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I n t r o d u c t i o n .  

This paper is a continuation of Par t  I of a paper with the same title'  which 

deals with binary quartic forms having four complex roots. Paragraphs, equa- 

tions, etc. are numbered consecutively in the two parts. 

In order to make this paper intelligible to a reader who has not seen 

Part  I, we repeat here a few definitions. 

The binary quartic form 

y ) ( ~ , ~ ) = a ~ + 4 b ~ ' ~ + 6 c ~  ~ + 4 d ~ 3 + e ~  4 

has two irreducible invariants 

cT=ae--4 bd 4- j c ~, 

c)~=ace+ 2 bcd--ad~--eb~--cS, 

and discriminant . ~ =  r_~a--27 c)~ "~. We define 

r i f / '=2  r162 3 a c~. 

We say that  W(~,~/) iff transformable into the sta~dard form f ( x , y )  if it is 

obtainable from f (x ,  y) by a real linear substitution. 

We write k for a number such that  every lattice of determinant d r o has 

a point other than the origin in the region defined by 

If(x, y) I --< (k+~) A', 

where e is any positive number. The lower bound of such numbers k is k ~ 

' Acta math., 84, p. 263. 
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The lower bound of the determinants of lattices admissible with respect to 

the region ~-~ defined by I f ( x ,  Y)I <- l, that  is lattices that  have no point other 

than the origin as an inner point of ~ ,  is written A*. I~ is easily seen that  

k* = i lA *~. 

III .  Q u a r r i e s  w i t h  5 0 = 0 .  

~3. We next consider forms with ~ ) = o .  I f  J = o  the solution of our prob- 

lem is trivial, but we include it for the sake of completeness. 

Theorem 5. I f  v2(~,7) is a binary quartic fo~mz with real coefficients, and 

r  then there exist integers ~,7, not both zero, such that 

where e is any positive number. 

We have _~)=o, r and so 

YJ (~, 7) = a (~--r 7) a (~--a)'7), 

where (o, co' are real. Suppose first o~ ~ co'. Then by Minkowski's theorem on 

linear forms (this is an immediate consequence of Lemma IS) there exist integers 

~ , 7 ~ o , o  with 

8P 

for any e '>o ,  and so 
[V(~,7) ] "< a[ ~ - -w '  ] ~ '~ <: e 

for any ~ > o, by appropriate choice of e'. I f  eo =oJ', we have similarly 

24. I f  ~ ) =  J/*=O, g ~  O, the form ~(E, 7) is the square of a binary quad- 

ratic and it is necessary only to express in a suitable nofation the classical re- 

sults for binary quadratics given in w I. 

Theorem 6. I f  ~(~,~) is a binary quartic form with real eoejficients, and 

- ~ ) = J / ' = o ,  J ~  o, then there exist integers E, 7 ~ o ,o  such that 

2 
Iw(r g), 

where Z = 5 i f  ~Tf > o and Z = 3 ~f ~ f  < o. These are the best possible results, the 
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sign of equality being required if, and only ,f, ~o is equivale~tt to a multiple of 

the form (~. ~ _ ~ ) 2  ~ , :~>  o, or of the form ( ~ + ~ ) ~  i f  r  o. 
I t  is sufficient to no~e tha~ the diser iminant  of the quadrat ic  (~--o)~7)(~--m'~/) 

is (0)--o)') 2, while for the quartic form ~p(~,v)=a(~--o)~)  ~ (~--o)'~7) ~ we have 

~ =  ~.o a * (o)--o)')*. Hence  there exist integers ~:, ~ ~ o, o wi th  

0) - -  60') 2 J 2 

Z Z Z 

The respective critical forms a re  of course well known. 

25 . We  next  invest igate  the case 5 0 = o ,  r  Here we are concerned 

with the region. ~ defined by x ~(x2+y ~) ~ I, which is depicted in Fig. 2. In  

this  case we find the best possible result, and indeed a good deal more, as we 

are able to give an infinity of successive minima (corresponding to the Markoff 

chain for  an indefinite binary quadrat ic  form). I t '  is of interest  to note tha t  

none of these successive min ima  are a t ta ined;  1 in particu]ar, none of the critical 

lattices of ~ has a point  on e ,  the boundary  of ~ . ~  

We first recall some classical results due essentially to Markoff;  see, for 

example, DICKSON (I9) or CASSELS (2O). We write d,~ for the d iscr iminant  of the  

nth  Markoff  form 
Q, (~:, y) = (}--0, ~/) (}--q%,,/) (n=  I, 2, 3 , . . . ) ,  

so tha t  d,~ --= (0,,--4,,,) 2. The numbers dn increase monotonical ly to the limit 9, the 

first three values being 

d , = 5 ,  d~=8, d3=�89 

The 0,~ are quadrat ic  irrat ionals of the field k (Vd,,), no two of which are equi 

valent, s The first three values are 

o, = (V-5 + ,), = ,, o., = - ,  ,). 

Then it  is known tha t  [Q,I(~,~)[~ I for integers ~ , ~ o ,  0; and tha t  there is 

i S t r i c t ly  s p e a k i n g  t h e y  are  t h u s  on ly  lower  b o u n d s ;  we u se  t h e  word  m i n i m u m  in t h e  
wide sense .  

