% S de log |c§2(x)—63(§)[d€}
0o Y o Yo -
- - . (6T)

S:Ioc(x) |dz S-Oé(x)dx

" We use g(x) to denote the function of Lemma 3. By using first the inequality of
the arithmetic and geometric means and then its integral analogue, we obtain
2 :

1 1 1
1 da{ 1og 1920 —or@)1as— 4 | 1og i) —grcer1ae
0 0 Y0 0

e [8(x)+8(8)) Ié(z)—a(s)} .
=\dz\ 1|l i . ol d
SU “’& ["g {g<x>+g<s>l R P } °

< S dx\-llo { (2)48(8) | 8(x)— 6(5)1 i
g(x)+ (&) g(x)~g(sf
Vet [8(x)+6(8) — (&) }
<1 { d d
o8 S”SJ" lg(z>+g(s>+g a6 ®
e o(x)g(x) —B(E)g(&) }
=] d. . 68
Og[so xSo g*(x) —g*(é) % (@)
We now establish the formula
Tt b(x)g(x)—B(8)g (&) 1ol 28(x)g(x)
d dé =\ d — 2 dE&. 69
\5, " e \22) sy g (68)
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Owing to the singularity in the integrand the necessary change in the order of the
integrations needs a special justification. As the integrand of the following integral is
positive, if z == &, we have

{ o 208000

g x)—g*(£)
—in | af  CeE-dEN
E>+0%0<a<1  Yo< <1 FHx)—g*&)

1§l >¢

dé

. 26(z)g(x)

=k dx —_—d

e—»II:OS <z<1 Sog_fgl gix)—g*(é)

1§—=|>¢
( 1 min (1, z+s)} 2(5(1:)9(2:)

=k d —_——d

e—fl—lo 1 S S S “ Smax O, z—¢) Z(x) - g’(é) E

g S 2)(x)g(x)

g x)— 92(5)
. 1 max (0, z—¢, 2z—-1) min (1, z+¢, 22) min (1, +€) 28(z)g(z)
—1 { { } — g ] dz. (10
sin-:o SO Smax 0, z—¢g) + Smax (0, z—¢, 2:@—»1)+ Smin 1, z+¢, 3x) gg(z)'—gz(§) E ¥ ( )

Now, by (55), if 0 <x <. <1and 0 < £<{ and x + &, we have

26(z)g(z)
gz} —g (&)

Hence, if ¢ is sufficiently small,

251) | _ () 208(1)
g@)— g€~ fe—&l g’ N jr—EY 1—C

1 max (0, z—¢, 2z-1)
0< S de W(h®)
0

max (0, 2—¢&) g’(E) - 9’(1:)

Lo el g8(z)g(x)
= d — 7 " d
Sl_e ”SH 2O —gm

1 dz Su—l dg

1-¢ Vl—:c z—€ z—§&
1

< 206(1) S

= 208(1 )S ———log ;

ey 1l1—x x

= 808(1))/= .
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Thus
1 max (0, z—¢, 20—1) 9 6
lim de S _20(z)g@) .
£e>+0%0 max (0, z—¢) gﬂ(é) - gg(x)
A similar (but simpler) calculation shows that
lim
£—>+0

1 min (1, +€)
S de 28(x)g(x) & — 0
0

min @, o+¢, 22) 92(%) — G2 (€)

It is clear from (52) that the integral

S‘ i S‘ 28(x)g(x) .

0 9*(2)—g*(&)

201

(71)

(72)

is finite. Also it is clear from the above estimate for the integrand that the integrals

g e,
Sl Smax ©2e.22-D 98 r)g(x)

do Bl — 3 E)
0 max (0, —€) g (x) - 92(5)

and
1 min (1, 48)
S da S 24(z)g(x) ds
0 min (1, +&, 2%) g’(x) - 92(5)

are all finite. Thus the integral

Sldx Smm hrem  28(@)g()
0

2 2 dé
max (0, x—¢, 22-1) g (x) —g (5)
is finite. But, if 0 < 2 < 1, we have

Smm L2482 98(x)g(x)

max (0, x—¢, 22-1) gz(x) - 92(5)

3

_ S:c+min (x, £, 1—x) 26(x)g(x) g 5
z~min (x, €, 1—x) gz(x) - 92(5 )

= 28(x)g(x)

S‘”‘“‘”’E""" Fltn) 2@ +ge—n
0 {g%(x)—g*(@+n)}H{g(x—n)—g*(=z)}

By (55), the integrand of the integral on the right hand side is positive; and so, for
each fixed value of x with 0 < # < 1 the integral is a decreasing function of ¢ tending

to the limit zero as e tends to zero through positive values. Hence
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1 amin (24632 95(2)0(x)
lim S de g¥(x)— g%()

E—>+0%0 max (0, z—¢, 2z—1) gZ(x)__ 92(5)

(73)

Using (71), (72) and (73) in (70) we obtain (69).
Now, using the result (52) of Lemma 3,

o 20(@)glx ¢!
Sodx Som d¢ = nSoé(x)dx .

