THE MINIMUM OF A BINARY QUARTIC FORM (II).
By

C. 8. DAVIS

TRINITY COLLEGE, CAMBRIDGE.

Introduction.

This paper is a continuation of Part I of a paper with the same title! which
deals with bipary quartic forms having four complex roots. Paragraphs, equa-
tions, etc. are numbered consecutively in the two parts.

In order to make this paper intelligible to a reader who has not seen
Part I, we repeat here a few definitions.

The binary quartic form

(&) =al*+4bE8n+6cE2n +4dEn’+ent
has two irreducible invariants
T=ae—4bd+ 3¢,
F=ace+2bcd—ad®—eb®—c?,
and discriminant 2= J3—27 J*. We define
H=b*—ac, H=2 HIT+3aT.

We say that (& %) is transformable into the standard form f(x,y) if it is
obtainable from f(z,y) by a real linear substitution.

We write £ for a number such that every lattice of determinant 4 7 o has
a point other than the origin in the region defined by

|f (2, 9)] < (k+e) 47,

where ¢ is any positive number. The lower bound of such numbers % is .

! Acta math., 84, p. 263.
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The lower bound of the determinants of lattices admissible with respect to
the region R defined by | f(x,y)| < 1, that is lattices that have no point other
than the origin as an inner point of R, is written A*. It is easily seen that
k' =1/4*2

III. Quartics with D=o.

23. We next consider forms with D=o0. If J=o0 the solution of our prob-
lem is trivial, but we include it for the sake of completeness.

Theorem 5. If (&%) is a binary quartic form with real coefficients, and
T=F =0, then there exist integers & n, not both zero, such that

v )] <e,

where & is any positive number.
We have D=0, =0, and so

(& n)=alf—wn?E—awr),

where w, ®’ are real. Suppose first w > »’. Then by Minkowski's theorem on
linear forms (this is an immediate consequence of Lemma 15) there exist integers
£, m# o0, 0 with

lo—o|
oo |

b

lé—oy|<¢, |é—oy|=

for any &>o0, and so
lpEn]|<alo—o'|e®<e

for any &> o0, by appropriate choice of ¢. If w=w', we have similarly
lpE )] =ac*<e

24. If D=HA'=o0, T o0, the form y (&) is the square of a binary quad-
ratic and it is necessary only to express in a suitable notation the classical re-
sults for binary quadratics given in § 1.

Theorem 6. If y(& %) és a binary quartic form with real coefficients, and
D=H=0, T # o0, then there exist integers &1 0,0 such that

Iw(fyn)léiV(Tcﬂ,

where y=5 if H >0 and y =3 if H <0. These are the best possible results, the
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sign of equality being required if, and only if, v <s equevalent to a multeple of
the form (£2—En—n®) if HH > o, or of the form (E2—E&n+n%)® of FH < o.

It is sufficient to note that the discriminant of the quadratic (§—wn)(é—w'n)
is (w—w')? while for the quartic form y (£ 9) = a(f—wn)? ((—o'7)*® we have
T =1 a?(w—w')*. Hence there exist integers & 754 0,0 with

Iw(é.n)lsa@:fl’f _ iVW= ;Vﬁ‘

The respective critical forms are of course well known.

25. We next investigate the case D=0, A <o. Here we are concerned
with the region. R defined by z®(x?+y? < 1, which is depicted in Fig. 2. In
this case we find the best possible result, and indeed a good deal more, as we
are able to give an infinity of successive minima (corresponding to the Markoff
chain for an indefinite binary quadratic form). It is of interest to note that
none of these successive minima are attained;! in particular, none of the critical
lattices of R bas a point on C the boundary of R.2

We first recall some classical results due essentially to Markoff; see, for
example, Dickson (19) or Cassers (20). We write d, for the discriminant of the
nth Markoff form

Qnl&,n) = (E—0nn) (E—¢un) (n=1,2,3,...),

so that d,=(0,—¢,)’. The numbers d, increase monotonically to the limit g, the
first three values being
dy=5, dy=8, dy=%.

The 6, are quadratic irrationals of the field %(Vd,), no two of which are equi
valent.® The first three values are

01 =% (Vg + I)x 02 :‘l/;ﬁls 93 ='1'1() (VéZI“‘ 1 l).