T h e  e x i s t e n c e  of s u c h  r eg ions  is  s t a t e d  in  T h e o r e m  2 of ~r (18), and  in  fac t  our  

reg ion  ~ sa t i s f ies  t h e  cond i t i ons  he  p o s t u l a t e s  in  h i s  proof.  However ,  t h i s  proof  c o n t a i n s  some  

er rors  wh ich  inva l ida t e  i t s  a p p l i c a t i o n  to our  p rob l em,  t h o n g h  h i s  conc lus ions  are  t r ue  in  our  case.  

s W e  say  m is  e q u i v a l e n t  to 0, and  wr i t e  r  i f  w~-(aO+b)/(cO+d),  where  a ,b ,c ,d  
are  i n t ege r s  w i t h  a d - - b c =  +_ I. 
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an infinity of integer  solutions of Q~ (~, ~) = __+ I (with ei ther  sign), ] ~--0,~ ~]] < e, 

for any e > o .  

Now let  

be an admissible lattice of de te rminant  A > o .  Then the corresponding form 

v2(~,rl)=X~(x~+y ~) has the double real root o~; we may suppose tha t  eo is irra- 

tional, since otherwise ~ has the minimum zero. By a theorem of DAVENPORT 

and Roo~Rs (2I), if o~ is not  equivalent  to any one of 0 1 , . . . ,  0,,-1 (the case 

n = I being interpreted to mean tha t  eo is an arbi t rary irrational), then  there 

e x i s t  integers ~, ~ # o, o such tha t  

Ixvl-< ~/v~,,, Ixl<~, 
for  arb i t rary e > o. For these integers we have 

~'  (x~ + v ') < zl'  l d~ + ~', 

and i t  follows tha t  A ~ V ~ ,  since x ~ (x ~ + y2) > I for every point  (x, y) # (o, o) 

of an admissible lattice. 

We note t ha t  any latt ice with 

has A = V ~  and is admissible, since x y =  Q~(~,fl) and so for integers ~ ,~ /~  o, o 

we have 

(25.2) x '  (x'  + y~) -> ~ + x '  > ~. 

Hence V ~  is the true minimum value of A under  the conditions stated; in 

particular,  A * = V ~  = V-5 .~ From (25.2) we see tha t  none of the lattices (25.I) 

has a point  on C. 

We show now that ,  with w as above, the only admissible lattices with 

Zl =Vd,, are those given by (25.I). We remark first tha t  eO~0n, for  otherwise 

A-->t/d~+l > ]/d~ for admissible lattices. By a unimodular  subst i tut ion on ~,~, 

which amounts  merely to selecting another  basis for the lattice, we may assume 

oJ=0,,. Hence any admissible lat t ice L with A =Vd,, may be wri t ten 

x = ~ ( ~ - 0 , , ~ ) ,  v=~(~-o~,~)+r(~-r 
where [ ~ y ] =  I and fl is some rea l  number.  We write this, for brevity, 

i This last result was proved by MAHLER (9). 
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so that  

Then 

x=o:u, y=flu+yv; 

u v =  Q,(~, n). 

: ( :  + : )  = ~s u s {(~s + #~) ~ + 2 # r u v + ~'~ : } .  

I 
I, 

117 

/if II 

(I, o) x 

/ /  

/ 

Fig. 2. The region x ~(x'~+y2,] < I. 

which is false, 

lattices (25. I). 

Now, if f l # o ,  there exist integers ~ , ~ # o , o  with uv=--sgn(fl~) and u s < e ,  

for any s > o .  Choose ~=21#rl/(~s+#~). Then, for these ~,~, 

x ~(x ~ + : )  = ~ s . s  { (~.~ + #s) : _ 2  I# r I } + ~ < i, 

since L is admissible. Hence fl=o, and so L is one of the 

We remark further  tha t  the above proof shows that, if o ~  01 , . . . ,  0,-1, 

every lattice of determinant ~ has not  merely one but an infinity of points 

satisfying x~(x~+yS)< I + e  for arbitrary e > o ;  and that  we may take e = o h e r e  

unless the lattice is one of those given by (25.I). 

Noting that  8 =  ~ for the form xS(x2+y~), the results we have proved 

may be collected together in the following: 
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Theorem 7. Let ~p(~,~) be a binary quartic form with real coefficients a~d 

= o, ~<'-. o, and so having a double real root co, say. Then i f  w is not equi- 

valent to one of O~ . . . .  , 0,-1 there exists, for  arbitrary e ~ o, an infinity of integer 

pairs ~, ~ such that 

( 2 5 . 3 )  Iw( , v i i  < , �9 

I f  r(~,,7)=x~(x~+y~), where x y  is equivalent to a multiple of  the Markoff form 

Q,~(~,~), the relation (25.3) with e = o  has no integer solutions except ~=r /=o ,  even 

�9 f equality be admitted. Otherwise there is an infinity of integer solutions with *=o.  