Combining this with (68) and (69) and using the result (54) of Lemma 3, we obtain

%S de log |6%(x) — 8%(£)|dE < log { " S 6(x)dx]
Hence, by (67),
exp { S dx ‘ log sz(x a(f)]df}
&

Y9

{ e e
0
This proves the lemma.
Lemma 5. For any numbers z,,. .., z,,, which do not all vanish,
2H{m(m—1)}
L7 o)
0<0

(74)

entm(m—1)2\ D 5
(eemmory
16 2Ve

l \ 7
;;2, [2,]

Proof. The inequality (74) is an immediate consequence of Lemmas 1, 2 and 4.

Although it is not necessary for the proof of the main result of this paper, the
following lemma seems to be of sufficient intrinsic interest to warrant its inclusion,
partly because it is the integral analogue of the inequality (74) and partly because the
constant is best possible.

Lemma 6. For any Junction o(x), which is mtegra,ble tn the Lebesgue sense over
the interval (0, 1),

1 1
exp { S“dx Solog oc(x)— zx(E)[dé‘} < ~2—V—S loc(x)|d . , (75)

Further (15) 1s satisfied with equality Jor a certain function o(x) which 18 not null.
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Proof. We introduce a function §(x), which may be regarded as a rearrangement*
of the values assumed by () in increésing order. Let m(a) be the measure of the set
E,(a) of numbers z with 0 <z < 1 for which «(x) < a. Then the set E,(a) and the
function m(a) do not decrease as a increases. Let 8(x) be the lower bound of the
numbers a for which m(a) > x. Then f(x) is defined for 0 < 2 < 1 and is a non-
decreasing function of x.

If B(x) has the constant value g for x, < z < z,, where 0 < x, < 2, <1, then

may<z,, it a<§f,
mb) >z, f b>4.
Thus the measure of the set E,(b)—E,(a) is at least x,—=, if @ < § < b. Uonsequently

x(x) assumes the value 8 for a set of points z with 0 < x < 1 of measure at least
Z;—x,. This would imply that

1 1
{ e 1og Iatx)—a(e)idg = —co,

and in this case (75) is satisfied trivially.

We may suppose now that f(z) is a strictly incréasing function for 0 < r<l
and that «(x) does not assume any constant value in a set of positive measure.
Consider the sets E,(a), Ey(a), E,(a), E,(a) defined for any real number a to be the
sets of numbers z with 0 < < 1 for which

() a(x) <@,

(2) ax)<a,

(3) p@) <a,

(4) B(x) <a,
respectively. Clearly E,(a) and E,(a) both have measure m(a). Also, as f(x) is strictly
increasing, ¥;(a) and #,(a) have the same measure; and from the definition of f(x)

it is clear that E,(a) is the set of points z with 0 < # < m(a). Hence all the four sets
Ei(a), Eya) E4(a), E(a) have the same measure. Consequently

{ @lde = | 1b@) do (76)
0 0

and

1 8ee Hardy, Littlewood and Pélya, Inequalities, (Cambridge 1934), § 10.12, page 276,
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1

| ez (logla(x)~a(§>1d£ deﬂlogta(x) B(6)1de

1
a¢

0

log |x(z)—p(&)|d=

0
1 1

~{ael
= a¢ log g1 (0
=Je]

1 1

dz \ log |B(x)—p(&)ldé . (77

0 0

Now write

(@) = H{Blx)—p(1—2)}
for 0 <z <1, so that y(z) is a strictly increasing function and
y@@)+y(l1—2z) =0 ©(78)

for 0 <x < 1. Then
1

\ paliaz <\ 1pede (79)
0 0
and, as in the proof of Lemma 1,

0 < {Bl2)—BEIHB(1—£&)~p(1—a)} < {y(x)—p(£)}*.

Hence

1 1
\ x| log |Be) —plé)Ias
(4 0

— #{ da log {80)—peEN{p1L—0)—p1—2)} e

1 1

< {az{ 10g i) —ieria .
0 0 .