Then it is known that | Q. (£ 5)| =1 for integers £ 7 > 0,0; and that there is

! Strictly speaking they are thus only lower bounds; we use the word minimum in the
wide sense.

® The existence of such regions is stated in Theorem 2 of MAHLER (18), and in fact our
region R satisfies the conditions he postulates in his proof. However, this proof contains some
errors which invalidate its application to our problem, though his conclusions are true in our case.

® We say o is equivalent to 6§, and write w ~ 8, if @ =(a 0 + b)/(c8 + d), where a, b, ¢, d
are integers with ad —be= 1 1.
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an infinity of integer solutions of Q. (& %) = + 1 (with either sign), | £—6, 7] <e,
for any &> o.
Now let
r=alf—on),  y=ylE—o)

be an admissible lattice of determinant 4 >o. Then the corresponding form
w(& n)=2%(z®+»%) has the double real root w; we may suppose that w is irra-
tional, since otherwise y has the minimum zero. By a theorem of DavENPORT
and RocEers (21), if @ is not equivalent to any ome of 6,, ..., 0n_y (the case
n=1 being interpreted to mean that o is an arbitrary irrational), then there
exist integers &, 5 0,0 such that

lzy| < 41Vd,, |z|<e,
for arbitrary € >o0. For these integers we have
(2 +yd) < A%/ dn+ &t

and it follows that 4 =Vd,, since x*(x*+y?) = 1 for every point (x,y) # (0, 0)
of an admissible lattice.
We note that any lattice with

(25.1) x=oc(£——0n77), y=7(§—¢n77)7 l“y[ =1

has A=Vd, and is admissible, since zy= Q. (&,5) and so for integers &9 # 0, 0
we have

(25.2) 2 (P +y?) =1+t 1.

Hence Vd, is the true minimum value of A under the conditions stated; in

particular, A*=Vd, =V5.! From (25.2) we see that none of the lattices (25.1)
has a point on C
We show now that, with  as above, the only admissible lattices with

A =Vd, are those given by (25.1). We remark first that w~6,, for otherwise

A=Vdyy1 > Vd, for admissible lattices. By a unimodular substitution on &7,
which amounts merely to selecting another basis for the lattice, we may assuome

w=0,. Hence any admissible lattice L with 4=V4, may be written
z=a(—0un), y=PE—0bun)+y(E—eun),

where |a«y| =1 and B is some real number. We write this, for brevity,

! This last result was proved by MAHLER (9).
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r=au, y=pfutyr;
wv= Qul(&, 7).

2 (2 +y%) = P ut (0’ + B2+ 2 Bypuv+y ot}

so that
Then

(1, xr

Fig. 2. The region | 2*(x*+y% | < 1.

Now, if o, there exist integers &7 7 0,0 with uv =—sgn (8y) and u® <e,
for any ¢>o0. Choose e=2|By|/(a®+p%). Then, for these & 7,

2 (@ +y%) = P u? {(P+ B ul—2|By |} +1 < 1,

which is false, since L is admissible. Hence f=o0, and so L is one of the
lattices (25.1).

We remark further that the above proof shows that, if w~ 0,, ..., 0,1,
every lattice of determinant Vd, has not merely one but an infinity of points
satisfying «*(x®+y®) < 1+ ¢ for arbitrary > 0; and that we may take £=o0 here
unless the lattice is one of those given by (25.1).

Noting that & = {5 for the form z®(x®+y%), the results we have proved
may be collected together in the following:
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Theorem 7. Let y(&,n) be a binary quartic form with real coefficients and
D=0, K <o, and so having a double real root w, say. Then if w s not equi-
valent to one of 8,, ..., O,—1 there exists, for arbitrary €> o, an infinity of integer
pazrs &,m such that

(25.3) Iw(é,n)|<§n1/§?+ c.

If p(&n)=x*(x®+y®), where xy s equivalent to a multiple of the Markoff form
Q. (& n), the relation (25.3) with e=0 has no integer solutions except E=1=0, even
if equality be admitted. Otherwise there is an infinsty of integer solutions with e=o.