26. We turn now to the case ~ ) = o ,  r o. Here the standard form we 

consider is f (x ,y)=x~(x~--y~) .  ' We define a region ~ by ] f ( x , y ) ] ~  I; this 

region is bounded by the curves f ( x ,  y) = +_ I. The region is symmetrical about 

both axes, so it suffices to consider the first quadrant. Consider first the curve 

f ( x , y )  = I, which passes through the point (I,o). Here we have y ~ = x ~ - - I / x  ~, 

so x ~ -- I and y = x  is an asymptote. Next consider the curve f ( x , y ) = - - I .  

Here y~=x~+ I / x  ~, and so y~-V2 and the lines x = o ,  y = x  are asymptotes. The 

point (I,V2) is a minimum. Neither curve has a real finite point of inflection, 

since their Hessian is x = o .  The region is illustrated in Fig. 3. 

We are unable to give the best possible result for this region, but an esti- 

mate is obtained by inscribing a region of known critical determinant A*. Let 

~ '  be the bounded region 

,xyl--< I, tx+Yl.<-V-5,  

where t is any positive number. We show that  ~ '  lies strictly within ~ for 

sufficiently large t. Clearly every point of ~ '  satisfies ] x l ~  �89 for sufficiently 

large t. Then every p o i n t  of the boundary of the region ]xy] ~ I, Ix[ ~ �89 

which contains ~ ' ,  lies strictly within J--~. For if (x, y) is such a point, x ~ o 

and so 
f ( x , y ) = x ~ ( x 2 - - y  ~)<-x' < I, f ( x , y ) = - - I + x ' > - - I .  

Now, by a theorem of MXRLER (I9), A* (r ]/5 and it follows that  A* (r 

We might strengthen this estimate a little by expanding the region ~ '  until 

1 Since  w r i t i n g  t h e  above,  Professor  DAVENPORT h a s  i n f o r m e d  m e  t h a t  he  h a s  f o u n d  t h e  

cr i t ica l  d e t e r m i n a n t  and  cr i t ica l  l a t t i ces  of t h e  reg ion  ] x2 (x  ~ - -  y~) ] -- I. T h e  cr i t ica l  d e t e r m i n a n t  

is  | / I ~ - 2 V b .  His  work  is  to be p u b l i s h e d  in  t he  Q u a r t e r l y  J o u r n a l  of  M a t h e m a t i c s .  
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and ~7~' first have a boundary point in common, but the small improvement 

thus obtainable hardly seems worth the labour involved, l~oting that  ~ ' = ~  for 

the form x~(x~--y~), the estimate we have found leads to 

J' 

i/ 
//z/ 

/ \ \ x \  

(1, O) x ~ 

\ ; S  S 
k-" 

l /  / l/1 
I I l l l ~  

Fig. 3- The region Ix ~(x ~-y'~)]- I. 

Theorem 8. I f  y~(~,~) is a binary quartic form with real coefficients and 

50=0, r o, then integers ~,~, not both zero, exist such that 

< V3 J .  

IV. Q u a r t i c s  w i t h  50>0  ( F o u r  Rea l  Roots) .  

27. We now deal with tile case of quartics with four distinct real roots. 

We obtain an estimate for the lower bound in all cases, and prove that  this 

estimate is best possible for an infinity of eases. 

Again we may take 
f ( x , y )  = x4 +6mx~y~ +y 4 

as standard form, and we define the region ~ by If(x,y)[-<- I. The roots o f .  
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f ( t ,  I) = o mus t  be real  and dis t inct ;  r e fe r r ing  back to (4.3) we see tha t  m < - -  �89 

I f  we subst i tu te  
Y), 

where v 4 = - � 8 9  + 3m) - 1 >  o, we find 

- -  f ( x , y )  = X ' + 6 M X  ~ Y ~ +  y 4  

where M I - - m  I f  m < - - I  this gives - - I  < M <  --~ ,  so i t  is enough to 
I + 3  m 

suppose - - I  < m < - -~ .  

We may determine  m in the same way as we did in w 4 above. The  resul t  

here  is t ha t  we define ~0 by 

c7[ 3~ "~/' 
c o s  , 

m = cot --.  
3 

The region o~ is bounded  by the  curves f ( x , y ) =  +_ I. Each of these 

curves is symmetr ica l  about  the  lines x = o ,  y = o ,  y =  _ x ,  and about  the  origin. 

The curve f =  I passes th rough  the  points (o, + I), ( _  I ,o).  Each of the curves 

has as asymptotes  the four  lines y =  +__ # x ,  y =  • x / # ,  where  

lg= 2 2 

The  points of inflection of the bounding  curves lie on the  lines y =  •  

y =  ___x/S, where S is given by (5.2). The  value of 2 is imaginary  since m < - - � 8 9  

and so there  are no real  points of inflection. Thus  we see t h a t  ~ is an in- 

finite s tar  domain  bounded  by eight  arcs, each convex viewed from the  origin. 

In  Fig. 4 the  region ~ is depicted for  m = - - ~ .  

28. W e  first t r ea t  the case --�89 < m < - - ~ .  Here  we are no t  able to give 

the best  possible resul t  for  any value of m, but  we find an  es t imate  which is 

be t t e r  than  the known one. i n  this case the region ~ contains the  square 

Ix I <  I, l yl  < i, so we might  tr ivial ly take k(m) = I. However ,  we can mater ia l ly  

improve this value wi thou t  much ext ra  labour,  by consider ing an inscribed non- 

convex region which we have  a l ready invest igated.  