By (78), (77), (79) and this last result,

exp { S de log [a(x)~a(£)ld§}
0 0

| x(z)ida
l 1 1
exp {S dx§ log [ﬂ(x)~—ﬂ(§)ld§l exp { S de log (y(x)—y(é’)ldf}
= = < L . (80)
{ iz \ eide

Y 0
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Write
ye(x) = y(e+2{l1—2¢}), for 0<ax<1,

where 0 < ¢ < §. Then, by (78),
ye(®)+y (1l—2) =0, for 0<x<1,

and y(x) is a bounded strictly increasing function of x for 0 <z < 1. Thus y,(z)
satisfies the conditions for the function «(z) in Lemma 4; and so by that Lemma

1
exp { S dx S log| Ye(x)—)’s'@)ldf}
o Yo

T =
2
| ateiiaz Ve
0
In the limit as ¢ tends to zero through positive values, we obtain
1 1
exp{S dz{ log |y(x)~y(s>!dé}
o 0 <

{ e e
0

Now (75) follows from this result and (80).
It is clear from (53), (54) and (67) that (75) is satisfied with equality when «(x)
is defined by
a(x)y = —g(2x), if 0<x<},

ofz) = g(2—2x), if }<xz<1,
so that
8(x) =g(x), for 0<zxz<1.

4. Before we prove our main result we state the following well known result
due to Blichfeldt!, on which its proof is based.

Lemma 7. Let S be any closed bounded n-dimensional set with Lebesgue measure
(or outer Jordan content) V. Then there i3 a set of distinct points

XU = @, .., 2Q), ..., X™ = ({™,..., 25)

of 8 with m > V such that the differences

! H.F. Blichfeldt, Trans. American Math. Soc., 40 (1914), 227-256. We restate Blichfeldt’s
Theorem 1 (page 228), in the form he considers in § 7 (page 230).
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P2, k=1,...,n

are integers for r,s = 1,...,m.

Theorem. Let n > 3 and let
x, = Z‘awua , r=11...,n -

be n real homogeneous linear forms in u,,. . ., u, with determinant 1. Then there exists
a set of integers u,,. .., u,, other than 0,. .., 0, for which

(n ')(1 +n log n)e”'2(2-5 !og n)3/(2 logn}

|2y, . .2,) < = (81)
! (4n)/e )
n
Proof. Let (4,,) be the reciprocal matrix to (a,,) and write
T, = YW, r=1...,n,
(82)

¥y = DA, r=1,..,n.
Take S to be the set of points (yy,. .., ¥,), for which

Zlagl < H(1+nlog n)(ml)}.

Then, as the determinant of the matrix (a,,) is 1, the volume of § is 14x log n. Hence
by Lemma 7 there is a set of distinct points

YO = (. 9P, T = (™, ., y)
of § with m > 1+4-n log n, such that the differences
U =09y, k=1,...,n T (83)
are integers for r,s = 1,..., m. Thus, if
X® = (@®,...,2D),..., X™ = (a™,..., 27)
are the points corresponding to Y®,..., Y in the transformation (82), we have
21221 < H(+n log m)(n ™
for r=1,...,m, and so

2|#21 < im{(1+n log n)(n )} . (84)
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Now by Lemma 5
@ ‘ 2/{m(m~1)}
o
{91<]a o ]} (T )"<e3n2m(7n~l)2)"/(2m#2) (85)
» (1 | T \eye 16
_le(e)l
1, 2|
Since
m>1l4nlogn>14+3log3 > 14, (86)
we have
m 5
_— < ,
m—1" 4
and the right hand side of (85) is less than or equal to
( 7T )n 5e372%(m—1)8 n/(2m—2)
— 87
2V€ ( . 64 ) ( )

But m—1 > nlogn > 3, while

d 5edm2u 3\ ¢ 1 5m2ud
———log( ) =-——log( ; )<0,
du 64 e 64
if g > 3. Thus the expression (87) is less than

( n_)"(5e8n?(n log n)“)”"”"””’ _ ( n_)"em (5e8n2(log n)“)”‘m""’
2o 61 2Ve 64

?

and consequently

2f{mim—1)}
1719~

e<o _ < ( “_)"63/2(2.5 log n)?@logm (88)
il sep)
k=1 M

Now by the inequality of the arithmetic and geometric means and by (84),

Lp 1 n 1\"
g{ﬁZ(”%’)l}S{%leﬁf)l} S(%) (147 log n)(n!) .

(89)
Thus by (88) and (89)

2/{m(m—1)} N1 1 32(9.5 ] 32 log 1)
[0 | < (oMb o e @5 g

0<0o (4nvg)n

1
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So there are some integers r, s with 1 <r < ¢ < m such that

(n!)(1+4n log n)e’? (25 log n)*@ 8™
(371[@—;)” .
Tt

Consequently (81) is satisfied when u,,. .., %, have the integral values

TT9—2) <

wl'O =yP—yf, k=1,...,n.

These integers are not all zero as the points ¥® and Y® are distinct. This proves the
theorem.

It is clear from this theorem that, if » > 3, then 0, is less than or equal to
the right hand side of (81), which is asymptotic to

V 27e30*? log n
(481/;)”
7

m = tim (M) < .
n—>o0 4efe

as n— oo. Thus

This proves (8) .