26. We turn now to the case D=0, A > 0. Here the standard form we
consider is f(z,y) = x*(2*—y%).! We define a region R by |f(x,v)| <1, this
region is bounded by the curves f(z, y) = + 1. The region is symmetrical about
both axes, sc it suffices to consider the first quadrant. Consider first the curve
flz,y) = 1, which passes through the point (1,0). Here we have y*=x%—1/2?
so x=1 and y=2 is an asymptote. Next consider the curve f(z,y) = —1.
Here y*=2%+1/2% and so y=V2 and the lines =0, y=2x are asymptotes. The

point {1,V2) is a minimum. Neither curve has a real finite point of inflection,
since their Hessian is x=0. The region is illustrated in Fig. 3.

We are unable to give the best possible result for this region, but an esti-
mate is obtained by inscribing a region of known critical determinant A4*. Let
R’ be the bounded region

lzy| <1, ‘tx*l-ﬂél/g,

where ¢ is any positive number. We show that R’ lies strictly within R for
sufficiently large f. Clearly every point of R’ satisfies || < for sufficiently
large t. Then every point of the boundary of the region |zy|=1, |2| =<1,
which contains R’, lies strictly within K. For if (x,y) is such a point, x 7% 0

and so
f(x,y)=x2(x2—y2) £x4< I, f(x:?/) = —1 +x4>—1.

Now, by a theorem of MarLEE (19), 4*(R)=V5 and it follows that 4*(R)>Vs.
We might strengthen this estimate a little by expanding the region R’ until R

! Since writing the above, Professor DAVENPORT has informed me that he has found the
critical determinant and eritical lattices of the region | 2*(a® — 4*)| < 1. The eritical determinant

is VI—I—z]/E. His work is to be published in the Quarterly Journal of Mathematics.
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and R first have a boundary point in common, but the small improvement
thus obtainable hardly seems worth the labour involved. Noting that =1} for
the form z®(x®—y?®), the estimate we have found leads to

Fig. 3. The region |2*(x’—y*| < 1.

Theorem 8. If y(£ ) ¢s a binary quartic form with real coefficients and
D=0, H > o, then integers &,n, not both zero, exist such that

(&l <3V3g.

IV. Quartics with D>0 (Four Real Roots).

27. We now deal with the case of quartics with four distinct real roots.
We obtain an estimate for the lower bound in all cases, and prove that this
estimate is best possible for an infinity of cases.
Again we may take
Sl y) =2 +6ma®y* +yt

as standard form, and we define the region R by |f(x,9)| =< 1. The roots of..
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f(¢,1) = 0 must be real and distinct; referring back to (4.3) we see that m < —}.
If we substitute
r=v({X—Y), y=v(X+7),
where v*=—3(1+3m) 1 >0, we find
—fle,y) =X*+6 M X* Y2+ 1,
1—m

where M =
I1+3m

If m<—1 this gives —1 < M < —}§, so it is enough to

suppose —I <m << —1%.
We may determine m in the same way as we did in § 4 above. The result

here is that we define ¢ by
3
cos <p=—g(—c37) ) 2x<p=<inm,
and then

(27.1) m = ot

w |8

1
— C
V3

The region R is bounded by the curves f(x,y)= +1. Bach of these
curves is symmetrical about the lines z=o0, y=0, y= 2, and about the origin.
The curve f=1 passes through the points (o, + 1), (= 1,0). Each of the curves
has as asymptotes the four lines y=+ ux, y=+t «/pu, where

1/ —3m+1_ 1/ —3m—1
o))

The points of inflection of the bounding curves lie on the lines y= tAiz,
y=+x/A where 1 is given by (5.2). The value of 1 is imaginary since m<<—3},
and so there are no real points of inflection. Thus we see that R is an in-
finite star domain bounded by eight arcs, each convex viewed from the origin.

In Fig. 4 the region R is depicted for m=—3%.

28. We first treat the case —} <m << —}. Here we are not able to give
the best possible result for any value of m, but we find an estimate which is
better than the known one. In this case the region SR contains the square
|z| <1, |y]| =1, so we might trivially take %(m) = 1. However, we can materially
improve this value without much extra labour, by considering an inscribed non-
convex region which we have already investigated.