Le t  m ' = - - ~ ( 3 m + 2 ) ,  so t h a t  - - ~ < m ' < - - ~ . ,  and let  o~m' be the region 

I f~ '  (x, y) I ~ I, where 
fro' (x, y) = x 4 + 6 m' x ~ y'~ + y4. 

and then  

(27.I) 
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Then ~ ,  is a bounded non-convex star domain of the type covered by Theo- 

rem 3, so k*(m')= ~( l+m' )=-~( i - -3m ). We show that  ~ contains r  and 

it follows that  k* (m) H k* (m'). 

I t  is clearly sufficient for this to prove that  the boundary of ~ , ,  tha t  is 

Fig. 4. The region Ix 4-4x 2y~+y*I ~ I. 

J~,(x,y) = I, lies in o~. Let (X, Y) be any point on the curve f ,~,(x,y)= I. 
We have then 

f ( X ,  Y) = f,~, (X, I 7) - -  6 (m ' - -m)  X ~ Y~ = x - - e  (6 m ' +  2) X ~ Y~. 

But I = X ~ + 6 m' X ~ Y~ + Y~= (X ~ -  y2)~ + (6 m' + 2) X ~ Y~, and so o H  

(6m'+e) X Z Y ~ H  I, since m ' > - - ~ .  Hence I f (X,  lr) lH i, that  is (X, Y) is a 

point of ff~. 

We remark further that  I f(X,  Y)I ~-~I unless X = o  or Y =  o or X =  }, 

and that  none of the points so defined is a point of a critical lattice of ~ ,n ' .  

I t  follows that  k* (m) < k* (m'). 

We may improve this estimate for part of the range concerned, by con- 

sidering the region , ~ '  defined by I x~--y~l .<-I, [y[ H �89 for which A*= 
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= �89 V;.1 Every point  of I xS--YS[ g I satisfies f ( x ,  y) --< I, since then  f ( x ,  y) = 

= x '  + 6 m xS y s + y '  = (xe - -  yS)S + (6 m + 2) xS yS <-- (xS--yS) s g I. Further ,  f (x, y) = 

= ( xs + 3 raYS)2--(9 mS-- I) y '  --> --  (9 m s -  I) y '  >-- - -  I, if (9 m~-- I) y '  < I. Hence  every 

point  with lY] -< �89 satisfies f ( x , y ) > - - I  if ( gmS- I ) ( � 89  ' -< I, i.e. if m>_ 

V ~  I t  is easily seen tha t  every critical lat t ice s of ~ '  has a point  in the 
I5 

inter ior  of ~ ,  so we have k* (m)<  ~,- for l / ~ g  m < 1 
I5 

We have thus  proved 

Theorem 9. Let ~p (~, 7) be a binary quartic form with real coefficients and 

. ~ ) > o ,  J ( > o ,  c~r  Further let 3sc~3<7sc .~  ', so that m given by (27.x) 

satisfies - - � 8 9  Then there exist integers ~,~1, not both zero, such that 

I f  ]/4I ~ m < - - ~  
15 

}(9 m~-- I)-'/ '  .~)'1'. 

2 ( I - -3m)  .~),/, 
[~P(&r/)l<- 5(9m.a i),/. - 

we may replace the right hand side by the smaller number 

I conjecture that ,  for values of m sufficiently near  to - - l  the latt ice L~ 

which was critical in Lemma 9, is here a critical lat t ice if  i t  is admissible, 

which will probably be t rue for infinitely many m (cf. Theorems IO and x2). 

This rests on a geometrical  lemma, similar in na ture  to Lemma 23, which I 

have not  yet  succeeded in proving, though  it  appears to be true. 

29. For  the range - - I - -<  m--<-- �89 we can say a good deal more, though  

the results are still far  f rom complete. We shall prove tha t  k* (m)--< I, and tha t  

I is the best possible value if  the lat t ice x = ~ ,  y=~) is admissible. We show 

fur ther  t ha t  this is so for a set of m with positive measure, a l though the con- 

t rary  is also true fo r  a set of positive measure. 

We require first some simple lemmas. 

L e m m a  27. I f  O A B C  is a parallelogram of  area S, and P, Q are two points 

' This  is a t r ivial  t ransformat ion  of the  region [ x y l  --< r, [xA-yl-<- ] / 7  used in w 26. 
2 These critical lat t ices are given by MAHLER (19). They consist  of the  crit ical lat t ices for 

the  infinite region [ ~  --Y~I -< I, together  wi th  the  lat t ices generated by the po in t  (I, o) and any 

point  on the  l ine y = �89 ~/-5. 
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in it, with OPQ in the same sense as OABC, then ~ OPQ <- �89 S. 1 Further, the 

sign of equali 0 occurs only i f  P is at A and Q on BC, or i f  Q is at C and P 

on AB.  

Take 0 as origin and axes of x and y along. OA and OC respectively. Le t  

jo be the point  (x~,y~) and Q be the point  (x~,y~). Le t  O A = a ,  O C = b  and 

angle AOC-~ o~. Then S =  absin~o,  and 

/k OPQ -~ �89 sin o) (xl y, - -  x2 Yl) <- �89 a b sin o~ = �89 S, 

with equality only if  x~ = a, y~ = b and x,  y~ = o. 

L e m m a  28. Let P and Q be two points with coordinates (x~, y~) and (x~, y~) 

resioectively in a rectangular coordinate system with origin O. Then i f  x~ Yl ~ �89 

y~:>o, x~y~ <~--�89 Y2~O, we have A OPQ ~ �89 with equality if, and only if, 

x~ y, = �89 x~ y~ = --�89 xl = x~. 

For  

O PQ=�89 y~)>-~(x~+ x~) ~ �89 

by the theorem of the ar i thmetic-geometric  mean. Equal i ty  occurs in both  places 

only uuder  the condit ions stated. 

The substance of this lemma may be expressed in other  forms by consid- 

ering other  axes th rough  O. W e  enunciate  it in one such form, which we will 

require later. 

L e m m a  29. Let 19. �9 (xl, yl) and Q." (x2, y2) be two points with x~- -y l~ -  > I, 

x j ~ o ,  x~--~<--I,~ a~-- Y2 ?>o. Then A OPQ >�89 with equality if, and only if, 
:~ 2 2 2 

x i - - y l =  I ,  x 2 - - y 2 = - - I  , x l = y 2 .  

We now apply these lemmas to points  associated with our  region , ~ .  

L e m m a  30. Let t)1 be a point of the reg ion f (x , y )<- - - - I ,  x ~ o ,  y ~ o ,  and 

let ~ be a point of the region f ( x ,  y)<~--I ,  x > o ,  y < o .  Then /k OP~P~>�89 i f  

m ~ - - ] .  I f  m = - - I ,  /~ OP1P~ >--t, with equality only i f  P l=(I /V2,  I/V2) and 

P i  = 

Afte r  L e m m a  28 it  is clearly sufficient to show t h a t  every point  (x, y ) w i t h  

f ( x ,  y) g --  I satisfies I x:y I ~ �89 with equali ty only if m = - -  I, f (x ,  y) = --  I, y = +__ x. 

I T h i s  u s e  o f  t h e  s y m b o l  A for " t h e  a rea  of t h e  t r i ang l e "  s h o u l d  cause  no con fus ion  w i t h  
zJ (capi ta l  delta). 

13-642127 Acta mathema//va. 85 
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We have 
f ( ~ ,  y) = x 4 + 6 . ,  ~ y'  + y" = (x~-y~)  ~ + (6,~ + 2) ~ '  y '  -< - ~, 

so 
- - ( 6  , .  + z) x '  y '  -> ~ + ( . ' - y ' ) '  _> ~. 

But I _< --(6 m + 2) _< 4, since --t--<m--<--�89 and it follows that x ~y2>~,  i.e. 

I zyl >-�89 Equality in each place requires the conditions stated above. 

Lemma 31. Let P~ be a point o2" the region f (x, y) >--- 1, [X ] < y, a~d let ~ be 

a point of the region f ( x ,  y) > I, [y[ < x. Then A OP~P'2 > �89 with equality only 

i f  p~ i ,  (o, i) a , d  P'~ i ,  (i, o). 

We have 

giving 

with final equality 

Lemma 29. 

f ( x ,  y) = (X~--y2) ~-]- (6 m + 2) X~ y~ ~> I, 

(x~'-y')~ > - 1 - ( 6 ~ + e ) x ~ y ' > - i ,  

only if f ( x ,  y)= I, x y = o .  The result then follows from 

30. We now show that every lattice of determinant I has a point in ~ ,  

and establish a condition for this to be the best possible result. 

Let L be any lattice of determinant I which is admissible with respect to r 

Consider the square Ix] < I, I Y] -< I, of area 4. By Lemma 15 (Minkowski's 

theorem), it contains a point of L other than O, say /)1. Now every point of 

this square except (o,+_I) and ( •  I ,o)  s a t i s f i e s f ( x , y ) < 1 .  For if x ~->y~, we 

have 
f (x, y) = x4 + y~ (y~ + 6 ~n x~) < x" _<_ ~ , 

since 6m < - - I ,  with equality in each place only if y2=o, x ~= I; and similarly 

if y " > x  ~. Hence, by the symmetry about O, we may suppose /)1 is (o, I) or 

(I, o) or that  it lies in one of the regions ~ 1 ,  ~ ,  where ~ 1  is defined by 

o < x ~ <  I, o < y _ < i , f ( x , y ) _ < - - i ,  and o ~  is the image of ~ 1  in the y-axis. 