Let m = —1(3m+2), so that —} <m'<—4%, and let R be the region

| fo (®, y)| = 1, where
Sw (o, y) =2t +6m 2* y* +yt.
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Then R is a bounded non-convex star domain of the type covered by Theo-
rem 3, so k*(m')=¢(1+m')=2(1—3m). We show that R contains R, and
it follows that &*(m)<<k* (m').

It is clearly sufficient for this to prove that the boundary of R, that is

(-1 1

\ f. 2N
> | \3
o (1, 0) z
f>1
Z. 7
//_"\ £ f—k\

Fig. 4. The region |x*—4 2?4 +¢*] = 1.

Sw(z,y) =1, lies in R. Let (X, Y) be any point on the curve fu' (z,¥) = I.
We have then

FIX, Y) = fur (X, ¥)— 6(m'—m) X2 V2= 1—2(6m' +2) X* Y2,
But 1 =X*+6m X2 Y+ Y*=(X>—7**+(6m +2)X*Y? and so o<
(6m'+2) X*¥Y?*<1, since m' > —}. Hence |f(X,Y)] <1, that is (X, ¥) is a
point of R.

We remark farther that |f(X, ¥)]<<1 unless X=0 or Y =0 or X=1,
and that none of the points so defined is a point of a critical lattice of Rm'.
It follows that £*(m)<<k* (m').

We may improve this estimate for part of the range concerned, by con-

sidering the region R’ defined by |z*—y®| <1, [y]|=1V5s, for which 4" =
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=31Vs! Every point of |a®—y®| <1 satisfies f(x,y) =<1, since then f(z,y) =
=xt+6maty’ +yt =@ — 9P+ (6m+2)2ty’ < (2’—y*)? < 1. Further, f(x,y) =
=(x¥+3my?)—(om*— 1)yt =— (omP—1)y* =—1, if (9m®—1)y* < 1. Hence every
point with |y| < 1V satisfies f(z,9) =—1if (9m*—1)}3 V3s)* < 1, ie. if m=

—}/I? It is easily seen that every critical lattice®> of R  has a point in the
interior of R, so we have &* (m) << $ for — Iisl =m< —}.

We have thus proved

Theorem 9. Let (& %) be a binary quartic form with real coefficients and
D>o0, H>o0, K>o0. Further let 3*F*<7*J* so that m given by (27.1)
satisfies —t<m<—1}%. Then there exist integers &, %, not both zero, such that

2(1—37’7’) g

[pEn)|< ‘56;)22_1)1/32

If — %—I- =m<—}, we may replace the right hand side by the smaller number
Homt—1)~h D

I conjecture that, for values of m sufficiently near to —}, the lattice L,,
which was ecritical in Lemma g, is here a critical lattice if it is admissible,
which will probably be true for infinitely many m (cf. Theorems 10 and 12).
This rests on a geometrical lemma, similar in nature to Lemma 23, which I

have not yet succeeded in proving, though it appears to be true.

29. For the range —1=<m =< —1 we can say a good deal more, though
the results are still far from complete. We shall prove that &* (m)=< 1, and that
1 is the best possible value if the lattice x=¢, y=7 is admissible. We show
further that this is so for a set of m with positive measure, although the con-
trary is also true for a set of positive measure.

We require first some simple lemmas.

Lemma 27. If OABC s a parallelogram of area S, and P, § are two points

! This is a trivial transformation of the region |xy| <1, x-+y| = V5 used in § 26.
* These critical lattices are given by MAHLER (19). They consist of the critical lattices for
the infinite region |2® —y?| < 1, together with the lattices generated by the point (1, 0) and any

point on the line y=1}s.
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in it, with OPQ in the same sense as OABC, then A OPQ <} 8. Further, the
sign of equality occurs only if P is at A and @ on BC, or if Q 4s at C and P
on AB.

Take O as origin and axes of x and y along OA and OC respectively. Let
P Dbe the point (x,,%,) and ¢ be the point (x,, y,). Let OA =a, OC =5 and
angle A0C = w. Then § = absinw, and

AOPQ=13sinw(r, ys—xy)<}absinw =15,

with equality only if z,=@, y, = b and z,9,=o0.

Lemma 28. Let P and Q be two points with coordinates (x,,y,) and (s, y,)
respectively in a vectangular coordinate system with origin O. Then of x, y, = %,
Y170, Ty = — 4%, y; <0, we have N\ OPQ =}, with equality if, and only if,
Ty Y =% % Ys= —% C1=Cs

For
x,

Zy
—+ —-) =1,
Zy X

A OPQ=1}(zy yi—, y5) = %(

by the theorem of the arithmetic-geometric mean. Equality occurs in both places
only under the conditions stated.

The substance of this lemma may be expressed in other forms by consid-
ering other axes through 0. We enunciate it in one such form, which we will
require later.

Lemma 29. Let P: (x, y;) and Q: (xs, ys) be two points with x3—yi = 1,
x>0, x3—ys < —1, y;>0. Then A OPQ =1}, with equality ¢f, and only if,
1“:‘—‘1/§= I, $§—y§=*—1, Z1=Ys-

We now apply these lemmas to points associated with our region R.

Lemma 30. Let P, be a point of the region flx, y) < —1, x>0, y>0, and
let PL be a point of the region flz, y)< —1, x>0, y<o. Then A OP,Pi>1} if
m>—1. If m=—1, A OP,Pi =}, with equality only if P,=(1/V2, 1/V2) and
Py = (1/V2,—1/V2).

After Lemma 28 it is clearly sufficient to show that every point (z, ) with
Sz, y) < —1 satisfies |2y | = }, with equality only if m=—1, flx, )= —1, y= * .

! This use of the symbol A for “the area of the triangle” should cause no confusion with
A (capital delta).

13 - 642127 Acta mathematica. 85
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We have
Sl )=z +6mat P +yt=(—yP+(6m+2) a2y < —1,
0
—(6m+2)xty? = 1+ {x—yY2= 1.

But 1< —(6m+2)<4, since —1<=m =< —1}, and it follows that z*y* =1 i.e.

|zy] =3 Equality in each place requires the conditions stated above.

Lemma 31. Let P, be a point of the region flx,y) = 1, |z| < y, and let P; be
a point of the region f(z, y) =1, |y| <z Then A OP,P;= %, with equality only
if Py is (0, 1) and P5 ¢s (1, o). '

We have

S, y) ="~y +(6m+2)z*y* = 1,
giving
(—y¥E = 1—(6m+2)aty? =1,

with final equality only if f(z, 4)=1, xy=0. The result then follows from
Lemma 29.

30. We now show that every lattice of determinant 1 has a point in R,
and establish a condition for this to be the best possible result.

Let L be any lattice of determinant 1 which is admissible with respect to R.

Consider the square |z| < 1, [y| < 1, of area 4. By Lemma 15 (Minkowski’s
theorem), it contains a point of L other than O, say P,. Now every point of
this square except (o, * 1) and (& 1, o) satisfies f(x, y) <1. For if 2= 42, we

have
f (e, 2/)=904+y2(?/2+6mx2)£x‘_<_ I,

since 6m <<-—1, with equality in each place only if y®*=o0, z*=1; and similarly
if y*>2°. Hence, by the symmetry about O, we may suppose P, is (o, 1) or
{1,0) or that it lies in one of the regions FR,, R:, where R, is defined by
o<z=1,0<y=r1, f(z,y)<—1, and R is the image of R, in the y-axis.

Suppose that P, is the point (0, 1). Then the line =1 contains points of
L spaced at unit intervals, and so every segment of length > 1 of this line
contains at least one point of L. We consider the open segment of =1 lying
between the two branches of the curve f(x,y)=—1. Every point of this seg-
ment is an inner point of R, except the point (1, 0). Further, its length is
greater than that of the corresponding intercept made by z y= +}, by the proof
of Lemma 30, and so > 1. It follows that (1, 0) is a point of L, and therefore



The Minimum of a Binary Quartic Form (II). 195

L is the lattice z=¢&, y=9, say L,. The same conclusion clearly holds if P, is
the point (1, 0). The lattice L, has the point (1, 1) in R, and the point (—1, 1)
in R1. Thus, by symmetry, we may suppose without loss of generality that the
point P; lies in R,.