Suppose that  /)1 is the point (o, I). Then the line x =  I contains points of 

L spaced at unit intervals, and so every segment of length > I of this line 

contains at least one point of L. We consider the open segment of x = I lying 

between the two branches of the curve f ( x ,  y ) = - - f .  Every point of this seg- 

ment is an inner point of ~ ,  except the point (I, o). Fmther ,  its length is 

greater  than  that of the corresponding intercept made by x y = • �89 by the proof 

of Lemma 3 ~ , and so > I. I t  follows that (I, o) is a point of L, and therefore 
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L is the lattice x=~ ,  y = ~ ,  say L0. The same conclusion clearly holds if P1 is 

the point (I, 0). The lattice L o has the point (I, I) in ,~1 and the point ( - - I ,  I) 

in o ~ .  Thus, by symmetry, we may suppose without loss of generality that  the 

point P~ lies in ~ l -  

Now consider similarly the square of area 4 defined by Ix + Y l ~ }/2, 

[ x - - y l ~  ]/-2. By Lemma 15 it contains a point of L other than 0, say /)2. 

Every point of this square satisfies f ( x ,  y) ~---I, except the points (I/V-~,• I/}/-2), 

(-I]}/2, • I/V-2) when m = - - I .  I t  suffices to show this for the first quadrant; 

and then if (X, Y) is a point of f (x, y) ~ --  I we have, by the proof of Lemma 

3o, X +  Y ~ 2 V x Y ~ V - 2 ,  with equality only when m = - - 1 ,  (X, Y ) =  

=(i/}/2, I/}/2). Hence we may suppose that  P~ lies in the region ~ defined 

by o ~ x + y  ~ }/-2, o ~ y - - x  ~ }/-~, f ( x ,  y) ~-- ~, unless m = - - I ,  when it might be 

one of the points (•  I/V~, I/}/2). But if m = - - i  and /)2=(4-_ I/V2, I/}/~), we 

find as above, using here the proof of Lemma 3I, that  ('~ I/}/2, i/V2)is a point 

of L, and hence so is (o, }/2), which is a point of ~ . . .  Thus we may suppose 

in any case that  P~ lies in ~.~. 

Lemma 32. 
A OP~P~ = �89 

Let A be the mid-point of the line joining the points (V2, 0), (I, I), and 

let C be the mid-point of the line joining the points ( - - I ,  I), (0, }/2). Let these 

two joins produced meet in B. Then OABC is clearly a square, and it contains 

7~ 
the regions o~ 1 and o~ 2. Its side is of length }/2 cos ~ <  }/2, soarea OABC< 

2. Then by Lemma 27, /% OP1P. 2~  I and hence AOPIP2=�89 

Now let P3=P1--Pi, and let the point Pi have coordinates (x/, y i ) fo r  

i=I ,2 ,3 .  Then A OPIPs~AOP~P3={ -, since A OP1P2=�89 by Lemma 32 . We 

note tha t  ~ 1  lies in the triangle with vertices (I, I), (}/2--1, I) and (I, }/2--I), 

excluding the two last-named vertices, and so the coordinates of /)1 satisfy 

x~ :>} /2 - - I ,  }/2--I ~y1--<I .  Similarly, we have x ~ I - V 2 ,  I-<y2 <-}/2. I t  

follows that  x3=xl--x  ~ ~ 0 and - - I  ~Y3 <- o. Since P.~ is a point of L, i t i s  not 

an inner point of o~. Hence it must lie in the region f(x,y)>_ I, [ y [<x ,  or 

in the region f (x ,y )<_-- I ,  x > o ,  y < o .  In  the first case, A OP~Pa> �89 by 

Lemma 3I, unless P~ is (0, I) and s is (I, 0), that  is unless L is L o. Similarly, 
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in the second case we have /kOP1P  ~>�89 by Lemma 3 ~ , unless L is L o or, if  

, I 
m = -  I, the lat t ice Lo defined by x =V-22 (~-~/)' y = ~+ ~/)" 

We have thus  proved tha t  every lattice of de te rminant  I other  t han  L o, 

and L~) for m = - - I ,  has a point other  than  0 in the inter ior  o f r  I f m # - - I ,  

the latt ice L o may or may  not  be admissible. I f  it  is, i t  follows tha t  A*= I 

and k*= I, and tha t  L o is the only critical lattice. I f  m = - - x ,  both L o and 

L~ are admissible, since each gives rise to the condit ion 1~4--6~/~+~/a]  - - I ' f o r  

integers ~ ,~ /#  o, o, which is true. Thus k*= I, and Lo, L~) are both critical in 

this  case. In  any case, k * g  ~. 

Theorem 10. I f  - - I  ~-~ 9n ~ - - � 8 9  there is a ~oint x, y, other than the origin, 

of every lattice L of determinant A, such that 

] x 4 + 6 m x ~ y Z + y  4[ <_ A s. 

This is the best possible result i f  

(30.1) [ r  ~ f l + ~ / 4  ] --> i 

for all integers ~,~ # o, o. I f  this is so, the lattice defined by x=~,  y = ~  is a 

I 
critical lattice, and is the only one unless m = -  I, when the lattice x = ~ (~--~), 

I 
y = ~ - ~  (~+~) is also critical. The condition (3o.I) is satisfied, for example, i f  

6 m = - - 3 ,  --4,  --5,  --6.  

I t  remains only to prove the last  s ta tement  in the theorem. In  these cases 

the form ~4 + 6 m ~ ~/~ + ~/4 has integer  coefficients and is not  zero for  integers 

~, ~ /~  o, o, since this would imply ~ =  ~/~ and thence 2 + 6 m = o, which is false. 