Now consider similarly the square of area 4 defined by |z + g/ISV;,
fz—y] =V2. By Lemma 135 it contains a point of L other than O, say P,.
Every point of this square satisfies f (z, y) > —1, except the points (1/Vz,+ I/V;),
(—1/V2,+ 1/V2) when m=—1. It suffices to show this for the first quadrant;
and then if (X, Y) is a point of f(x, y) =<—1 we have, by the proof of Lemma
30, X+ Y=2VX Y =V2, with equality only when m=—1, (X, Y) =
=(I/V5, I/V;). Hence we may suppose that P, lies in the region R, defined
by o<a+y=V2, o<y—ax < V2, f(x,y) =1, unless m=—1, when it might be
1/V2, 1/V2). But if m=—1 and P,=(+1/V2, 1/V2), we
find as above, using here the proof of Lemma 31, that (T 1/V2, 1/V2)is a point

one of the points (+

of L, and hence so is (0, ¥2), which is a point of R,. Thus we may suppose
in any case that P, lies in R,.

Lemma 32.

A OPP,=1.

Let A4 be the mid-point of the line joining the points (V2, o), (1, 1), and
let C be the mid-point of the line joining the points (—1, 1), (0, V2). Let these
two joins produced meet in B. Then OABC is clearly a square, and it contains

N .
8
< 2. Then by Lemma 27, A OP,P, <1 and hence A OP,P,=1}.

Now let P;=P,—P,, and let the point P; have coordinates (x;, ¥:) for
¢=1,2,3. Then A OP,P;=/A OP,P,=}, since A OP,P,=} by Lemma 32. We
note that JR, lies in the triangle with vertices (1, 1), (V2—1, 1) and (1, V2—1),
excluding the two last-named vertices, and so the coordinates of P, satisfy

the regions R, and R,. Its side is of length V2 cos = < V2, soarea OABC <

@, > VE—I, Vza—1 < ¥ = 1. Similarly, we have z,> 1—V2, 1= y,SV;.. It
follows that x,=2,—x, >0 and —1 <y, <o0. Since P, is a point of L, it is not
an inner point of R. Hence it must lie in the region f(x,y) =1, |y| <=, or
in the region f(x,y)=<—1, >0, y<o. In the first case, A OP,P,>1} by
Lemma 31, unless P, is (0, 1) and P, is (1, o), that is unless L is L,. Similarly,
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in the second case we have A OP,P,>1} by Lemma 30, unless L is L, or, if
m=—1, the lattice Loy defined by x = —1:(5—1]), Y= i_(é'-l-n).
' V2 V2

We have thus proved that every lattice of determinant 1 other than L,,
and Ly for m=—1, has a point other than O in the interior of R. If m>~ —1,
the lattice L, may or may not be admissible. If it is, it follows that 4%=
and k=1, and that L, is the only critical lattice. If m=—1, both L, and
Ly are admissible, since each gives rise to the condition | &*—6 &5+ 7*| = 1 for
integers £ 7 # 0, 0, which is true. Thus %2*=1, and L,, Lo are both critical in
this case. In any case, A* < 1.

Theorem 10. If —1<m <—1}, there is a point x, y, other than the origin,
of every lattice L of determinant A, such that

|zt +6ma®y?+yt| < 4%
This is the best possible result ¢f
(30.1) | +6mEp+yt| =1
Jor all integers & n 3 0,0. If this is so, the lattice defined by x=§, y=n is a

1

V; (5”’7),

cretical lattice, and s the only one unless m= —1, when the lattice x=

y=]—/1: (E+m) 4s also critical. The condition (30.1) ¢s satisfied, for example, if
2

6m=—3, —4, —5, —6.

It remains only to prove the last statement in the theorem. In these cases
the form &*+6mé&*n*+9* has integer coefficients and is not zero for integers
& n # 0,0, since this would imply £ =%® and thence 2+6m=o0, which is false.

Theorem 10 leads at once to

Theorem 11. Let (& 7) be a binary quartic form with real coefficients and
D>o0, H>o0, K>o. Further, let 32T =7 F°, so that m given by (27.1) sat-

isfies —1<m =— 4. Then there exist integers &, 1, not both zero, such that
(30.2) |9 (& 9)| < (gm®—1)~" D',
This ¢s the best possible result ¢f

(30.3) [ +6mE i+t =1
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Jor all integers & £ 0,0, and then the sign of equality is required in (30.2) f,
and only of, y(& n) s equivalent to a multiple of the form

SE n=+6mEn+nt

The condition (30.3) is satisfied, for example, if 6 m=—3, —4, —85, —6.
We note here that the result of Hermire (4) for a quartic form

p(En=alE—an) (E—ayn) (—o ) (E—ay7),
where o; > o, > a3 > a,, is, in the notation of § 22,
|A0|<%la|(°‘1—°‘3) (g —ary).

This is really equivalent to %*(m) <}(1—3m), and in this shape it may be com-
pared with the much sharper results given in Theorems g and 11.

31. It would be an interesting question to investigate general conditions
under which (30.3) is satisfied; I have not yet seriously considered this problem.
Whether or not it is satisfied in a particular case will clearly depend on the
arithmetical nature of the parameter m, and the question is a very deep one.
Even if we restrict our attention to forms y (£ #) with integer (or rational)
coefficients, the number m will in general be an algebraic number of degree 6.
1f, however, m is a rational number, it should not be difficult to decide the
matter. For example, simple considerations of quadratic and biquadratic residues
show that (30.3) is satisfied for all m in the range concerned with 6m of the

n n .
form — — or ~a (n an integer), except for the values 6m = —4, —4 .1

Nevertheless, we can easily obtain some metrical information about the set
of values of m for which (30.3) either is or is not satisfied. In particular, we

can show that both sets are of positive measure. For brevity, write M= —6m;
then 3 <M < 6. The condition (30.3) becomes
(31.1) | —MEp+9t| = 1.

We shall describe M (or m) as admissible if (31.1) is satisfied for all integers
& n #£ 0, 0, and otherwise as non-admissible.

Theorem 12. If A (M) and N (M) are the measures of the sets of admissible
and non-admisstble M respectively, then

! That these values of m must in fact be exceptions follows at once from the remark in the
next footnote.
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2.45 < A (M) < 2.30, 0.50 < N(M)<<o0.55.
If M is non-admissible, there exist integers r,s such that
(31.2) — 1<yt — Mr¥st st <1,
For this particular pair r, s, all values of M with

I 4 st I
(31.3) TrEps M aE <
satisfy (31.2) and so are non-admissible. Also, all non-admissible M arise in this
way for some pair 7, s. We may clearly suppose (r, s) =1 and r>s=1. Thus
the set of non-admissible M consists of an enumerable set of intervals. These

4 4
. re+ s 2 .
intervals have centres M = —5—- and lengths —, where r, s are any integers
s ‘ r®s

with
rt 4 st

(31.4) r>s=1, (r,s) =1, 33—73?—3 6.

These intervals may, of course, overlap, so

(31.5) N(M)sZﬁg—z,

where the summation is taken over all r, s satisfying (31.4).
We now examine the last condition in (31.4). Writing » = r%/s?, this be-

comes u*—3u+1=0, u®—6u-+1<0. Since w>1, this yields }(3 +Vs) <
<u<=3+2V2, and hence

11+ Vs)=

<14+ Va2,
S

Thus for a fixed value of s= 4, the number of values of » is at most
{1 +V2)—3(1+Vs)ls]+1<0797s+ 1< 1.0475.
We easily find that 2, 1' and 5, 3 are the only pairs with ¢ <<4. These
give N(M)> 0.5088 and

1 2:1.047 1
N(M)<o0.5089 +2 D)~ 5 < 0.5089 + —— —H— B <
érzsz 5039 i(I-I-VS)zséis?’

The result follows, since N(M)+ A (M) = 3.

0.55.

! This pair makes the whole interval 4 < M < 4‘% non-admissible.
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This establishes that the results we give in Theorems 10 and 11 are best
possible for a set of m of positive measure, and indeed for “most m”. We con-
clude this section by remarking that there are non-admissible m as close as we
please to any given value in the range, and, in particular, to admissible values of m.