Theorem io leads a t  once to 

Theorem 11. Let ~o(~, 7) be a binary quartie form with real coefficients and 

59>0, r  o, ~ >  o. Further, let 3 3 3 ~  7 s c~ ~, so that m given by (27..I) sat- 

isfies --  I <-- m <-- --  ~. Then there exist integers ~, ~1, not both zero, such that 

(30.2) I v ( f ,  < (9 m -1) -'/' 591/,. 

This is the best possible result i f  

(30.3) [# '+6m # ' ~ + ~  ' ] ~ I 
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for all integers ~, 7 ~ o, o, and then the sign of equality is required in (30.2) if, 
and only if.. ~v (2, 7) is equivalent to a multiple of the form 

f (~, 7)=~" + 6m~n~ +7 ". 

The condition (3o.3) is satisfied, for example, ~ 6m=- -3 ,  --4, --5, --6. 

We note here tha t  the result of HER~XT~. (4) for a quartic form 

~o (2, ~/)= a (~--~, 7) (~--~ 7)($--~r 7) (~--ar 7), 

where ~1 > % > ~s > ~4, is, in the notation of w 22, 

I Ao ] < i la [ (~,--%) (~-~,) .  

This is really equivalent to k* (m) < ~(I--3 m), and in this shape it may be com- 

pared with the much sharper results given in Theorems 9 and I I. 

3 I. I t  would be an interesting question to investigate general conditions 

under which (3o.3) is satisfied; I have not yet seriously considered this problem. 

Whether  or not it is satisfied in a particular case will clearly depend on the 

arithmetical nature of the parameter m, and the question is a very deep one. 

Even if we restrict our attention to forms ~0(~,7 ) with integer (or rational) 

coefficients, the number m will in general be. an algebraic number of degree 5. 

If, however, m is a rational number, it should not be difficult to decide the 

matter. For example, simple considerations of quadratic and biquadratic residues 

show tha t  (3o.3) is satisfied for all m in the range concerned with 6m of the 

form n n - - -  or (n an integer), except for the values 5 m = _�89 _�89 
3 4 

Nevertheless, we can easily obtain some metrical information about the set 

of values of m for which (3o.3) either is or is not satisfied. In particular, we 

can show that  both sets are of positive measure. For brevity, write M = - - 6 m ;  
then 3 ~ < M ~ 5 .  The condition (3o.3) becomes 

We shall describe M (or m) as admissible if (3z.z) is satisfied for all integers 

~, ~ ~ o, o, and otherwise as non-admissible. 

Theorem 12. I f  A (M) and N (M) are the measures of the sets of admissible 
and non-admissible M respectively, then 

i T h a t  these  va lues  of m m u s t  in  fac t  be e x c e p t i o n s  fo l lows  a t  once f rom t he  r e m a r k  in  t he  

n e x t  footnote .  
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2.45 < A (M) < 2.5o, o.5o < N ( M ) <  o.55. 

I f  3 /  is non-admissible,  there  exist  in tegers  r, s such t h a t  

( 3 1 . 2 )  - -  I ~ r  a - M r  ~8 s q- 8 4 ~  I .  

For  this  par t icu lar  pair  r, s, all values of M with 

I r 4 ~ 8 4 I 

(31.3) - - r ~ s ~ < M  rSs~ < r S s S  

sat isfy (31.2) and so are non-admissible.  Als~ all non-admissible M arise in this  

way for  some pair  r , s .  We  may clearly suppose ( r , s ) =  I and r > s - - > I .  Thus  

the  set of non-admissible M consists of an enumerable  set of intervals.  These 

r 4 -[- 8 4 2 
r, ~ sS and lengths  ~ ,  where r, s are any integers  intervals  have centres M -  

with 

(31.4) r > s > - -  I ,  ( r ,  8) = I 

These intervals  may, of course, overlap,  so 

r 4 q- 8 4 
3 -< r2 s~ --< 6. 

(31.5) 

where the summat ion  is t aken  over  all r, s sa t is fying (31.4). 

We  now examine the  last  condi t ion in (31.4). Wr i t ing  u = r ~ / s  s ,  this  be- 

comes u s - 3 u +  1>--o, u s - 6 u +  I-%<o. Since U > l ,  this yields � 8 9  

u < 3 + 2 1/2, and hence 

� 8 9  -k ] / 5 )  ~ '-" ~ I q- V2 .  
8 

Thus  for  a fixed value of s ~ 4 ,  the  n u m b er  of values of r is at  most  

[ { ( I  ,-k V 2 ) - -  � 8 9  d- V 5 ) } 8 ]  -k i < _ o . 7 9 7 s +  I <- I.O47S. 

We easily find tha t  2, I '  and 5, 3 are the only pairs with s < 4 .  

give N(~]/) > o.5o88 and 

These  

N ( M )  <~ 0.5089 + 2 ~ I s~_4 r ~ s  ~ < 0.5089 + 

The resul t  follows, since N ( M )  + A (M) = 3. 