Theorem 13. The set of non-admissible M is dense in the interval 3 < M < 6.

Let M be any number in the interval, and let x>>1 be a root of u*—
—Mp*+1=o0. Then M = (u*+ 1)/u®. Now (u*+ 1)/u?is a continuous function
of u for u>o0, so, given ¢>0, there exists ¢ > o such that

rt+ gt

‘M“ 2 s?

<&

if [u—r/s|<¢'; and the latter inequality always has solutions satisfying (31.4).

V. Quartics with D <o.

32. We have in the preceding sections dealt with all types of binary
quartic form except those with 2 < o, that is those having two real and two
complex roots, all distinet. I have not yet attempted to investigate this case
systematically, but to complete the discussion of the quartic I give here the
known results, and point out a small improvement that can readily be made.

For this case we may take as standard form

Sl y) = a* + 6ma’y* —y,

with discriminant — (1 + gm?)?. We define the region R by |f(z, y)| =1, and
first investigate its shape. It is bounded by the curves f(x, ) =1, f(z,9y)=—1,

which pass through the points (% 1, 0) and (o, + 1) respectively. Noting that

— fly, ) = * —6ma*y* —y*,

we see that we may suppose m = o.
The asymptotes to each boundary curve are given by y = tx, where { is

any root of
#—6mt*—1 =o.

t2=3m=+ Vi+ogm?,
and so there are just two real asymptotes y = - yz, where

p=3m+Vi+om®, u>o

This gives
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Since we may write f =+ 1 as (y* — p®2%) (y* + 2?/u®) = T 1, we see that f=1
lies in the region |y|<pu|z|, and f=—1 in the region |y|>u|z|.
The points of inflection lie on the Hessian

mat-— (1 + 3m*)xty® —my* = o,

and so on ¥ = + Ax, where

0 1,0 r

Fig. 5. The region |x*+8 x*y*—y'| = 1.

2mA = — (1 + 3m?) + V(I +m?) (1 + gm?) > o,

if m#o0. If m =0, we find xy = o, but the intersections with the boundary are
then points of undulation.  We note that the inflections lie on f(x,y) = 1, since

2m(ui—2%) =2m{3m+-Vi+om?}+1+3m*—V(1+m? (1 +om?)
=Vi+tom (Vi+tom® —Vi+m® +2m}
>0,

and so |4]| < u.
The shape of the region R is illustrated in Fig. 5, which was drawn for

Gl

nm =
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33. The best possible result is known only for m = o, in which case Moz-

pELL (6) showed %* = 4/V17. The only other result known, so far as 1 am aware,
is that of Juria (5). Again using the notation of § 22, his result is essentially that’

|Ao|<%lal(|51_z2l|?3“Z4|+Izl_zsl|32“Z4|+|Zl"’34||52_—33|),
where z,, 2,, z;, 2, are the roots of y(z, 1)=o0. This iskequivalent to
B (m)<3i{1+Vi+tom?).

We can improve this for small values of m by inscribing a convex region
in R. Clearly the rectangle defined by |x| < x,, |y| < 1, where x, is the mini-
mum positive abscissa of f(z,y) = 1, lies in R. The area of this rectangle is
4x%, so, by Lemma 15, 4* =22 and hence k*(m)<1/2]. We easily find
at =1/(1 + om?), so we have k*(m)=<V1+9m®. This estimate is better than

Julia'’s if | m| < —

V3

We collect these results together in

Theorem 14. Let y(&, 1) be a binary quartic form with real coefficients and
D<o, and so transformable into the form x*+ 6ma®y®—y*. Then there exist
integers &, n, not both zero, such that

k (m)
< s
l'/’(f,ﬂ)l (I+9m2)l/’|2l ’
where we may take

k(o) = 1%—7 (best possible);

Em)=Vitom?, for o<|m|< —I:;
V3
211 . Vit a- V2 I
k(m) = 3{x +Vitom?, for |m|=—=
V3
I wish to express my gratitude to Professor L. J. Mordell for suggesting
this problem to me and for his advice in removing obscurities from the original

manuscript of both parts of this paper.
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