2 �9 1.o47 ~ i 
+Vs) <o.55. 

i T h i s  pa i r  makes  t he  whole  i n t e rva l  4 < / l / <  4 } non-admiss ib le .  
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This establishes that  the results we give in Theorems Io and xI are best 

possible for a set of m of positive measure, and indeed for "mos t  m". We con- 

clude this section by remarking that there are non-admissible m as close as we 

please to any given value in the range, and, in particular, to admissible values of m. 

Theorem 13. T h e  set o f  non-admiss ible  M is  dense in  the in terva l  3 <- M "= 6. 

Let M be any number in the interval, and let /~> I be a root of #~-- 

- - M #  ~ + I = o. Then M = (/~4 + I ) / /~  Now (/~4 + i)//12 is a, continuous function 

of # for /~ > O, so, given e > o, there exists e ' >  o such that  

I r ' + s ' l  
M r~ s~ ~ 

if [ ~ - - r / s [  < e'; and the latter inequality always has solutions satisfying (31.4). 

V. Q u a r r i e s  w i t h  ~ < o. 

32 . We have in the preceding sections dealt with all types of binary 

quartic form except those with ~ ~ o, that  is those having two real and two 

complex roots, all distinct. I have not yet attempted to investigate this case 

systematically, but to complete the discussion of the quartic I give here the 

known results, and point out a small improvement that  can readily be made. 

For this case we may take as standard form 

f ( x ,  y) = x ~ + 6 m x ~ y~ - -  y ' ,  

with diseriminant - - ( I  + 9m~) ~. We define the region ~ by I f ( x ,  Y)I ~< I, and 

first investigate its shape. I t  is bounded by the curves f ( x ,  y ) =  I, f ( x , y ) = - - I ,  

which pass through the points (•  I, o) and (o, • r) respectively. Noting that  

- -  f ( y ,  x) = x 4 - -  6 m x ~ y~ - -  y4, 

we see that  we may suppose m >~ o. 

to each boundary curve are given by y = t x ,  where t is The asymptotes 

any root of 

This gives 
t 4 - - 6 m t  ~ -  I = o .  

t" = 3 m • ~ + 9 m~,  

and so there are just two real asymptotes y = • ~ux, where 

t*~ = 3 m + V I + 9 ra * , I~ ~ o. 
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Since we may wri te  f = + _  I as (y~--#~x ~)(y~+x~/# ~)=T- I, we see tha t  f =  x 

lies in the  region ]y] < # [ x ] ,  and  f = - - I  in the  region [y[ > # I x [ .  

The  points  of inf lect ion lie on the Hess ian  

~n X 4 - -  (I  + 3 ~/~2) X 2 y2 __ m y4 = o, 

Y 

o, 1) 

and so on y = + 2x,  where 

# 

"L 
/t 

r 

Fig. 5. The region x ~ + 8 x  2 y ~ - y ' [  -< L 

2 m ~  ~ = - - ( I  + 3 m 2 ) + V ~  + m ' ) ( I  + 9  m*) > o ,  

if m # o. I f  m = o, we find x y  = o, bu t  the  in te r sec t ions  with the boundary  are 

then  points of undula t ion.  W e  note  tha t  the inflections lie on f(x,y)= I, since 

2 m ( # ' - - ~  ~) = 2 m {3 , l  + V I  + 9~/1~ } + I + 3 m ' ~ - V ( l  + m'~) ( I + 9  m~) 

= VI + 9  m2 {V]-+ 9 m2 - V I  +m -~  + 2 m} 

O, 
a n d  so  [~[ </~. 

The  shape of the  region o~ is iUustrated in Fig. 5, which was drawn for  

~ .  
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33. The best possible result is known only for m = o, in which case Mott- 

D~rr~ (6) showed k* = 4 / V ~ .  The only other result known, so far as 1 am aware, 

is that  of JuLi^ (5). Again using the notation of w 22, his result is essentially that" 

where z~, z2, z3, z4 are the roots of ~p(z, I ) =  o. This is equivalent to 

We can improve this for small values of rn by inscribing a convex region 

in r Clearly the rectangle defined by Ix] g Xo, [Yl -< I, where x o is the mini- 

mum positive abscissa of f ( x ,  y)=  I, lies in ~ .  The area of this rectangle is 

4xo ~, so, by Lemma I5, A*-->Xo ~ and hence k* (m) <-- i/x~o. We easily find 

x ~ - i / ( 1  +9mZ), so we have k * ( m ) < - V I + 9 m ~ .  This estimate is better than 

I 
Julia 's if [ml< ~3" 

We collect these results together in 

50 < o, and so transformable into the form x 4 q- 6 m x ~ y2 _ y4. 

integers ~, 7, not both zero, such that 

~ Lm) ,,v, I .~  I'/, , Iv , (~ , ,~) l  <-(, + 9 m ) 

where we may take 

Theorem 14. Let  ~o(~, ~/) be a binary quartic form with real coefficients and 

Then there exist 

4 (best possible); k(o) ~ V ~  

! .  
(,n) = V i  + 9 ,~ ,  for  o < I . ,  I < V-3' 

I 
k(m) = ~{I + V l + 9 m ~ } ,  for ]m]>---~33" 

I wish to express my gratitude to Professor L. J. Mordell for suggesting 

this problem to me and for his advice in removing obscurities from the original 

manuscript of both parts of this paper. 
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